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Program for Wednesday, September 19, 2001

Location: Room B 3

————————————————————————————————

Registration from 09:00 - 10:00

————————————————————————————————

Chairman: A. Meyer

10:00 – 10:05 A. Meyer (Chemnitz)

Welcome

10:05 – 10:45 D. Silvester (Manchester)

Preconditioners for Incompressible Stokes and Navier-Stokes
Equations

10:50 – 11:15 G. Stoyan (Budapest)

Crouzeix-Velte Decomposition and Applications

11:20 – 11:45 P. Knobloch (Praha)

Non-nested multi-level solvers for finite element discretizati-
ons of mixed problems I

11:50 – 12:15 V. John (Magdeburg)

Non-nested multi-level solvers for finite element discretizati-
ons of mixed problems II

————————————————————————————————

Dinner and poster session

————————————————————————————————

Chairman: D. Silvester

14:00 – 14:25 C. Wieners (Chemnitz)

Taylor-Hood elements in 3D

14:30 – 14:55 A. Meyer (Chemnitz)

Subspace cg for handling hanging nodes and slip-boundary-
conditions

15:00 – 15:25 G. Haase (Linz)

An Additive Schwarz Preconditioner in an Ocean Modeling
Code

15:30 – 15:55 S. Reitzinger

A General Concept for the Construction and Parallelization
of Algebraic Multigrid Methods
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————————————————————————————————

Tea and coffee break, poster session

————————————————————————————————

Chairman: G. Stoyan

16:30 – 16:55 O. Steinbach (Stuttgart)

On the coupling of finite and boundary elements for the Stokes
problem

17:00 – 17:25 J. Brandts (Utrecht)

Superconvergence in mixed finite element methods

17:30 – 17:55 L. Paquet (Valenciennes)

Some mixed finite element methods on anisotropic meshes

18:00 – 18:25 A. Georgievich (Novosibirsk)

Finite-dimensional model for a system of the high-conducting
dense packing particles
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Program for Thursday, September 20, 2001

Location: Room B 3

————————————————————————————————

Beginning at 09:00

————————————————————————————————

Chairman: B. Heinrich

09:00 – 09:40 R. Stenberg (Helsinki)

Stabilized FE methods for the Reissner-Mindlin plate

09:45 – 10:10 J. Schöberl (Linz)

Residual-Based A Posteriori Error Estimate for a Mixed
Reissner-Mindlin Plate Finite Element Method

————————————————————————————————

Tea and coffee break, poster session

————————————————————————————————

Chairman: R. Stenberg

10:45 – 11:25 E. Rank (München)

General Concepts, Implementation Aspects and Numeri-
cal Results: High Order Solid Elements for Thin-Walled
Structures

11:30 – 11:55 M. Melenk (Leipzig)

A fully adaptive algorithm for hp-finite element methods

12:00 – 12:25 E. Creusé (Valenciennes)

Active control of a viscous compressible flow over a dihedral
plane

————————————————————————————————

Photo, dinner and poster session

————————————————————————————————

Chairman: M. Berzins

14:30 – 14:55 H. Roos (Dresden)

Finite elements for problems with parabolic boundary layers
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15:00 – 15:15 H. Zarin (Dresden)

A second order scheme for singularly perturbed differential
equations with discontonuous source term

15:20 – 15:45 V. Dolejsi (Praha)

Anisotropic Mesh Adaptation - Method Independent Adapti-
ve Technique

15:50 – 16:05 F. Hülsemann (Erlangen)

Hybrid hierarchical grids: Bringing together flexibility and
high performance

————————————————————————————————

Tea and coffee break, poster session

————————————————————————————————

Chairman: E. Rank

16:40 – 17:05 P. Jimack (Leeds)

A Multilevel Approach for Obtaining Locally Optimal Finite
Element Meshes.

17:10 – 17:35 G. Kunert (Chemnitz)

Zienkiewicz-Zhu error estimators on anisotropic tetrahedral
finite element meshes

17:40 – 17:55 L. Laayouni (Rabat)

Anisotropic a posteriori error estimation for convection diffu-
sion problem

18:00 – 18:15 S. Grosman (Chemnitz)

The equilibrated residual error estimator and its modification
for anisotropic triangular finite element meshes
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Program for Friday, September 21, 2001

Location: Room B 3

————————————————————————————————

Beginning at 09:00

————————————————————————————————

Chairman: R. Schneider

09:00 – 09:25 M. Berzins (Leeds)

Positivity Preserving Mass Matrices and Galerkin Methodsfor
Transient Flow Problems

09:30 – 09:55 M. Feistauer (Praha)

Discontinuous Galerkin methods for fluid flow problems

10:00 – 10:25 R. Hartmann (Heidelberg)

Adaptive Discontinuous Galerkin Finite Element Methods for
Nonlinear Hyperbolic Conservation Laws

————————————————————————————————

Tea and coffee break, poster session

————————————————————————————————

Chairman: M. Feistauer

11:00 – 11:25 G. Kanschat (Heidelberg)

The local discontinuous Galerkin method for incompressible
viscuous flow

11:30 – 11:45 T. Schnitzer (Freiburg)

The Discontinuous Galerkin Method applied to the MHD
Equations

11:50 – 12:15 B. Heinrich (Chemnitz)

Nitsche-type finite element method for elliptic problems with
singularities

————————————————————————————————

Buffet

————————————————————————————————

Starting at 13:15 to visit
”
Augustusburg“

————————————————————————————————
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Positivity Preserving Mass Matrices and Galerkin

Methods for Transient Flow Problems.

Martin Berzins

martin@comp.leeds.ac.uk

Computational PDEs Unit, School of Computing
The University of Leeds, Leeds LS2 9JT, UK

One of the strengths of DG Galerkin Methods is that the semidiscrete o.d.e. system is explicit
for transient problems. In contrast the standard mass matrix is such that positivity of the
solution may be violated in a transient problem. In this talk an attempt is made to use some of
the ideas employed in nonlinear DG and Petrov Galerkin schemes and also in Finite Volume
schemes to solve this problem. As a result it is possible to show how this results in positive
solutions for hyperbolic problems. The central idea extends in a straightforward manner to
unstructured triangular and tetrahedral meshes. Numerical examples are used to show the
benefits and also the potential drawbacks of the approach.

References:

[1] M. Berzins, Modified Mass Matrices and Positivity Preservation for PDEs Communications
in Numerical Methods in Engineering, 2001, to appear.
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Superconvergence in Mixed Finite Element Methods

Jan Brandts

brandts@math.uu.nl

Utrecht University
Mathematics

P.O. Box 80.010
3508 TA Utrecht

Netherlands

This presentation will consist of a mixture of known results, examples, techniques, conjectures
and open problems connected to superconvergence questions in mixed finite element methods.
One of its intentions is to provoke the audience into adding topics to the list, which would
motivate the speaker to finally write a survey paper in this field. Another intention is, of
course, to advertise some own results, and to ask for suggestions and remarks that could be
useful in tackling the open problems.

References:

Most of the material presented can be found in detail on my Homepage,
http://www.math.uu.nl/people/brandts
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Active control of a viscous compressible flow over a

dihedral plane

Emmanuel Creusé

ecreuse@univ-valenciennes.fr

M.A.C.S.
Université de Valenciennes et du Hainaut-Cambrésis

59313 Valenciennes Cedex 09
FRANCE

Charles-Henri Bruneau

bruneau@math.u-bordeaux.fr

M.A.B.
Université Bordeaux I

351, cours de la Libération
33405 TALENCE Cedex

The evolution of a slightly compressible viscous flow over a dihedral plane gives rise to the
creation of recirculation areas and vortices generation. These phenomena are damaging for the
aerodynamic properties of the configuration. This work is devoted to the numerical
implementation and to the comparison of four active control techniques in order to increase
the upward thrust induced by the fluid on the dihedral, by local modification of the boundary
conditions. The two-dimensional Navier-Stokes equations are solved by a direct numerical
simulation code based on a mixed finite volumes / finite elements scheme with an explicit time
integration on unstructured mesh. Pressure tangent gradient sensors on the dihedral as well as
vortex generator jets to blow or suck up fluid through the wall are used for all of the four
active control techniques involved.
The closed-loop control simply consists in an amplification between the signal recorded at a
sensor located downstream in the flow and the jet produced at an actuator located upstream
in the flow [1]. The jet is then induced at a frequency corresponding to the passage of vortical
structures on top of the sensor. The adaptative control tries to improve the previous results by
modification of the transfert function, based on statistical arguments [2]. Then, a control based
on the physical interpretation of the vorticity creation near to the wall caused by a normal jet
to the wall is considered. It uses several sensors and actuators [3]. Finally, the sub-optimal
control allows to reach the objective by minimizing a functionnal with the use of an adjoint
problem coming from the governing equations [4]. Each of these techniques gives satisfactory
results. Moreover, several comparisons lead to very clear conclusions on what is essential -and
what is not essential- to make the control efficient.

References:

[1] G. Hernandez, Contrôle actif des instabilités hydrodynamiques des écoulements subsoniques
compressibles, Thèse CERFACS, France, 1996.
[2] B. Widrow and S.D. Stearn, Adaptive signal processing, Prentice-Hall, 1985.
[3] P. Koumoutsakos, Active control of vortex-wall interactions, Physics of fluids, 9 (12), pp
3808-3816, 1997.
[4] T. Bewley, H. Choi, R. Temam and P. Moin, Optimal feedback control of turbulent channel
flow, Technical report annual research briefs, center for turbulence research, 1993.

10



Anisotropic Mesh Adaptation -

Method Independent Adaptive Technique

Vit Dolejsi

dolejsi@karlin.mff.cuni.cz

Charles University, Prague
Department of Numerical Mathematics

Sokolovka 83
186 00 Prague
Czech Republic

We present an efficient adaptive technique for the numerical solution of partial differential
equations of various type. Our aim is to generate a triangular grids with small number of
elements where the satisfactory numerical solution can be achieved. We derive the mesh
quality parameter and describe the algorithm how to optimize it. The main advantage of the
anisotropic mesh adaptation is the independence of the used numerical scheme (finite
difference, finite element, finite volume). The high efficiency is observed if the solutions
contains some

”
singularities“ , discontinuities, steep gradients. The generality of the method is

demonstrated in problems of inviscid as well as viscous flow simulation and the
thermoregulation of premature infants.
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Discontinuous Galerkin Methods for fluid flow

problems

Miloslav Feistauer

feist@karlin.mff.cuni.cz

Faculty of Mathematics and Physics
Charles University Prague

The paper is concerned with the use of the Discontinuous Galerkin Finite Element Methods for
the solution of nonlinear convection-diffusion problems and compressible flow. The sought
solution is approximated in space by piecewise linear discontinuous functions over convex
polyhedra. The convective fluxes are approximated with the aid of the finite volume approach
and the approximation of the diffusion terms is carried out by the method proposed by I.
Babuska, E. Baumann and T. Oden. Time is considered either continuous (the method of
lines) or a suitable Runge-Kutta discretization is used. An important problem is the
limitingävoiding spurious oscillations in the numerical solution. We propose two new methods
and analyze them theoretically, as well as with the aid of numerical experiments. The method
is applied to the solution of high speed compressible flow.
The presented results were obtained in cooperation of the author with V. Doleǰśı and C.
Schwab. The research was supported under the grant No. 201/99/0267 of the Czech Grant
Agency and grant No. MSM 113200007.
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Finite-dimensional model for a system of the

high-conducting dense packing particles

Alexander Georgievich

SYSAN
Novosibirsk, Russia

Berlyand L

Pennsylvania State University
State College, PA, USA

We consider Laplas equation in the domain with the large number of small absolutely
conducting fillers. The solution takes the constant (not known) values on the fillers. Earlier
proposed methods [1,2] deal with the equations with the continuous coefficients cannot be
adopted to the such kind media.
Formulation of the problem. Consider the domain P = [−1, 1]× [−L,L] in which the particles
Di, i = 1, ..., N . Denote the remaining part of the domain by Qp = P\ ∪Qi. Consider the
problem

∆u = 0, x ∈ Qp,

u(x) = ti, x ∈ Di
∫

∂Di

undx = 0, i = 1, ..., N,

u(x,±1) = ±1, ∂u/∂n(±L, y) = 0

The special finite elements for high-contrast dense packing system of particles. The problem
above is not the problem that can be soled using a uniform mesh. We can use a non-uniform
mesh (mesh of variable density). For the high-contrast medium with dense packing particles it
would not effective too. Explain this fact. Our theoretical analysis of the problem [3] predicts
that the energy fluxes are concentrated in the necks between the neighbor particles. Thus the
space outside the inclusions and the necks is equivalent to an empty space. Thus, computations
(with both uniform or non-uniform mesh) involving this space will lead to computations

”
in

empty space “ .
The problem can be solved by constructing suitable finite elements in the necks only. We
construct such kind finite elements and arrive at a finite (

”
net“ ) problem. The obtained

”
net

“problem is not only a formal finite approximation for the continuous problem, it has a
physical interpretation.
Numerical computetions. We use the discrete network to compute the effective conductivity of
high-contrast composite numerically. For this purpose we employ a computer program which
generates a random distribution of disks on the plane. Using this distribution we obtain the
corresponding discrete network. Furthermore the computer program provides the distribution
of fluxes in the network which is based on the Keller’s formula for two closely spaced disks. We
compute the dependence of the effective conductivity on the volume fraction of the inclusions
for monodispersed composites and obtained results which are consistent with the percolation
theory predictions. The computer program which is based on our network model is very
efficient and it allows us to collect the statistical data for a large number of random
configurations.

References:
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[1] Borcea, L., Papanicolaou G., Network approximation for transport properties of high
contrast materials. SIAM J Appl Math, 58(2), (1998), 501-539.
[2] Kozlov, S.M., Geometrical aspects of averaging. Russ. Math. Surveys, 44:22, (1989), 91-144.
[3] Berlyand, L., et al Network Approximation in the Limit of Small Interparticle Distance of
the Effective Properties of a High Contrast Random Dispersed Composite.Archive for Rational
Mechanics and Analysis. (2001) in print
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The equilibrated residual error estimator and its

modification for anisotropic triangular finite element

meshes.

Sergej Grosman

grosman@mathematik.tu-chemnitz.de

Technische Universität Chemnitz
Fakultät für Mathematik

09107 Chemnitz
Germany

A singularly perturbed reaction-diffusion problem with homogeneous Dirichlet boundary
condition is considered. It exhibits in general a solution with strong boundary and/or interior
layers. This anisotropy is reflected in the discretization by using meshes with anisotropic
elements.
Adaptive solution methods are based on a posteriori error estimators. The Equilibrated fluxes
method and its modification for the singular perturbed case, done by Ainsworth and Oden, are
discussed with respect to the application on anisotropic meshes. Further modifications of this
error estimator for the anisotropic case are proposed.
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An Additive Schwarz Preconditioner in an Ocean

Modeling Code

Gundolf Haase

ghaase@numa.uni-linz.ac.at

Johannes Kepler University of Linz,
Institute of Computational Mathematics,
Altenbergerstr. 69, A–4040 Linz, Austria

Craig C. Douglas

douglas@ccs.uky.edu

University of Kentucky, Department of Computer Science,
325 McVey Hall-CCS, Lexington, KY 40506-0045, USA.

Mohamed Iskandarani

MIskandarani@rsmas.miami.ed

University of Miami,
Rosenstiel School of Marine and Atmospheric Science,

4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA.

The circulations in the ocean like the Gulf stream can be described with the shallow water
equations. These pdes are discretizes with an Adams-Bashford scheme combined with the
Crank-Nicholson scheme for the time derivatives and spectral elements for the discretization in
space. The resulting coupled system of equations will be reduced to a Schur complement
system with a special structure of the Schur complement. This system can be solved with a
preconditioned conjugate gradients, where the matrix-vector product is only implicitly given.
We derive an overlapping block preconditioner based on additive Schwarz methods for
preconditioning the reduced system that takes into account the special structure of the
elements used.
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Adaptive Discontinuous Galerkin Finite Element

Methods for Nonlinear Hyperbolic Conservation

Laws

Ralf Hartmann

Ralf.Hartmann@iwr.uni-heidelberg.de

Institute of Applied Mathematics,
University of Heidelberg,

Im Neuenheimer Feld 293, D-69120
Heidelberg

We present the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin
finite element approximations to systems of nonlinear hyperbolic conservation laws.
Shock capturing is used to reduce over-shoots at shocks. At curved boundaries we employ
higher order boundary approximations to avoid non-physical entropy production at reflective
boundaries.
We discuss the question of a posteriori error estimation for general linear and nonlinear
functionals of the solution; typical examples include the outflow flux, local average and
pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid.
By employing a duality argument, we derive so-called weighted a posteriori error bounds; in
these error estimates the element–residuals are multiplied by local weights involving the
solution of a certain dual problem. Based on these a posteriori bounds, we design and
implement the corresponding adaptive algorithm to ensure efficient and reliable control of the
error in the computed functional. The theoretical results are illustrated by a series of
numerical experiments. In particular, we demonstrate the superiority of the proposed approach
over standard mesh refinement algorithms which employ ad hoc error indicators.

References:

[1] W. Bangerth, R. Hartmann, and G. Kanschat: deal.II Differential Equations Analysis
Library, Technical Reference. IWR, University of Heidelberg, Aug. 2001. Available from
http://gaia.iwr.uni-heidelberg.de/d̃eal/.
[2] F. Bassi and S. Rebay: High–order accurate discontinuous finite element solution of the 2D
Euler equations. J. Comput. Phys. 138:251–285, 1997.
[3] R. Hartmann: Adaptive FE–methods for conservation equations. In: G. Warnecke and H.
Freistühler (Eds.) Proc. Eighth International Conference on Hyperbolic Problems. Theory,
Numerics, Applications (HYP2000). Birkhäuser, Basel. (to appear).
[4] R. Hartmann and P. Houston: Adaptive Discontinuous Galerkin Finite Element Methods
for Nonlinear Hyperbolic Conservation Laws. Preprint 2001-20 (SFB 359), IWR Heidelberg,
Mai 2001, Submitted to SIAM J. Sci. Comp.
[5] J. Jaffre, C. Johnson, and A. Szepessy: Convergence of the discontinuous Galerkin finite
element method for hyperbolic conservation laws. Math. Models and Methods in Appl.
Sciences, 5:367–386, 1995.
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Nitsche-type finite element method for elliptic

problems with singularities

Bernd Heinrich

bernd.heinrich@mathematik.tu-chemnitz.de

Kornelia Pietsch

kornelia.pietsch@mathematik.tu-chemnitz.de

Technische Universität Chemnitz
Fakultät für Mathematik

09107 Chemnitz
Germany

The paper is concerned with Nitsche-type mortaring for treating weak continuity across
non-matching meshes for domain decomposition according to the generalization (R. Stenberg,
1998) of some method of J. A. Nitsche (1971). The approach is applied to the Poisson equation
with different types of boundary conditions. The interface of the domain decomposition may
pass corners of the domain or touch collision points of boundary conditions of different type
where the solution has in general singular behaviour. Moreover, the approach is extended to
Poisson-like problems with discontinuous coefficients and polygonal interfaces connected with
singularities (joint work with S. Nicaise, 2001). For such problems and non-matching meshes of
triangles with local refinement near the corners of the boundary or interface, some properties
of the finite element schemes and error estimates in a H1-like norm and in the L2-norm are
proved. They show that appropriate mesh grading at the interface of non-matching grids yields
convergence rates as known for the classical finite-element method in presence of regular
solutions. Numerical examples illustrate the approach and confirm the theoretical results.
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Hybrid hierarchical grids: Bringing together

flexibility and high performance

Frank Hülsemann

frank.huelsemann@informatik.uni-erlangen.de

Friedrich-Alexander Universität Erlangen-Nürnberg
Institut für Informatik 10 (Systemsimulation)

91058 Erlangen

This talk presents the framework of hierarchical hybrid grids, which were introduced in order
to combine the flexibility of unstructured grids with the high performance of structured ones.
Hierarchical hybrid grids employ several grid levels which serve different purposes. The coarse
and in general unstructured levels represent the geometry and the topology. The computations
are carried out on highly structured refinements of the coarse grid elements. The talk discusses
the main concepts and demonstrates the performance gain for simple iterative schemes for
linear algebraic systems. The experimental results from several computer platforms, ranging
from workstations to supercomputers, underline the performance potential of the approach.
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A Multilevel Approach for Obtaining Locally

Optimal Finite Element Meshes

Peter Jimack

pkj@comp.leeds.ac.uk

University of Leeds
School of Computing

LS2 9JT Leeds
UK

In this paper we consider the adaptive finite element solution of a general class of variational
problems using a combination of node insertion, node movement and edge swapping. The
adaptive strategy that is proposed is based upon the construction of a hierarchy of locally
optimal meshes starting with a coarse grid for which the location and connectivity of the nodes
is optimized. This grid is then locally refined and the new mesh is optimized in the same
manner. Results will be presented both for triangular meshes in two dimensions and
tetrahedral meshes in three dimensions. This is joint work with Rashid Mahmood.
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Non-nested multi-level solvers for finite element

discretizations of mixed problems

Volker John

john@mathematik.uni-magdeburg.de

Otto–von–Guericke–Universität Magdeburg,
Institut für Analysis und Numerik,

Postfach 4120,
39016 Magdeburg, Germany,

Petr Knobloch

knobloch@karlin.mff.cuni.cz

Charles University
Faculty of Mathematics and Physics

Sokolovska 83
18675 Praha 8
Czech Republic

We consider a general framework for analysing the convergence of multi-grid solvers applied to
finite element discretisations of mixed problems, both of conforming and nonconforming type.
As a basic new feature, our approach allows to use different finite element discretisations on
each level of the multi-grid hierarchy. Thus, in our multi-level approach, accurate higher order
finite element discretisations can be combined with fast multi-level solvers based on lower
order (nonconforming) finite element discretisations. This leads to the design of efficient
multi-level solvers for higher order finite element discretisations.
The efficiency of this multiple discretization multigrid approach is demonstrated in the
solution of the 3D Navier–Stokes equations.

References:

[1] V. John, P. Knobloch, G. Matthies, L. Tobiska,
”
Non-nested multi-level solvers for finite

element discretizations of mixed problems“ Preprint 11/2001, Fakultät für Mathematik,
Otto-von-Guericke-Universität Magdeburg
[2] V. John, G. Matthies, L. Tobiska,

”
On higher order finite element discretizations for the

incompressible Navier-Stokes equations in three dimensions“ , Preprint 06/2001, Fakultät für
Mathematik, Otto-von-Guericke-Universität Magdeburg
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The local discontinuous Galerkin method for

incompressible viscuous flow

Guido Kanschat

kanschat@iwr.uni-heidelberg.de

Universitt Heidelberg
Institut fr Angewandte Mathematik

Im Neuenheimer Feld 293/294
69120 Heidelberg

Deutschland

A mixed discontinuous finite element method for elliptic problems called the local
discontinuous Galerkin method will be presented. This method will be extended to Stokes and
linearized Navier-Stokes equations. It will be shown, that it is possible to solve the arising
linear algebraic systems efficiently, using a multi-level preconditioner.

References:

[1] Bernardo Cockburn, Guido Kanschat, Dominik Schtzau, and Christoph Schwab: Local
discontinuous Galerkin methods for the Stokes system
http://www.ima.umn.edu/preprints/oct2000/oct2000.html IMA Preprint 1728, SIAM J.
Numer. Anal., to appear
[2] J. Gopalakrishnan and G. Kanschat: A multilevel discontinuous Galerkin method
http://www.ima.umn.edu/preprints/dec2000/dec2000.html IMA Preprint 1735, Numer.
Math., to appear
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Zienkiewicz-Zhu error estimators on anisotropic

tetrahedral finite element meshes

Gerd Kunert

gkunert@mathematik.tu-chemnitz.de

TU Chemnitz
Faculty of Mathematics

09107 Chemnitz
Germany

We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite
element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large.
Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which are both based on
some recovered gradient. Two different, rigorous analytical approaches yield the equivalence of
both ZZ error estimators to a known residual error estimator. Thus reliability and efficiency of
the ZZ error estimation is obtained. Particular attention is paid to the requirements on the
anisotropic mesh. The analysis is complemented and confirmed by several numerical examples.
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A fully adaptive algorithm for hp-finite element

methods

Markus Melenk

melenk@mis.mpg.de

MPI für Mathematik in den Naturwissenschaften
N/A

Inselstr. 22-26
04103 Leipzig
Germany

In the hp-version of the finite element method (hp-FEM), convergence can be achieved either
through mesh refinement or by increasing the approximation order. We present an hp-adaptive
algorithm where the decision whether to perform h-refinement or p-enrichment is based on the
local convergence history. The algorithm is based on local residual-based error indicators.
Reliability of the error estimator is proved; the efficiency constant of the error estimator is
O(p). The work presented is joint with B. Wohlmuth.
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Some mixed finite element methods on anisotropic

meshes

Luc Paquet

Luc.Paquet@univ-valenciennes.fr

Serge Nicaise

Serge.Nicaise@univ-valenciennes.fr

Universit de Valenciennes et du Hainaut-Cambrsis
Institut des Sciences et Techniques de Valenciennes

Laboratoire MACS
Le Mont Houy, F-59313 Valenciennes Cedex 9 France

Mohamed Farhloul

farhlom@UMoncton.CA

Universit de Moncton, Department of Mathematics and Statistics, N.B.,
E1A3E9, Moncton (CANADA)

Let us consider the Laplace equation or the Stokes system in a three-dimensional bounded
domain Ω with Dirichlet boundary conditions. If Ω is smooth, then the solutions of these
equations are smooth [11, 12], while if Ω is a polyhedral domain, then the solutions have in
general singularities near the corners and the edges of Ω [6, 7, 3, 4]. Consequently if Ω is not
convex, classical mixed finite element methods [16, 17, 10] on quasi-uniform meshes have a slow
convergence rate.
For two-dimensional domains with corner singularities, the use of refined meshes in a
neighbourhood of the singular corners allows to restore the optimal order of convergence [8, 9].
Our goal is then to extend the mesh refinement method in three-dimensional polyhedral
domains in order to obtain an optimal order of convergence. For standard finite element
method for the Laplace equation, it has been shown that anisotropic mesh grading (in the
sense that elements in the refined region have an aspect ratio which grows to infinity as h→ 0,
h being the global meshsize of the triangulation) is appropriate to compensate this effect and
to obtain the optimal order of convergence [5, 13]. In [2, 3, 4]prismatic domains were
considered. This restriction was made there because the authors wanted to focus on edge
singularities, and such domains do not introduce additional corner singularities. The finite
element meshes were graded perpendicularly to the edge and were quasi-uniform in the edge
direction. In our work, we extend these last results to some mixed FEM for the Laplace
equation and the Stokes system using some J.-C. Nédélec elements [14] in the case of prismatic
triangulations and Raviart-Thomas elements [16, 17, 10] in the case of tetrahedral
triangulations. The background is anisotropic regularity results for the solutions of the Laplace
equation and the Stokes system on such prismatic domains obtained in [3, 4]. The main point
is to derive anisotropic local interpolation error estimates for functions from anisotropic
weighted Sobolev spaces in the spirit of [1, 4, 15].
The outline of my lecture will be the following one: Firstly, I shall describe two families of
anisotropically graded finite element meshes based on prismatic elements and tetrahedral
elements respectively which turned out to be suited for the treatment of edge singularities
[2, 3, 4]. I shall further introduce the J.-C. Nédélec finite element spaces [14] and
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Raviart-Thomas finite element spaces [16, 17] and show that the associated interpolant
operators are well-defined for functions in appropriate anisotropic weighted Sobolev spaces.
As usual our error analysis requires some local interpolation error estimates, which are
investigated for prismatic elements and tetrahedral elements respectively. Note that for
tetrahedral elements, contrary to the habit, we use a composition of interpolation operators in
order to avoid a geometrical obstacle [1].
Then I shall consider the mixed FEM of the Laplace equation. Using anisotropic regularity
results from [3] and our previously obtained global interpolation error estimates for prismatic
and tetrahedral triangulations, I shall show that appropriate refined meshes lead to the
optimal finite element error estimate:

‖p− ph‖0,Ω + ‖u− uh‖0,Ω ≤ Ch|||f |||, (1)

where ‖ · ‖0,Ω is the standard norm of L2(Ω), p = ∇u and u is the solution of the Laplace
equation, while (ph, uh) is the finite element solution approximating (p, u) by our mixed
method. In this error estimate |||f ||| is an appropriate norm of f and C is a positive constant
which is independent of the meshsize h and of the function under consideration.
Finally, in the last part of my talk, I shall show that a similar analysis holds for the Stokes
problem with Dirichlet boundary condition in which the gradient of the velocity field is
introduced as a supplementary unknown using the regularity results from [4] and our previous
interpolation error estimates.
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The development of accurate and efficient element formulations for thin-walled structures has
been in the focus of research in computational mechanics since the event of the finite element
method. It seemed to be clear very early, that an investigation of plate or shell problems with
tetrahedral or hexahedral elements is not feasible for practical problems, as a sufficient
accuracy could only be obtained by a prohibitively large amount of degrees of freedom and
computational effort. The major reasons for this observation are the mapping requirements of
isoparametric, low order elements. Accurate solutions can only be obtained, if the aspect ratio
of an element is close to one, resulting in an enormous amount of elements, even if only a few
layers are used over the thickness of the structure. A very natural consequence of this
observation was to use dimensionally reduced models like Reissner-Mindlin plates or Naghdi
shells, and to build element formulations on top of these theories. Yet, it turned out that naive
displacement type elements for these models lead to notorious numerical problems like locking
or spurious energy modes, giving rise to the development of numerous improvements, like
mixed elements or enhanced strain formulations. Although many of these ’tricks’ have shown
to be very successful in practice and are now well understood from a mathematical point of
view, they are often connected with ’crimes’ being sometimes of pure mathematical nature,
but often also due to a violation of the underlying model assumptions, like the kinematics of
the displacement field over the thickness of the structure.
As an alternative to these well-known and widely used dimensionally reduced formulations we
will investigate in this paper the feasibility of strictly three-dimensional models, using high
order elements being coupled to a precise geometric description of the structure. As a key issue
the p-version of the FEA is used, offering a consistent and accurate way to implement solid
elements having a very large aspect ratio (up to a few hundred) and to represent much more
general shapes of element surfaces than those available in the usual isoparametric approach. A
transition from thin- to thick-walled constructions is thus possible without the necessity to
couple models of differing dimensions and without imposing any restrictions on the
(three-dimensional) kinematics of the structure. We will focus our discussion especially on the
question of an efficient implementation of these elements, i.e. on an advantageous choice of
anisotropic higher order ansatz spaces, on coupling of the finite element analysis to a geometric
model and on an adaptive integration technique for higher order elements. Using these ’tricks’
which are often not known or not necessary for low order elements, one obtains an efficient
code being consistent to the three-dimensional theory of elasticity by construction. We will
demonstrate our results and compare them with respect to accuracy and computational effort
to dimensionally reduced models in several numerical examples.
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In this talk we present a general approach to algebraic multigrid methods for problems arising
from the finite element discretization of a second order, self-adjoint, elliptic partial differential
equation. Special attention is paid to the coarsening process and the transfer operators. In
order to construct a flexible method an auxiliary matrix is introduced which represents a
virtual finite element mesh. In addition this auxiliary matrix is related to the degrees of
freedom of the system matrix. The coarsening is performed on the auxiliary matrix, and after
defining appropriate transfer operators for the system and the auxiliary matrix, a coarse
system is constructed by Galerkin’s method.
In order to get additional speed up we propose a parallelization of the algebraic multigrid
algorithm. The realization is based on domain decomposition ideas which is well suited for
distributed memory computers.
Finally we present some numerical studies on parallel computers with distributed memory
which show the high efficiency of the approach.
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It is an open problem to prove optimal uniform convergence results for linear convection
dominated convection-diffusion equations if parabolic boundary layers exist. Based on a new
decomposition of the solution we are able to present such a result for bilinear finite elements
on layer adapted meshes.
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Electrically conducting fluid flow in which the electromagnetic forces can be of the same order
or even greater than the hydrodynamic ones is often modelled by the equation of
magnetohydrodynamics (MHD). The ideal MHD equations consists of the following set of
nonlinear hyperbolic equations

∂tρ+∇ · (ρ~u) = 0,

∂t(ρ~u) +∇ ·

[

ρ~u~ut +

(

p+
1

2
| ~B|2

)

I − ~B ~Bt

]

= 0,

∂t
~B +∇ · (~u ~Bt − ~B~ut) = 0,

∂te+∇ ·

[(

e+ p+
1

2
| ~B|2

)

~u− ~B(~u · ~B)

]

= 0

together with the additional divergence constraint

∇ · ~B = 0.

Here ~B = (Bx, By, Bz)
t denotes the magnetic induction, ~u = (ux, uy, uz)

t the fluid velocity, ρ
the density and e the energy density.
To obtain numerical solutions for such systems of conservation laws on unstructured grids one
often uses finite volume schemes of first and second order. Doing this, the exact solution is
approximated by piecewise constant values on each cell of the grid; using linear reconstruction
and Runge-Kutta timestepping, these schemes can formally be extended to second order.
We have implemented and tested a Discontinuous Galerkin method for the MHD equations. In
this scheme the numerical solution is approximated by polynomials of higher order on each cell
of the grid. The main focus of interest is the comparison of the Discontinuous Galerkin method
and the finite volume schemes of higher order with respect to measured errors, convergence
rates and computational time as well as the question, whether the use of polynomials of grad
≥ 2 might yield better error to runtime ratios in the case of discontinuous solutions.
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Reliable and efficient residual-based a posteriori error estimates are established for the
stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error
is estimated by a computable error estimator from above and below up to multiplicative
constants that do neither depend on the mesh-size nor on the plate’s thickness and are uniform
for a wide range of stabilisation parameter. The error is controlled in norms that are known to
converge to zero in a quasi-optimal way.
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Finite element discretization and linearization of the incompressible Navier-Stokes equations
leads to linear algebraic systems with the saddle-point structure:

(

F BT

B 0

)(

u
p

)

=

(

f
g

)

. (2)

In this talk we describe the development of efficient and general iterative solution strategies for
this type of system. We focus initially on the case when (2) arises from the steady-state Stokes
equations, and show that classical methods such as the Uzawa algorithm lead to a focus on the
Schur complement operator BF−1BT together with efficient strategies of applying the action
of F−1 to a vector. We go on to discuss the advantage of explicitly working with the coupled
system. We describe a new class of algorithms that are derived by developing efficient methods
for the Schur complement systems arising from Oseen systems, and we demonstrate the
effectiveness of this approach for solving both steady-state and transient flow problems.
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In this talk we discuss the coupling of a mixed finite element method and a symmetric
boundary element method for the Stokes problem. The coupling is formulated in terms of local
Steklov–Poincaré operators defined by the solution of local Dirichlet problems. For the
boundary element method we use piecewise linear trial functions to approximate the velocity
on the boundary while for a stable finite element discretization we use Taylor–Hood elements
within the interior of the finite element subdomain. Note that the unknown velocity on the
coupling boundary is approximated by piecewise linear basis functions only. To define the
Steklov–Poincaré operator via boundary integral operators we need to have the invertibility of
the single layer potential. Due to the non–uniqueness of the pressure we obtain a non–trivial
kernel whose dimension depends on the topology of the domain. Hence we introduce an
extended boundary integral equation for the single layer potential. Then we can prove the
unique solvability of the coupled variational formulation and we can derive standard error
estimates for the Galerkin approximation.
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We present several families of locking free finite element methods for the Reissner-Mindlin
plate model.
First, we modify a formulation of Hughes and Franca to a new method in which the
displacement and rotation are only unknowns. The formulation is stable independent of the
choice of basis functions, no Babuska-Brezzi condition have to be satisfied. For an optimal
convergence rate (in the thin limit) the displacement has, however, to be on one degree higher
than the rotation.
Next, we show that a method with equal order interpolation is obtained when combining it
with the MITC covariant interpolation of the shear strain.
We give the results of benchmark computations with the methods. It is also shown that the
stabilization has very good effect on preconditioned conjugate gradient and multigrid methods
for solving the discrete linear system.
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This talk starts from an orthogonal decomposition of the Sobolev space H1
0 (Ω) of vector

functions (defined on a Lipschitz domain Ω ∈ IRd, d = 2, 3). The decomposition has been
discovered by Crouzeix in 1974, and, independently, by Velte in 1990, and has connections to
the inf-sup stability condition of the Stokes boundary value problem as well as to the Korn
inequality.
A corresponding decomposition can be introduced purely algebraically or after discretization
using the staggered grid difference approximation or, in two dimensions, the Scott-Vogelius
finite elements. In this way one obtains information about the spektrum of the discrete
Stokes-Schur complement operator which is useful for accelerating iterative methods for the
solution of the Stokes problem.
Moreover, it becomes visible that a purely algebraic vector analysis can be built with vectors
and matrices instead of vector functions and operators, including algebraic Cauchy-Riemann
equations and an algebraic Helmholtz decomposition.
This approach leads to a better understanding not only of numerical methods for the
discretized Stokes problem but also of the analytical case.
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Taylor-Hood elements are a suitable discretization for mixed problems with conforming
piecewise quadratic approximations for the primal variable and conforming piecewise linear
approximations for the dual variable. We show that Taylor-Hood elements can be constructed
for 3D adaptive meshes including hexahedra, prisms, pyramids, and tetrahedra. The stability
of Taylor-Hood elements on hexahedra, prisms, and pyramids is proved by reviewing Verfürth’s
proof for tetrahedra.
In the first application, we consider nearly incompressible elasticity. We present examples
implemented in the software system UG, where the resulting linear systems are solved with an
adaptive multigrid method. The performance of Taylor-Hood elements with continuous
pressure approximation is compared with Q2/P1 elements, where the pressure approximation is
discontinuous.
In the second application, we consider a viscoplastic hybrid two phase model in soil mechanics:
find displacements u: [0,∞)× Ω −→ R3 and pressure p: [0,∞)× Ω −→ R with boundary
conditions u(t, x) = du(t, x) for (t, u) ∈ [0,∞)× Γu and p(t, x) = dp(t, x) for
(t, u) ∈ [0,∞)× Γp, and find plastic strains εp: [0,∞)× Ω −→ R3×3, satisfying the equations

(C(ε(u)− εp), ε(v))Ω − (p, div(v))Ω = L(t, v)
−(div(u̇), q)Ω − c (∇p,∇q)Ω = l(t, q)

ε̇p = Λ
∂G

∂σ
,

Λ =
1

η

〈

F (I, IID, IIID)

σ0

〉r

for v with v|Γu
= 0, and for q with q|Γp

= 0. We discuss the discretization in time for this
model and the required stability properties for the Taylor-Hood discretization in space. The
arising linear problems are solved with a parallel multigrid method. We present several
examples for this model computed on the Chemnitzer Linux Cluster.
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A Galerkin finite element method that uses piecewise linear functions on Shishkin- and
Bakhvalov-Shishkin-type of meshes is applied to a linear reaction-diffusion equation with
discontinuous source term. The method is shown to be convergent, uniformly in the
perturbation parameter, of order N−2 ln2N for the Shishkin-type mesh and N−2 for the
Bakhvalov-Shishkin-type mesh, where N is the mesh size number. Numerical experiments
support our theoretical results.
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