Dana Uhlig, Roman Unger: The Petrov-Galerkin projection for copula density estimation isn't counting
- Author(s):
-
Dana Uhlig
Roman Unger
- Title:
-
Dana Uhlig, Roman Unger: The Petrov-Galerkin projection for copula density estimation isn't counting
- Electronic source:
-
application/pdf
- Preprint series:
- Technische Universität Chemnitz, Fakultät für Mathematik (Germany). Preprint 03, 2014
- Mathematics Subject Classification:
-
62H99
[Multivariate analysis]
62H12 [Estimation]
65F22 [Ill-posedness, regularization]
45Q05 [Inverse problems]
65Y05 [Parallel computation]
65N30 [Finite elements, Rayleigh-Ritz and Galerkin methods,finite methods]
- Abstract:
-
Non-parametric copula density estimation in the d-dimensional
case is a big challenge in particular if the dimension d of the problem
increases. In
Preprint 2013-07 we proposed to solve the d-dimensional Volterra
integral equation \int_0^u c(s)ds = C(u) for a given copula C.
In the statistical framework the copula C is unobservable and hence we solved the linear integral equation for the empirical copula. For the numerical computation we used a Petrov-Galerkin projection for the approximated piecewise constant function c_h(u)=Sum_{i=1}^N c_i \phi_i(u).
Other than might be expected, the coefficient vector c does not count the number of samples in the elements of the discretized grid, even the approximated solution c_h is a piecewise constant function on the elements.
We will establish that solving the Volterra integral equation by a Petrov-Galerkin projection is not simple counting. - Keywords:
-
Copula,
Galerkin methods,
Inverse Problems,
Kronecker Product
- Language:
- English
- Publication time:
- 02/2014