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Abstract

In this paper we consider an orthonormal basis, generated by a tensor product of Fourier basis
functions, half period cosine basis functions, and the Chebyshev basis functions. We deal with
the approximation problem in high dimensions related to this basis and design a fast algorithm
to multiply with the underlying matrix, consisting of rows of the non-equidistant Fourier matrix,
the non-equidistant cosine matrix and the non-equidistant Chebyshev matrix, and its transposed.
This leads us to an ANOVA (analysis of variance) decomposition for functions with partially
periodic boundary conditions through using the Fourier basis in some dimensions and the half
period cosine basis or the Chebyshev basis in others. We consider sensitivity analysis in this
setting, in order to find an adapted basis for the underlying approximation problem. More
precisely, we find the underlying index set of the multidimensional series expansion. Additionally,
we test this ANOVA approximation with mixed basis at numerical experiments, and refer to the
advantage of interpretable results.
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1 Introduction
The approximation of functions is a problem that arises in many scientific fields. As soon as data is
recorded, questions how “Which correlations are in the data?”, “Which variables are dependent on
one another” and “How data can be predicted at other points?” arises.
There are various algorithms as artificial neural networks or support vector machines for approxi-
mating functions in high dimensions, see e.g. [1, 8]. But these do not show which dependencies
are hidden in the data. For this question of connections in data there is the ANOVA (analysis of
variance) decomposition, cf. [5, 20, 12, 11, 9, 6]. The classical ANOVA is based on an integral
projection operator. Based on this, we use the analytic global sensitivity indices [23, 24]. These tell
us which variables are related and how big the influence of these relations are. We use consequently
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the series expansion in various basic functions to define the ANOVA decomposition, cf. [16, 17, 21].
A majority of real world systems are dominated by low-complexity interactions of their variables.
This principle is known as sparsity-of-effects, see e.g. [25, Section 4.6],[7],[21, Section 4.2]. We use
this principle to truncate the ANOVA decomposition. The resulting sums can be evaluated through
algorithms like the non-equidistant fast Fourier transform (NFFT) [10],[14, Chapter 7] combined
with grouped transforms, cf. [2]. Since we consider a finite truncation of the series expansion for
approximation, the properties of the basis functions, such as the periodicity, are reflected in the
approximation. It is therefore advantageous if the basis functions have similar properties as the
data of the underlying process. Typical applications with such properties are functions with data on
spheres Sd and balls Bd, because their polar coordinates have periodic parts and non-periodic parts.
Similar things happen by the approximation of a function with data on the rotation group SO(3).
We will combine well known basis functions on [0, 1] like the Fourier basis functions ϕexp

k := exp(2πik·),
k ∈ Z, the half period cosine basis functions ϕcos

k :=
√

2 1−δk,0 cos(πk·), k ∈ N0, and the Chebyshev
basis functions ϕalg

k :=
√

2 1−δk,0 cos(k arccos(2 ·−1)), k ∈ N0 in a tensor product structure to achieve
more flexibility what properties are present in which dimensions. We denote this tensor product
basis functions by ϕd

k :=
∏d

j=1 ϕ
dj

kj
. Here d is a vector containing the information which basis is

used in which dimension. We assume that it is known from the application which base in which
dimension should be used. To compute such approximations it is important to evaluate finite sums
of basis functions ∑

k∈I
f̂kϕk(x)

with a known index set I at many nodes xj ∈ [0, 1]d simultaneously. Since real world data is rarely
equidistantly sampled, we have to evaluate these sums at arbitrary scattered nodes. For basis which
consist of only one of this named one dimensional basis functions in every dimension, there are
algorithms to evaluate these sums, see [14, Chapter 7]. In order to get good approximations, it is
essential to use appropriate index sets I in the approximating sums. The choice of such an index
set is always a trade-off between the number of indices, the number of training data available, and
the needed computation time.
We will make use of the following identities. Firstly, we rewrite a sum of half period cosine basis
functions to a sum of Fourier basis functions

N−1∑
k=0

f̂ cos
k

√
2 1−δk,0 cos(πkx)︸ ︷︷ ︸

=ϕcos
k

(x)

=
N−1∑

k=−N+1
2δk,0−1f̂ cos

|k|
√

21−δk,0︸ ︷︷ ︸
=:f̂exp

k

exp(πikx)︸ ︷︷ ︸
=ϕexp

k ( x
2 )

, (1.1)

Secondly, we rewrite a sum of Chebyshev basis functions to a sum of Fourier basis functions

N−1∑
k=0

f̂alg
k

√
2 1−δk,0 cos(k arccos(2x− 1))︸ ︷︷ ︸

=ϕalg
k

(x)

=
N−1∑

k=−N+1
2δk,0−1f̂alg

|k|
√

21−δk,0︸ ︷︷ ︸
=:f̂exp

k

exp(ik arccos(2x− 1))︸ ︷︷ ︸
=ϕexp

k

( arccos(2x−1)
2π

) . (1.2)

These identities (1.1) and (1.2) can then be applied in every dimension with the half period cosine
basis or the Chebyshev basis. This provides us a way to evaluate all these sums through an
NFFT. We will use this to compute ANOVA approximations for the mixed tensor product basis for
high-dimensional scattered data. In this way we get a model of the data with which we can predict
further data. In addition, we can use this model to calculate approximated global sensitivity indices,
which allow us to identify correlations in the data. Using these approximated global sensitivity
indices, we can truncate our approximation even further to get better suitable index sets I, which
provides us even better approximations. We stress again that in many applications a fairly small
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number of nodes is enough to get reasonably good approximations.
The paper is organized as follows. In Section 2 we set up notion and terminology. Firstly, in
Subsection 2.1 we introduce needed function spaces and some of their relations. Subsection 2.2
introduces some well known orthonormal basis and finally the mixed basis with which we will deal
with in the rest of the paper. In Section 3 we introduce the ANOVA approximation for the mixed
basis based on an approach by Fourier series. Here, Subsection 3.1 deals with the definition of the
ANOVA decomposition and Subsection 3.2 provides a way to compute an ANOVA approximation.
We split this subsection in three parts, firstly we consider useful index sets then we describe a way
to compute the ANOVA approximation for given index sets and to this end we describe how this
index sets could be determined. In Section 4 we develop fast algorithms to evaluate sums of mixed
basis functions. Subsection 4.1 provides through Theorem 4.1 a way to compute such sums through
an NFFT which is summarized in Algorithm 1. In Subsection 4.2 we extend the grouped transform
[2] to the mixed basis using the Algorithm 1. In Section 5 we show with some numerical experiments
how this approximation procedure works. Subsection 5.1 deals with the approximation of a function.
There are the steps shown to find good suitable index sets. In Subsection 5.2 we approximate a
function where we only have access to uniformly sampled nodes. At this point we compare the
approximation with a suitable mixed basis with the approximation with the half period cosine basis
and the Fourier basis.

2 Preliminaries
This section presents basic definitions for the rest of this paper. In Subsection 2.1 various function
spaces and some of their relations are introduced. Subsection 2.2 presents some orthonormal basis.
In Definition 2.2 the mixed basis is defined.

2.1 Function Spaces

Let D ∈ {Tm × [0, 1]n | m, n ∈ N0} be a measurable set, where T = R/Z is the torus which we
identify with [0, 1). Moreover, let ω : D→ (0,∞) be a probability measure with

∫
D ω(x) dx = 1. We

define the weighted Lebesgue spaces

Lp(D, ω) :=
{

f : D→ C
∣∣∣∣ ∫

D
|f(x)|p ω(x) dx <∞

}

with the norm ∥f∥Lp(D,ω) := (
∫
D |f(x)|p ω(x) dx)

1
p for p ∈ [1,∞). Furthermore, we define

L∞(D) := {f : D→ C | ess sup
x∈D

|f(x)| <∞}

with the norm ∥f∥L∞(D) := ess supx∈D |f(x)|. The Lebesgue space L2(D, ω) forms a Hilbert space
with the scalar product ⟨f, g⟩L2(D,ω) :=

∫
D f(x)g(x)ω(x) dx. We use the abbreviation Lp(D) :=

Lp(D, 1). Let B = (ϕk)k∈K be a basis with an index set K for the Hilbert space L2(D, ω). We define
the Wiener space

A(D, ω) :=

f ∈ L1(D, ω)

∣∣∣∣∣∣
∑
k∈K

∣∣∣⟨f, ϕk⟩L2(D,ω)

∣∣∣ <∞


with the norm ∥f∥A(D,ω) :=

∑
k∈K|⟨f, ϕk⟩L2(D,ω)|.

Lemma 2.1. Let L2(D, ω) be a weighted Lebesgue space with a basis (ϕk)k∈K with supk∈K∥ϕk∥L∞(D) <
∞. Then every element of the corresponding Wiener space A(D, ω) has a continuous representative.
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Proof. See [21, Lemma 2.5].

Remark. Lemma 2.1 provides A(D, ω) ⊆ C(D) := {f : D→ R | f continuous}. Furthermore, we get

∥f∥L∞(D) = ess sup
x∈D

∣∣∣∣∣∣
∑
k∈K
⟨f, ϕk⟩L2(D,ω) ϕk(x)

∣∣∣∣∣∣
≤ sup

k∈K
∥ϕk∥L∞(D)

∑
k∈K

∣∣∣⟨f, ϕk⟩L2(D,ω)

∣∣∣
= sup

k∈K
∥ϕk∥L∞(D) ∥f∥A(D,ω) .

It follows A(D, ω) ⊆ L∞(D) and A(D, ω) ⊆ L2(D, ω).
Due to this Lemma, we define the evaluation of a function f ∈ A(D, ω) at a point x ∈ D as

evaluation of the continuous representative at the point x. Next, we consider partial sums of
the function f for finite subsets of the index set I ⊂ K, e.g. SI(B)f :=

∑
k∈I ⟨f, ϕk⟩L2(D,ω) ϕk.

Furthermore, we define the set of polynomials related to the finite index set I as

TI(B) :=

∑
k∈I

ckϕk

∣∣∣∣∣∣ ck ∈ C

 . (2.1)

2.2 Orthonormal Basis

In this subsection we firstly introduce the one-dimensional basis functions which we use for the mixed
basis. The functions ϕexp

k = exp(2πik·) form the orthonormal Fourier basis of L2(T). Additionally,
the functions ϕcos

k =
√

2 cos(πk·) form together with the constant function with value one the
orthonormal half period cosine basis of L2([0, 1]). The functions ϕalg

k =
√

2 cos(k arccos(2 ·−1)) form
together with the constant function with value one the orthonormal Chebyshev basis of L2([0, 1], ω)
with the weight ω : [0, 1] → (0,∞), ω(x) := 1

π
√

x−x2 . In the following we are going to work with
tensor products of these basis functions.

Definition 2.2. Let d be a d-dimensional tuple over the set {exp, cos, alg}. We define the sets

Dd :=
d×

j=1

{
T, dj = exp
[0, 1], dj ̸= exp

and Kd :=
d×

j=1

{
Z, dj = exp
N0, dj ̸= exp

and the mixed functions

ϕd
k : Dd → C, ϕd

k(x) :=
d∏

j=1


1, kj = 0
exp(2πikjxj), dj = exp, kj ̸= 0√

2 cos(πkjxj), dj = cos, kj ̸= 0√
2 cos(kj arccos(2xj − 1)), dj = alg, kj ̸= 0

for k ∈ Kd. Furthermore, we define the weight function

ωd : Dd → (0,∞), ωd(x) :=
d∏

j=1

1, dj ̸= alg
1

π
√

xj−x2
j

, dj = alg .

The mixed functions ϕd
k form a basis of L2(Dd, ωd) because of their tensor product structure and

because their factors are Fourier, half period cosine and Chebyshev basis functions. We name this
basis Bd := {ϕd

k | k ∈ Kd}.
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3 Interpretable ANOVA Approximation
In this section, we define the ANOVA approximation for the mixed basis. We follow the steps in
[17]. We start in Subsection 3.1 with defining the ANOVA decomposition, see [5, 12, 11, 6], in
the way like [16, 17] through a series expansion, by using the mixed basis. Furthermore, we define
analytic global sensitivity indices [24]. In Subsection 3.2 we describe the procedure of ANOVA
approximation [16, 17, 18], and we deduce a way to compute it numerically.

3.1 ANOVA Decomposition

Let f be an L2(Dd, ωd) function. Since ϕd
k with k ∈ Kd form an orthonormal basis of L2(Dd, ωd),

f can be written as
f =

∑
k∈Kd

cd
k(f)ϕd

k

with coefficients cd
k(f) := ⟨f, ϕd

k⟩L2(Dd,ωd). Furthermore, we get the Parseval equality

∥f∥2L2(Dd,ωd) =
∑

k∈Kd

|cd
k(f)|2,

from the fact that Bd is a basis of L2(Dd, ωd). Next, we decompose the function f into ANOVA
terms. We denote subsets of coordinate indices with small boldface letters u ∈ P([d]). For every
subset of indices u we define the ANOVA term

fu(x) :=
∑

k∈Kd
supp k=u

cd
k(f)ϕd

k(x).

Note that such an ANOVA term fu(x) is independent of xj if j /∈ u. These ANOVA terms fu,
u ⊆ [d] decompose the function f uniquely into

f =
∑

k∈Kd

cd
k(f)ϕd

k =
∑

u∈P([d])
fu.

This follows since {{k ∈ Kd | supp k = u} | u ∈ P([d])} is a partition of the set Kd. Additionally,
we define the variance of a function f as σ2(f) =

∫
Dd |f(x)− cd

0 (f)|2ωd(x) dx, which is equivalent
to σ2(f) = ∥f∥2L2(Dd,ωd) − |c

d
0(f)|2. The Parseval equality states

σ2(f) =
∑

k∈Kd\{0}
|cd

k(f)|2.

Furthermore, we get the variance of ANOVA terms fu through
σ2(fu) =

∑
k∈Kd\{0}

|cd
k(fu)|2 =

∑
k∈Kd

supp k=u

|cd
k(fu)|2 = ∥fu∥2L2(Dd,ωd) .

Finally, we define the analytic global sensitivity indices (GSI) like [24] through

ρ(u, f) := σ2(fu)
σ2(f) .

We point out that the analytic GSIs depend on the weight ωd. We use the analytic GSU as a tool
to measure how important certain ANOVA terms fu are for the reconstruction of the function f .
We use this information for the construction of good suitable index sets. Next we truncate the
ANOVA decomposition. We use a set of subsets of indices U ⊆ P([d]) for this truncation. We define

TU f(x) =
∑
u∈U

fu(x).

To find this set U , we choose the ANOVA terms fu with the highest GSI’s to get TU f ≈ f .
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3.2 Numerical ANOVA Approximation

In this section our aim is to approximate a function f ∈ A(Dd, ωd). We are given a set of M ∈ N
nodes X ⊂ Dd, |X | = M and the corresponding function values (f(x))x∈X := f ∈ CM . We aim to
find a mixed polynomial

fd : Dd → C, fd(x) :=
∑
k∈I

f̂d
k ϕd

k(x), f̂d
k ∈ C

for which f ≈ fd holds, i.e. ∥f − fd∥L2(Dd,ωd) is small and I is a finite subset of Kd. In the next
Subsection 3.2.1 we consider some ways to choose I. The next Subsection 3.2.2 presents a way to
find the mixed polynomial fd which minimizes the L2(Dd, ωd) norm of f − fd for a given index set
I and nodes X . To this end we show in Subsection 3.2.3 how to choose and refine the truncation
set U .

3.2.1 Grouped Index Sets

We present some index sets that are important for this paper. Since these index sets contain
frequencies for the mixed basis we call them frequency sets. We begin with frequency sets which are
full d-dimensional hypercubes, but since their size grows exponential in the dimension d we introduce
better controllable frequency sets. We start with the frequency sets which are full d-dimensional
hypercubes, i.e.

Id
N :=

d×
j=1

Z ∩
[
−Nj

2 ,
Nj

2

)
, dj = exp

N0 ∩
[
0,

Nj

2

)
, dj ̸= exp

(3.1)

for a vector of bandwidths N = (Nj)d
j=1 ∈ (2N0)d. These sets have the cardinality

|Id
N| =

d∏
j=1

{
Nj , dj = exp
Nj

2 , dj ̸= exp
. (3.2)

Next we define thinner frequency sets with less cardinality. In detail these frequency sets should have
a high bandwidth along the coordinate axes, less bandwidth along the coordinate planes and so on.
For this purpose we define the following frequency sets Ĩd

N with bandwidths N = (Nj)d
j=1 ∈ (2N0)d.

Here if Nj is zero the set Ĩd
N should only contain the frequency zero, when it is projected onto the

dimension j. If Nj is not zero the projection onto the dimension j should not contain the frequency
zero, because it is contained in a lower dimensional set. This is being done by the frequency set

Ĩd
N :=

d×
j=1


{0}, Nj = 0
Z ∩

[
−Nj

2 ,
Nj

2

)
\ {0}, dj = exp and Nj ̸= 0

N0 ∩
[
0,

Nj

2

)
\ {0}, dj ̸= exp and Nj ̸= 0

. (3.3)

These frequency sets Ĩd
N have the cardinality

|Ĩd
N| =

d∏
j=1


1, Nj = 0
Nj − 1, dj = exp and Nj ̸= 0
Nj

2 − 1, dj ̸= exp and Nj ̸= 0
. (3.4)

Since these frequency sets are disjoint, if the bandwidths have different support, we can form the
union of them to derive a new frequency set. We choose for every u ∈ U a bandwidth

Nu = (Nu
j )d

j=1 ∈ (2N)u :=
d×

j=1

{
(2N), j ∈ u
{0}, else

(3.5)
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x2

x1

x3

Figure 1: Frequency set I(U) for d =
( exp

alg
cos

)
and U = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}} with N{1} =( 18

0
0

)
, N{2} =

( 0
16
0

)
, N{3} =

( 0
0
10

)
, N{1,2} =

( 10
8
0

)
, and N{2,3} =

( 0
6
8

)
. The frequency

set Ĩd
N{1} is shown in green, Ĩd

N{2} in blue, Ĩd
N{3} in red, Ĩd

N{1,2} in cyan, and Ĩd
N{2,3} in

magenta.

and define the frequency set

I(U) :=
⋃

u∈U

Ĩd
Nu . (3.6)

This frequency set I(U) hat the advantage that, if the truncation set U only contains subsets u of
the size up to |u| ≤ ds ∈ N it will only grow polynomial with the power ds which is an improvement
to the exponential growing full d-dimensional hypercubes Id

N.
Example. We show in Figure 1 a typical example for such a set I(U), where d =

( exp
alg
cos

)
and

U = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}. Here we use the bandwidths N{1} =
( 18

0
0

)
, N{2} =

( 0
16
0

)
,

N{3} =
( 0

0
10

)
, N{1,2} =

( 10
8
0

)
, and N{2,3} =

( 0
6
8

)
. The parts Ĩd

Nu of this frequency set I(U) are
shown in different colors. The set Ĩd

N{1} is shown in green, Ĩd
N{2} in blue, Ĩd

N{3} in red, Ĩd
N{1,2} in

cyan, and Ĩd
N{2,3} in magenta.

3.2.2 Approximation

In this section we assume that the set U and the bandwidths Nu are known. For a way to choose
them we refer to Subsection 3.2.3. Now, we approximate the truncated function TU f with a mixed
polynomial fd ∈ TI(U)(Bd), where the set of polynomials TI(U)(Bd) is defined in (2.1). As result,
we get f ≈ TU f ≈ fd.
The mixed polynomial is completely determined by finitely many mixed coefficients (cd

k(fd))k∈I(U) ∈
C|I(U)|. Now it is our goal to find an approximation f̂d ≈ (cd

k(fd))k∈I(U) to this mixed coefficients.
To achieve this, we compute the least squares solution

∥f − fd∥2L2(Dd,ωd) =
∫
Dd
|f(x)− fd(x)|2ωd(x) dx.

We approximate this integral by evaluating the function |f(x)− fd(x)|2 at the M = |X | given
nodes X , where we know the values f = (f(x))x∈X . For this approximation we assume that the
nodes in X are distributed in Dd with the density ωd. We get

∥f − fd∥2L2(Dd,ωd) ≈
1

M

∑
x∈X
|f(x)− fd(x)|2
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= 1
M
∥f − (fd(x))x∈X ∥22

= 1
M
∥f −Φ(X , I(U))f̂d∥22,

where Φ(X , I(U)) is the matrix (ϕd
k(x))x∈X , k∈I(U) ∈ CM×|I(U)|. Now we choose f̂d such that the

distance between the function f and the approximation fd is as small as possible, i.e.

f̂d := arg min
ĥd∈C|I(U)|

∥f −Φ(X , I(U))ĥd∥22. (3.7)

We solve the minimization problem (3.7) with the LSQR algorithm [13]. This algorithm multiplies
in every iteration step with the matrix Φ(X , I(U)) and its adjoint Φ(X , I(U))∗. In Section 4 we
develop fast algorithms to multiply with this kind of matrices Φ(X , I(U)) and Φ(X , I(U))∗. We
point out that the number of iterations of the LSQR algorithm depends on the condition number of
the underlying matrix. This condition number is in many applications much better than the worst
case estimation, see e.g. [4, 3].
We obtain the approximation

fd : Dd → C, fd(x) :=
∑

k∈I(U)
f̂d

k ϕd
k(x)

for the function f . Let Xtest ⊂ Dd, |Xtest| = Mtest be a set with Mtest ∈ N nodes, where we evaluate
the approximation fd. Then (fd(x))x∈Xtest = Φ(Xtest, I(U))f̂d holds.

3.2.3 How to choose the truncation set U?

We choose U in two steps, firstly we choose a large superposition set Uds . Then, we calculate the
mixed coefficients f̂d according to this set Uds for the approximating mixed polynomial fd. In
this way we get approximated global sensitivity indices ρ(u, fd) for every u ∈ Uds . Using these
approximated GSIs we can refine the set Uds to the final set U .
We choose Uds as set of all subsets of [d] with cardinality smaller or equal to ds ∈ [d], i.e.

Uds
:= {u ⊆ [d] | |u| ≤ ds}. (3.8)

Then we choose appropriate bandwidths Nu ∈ (2N)u. For the notion we refer to (3.5). It is
good to choose the bandwidths in a way that we have an oversampling, i.e. |I(Uds)| < M with
|I(Uds)| =

∑
u∈Uds

|Ĩd
Nu |. For |Ĩd

Nu | we refer to (3.4).
As the next step we calculate the mixed coefficients f̂d for the approximating mixed polynomial fd

in the way we described it in the previous part. Using these mixed coefficients f̂d = (f̂d
k )k∈I(Uds ) we

calculate the approximated global sensitivity indices ρ(u, fd) for the mixed polynomial fd for all
u ∈ Uds through

ρ(u, fd) = σ2(fd
u )

σ2(fd) =

∑
k∈Kd

supp k=u

|f̂d
k |2

∑
k∈Kd\{0}

|f̂d
k |2

=

∑
k∈Ĩd

Nu

|f̂d
k |2

∑
k∈I(Uds )\{0}

|f̂d
k |2

.

Since the mixed polynomial fd approximates the function f , the approximated GSI ρ(u, fd) should
approximate the analytic GSI ρ(u, f).
To this end we choose a threshold θ > 0 and define the set

Uθ := {u ∈ Uds | ρ(u, fd) > θ}. (3.9)

With this set Uθ we do the approximating procedure again.
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4 Fast Evaluation of Mixed Polynomials

In this section, we develop a fast algorithm for evaluating sums of the mixed basis functions ϕd
k, i.e.

fd :=
∑
k∈I

f̂d
k ϕd

k (4.1)

with arbitrary coefficients f̂d
k ∈ C on a finite index sets I ⊆ Kd at M ∈ N nodes X ⊂ Dd,

|X | = M simultaneously. This evaluation is equivalent to the matrix-vector multiplication of the
non-equidistant mixed matrix

Φ(X , I) := (ϕd
k(x))x∈X ,k∈I (4.2)

with the vector f̂d = (f̂d
k )k∈I , where X is the set of the nodes at which we are interested to evaluate

the mixed polynomial fd. In the Subsection 4.1 we consider the index set I = Id
N, defined in (3.1).

Since we will use the thinner index sets I = I(U), defined in (3.6), we will introduce in Subsection
4.2 an algorithm for this case which will rely on the algorithm in Subsection 4.1.

4.1 Non-Equidistant Fast Mixed Transform

In this subsection, we present a method with a computational cost of only O(|Id
N| log|Id

N|+|log ϵ|dM)
for the evaluation of mixed polynomials fd with the frequency set Id

N. This is faster than the
straightforward matrix vector multiplication with the matrix Φ(X , Id

N) which takes O(|Id
N|M)

arithmetical operations.
We point out that the mixed polynomial fd with d = (exp, . . . , exp) =: exp is a trigonometric
polynomial, which can be evaluated through the non-equidistant fast Fourier transform (NFFT) [14,
Chapter 7] with a computational cost of O(|Iexp

N | log|Iexp
N | + |log ϵ|dM), where ϵ is the required

precision, |Iexp
N | is the cardinality of the frequency set given in (3.2), and M is the number of

nodes where we evaluate the mixed polynomial fexp. Now, we make use of the NFFT in order to
evaluate arbitrary mixed polynomials fd. The identities (1.1) and (1.2) provides us the possibility
to transform polynomials f cos and falg into trigonometric polynomials f exp. It follows, that one
dimensional polynomials of the form f cos and falg can be evaluated through an NFFT. Since our
mixed basis functions ϕd

k have a tensor product structure, we use these identities (1.1) and (1.2) in
every dimension where the half period cosine basis or the Chebyshev basis is used.

Theorem 4.1. Let f̂d = (f̂d
k )k∈Id

N
∈ C|Id

N| be a coefficient vector for a mixed polynomial fd

defined in (4.1) and an arbitrary d ∈ {exp, cos, alg}d and d ∈ N. We define the coefficient vector
f̂exp = (f̂exp

k )k∈Iexp
N
∈ C|Iexp

N | through

f̂exp
k := f̂d

s(k)

d∏
j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else
(4.3)

for all k ∈ Iexp
N , where s is the index transformation

s : Iexp
N → Id

N, s(k) :=




kj , dj = exp
|kj |, dj ̸= exp and kj ̸= −Nj

2
0, dj ̸= exp and kj = −Nj

2


d

j=1

. (4.4)
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Furthermore, we define the function

t : Dd → Dexp, t(x) :=




xj , dj = exp
xj

2 , dj = cos
arccos(2xj−1)

2π , dj = alg


d

j=1

. (4.5)

Then the identity fd = fexp ◦ t holds.

Proof. The assumptions follow from the identities (1.1) and (1.2) together with the fact, that ϕd
k

have a tensor like structure.

Remark. The Theorem 4.1 provides us a decomposition of the non-equidistant mixed matrix
Φ(X , Id

N). For this purpose we define the diagonal matrix

D := diag

 d∏
j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else


k∈Id

N

,

the canonical map Π := (δk,l)k∈Id
N,l∈Iexp

N
, the projection P := (δk,s(k)), and the non-equidistant

Fourier matrix A = (exp(2πi⟨k, t(x)⟩))x∈X ,k∈Iexp
N

. Then the matrix transformation

Φ(X , Id
N) = AΠ⊤P⊤D (4.6)

follows directly.
We summarize the procedure for the efficient evaluation of the mixed polynomials fd at M

arbitrary nodes as non-equidistant fast mixed transform (NFMT) in Algorithm 1.

Input: Vector d ∈ {exp, cos, alg}d, bandwidths N ∈ (2N)d, coefficients f̂d
k ∈ C for

k ∈ Id
N, nodes X ⊂ Dd, |X | = M

1 Define the coefficients f̂exp
k given in (4.3) for all k ∈ Iexp

N .
2 Compute

s(x) =
∑

k∈Id
N

f̂exp
k exp (2πi ⟨k, x̃⟩)

at the nodes x̃ ∈ {t(x) | x ∈ X} with t : Dd → Dexp given in (4.5) using a d-variate
NFFT

Output: s(x) = fd(x) for x ∈ X
Computational cost: O(|Id

N| log|Id
N|+ |log ϵ|dM)

Algorithm 1: NFMT for the fast evaluation of mixed polynomials fd for frequency sets Id
N

defined in (3.1).

In addition we evaluate the sum

h(k) =
∑
x∈X

gxϕd
k(x), gx ∈ C (4.7)

for all k ∈ Id
N. This is equivalent to the matrix vector product of the transposed non-equidistant

mixed matrix Φ(X , Id
N)⊤ with the vector g = (gx)x∈X . We use the factorization (4.6) of the

non-equidistant mixed matrix Φ(X , Id
N) and get directly the Algorithm 2, which provides a method

10



for the fast evaluation of the sum (4.7).

Input: Vector d ∈ {exp, cos, alg}d, bandwidths N ∈ (2N)d, nodes X ⊂ Dd, |X | = M ,
coefficients hx ∈ C for x ∈ X

1 Compute

h̃exp(k) =
∑
x∈X

hx exp (2πi ⟨k, x̃⟩)

with k ∈ Id
N at the nodes x̃ ∈ {t(x) | x ∈ X} with t : Dd → Dexp defined in (4.5)

using a d-variate NFFT⊤

2 Compute

h̃(k) =
∑

l∈Iexp
N

s(l)=k

h̃exp(l)
d∏

j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else

with s defined in (4.4).
Output: h̃(k) = h(k), see (4.7), for k ∈ Id

N
Computational cost: O(|Id

N| log|Id
N|+ |log ϵ|dM)

Algorithm 2: NFMT⊤ for the fast evaluation of sums of the form (4.7) for frequency sets Id
N

defined in (3.1).

Remark. • We note that one can extend the non-equidistant fast mixed transformations to other
orthogonal polynomials using [15]. The algorithm known as discrete polynomial transform
provides a fast basis exchange for arbitrary orthogonal polynomials with satisfying a three-term
recurrence into the Chebychev basis. These Chebychev polynomials can then be evaluated by
the Algorithms 1 and 2.

• One can also use other transformations, such as the transformation of the unit interval [0,1]
into the real numbers R from [19]. This allows us to handle normally distributed nodes.

It should be noted that these transformations can be performed in each dimension separately due
to the tensor product structure of the basis and the flexibility of the mixed basis.

4.2 Grouped Mixed Transformations

In this section we derive a fast algorithm for the evaluation of mixed polynomials fd =
∑

k∈I(U) f̂d
k ϕd

k
where I(U) is a frequency set defined in (3.6). We denote xu := Πux, where Πu is the canonical
map Πu onto the dimensions contained in u.
The evaluation of this sum at the nodes x ∈ X is equivalent to calculate the matrix vector product
fd = Φ(X , I(U))f̂d ∈ CM with the matrix Φ(X , I(U)), defined in (4.2) and the vector f̂d ∈ C|I(U)|.
We follow the steps in [2] and get∑

k∈I(U)
f̂d

k ϕd
k(x) =

∑
u∈U

∑
k∈Ĩd

Nu

f̂d
k ϕd

k(x)

through the structure of the frequency set I(U). In other words, the matrix Φ(X , I(U)) is a block
matrix with horizontally arranged blocks Φ(X , Ĩd

Nu), u ∈ U , i.e. Φ(X , I(U)) = (Φ(X , Ĩd
Nu)⊤)⊤

u∈U .
Thus, we divide the task. For every u ∈ U we multiply the vector f̂d,u := (f̂d

k )k∈Ĩd
Nu

with the block
Φ(X , Ĩd

Nu). We get for these blocks

Φ(X , Ĩd
Nu) = (ϕdu

k (xu))x∈X , k∈Ĩdu
Nu

= Φ({xu | x ∈ X} , Ĩdu
Nu).

11



We define the vector ĝdu = (ĝdu
k )k∈Idu

Nu
u
∈ C|Idu

Nu
u

|, where now Idu
Nu

u
is a frequency set which we can

use for an NFMT. We set each component of ĝdu which is not contained in the set Ĩdu
Nu to zero, e.g.

ĝk =
{

f̂k, |supp k| = |u|
0, else

, k ∈ Idu
Nu

u
.

Then we obtain∑
k∈Idu

Nu
u

ĝdu
k ϕdu

k (x) =
∑

k∈Ĩdu
Nu

f̂d
k ϕdu

k (x) +
∑

k∈Idu
Nu

u
\Ĩdu

Nu

0 · ϕdu
k (x) =

∑
k∈Ĩdu

Nu

f̂d
k ϕdu

k (x)

or in matrix vector form Φ(X , Ĩdu
Nu)f̂d = Φ(X , Idu

Nu
u
)ĝdu . Which is equivalent to the matrix de-

composition Φ(X , Ĩdu
Nu) = Φ(X , Idu

Nu
u
)Π̃⊤ where Π̃ = (δl,k)l∈Ĩdu

Nu ,k∈Idu
Nu

u
∈ R|Ĩdu

Nu |×|Idu
Nu

u
| is a canonical

map. To sum this up, we multiply the matrix Φ(X , I(U)) with the vector f̂d ∈ C|I(U)| through
calculating

Φ(X , I(U))f̂d =
∑
u∈U

Φ(X , Id
Nu)f̂d,u

=
∑
u∈U

Φ({xu | x ∈ X} , Ĩdu
Nu)f̂d,u

=
∑
u∈U

Φ({xu | x ∈ X} , Idu
Nu

u
)Π̃⊤f̂d,u.

We calculate the last sum with |U | many NFMT. This leads us to a computational cost of
O(
∑

u∈U (|Idu
Nu

u
| log|Idu

Nu
u
| + m

|u|
NFFTM)). Additionally, it can be easily parallelized, because every

summand can be computed independently. We summarize the this procedure in Algorithm 3

Input: Vector d ∈ {exp, cos, alg}d, truncation set U , bandwidths Nu ∈ (2N)u for
u ∈ U , coefficients f̂k ∈ C for all k ∈ I(U), nodes X ⊂ Dd, |X | = M

1 f ← 0
2 foreach u ∈ U // This loop can be parallelized
3 do
4 X̃ ← {(xj)j∈u}x∈X

5 ĝk ←
{

f̂k, |supp k| = |u|
0, else

, k ∈ Idu
Nu

u

6 Compute f ← f + Φ(X̃ , Idu
Nu

u
)g using a |u|-variate NFMT

7 end
Output: f = Φ(X , I(U))f̂

Computational cost: O
( ∑

u∈U

(
|Idu

Nu
u
| log|Idu

Nu
u
|+ m

|u|
NFFTM

))
Algorithm 3: Grouped transform for the fast evaluation of mixed polynomials fd with a
frequency set I(U), see (3.6).

Furthermore, the identity

Φ(X , I(U)) =
(
Π̃Φ({xu | x ∈ X} , Idu

Nu
u
)⊤
)⊤

u∈U
(4.8)

12



holds. This (4.8) leads us to an algorithm for multiplying with the adjoint matrix Φ(X , I(U))∗,
because

Φ(X , I(U))∗ =
(
Π̃Φ({xu | x ∈ X} , Idu

Nu
u
)∗
)

u∈U

holds. Thus, we have a fast algorithm for the evaluation of the sum

k(k) =
∑
x∈X

hxϕm,n
k (x) (4.9)

for coefficients h = (hx)x∈X ∈ CM at the nodes k ∈ I(U), which we summarize as 4.

Input: Vector d ∈ {exp, cos, alg}d, truncation set U , bandwidths Nu ∈ (2N)u for
u ∈ U , nodes X ⊂ Dd, |X | = M , coefficients hx ∈ C for x ∈ X

1 foreach u ∈ U // This loop can be parallelized
2 do
3 X̃ ← {(xj)j∈u}x∈X

4 Compute gu ← Φ(X̃ , Idu
Nu

u
)∗(hx)x∈X using a |u|-variate NFMT⊤

5 fu ← (gu
j )

j∈Idu
Nu

u

6 end
Output: (fu)u∈U = Φ(X , I(U))∗(hx)x∈X

Computational cost: O
( ∑

u∈U

(
|Idu

Nu
u
| log|Idu

Nu
u
|+ m

|u|
NFFT⊤M

))
Algorithm 4: Adjoint grouped transformation for the fast evaluation of the sum (4.9) for
frequency sets I(U) defined in (3.6).

5 Numerical Experiments
In this subsection, we test the ANOVA approximation with the mixed bases on synthetic data.
In Subsection 5.1, we show how the approximation procedure works and how we determine the
bandwidths in this case. In Subsection 5.2 we compare the ANOVA approximation with the mixed
bases to the ANOVA approximation with a fully periodic and a fully non-periodic basis, respectively.
Furthermore, we compare analytic global sensitivity indices in Appendix A to approximated ones.
Furthermore, we investigate here the empirical convergence behaviour of the different approximation
methods for this function.
We have extended the ANOVAapprox software [22] with the algorithms listed in Section 4 and run
all the following tests in this framework.
To determine the quality of the ANOVA approximation f̃ for a function f , we consider the mean
squared error (MSE),

MSE(f, f̃ ,Xtest) := 1
|Xtest|

∑
x∈Xtest

∣∣∣f(x)− f̃(x)
∣∣∣2 ,

at the nodes Xtest.

5.1 ANOVA approximation with a mixed basis

In this subsection we approximate a function using the ANOVA approximation with the mixed
basis. A special focus lays in the question, how we determine the truncation set U and the according
bandwidths numerically. The function we are approximating in this section is

f1 : [0, 1]4 → C, f1(x) := exp(sin(2πx1)x2) + cos(πx3)x2
4 + 1

10 sin2(2πx1) + 5
√

x2x4 + 1.
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Figure 3: Approximated global
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i=1
and N1 = 12 and N2 = 10 for
f1.

This function f1 is smoothly periodizable in the first dimension, i.e. fper
1 : T× [0, 1]3 → C, fper

1 (x) :=
f1(x) is infinitely differentiable. Furthermore, the function acts in the third dimension only as a
cosine function. This leads us to use the mixed basis ϕd1

k with d1 := (exp, alg, cos, alg)⊤ for k ∈ Kd1

for approximating the function f1.
For this approximation we restrict us to only 1000 nodes X in Dd1 distributed with the density

ωd1(x) = 1

π2
√

x2 − x2
2

√
x4 − x2

4

.

Furthermore, we are given another 10000 nodes Xtest in Dd1 distributed with the density ωd1 for
evaluating the mean squared error.
We follow the steps from Section 3.2.3. The function has only one dimensional and two-dimensional
interactions between variables. Thus, we set ds = 2 and consider the superposition set
U2 = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} from (3.8). We choose one band-
width parameter N1 ∈ (2N) for the one-dimensional frequency sets, e.g. every non-zero entry of N{1},
N{2}, N{3} and N{4} is set to N1. Furthermore, we choose another bandwidth parameter N2 ∈ (2N)
for the two-dimensional frequency sets, e.g. every non-zero entry of N{1,2}, N{1,3}, N{1,4}, N{2,3},
N{2,4} and N{3,4} is set to N2. In short form we write this as Nu = (|{i} ∩ u|N|u|)4

i=1 for u ∈ U2.
We call the approximation of the function f1 using the 1000 nodes X and the bandwidth parameters
N1 and N2 f̃N1, N2

1 . We determine the optimal bandwidth parameters N1 and N2 numerically by
minimizing the mean squared error MSE(f1, f̃N1, N2

1 ,Xtest), i.e.

(Ni)2
i=1 = arg min

(Ni)2
i=1∈(2N)2

MSE(f1, f̃N1,N2
1 ,Xtest). (5.1)

In other words, we use cross validation to determine the bandwidth parameters N1 and N2.
We see in Figure 2 the MSE for some choices of N1 and N2. The ANOVA approximation does

the best approximation for N1 = 12 and N2 = 10. In Figure 3 the approximated GSIs for this
approximation are shown. To this end we choose the threshold θ = 10−3 and find through (3.9) the
truncation set Uθ = {{1}, {2}, {3}, {4}, {1, 2}, {2, 4}, {3, 4}}. Next, we find better bandwidths Nu
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Step N{1} N{2} N{3} N{4} N{1,2} N{2,4} N{3,4} MSE
1 12 12 12 12 10 10 10 1.31369 · 10−8

2 12 12 12 12 10 10 12 1.36285 · 10−8

3 12 12 12 12 10 10 8 1.25704 · 10−8

4 12 12 12 12 10 10 6 1.2035 · 10−8

5 12 12 12 12 10 10 4 3.97122 · 10−8

6 12 12 12 12 10 12 6 1.24734 · 10−8

7 12 12 12 12 10 8 6 1.15079 · 10−8

8 12 12 12 12 10 6 6 1.13142 · 10−8

9 12 12 12 12 10 4 6 1.10034 · 10−8

10 12 12 12 12 10 2 6 4.68726 · 10−3

11 12 12 12 12 12 4 6 1.20275·10−10

12 12 12 12 12 14 4 6 4.27822·10−11

13 12 12 12 12 16 4 6 5.42373·10−11

14 12 12 12 14 14 4 6 4.28631·10−11

15 12 12 12 10 14 4 6 4.2808 · 10−11

16 12 12 14 12 14 4 6 4.29279·10−11

17 12 12 10 12 14 4 6 4.26967·10−11

18 12 12 8 12 14 4 6 4.25943·10−11

19 12 12 6 12 14 4 6 4.24758·10−11

20 12 12 4 12 14 4 6 4.25071·10−11

21 12 14 6 12 14 4 6 4.24995·10−11

22 12 10 6 12 14 4 6 4.23524·10−11

23 12 8 6 12 14 4 6 4.17446·10−11

24 12 6 6 12 14 4 6 4.35334·10−11

25 14 8 6 12 14 4 6 6.80995·10−12

26 16 8 6 12 14 4 6 6.58355·10−12

27 18 8 6 12 14 4 6 6.5848 · 10−12

Table 1: Mean squared errors for Uθ and bandwidths Nu = (|{i} ∩ u|N|u|)4
i=1 for some choices of

the parameters N1 and N2.

for Uθ. To do this we introduce a new set of bandwidth parameters Nu ∈ (2N) for u ∈ Uθ, i.e. one
parameter for every bandwidth. We get the bandwidths Nu by setting every non-zero entry to Nu,
i.e. Nu = (|{i} ∩ u|Nu)4

i=1. We optimise these bandwidth parameters one by one, starting with
the parameters corresponding to the two-dimensional bandwidths. We do this through increasing
the parameter firstly bigger until the MSE gets bigger. If the MSE gets bigger in the first step, we
decrease the parameter until the MSE gets bigger. Then we use the parameter which has generated
the minimal MSE. As a starting point we use the bandwidths Nu = (|{i} ∩ u|N|u|)4

i=1 generated by
the optimal parameters N1 = 12 and N2 = 10 of the previous approximation step. In Table 1 we
show the parameters we tried to find the optimal ones.

We get the bandwidths Nu = (|{i} ∩ u|Nu)4
i=1 with the parameters N{1} = 16, N{2} = 8,

N{3} = 6, N{4} = 12, N{1,2} = 14, N{2,4} = 4, and N{3,4} = 6. Finally, we repeat the one by one
optimizing procedure again with all parameters for the bandwidths, e.g. we consider every non-zero
entry of each bandwidth as one parameter. As result, we get the bandwidths

N{1} =
( 16

0
0
0

)
, N{2} =

( 0
8
0
0

)
, N{3} =

( 0
0
2
0

)
, N{4} =

( 0
0
0
10

)
,
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N{1,2} =
( 16

8
0
0

)
, N{2,3} =

( 0
2
4
0

)
, and N{2,4} =

( 0
8
0
8

)
with a mean squared error of 9.74704 · 10−14. We point out that this is quite a good approximation
since we use only 1000 nodes X . All in all, we approximate the function f1 with a sum of 365 basis
functions combined with the same number of coefficients.

5.2 Comparison of analytic and approximated global sensitivity indices

In this subsection we approximate a function multiple times with different numbers of nodes M .
This time we restrict ourselves to uniformly sampled nodes. This has the advantage that we can
compare the ANOVA approximation with the mixed basis to the Fourier basis and with the half
period cosine basis approximation. We also compare the approximated GSIs with analytically
calculated ones. In order to do this, we consider the function

f2 : [0, 1]4 → C, f2(x1, x2, x3, x4) := (2x1 − 1)2x3 + 10 sin(2πx1)
(

x2 −
1
2

)2
+ exp(x3).

The function f2 does not depend on the variable x4. Furthermore, the function has the same values
at the boundaries in dimension one and two, e.g.

f2(0, x2, x3, x4) = f2(1, x2, x3, x4), ∀x2, x3, x4 ∈ [0, 1]
f2(x1, 0, x3, x4) = f2(x1, 1, x3, x4), ∀x1, x3, x4 ∈ [0, 1].

Thus, we should use the Fourier basis for the first two coordinates and the half period cosine basis for
the third, i.e. d2 := (exp, exp, cos, cos)⊤. Furthermore, we test two more ANOVA approximations
without mixed bases, namely one with a Fourier basis and one with a half period cosine basis. In
the appendix A we calculate the analytic GSIs of this function f2. The results are

ρ({1}, f2) = 133
59 + 600e− 180e2 ≈ 0.369507,

ρ({3}, f2) = −530 + 1800e− 540e2

177 + 1800e− 540e2 ≈ 0.345259,

ρ({1, 2}, f2) = 100
59 + 600e− 180e2 ≈ 0.277825,

ρ({1, 3}, f2) = 8
177 + 1800e− 540e2 ≈ 0.007409,

and the other analytic GSIs are zero.
We now compare this with the approximated GSIs. For ANOVA approximation we use M =
50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000 uniformly distributed nodes X . For this
function f2 we consider the superposition set Uds with ds = 2, since the function f2 has only
one-dimensional and two dimensional interactions between variables. In this example we restrict
ourselves to two bandwidth parameters, N1 for one-dimensional bandwidths and N2 for the two-
dimensional bandwidths. For M ≤ 10000 we determine the bandwidth parameters N1 and N2
numerically like in (5.1). The results are shown in the Table 2. We obtain the bandwidths for
M > 10000 by extrapolating the previously determined optimal bandwidths.
In Figure 4 we plot the resulting mean squared errors. Here we notice that the error for the
approximation with the Fourier basis decays with the rate M−1. This decay rate M−1 is optimal,
since the periodization fper

2 : T4 → C, fper
2 (x) := f2(x) is not continuous, see [14]. The error of the

approximation with the mixed basis and the half period cosine basis decays with the rate M− 3
2 ,

while the approximation with the mixed basis gives a better constant. This rate M− 3
2 is optimal
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M
cos d2 exp

N1 N2 N1 N2 N1 N2
50 4 2 4 2 4 2

100 4 4 4 4 4 4
200 6 4 6 4 14 4
500 12 8 10 8 32 6

1000 18 10 14 10 76 6
2000 28 14 24 14 150 10
5000 56 22 40 22 300 14

10000 70 32 60 32 720 18
20000 170 46 110 46 1962 26
50000 382 76 224 76 6548 40

Table 2: Optimal bandwidths (for M ≤ 10000) Nu = (|{i} ∩ u|N|u|)4
i=1 for U2 for f2 approximated

at M training nodes and (for M > 10000) extrapolated bandwidths.

for the approximation with the cosine basis. Furthermore, we see that the approximation with the
mixed basis decays with the same rate as the approximation with the half period cosine basis but
provides a better constant factor.
Next, in Figure 5, we compare the approximated GSIs with the analytic GSIs and see that they

converge. The approximated GSIs using the Fourier basis converge slower than the approximated
GSIs using the mixed basis. In Figure 6 we consider the individual approximated GSIs for different
numbers of training nodes. Here we notice that the approximated GSIs using the Fourier basis
performs particularly poorly in the dimensions where the function f2 is not continuously periodizable,
e.g. for u = {3} we have particularly large deviations from the analytic GSI. Furthermore, we see for
example at u = {1, 2} that the approximated GSIs using the half period cosine basis converge more
slowly towards the analytic GSI than approximated GSIs using the Fourier basis. The approximated
GSIs using the mixed basis combines the positive properties of the other two ANOVA approximations
and therefore converges much faster.
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A Analytic Calculation of Global Sensitivity Indices
In the following we calculate the analytic GSIs for the function

f2 : Dd2 → C,

f2(x1, x2, x3, x4) := (2x1 − 1)2x3 + 10 sin(2πx1)
(

x2 −
1
2

)2
+ exp(x3)

= 4x2
1x3 − 4x1x3 + x3 + 10 sin(2πx1)x2

2 − 10 sin(2πx1)x2 + 5
2 sin(2πx1) + exp(x3)

with d2 = (exp, exp, cos, cos)⊤ using the basis Bd2 . First we calculate the mixed coefficients cd2
k (f2),

exploiting linearity. For this purpose we define

hj : Dd2 → C, j = 1, . . . , 7,

h1(x1, x2, x3, x4) = x2
1x3,

h2(x1, x2, x3, x4) = x1x3,

h3(x1, x2, x3, x4) = x3,

h4(x1, x2, x3, x4) = sin(2πx1)x2
2,

h5(x1, x2, x3, x4) = sin(2πx1)x2,

h6(x1, x2, x3, x4) = sin(2πx1), and
h7(x1, x2, x3, x4) = exp(x3).

and observe

cd2
k (f2) = 4cd2

k (h1)− 4cd2
k (h2) + cd2

k (h3) + 10cd2
k (h4)− 10cd2

k (h5) + 5
2cd2

k (h6) + cd2
k (h7) (A.1)

for all k ∈ Kd2 . We know that, if f ∈ L2(Dd) is a function given as product f(x) =
∏d

j=1 f
dj

j (xj) of
functions f

dj

j ∈ L2(Ddj ), j = 1, . . . , d, then for all k ∈ Kd we can decompose the mixed coefficients,
i.e.

cd
k(f) =

d∏
j=1

c
dj

kj
(fdj

j (xj)).

Thus, we decompose the functions hi into

gexp
j : Dexp → C, j = 1, . . . , 4, gcos

j : Dcos → C, j = 1, . . . , 3,

gexp
1 (x) = 1, gcos

1 (x) = 1,

gexp
2 (x) = x, gcos

2 (x) = x,

gexp
3 (x) = x2, gcos

3 (x) = exp(x),
gexp

4 (x) = sin(2πx).

Next we calculate the Fourier coefficients and the cosine coefficients of these functions. We observe
cexp

k (gexp
1 ) = δk,0 and ccos

k (gcos
1 ) = δk,0 because of the orthogonality of the basis functions and

ϕexp
0 = ϕcos

0 = 1. We start with the zeroth Fourier coefficients and cosine coefficients and observe

cexp
0 (gexp

2 ) = ccos
0 (gcos

2 ) = 1
2 , cexp

0 (gexp
3 ) = 1

3 and ccos
0 (gcos

3 ) = e− 1
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through cexp
0 = ccos

0 =
∫ 1

0 f(x) dx. For the case k ̸= 0 we observe

cexp
k (gexp

2 ) = 1
2πk

i, ccos
k (gcos

2 ) =
√

2(−1)k − 1
π2k2 ,

cexp
k (gexp

3 ) = 1
2π2k2 + 1

2πk
i and ccos

k (gcos
3 ) =

√
2(−1k)e− 1

π2k2 + 1 .

To this end we use the identity gexp
4 (x) = sin(2πx) = 1

2i exp(2πix)− 1
2i exp(−2πix) for the coefficients

cexp
k (gexp

4 ) and get cexp
1 (gexp

4 ) = 1
2i , cexp

−1 (gexp
4 ) = − 1

2i , and the ohter coefficients are zero. Next, we
consider the Fourier cosine coefficients ck of the functions hi, i = 1, . . . , 7 and obtain

cd2
k (h1) =



1
6 , k1, k2, k3, k4 = 0

1
4π2k2

1
+ 1

4πk1
i, k2, k3, k4 = 0, k1 ̸= 0

√
2 (−1)k3 −1

3π2k2
3

, k1, k2, k4 = 0, k3 ̸= 0
√

2 (−1)k3 −1
2π4k2

1k2
3

+
√

2 (−1)k3 −1
2π3k1k2

3
, k2, k4 = 0, k1, k3 ̸= 0

0, else

,

cd2
k (h2) =



1
4 , k1, k2, k3, k4 = 0

1
4πk1

i, k2, k3, k4 = 0, k1 ̸= 0
√

2 (−1)k3 −1
2π2k2

3
, k1, k2, k4 = 0, k3 ̸= 0

1
√

2 (−1)k3 −1
2π3k1k2

3
i, k2, k4 = 0, k1, k3 ̸= 0

0, else

,

cd2
k (h3) =


1
2 , k1, k2, k3, k4 = 0
√

2 (−1)k3 −1
π2k2

3
, k1, k2, k4 = 0, k3 ̸= 0

0, else
,

cd2
k (h4) =



− i
6 , k2, k3, k4 = 0, k1 = 1

i
6 , k2, k3, k4 = 0, k1 = −1

1
4πk1
− 1

2π2k2
1
i, k3, k4 = 0, k1 = 1, k2 ̸= 0

− 1
4πk1

+ 1
2π2k2

1
i, k3, k4 = 0, k1 = −1, k2 ̸= 0

0, else

,

cd2k(h5) =



− i
4 , k2, k3, k4 = 0, k1 = 1

i
4 , k2, k3, k4 = 0, k1 = −1

1
4πk2

, k3, k4 = 0, k1 = 1, k2 ̸= 0
− 1

4πk2
, k3, k4 = 0, k1 = −1, k2 ̸= 0

0, else

,

cd2
k (h6) =


− i

2 , k2, k3, k4 = 0, k1 = 1
i
2 , k2, k3, k4 = 0, k1 = −1
0, else

, and

cd2
k (h7) =


e− 1, k1, k2, k3, k4 = 0
√

2 (−1)k3 e−1
π2k2

3+1 , k1, k2, k4 = 0, k3 ̸= 0
0, else

.
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Finally, using the (A.1) we calculate the Fourier cosine coefficients cd2
k (f2) for the function f2,

cd2
k (f2) =



e− 5
6 , k1, k2, k3, k4 = 0

− 1
π2 − 5

12 i, k2, k3, k4 = 0, k1 = 1
− 1

π2 + 5
12 i, k2, k3, k4 = 0, k1 = −1

1
π2k2

1
, k2, k3, k4 = 0, |k1| ≥ 2

√
2 (−1)k3 −1

π2k2
3

+
√

2 (−1)k
3e−1

π2k2
3+1 , k1, k2, k4 = 0, k3 ̸= 0

− 5
2π2k2

2
i, k3, k4 = 0, k1 = 1, k2 ̸= 0

5
2π2k2

2
i, k3, k4 = 0, k1 = −1, k2 ̸= 0

2
√

2 (−1)k3 −1
π4k2

1k2
3

, k2, k4 = 0, k1, k3 ̸= 0
0, else

.

Furthermore, we consider the norm of the function f2 and observe ∥f2∥L2(Dd2 ) = 103
120 + e2

2 . Using
this we observe the variance σ2(f2) = 59

360 + 5
3e− e2

2 . Next, we consider the ANOVA terms σ2(fu)
for subsets of indices u ⊆ [4] using their series representation σ2(fu) =

∑
k∈Kd2

supp k=u
|cd2

k (f)|2. For the

further calculation we need
∑∞

k=1
1

k4 = π4

90 and
∑∞

k=1
1

(2k−1)4 = π4

96 . Using this we get the variances
σ2(fu) of the ANOVA terms fu,

σ2(f{1}) =
∞∑

k=−∞
k ̸=0

|cd2
ke1
|2 = 2

π4 + 25
72 + 2

∞∑
k=2

1
π4k4 = 133

360

σ2(f{1,2}) =
∞∑

k=−∞
k ̸=0

∞∑
j=−∞

j ̸=0

|cd2
ke1+je2

|2 = 4
∞∑

k=1

25
4π4k4 = 5

18

σ2(f{1,3}) =
∞∑

k=−∞
k ̸=0

∞∑
j=1
|cd2

ke1+je3
|2 = 2

∞∑
k=1

∞∑
j=1

8
(
(−1)j − 1

)2
π8k4j4 = 1

135 .

Since the other mixed coefficients except cd2
ke3

(f2) are zero, we get the variance σ2(f{3}) through the
theorem of Parseval,

σ2(f{3}) = σ2(f2)− σ2(f{1})− σ2(f{1,2})− σ2(f{1,3}) = − 53
108 + 5

3e− e2

2 .

Finally, we get the analytic global sensitivity indices

ρ({1}, f2) = 133
59 + 600e− 180e2 ≈ 0.369507,

ρ({3}, f2) = −530 + 1800e− 540e2

177 + 1800e− 540e2 ≈ 0.345259,

ρ({1, 2}, f2) = 100
59 + 600e− 180e2 ≈ 0.277825, and

ρ({1, 3}, f2) = 8
177 + 1800e− 540e2 ≈ 0.007409.
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