Surjectivity of linear partial differential operators on spaces of scalar valued and vector valued distributions

Thomas Kalmes TU Chemnitz

Summer School on Applied Analysis, TU Chemnitz, September 19-23, 2016

1. Introduction

In many mathematical models linear partial differential operators show up, e.g.

$$\begin{split} &\Delta = \Delta_x = \sum_{j=1}^d \partial_j^2 & (\text{Laplace operator}), \\ &\partial_t - \Delta_x & (\text{Heat operator}), \\ &\partial_t^2 - \Delta_x & (\text{Wave operator}), \\ &-i\partial_t - \Delta_x & (\text{time dependent free Schrödinger operator}), \\ &\frac{1}{2}(\partial_1 + i\partial_2) & (\text{Cauchy Riemann operator}). \end{split}$$

For general $P \in \mathbb{C}[X_1, \ldots, X_d]$ set

$$P(D) := P(-i\partial_1, \dots, -i\partial_d).$$

E.g. $\Delta = P_L(D)$ for $P_L(\xi) = -\sum_{j=1}^d \xi_j^2$
 $\partial_t - \Delta_x = P_H(D)$ for $P_H(\xi_1, \dots, \xi_d) = i\xi_1 + \sum_{j=2}^d \xi_j^2$
 $\partial_t^2 - \Delta_x = P_W(D)$ for $P_W(\xi_1, \dots, \xi_d) = -\xi_1^2 + \sum_{j=2}^d \xi_j^2$
 $-i\partial_t - \Delta_x = P_S(D)$ for $P_S(\xi_1, \dots, \xi_d) = \xi_1 + \sum_{j=2}^d \xi_j^2$
For $X \subseteq \mathbb{R}^d$ open and f given, solve $P(D)u = f$ in X .

Possible for every f from a fixed space of functions? "Solution" in which sense; classical, distributional?

Let $P \in \mathbb{C}[X_1, \ldots, X_d] \setminus \{0\}$ and let $X \subseteq \mathbb{R}^d$ be open.

- i) When is $P(D): C^{\infty}(X) \to C^{\infty}(X)$ surjective?
- ii) When is $C^{\infty}(X) \subseteq P(D)(\mathscr{D}'(X))$?
- iii) When is $P(D): \mathscr{D}'(X) \to \mathscr{D}'(X)$ surjective?

Answers will depend on combined properties of P and X.

Example:

$$X = ((0,2) \times (-4,4)) \cup ((-1,1) \times (-4,-2)) \cup ((-1,1) \times (2,4))$$

 $P_1(\xi_1,\xi_2) = i\xi_1 \Rightarrow P_1(D) = \partial_1;$

given $f \in C^{\infty}(X) \Rightarrow$ $u(x_1, x_2) := \int_1^{x_1} f(t, x_2) dt \in C^{\infty}(X)$ satisfies $\partial_1 u = f$

 $\Rightarrow P_1(D): C^{\infty}(X) \rightarrow C^{\infty}(X)$ surjective

Example:

$$X = ((0,2) \times (-4,4)) \cup ((-1,1) \times (-4,-2)) \cup ((-1,1) \times (2,4))$$

$$P_2(\xi_1,\xi_2) = i\xi_2 \Rightarrow P_2(D) = \partial_2;$$

.

choose
$$\eta \in C^{\infty}(\mathbb{R})$$
 with $\eta(t) = 0$ for
 $t \notin [-1,1]$ and $\int_{-1}^{1} \eta(t) dt > 0$; set
 $f(x_1, x_2) = \begin{cases} \frac{\eta(x_2)}{x_1}, & \text{if } x_1 > 0\\ 0, & \text{if } x_1 \leq 0 \end{cases}$
 $\Rightarrow f \in C^{\infty}(X)$; suppose
 $\exists u \in C^1(X) : \partial_2 u = f$;
for $x_1 \in (0,2)$ we then have
 $u(x_1,3) - u(x_1,-3) = \int_{-3}^{3} \partial_2 u(x_1,t) dt$
 $= \frac{1}{x_1} \int_{-1}^{1} \eta(t) dt \to_{x_1 \to 0} \infty$

 $\Rightarrow P_2(D): C^1(X) \rightarrow C^\infty(X)$ not surjective

Example:

$$X = ((0,2) \times (-4,4)) \cup ((-1,1) \times (-4,-2)) \cup ((-1,1) \times (2,4))$$

For
$$P_1(\xi_1, \xi_2) = i\xi_1$$
 resp. $P_2(\xi_1, \xi_2) = i\xi_2$ is

 $P_1(D): C^{\infty}(X) \to C^{\infty}(X)$ surjective,

 $P_2(D): C^1(X) \to C^{\infty}(X)$ not surjective.

Is it possible to "see" this without calculation? What about $P_2(D)$ if we allow for more general solutions of $P_2(D)u = f, f \in C^{\infty}(X)$, than $u \in C^1(X)$?

2. Distributions and differential operators

$$\begin{split} X \subseteq \mathbb{R}^d \text{ open, } K \Subset X(:\Leftrightarrow K \subseteq X \text{ compact}), \ l \in \mathbb{N}_0 \\ \| \cdot \|_{l,K} : C^{\infty}(X) \to [0,\infty), f \mapsto \sup_{\alpha \in \mathbb{N}^d_0, |\alpha| \le l} \sup_{x \in K} |\partial^{\alpha} f(x)| \end{split}$$

defines a seminorm on $C^{\infty}(X)$. $(f_n)_{n \in \mathbb{N}} \in C^{\infty}(X)^{\mathbb{N}}$ converges to $f \in C^{\infty}(X)$: \Leftrightarrow

$$\forall K \Subset X, l \in \mathbb{N}_0 : \lim_{n \to \infty} \|f_n - f\|_{l,K} = 0$$

This convergence can be described by a metric on $C^{\infty}(X)$ which is complete; we denote by $\mathscr{E}(X)$ the space $C^{\infty}(X)$ equipped with this notion of convergence.

For $M \subseteq \mathbb{R}^d$ we set $\mathscr{D}(M) := \{ \varphi \in C^{\infty}(\mathbb{R}^d); \operatorname{supp} \varphi \subseteq M \operatorname{compact} \}$, where $\operatorname{supp} \varphi = \overline{\{x \in \mathbb{R}^d; \varphi(x) \neq 0\}}; \mathscr{D}(M)$ is a subspace of $C^{\infty}(\mathbb{R}^d)$.

$$(arphi_n)_{n\in\mathbb{N}}\in\mathscr{D}(M)^{\mathbb{N}}$$
 converges to $arphi\in\mathscr{D}(M):\Leftrightarrow$

-
$$\lim_{n\to\infty}\varphi_n=\varphi$$
 in $\mathscr{E}(\mathbb{R}^d)$,

- $\exists K \Subset M : \cup_{n \in \mathbb{N}} \operatorname{supp} \varphi_n \cup \operatorname{supp} \varphi \subseteq K$

For every non-compact M, this convergence cannot be described by a metric on $\mathscr{D}(M)$ but by a (locally convex) topology which is complete; from now on we always equip $\mathscr{D}(M)$ with the above notion of convergence.

For open $X \subseteq \mathbb{R}^d$ the "inclusion" $i : \mathscr{D}(X) \hookrightarrow \mathscr{E}(X), \varphi \mapsto \varphi_{|X}$ is continuous, has dense range; thus, every continuous $u : \mathscr{E}(X) \to \mathbb{C}$ induces continuous $u : \mathscr{D}(X) \to \mathbb{C}$, and u uniquely determined by $u_{|\mathscr{D}(X)}$.

For
$$X \subseteq \mathbb{R}^d$$
 open we define
 $\mathscr{D}'(X) := \{u : \mathscr{D}(X) \to \mathbb{C}; u \text{ linear, continuous}\}$
 $\mathscr{E}'(X) := \{u : \mathscr{E}(X) \to \mathbb{C}; u \text{ linear, continuous}\}$
 $\mathscr{D}'(X), \mathscr{E}'(X)$ are vector spaces, $u \in \mathscr{D}'(X)$ is called a distribution on X

By the previous slide:

$$\mathscr{E}'(X) \to \mathscr{D}'(X), u \mapsto u_{|\mathscr{D}(X)}$$

is well-defined, obviously linear, and one-to-one.

2.1 Proposition

a) For linear
$$u : \mathscr{E}(X) \to \mathbb{C}$$
 tfae:
i) $u \in \mathscr{E}'(X)$,
ii) $\exists K \Subset X, l \in \mathbb{N}_0, C > 0 \,\forall f \in \mathscr{E}(X) : |u(f)| \le C ||f||_{l,K}$.
b) For linear $u : \mathscr{D}(X) \to \mathbb{C}$ tfae:
i) $u \in \mathscr{D}'(X)$,
ii) $\forall K \Subset X \exists l \in \mathbb{N}_0, C > 0 \,\forall \varphi \in \mathscr{D}(K) : |u(\varphi)| \le C ||\varphi||_{l,K}$.

Notation: $\langle u, \varphi \rangle := u(\varphi)$

If in b) ii) $l \in \mathbb{N}_0$ may be chosen independently of $K \Subset X$ then u is of finite order and

 $\operatorname{ord}(u) := \min\{l \in \mathbb{N}_0; \, \forall \, K \Subset X \, \exists \, C > 0 \, \forall \, \varphi \in \mathscr{D}(K) : \, |u(\varphi)| \le C \|\varphi\|_{l,K}\}$

is called order of u; $\mathscr{D}'_F(X) := \{u \in \mathscr{D}'(X); \operatorname{ord}(u) < \infty\}$ is a subspace of $\mathscr{D}'(X)$ with $\mathscr{E}'(X) \subsetneq \mathscr{D}'_F(X)$.

Examples:

i) For
$$f \in L^1_{loc}(X)$$

$$u_f: \mathscr{D}(X) \to \mathbb{C}, \varphi \mapsto \int_X f(x)\varphi(x)dx$$

is a well-defined linear mapping, $\forall\,K\Subset X,\varphi\in\mathscr{D}(K)\colon$

$$|\langle u_f, \varphi \rangle| \le \int_K |f(x)\varphi(x)| dx \le \int_K |f(x)| dx \, \|\varphi\|_{0,K},$$

 $\Rightarrow u_f \in \mathscr{D}'(X)$, $\operatorname{ord}(u_f) = 0$. Recall the "Fundamental lemma of calculus of variations":

$$\forall \, f \in L^1_{\mathrm{loc}}(X): \, (\forall \, \varphi \in \mathscr{D}(X): \, \int_X f(x)\varphi(x)dx = 0 \Rightarrow f = 0)$$

 $\Rightarrow \text{ the linear mapping } L^1_{\text{loc}}(X) \to \mathscr{D}'(X), f \mapsto u_f \text{ is one-to-one} \\ \Rightarrow \text{ we can/will write } f \text{ instead of the distribution } u_f, \text{ i.e.} \\ \langle f, \varphi \rangle = \int_X f(x)\varphi(x) \, dx$

Examples continued:

ii) For every regular, resp. complex, measure μ on the Borel- σ -algebra over X

$$u_{\mu}: \mathscr{D}(X) \to \mathbb{C}, \varphi \mapsto \int_{X} \varphi(x) d\mu(x)$$

is a well-defined linear mapping, $\forall\, K \Subset X, \varphi \in \mathscr{D}(K)$:

$$|\langle u_{\mu}, \varphi \rangle| \le |\mu|(K) \|\varphi\|_{0,K}$$

 $\Rightarrow u_{\mu} \in \mathscr{D}'(X)$, ord $(u_{\mu}) = 0$. By the Riesz-Markov Theorem, $\mu \mapsto u_{\mu}$ is one-to-one, so we write μ instead of u_{μ} .

Concrete example: $\mu = \delta_x, x \in X$

Examples continued:

iii) σ surface measure on S^{d-1} , $f \in L^1(\sigma)$ with $\int_{S^{d-1}} f(\omega) d\sigma(\omega) = 0$. For $\varphi \in \mathscr{D}(\mathbb{R}^d)$ we have:

$$\begin{split} \lim_{\varepsilon \downarrow 0} \int_{\varepsilon \le |x|} \frac{\varphi(x)}{|x|^d} f(\frac{x}{|x|}) dx &= \lim_{\varepsilon \downarrow 0} \int_{\varepsilon \le |x|} \frac{\varphi(x) - \varphi(0)}{|x|^d} f(\frac{x}{|x|}) dx \\ &= \int \frac{\varphi(x) - \varphi(0)}{|x|^d} f(\frac{x}{|x|}) dx, \end{split}$$

where the last integral exists due to $|\varphi(x) - \varphi(0)| \le ||\nabla \varphi||_{\infty} |x|$ (polar coordinates, Lebesgue's Theorem, ...)

By the same argument: $\forall \varphi \in \mathscr{D}(K)$ where $K \subseteq B[0, R]$:

$$|\lim_{\varepsilon \downarrow 0} \int_{\varepsilon \le |x|} \frac{\varphi(x)}{|x|^d} f(\frac{x}{|x|}) dx| \le R \int_{S^{d-1}} |f(\omega)| d\sigma(\omega) \|\varphi\|_{1,K}$$

 $\Rightarrow \langle vp(|x|^{-d}f(\frac{x}{|x|})), \varphi \rangle := \lim_{\varepsilon \downarrow 0} \int_{\varepsilon \le |x|} \frac{\varphi(x)}{|x|^d} f(\frac{x}{|x|}) dx \text{ defines a} \\ \text{distribution on } \mathbb{R}^d \text{ of order 1; these are kernels of classical singular} \\ \text{integral operators, e.g. Hilbert transform on } \mathbb{R} (f(\omega) = \text{sign}(\omega)), \\ \text{Riesz operators } (f(\omega) = \omega_j, 1, \dots, d).$

 $X \subseteq \mathbb{R}^d$ open, $M \subseteq X \Rightarrow \mathscr{D}(M) \subseteq \mathscr{D}(X)$ subspace For $u \in \mathscr{D}'(X)$ we set $u_{|M} := u_{|\mathscr{D}(M)}$ the restriction of u to M $u \in \mathscr{D}'(X)$ vanishes in $M :\Leftrightarrow u_{|M} = 0$, i.e. $\forall \varphi \in \mathscr{D}(M) : \langle u, \varphi \rangle = 0$ $\operatorname{supp} u := \{x \in X; \nexists V \subseteq X \text{ open}, x \in V : u_{|V} = 0\}$

is called support of u. For $f \in C(X)$ it holds

$$\operatorname{supp} u_f = \overline{\{x \in X; \ f(x) \neq 0\}}^X$$

For $u \in \mathscr{D}'(X)$ we have

- supp u is a closed subset of X (by definition)
- $X \setminus \text{supp } u$ is the largest open subset of X where u vanishes, i.e.

$$\forall \, \varphi \in \mathscr{D}(X) : (\operatorname{supp} \varphi \cap \operatorname{supp} u = \emptyset \Rightarrow \langle u, \varphi \rangle = 0)$$

2.2 Theorem

For $X \subseteq \mathbb{R}^d$ open we have $\mathscr{E}'(X) = \{ u \in \mathscr{D}'(\mathbb{R}^d); \operatorname{supp} u \subseteq X \text{ compact} \}.$

For $h \in \mathscr{E}(X)$ and $1 \leq j \leq d$ the operators

$$m_h: \mathscr{D}(X) \to \mathscr{D}(X), \varphi \mapsto h\varphi \text{ and } \partial_j: \mathscr{D}(X) \to \mathscr{D}(X), \varphi \mapsto \partial_j \varphi$$

are well-defined, linear, and continuous.

For arbitrary $\varphi \in \mathscr{D}(X)$ we have

$$\forall\,f\in L^1_{\rm loc}(X):\,\langle hf,\varphi\rangle=\int_X h(x)f(x)\varphi(x)dx=\langle f,m_h(\varphi)\rangle$$

and if $f\in C^1(X)(\subseteq L^1_{\operatorname{loc}}(X))$ integration by parts gives

$$\langle \partial_j f, \varphi \rangle = \int_X \partial_j f(x) \varphi(x) dx = -\int_X f(x) \partial_j \varphi(x) dx = -\langle f, \partial_j \varphi \rangle.$$

For arbitrary $u \in \mathscr{D}'(X)$ we <u>define</u> $\langle hu, \varphi \rangle := \langle u, m_h(\varphi) \rangle$ and $\langle \partial_j u, \varphi \rangle := -\langle u, \partial_j \varphi \rangle \Rightarrow hu, \partial_j u \in \mathscr{D}'(X)$ and $u \mapsto hu, u \mapsto \partial_j u$ are linear.

For $P \in \mathbb{C}[X_1, \dots, X_d]$ it follows $P(D)u \in \mathscr{D}'(X)$ and $\langle P(D)u, \varphi \rangle = \langle u, \check{P}(D)\varphi \rangle$, where $\check{P}(\xi) = P(-\xi)$.

2.3 Proposition

- For $h \in \mathscr{E}(X)$ and $P \in \mathbb{C}[X_1, \dots, X_d]$ the following hold.
 - i) $\forall u \in \mathscr{D}'(X) : \operatorname{supp}(hu) \subseteq \operatorname{supp} h \cap \operatorname{supp} u$ and $\operatorname{ord}(hu) \leq \operatorname{ord} u$.
 - ii) $\forall u \in \mathscr{D}'(X)$: supp $P(D)u \subseteq$ supp u and if P of degree m then ord $(P(D)u) \leq$ ord u + m.
 - iii) $P(D): \mathscr{D}'(X) \to \mathscr{D}'(X), u \mapsto P(D)$ is a linear mapping with $P(D)(\mathscr{E}'(X)) \subseteq \mathscr{E}'(X)$ and $P(D)(\mathscr{D}'_F(X)) \subseteq \mathscr{D}'_F(X)$.

Examples:

i) For the Heaviside function $Y=1\!\!1_{(0,\infty)}$ we have for $\varphi\in\mathscr{D}(\mathbb{R})$

$$\langle Y', \varphi \rangle = -\langle Y, \varphi' \rangle = -\int_0^\infty \varphi'(x) dx = \varphi(0) = \langle \delta_0, \varphi \rangle$$

ii) $X \subset \mathbb{R}^d$ be open with C^1 -boundary. For $\varphi \in \mathscr{D}'(\mathbb{R}^d)$:

$$\langle \partial_j 1\!\!1_X, \varphi \rangle = -\int_X \partial_j \varphi(x) dx = -\int_{\partial X} \nu_j(\omega) \varphi(\omega) d\sigma(\omega) = \langle -\nu_j \sigma, \varphi \rangle,$$

with $\nu(\omega) = (\nu_1(\omega), \dots, \nu_d(\omega))$ denoting the outer unit normal in $\omega \in \partial X$ and σ the surface measure on ∂X .

For $m \in \mathbb{N}_0$ we define the local Sobolev space of order m over X as

$$H^m_{\mathrm{loc}}(X) = \{ f \in L^2_{\mathrm{loc}}(X); \, \forall \, |\alpha| \le m : \, \partial^{\alpha} f \in L^2_{\mathrm{loc}}(X) \}$$

which is a subspace of $\mathscr{D}'_F(X)$.

 \rightsquigarrow differential equations for distributions or in any subspace E of $\mathscr{D}'(X)$ like, e.g. $\mathscr{E}(X), H^m_{loc}(X), L^1_{loc}(X), \mathscr{D}'_F(X)$: given arbitrary $f \in E$ is there $u \in \mathscr{D}'(X)$ (resp. $u \in E$) with P(D)u = f, i.e.

$$\forall \varphi \in \mathscr{D}(X) : \langle f, \varphi \rangle = \langle P(D)u, \varphi \rangle \big(= \langle u, P(-D)\varphi \rangle \big)?$$

2.4 Theorem (Malgrange, 1955, see ALPDO II, Section 10.6)

For open $X \subseteq \mathbb{R}^d$ and $P \in \mathbb{C}[X_1, \dots, X_d]$ tfae:

- i) $P(D) : \mathscr{E}(X) \to \mathscr{E}(X)$ is surjective.
- ii) $\forall f \in \mathscr{E}(X) \exists u \in \mathscr{D}'(X) : P(D)u = f.$
- iii) $P(D): \mathscr{D}'_F(X) \to \mathscr{D}'_F(X)$ is surjective.
- iv) $\forall f \in H^m_{\text{loc}}(X) \exists u \in H^m_{\text{loc}}(X) : P(D)u = f.$
- v) $\forall u \in \mathscr{E}'(X)$: dist(supp $P(-D)u, X^c) = dist(supp u, X^c)$.

In v) " $\forall u \in \mathscr{E}'(X)$ " can be replaced by " $\forall u \in \mathscr{D}(X)$ ".

Given $P \in \mathbb{C}[X_1, \dots, X_d] \setminus \{0\}$. X is called *P*-convex for supports iff $\forall u \in \mathscr{E}'(X) : \operatorname{dist}(\operatorname{supp} P(-D)u, X^c) = \operatorname{dist}(\operatorname{supp} u, X^c).$

Recall: supp $P(-D)u \subseteq$ supp u, thus we always have

$$\forall\, u\in \mathscr{E}'(X):\, {\rm dist}({\rm supp}\, P(-D)u,X^c)\geq {\rm dist}({\rm supp}\, u,X^c).$$

Consequence of "Theorem of Supports":

$$\forall u \in \mathscr{E}'(\mathbb{R}^d) : \operatorname{conv}(\operatorname{supp} u) = \operatorname{conv}(\operatorname{supp} P(-D)u),$$

which implies: every convex open set $X \subseteq \mathbb{R}^d$ is *P*-convex for supports.

If $(X_{\iota})_{\iota \in I}$ is a family of open sets which are *P*-convex for supports then $\operatorname{int}(\bigcap_{\iota \in I} X_{\iota})$ is *P*-convex for supports, too.

Geometrical conditions for/characterisation of *P*-convexity for supports?

Problem: not a local property!

Every open $X\subseteq \mathbb{R}^d$ is P-convex for supports iff P is elliptic, i.e. if $P(\xi)=\sum_{|\alpha|\leq m}a_\alpha\xi^\alpha$ then

$$\forall \xi \in \mathbb{R}^d \setminus \{0\}; 0 \neq P_m(\xi) := \sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha} \text{ (principal part of } P)$$

If P acts along a subspace of \mathbb{R}^d and is elliptic there, then P-convexity for supports is completely characterized (Nakane, 1979).

For polynomials with principal part $P_2(\xi) = \xi_d^2 - \sum_{j=1}^{d-1} \xi_j^2$ *P*-convexity for supports is completely characterized (Persson, 1981).

For ${\boldsymbol{P}}$ of real principal type there are characterizations if

- X is bounded and ∂X is analytic (Tintarev, 1988)
- $X \subseteq \mathbb{R}^3$ (Tintarev, 1992)

For d = 2 *P*-convexity for supports is completely characterized (Hörmander, 1971).

When is $P(D)(\mathscr{D}'(X)) = \mathscr{D}'(X)$? Unfortunately, *P*-convexity for supports of X is not enough!

Idea (Hörmander): Because $P(D)(\mathscr{E}(X)) \subseteq \mathscr{E}(X)$, iff

- $\mathscr{E}(X)\subseteq P(D)(\mathscr{D}'(X))\ (\Leftrightarrow X\operatorname{P-convex for supports})$
- P(D) surjective on $\mathscr{D}'(X)/\mathscr{E}(X)$

For open $V \subseteq X \subseteq \mathbb{R}^d$ and $u \in \mathscr{D}'(X)$, we say that u is smooth in $V :\Leftrightarrow u_{|V} \in \mathscr{E}(V)$, i.e. $\exists f \in \mathscr{E}(V) \,\forall \, \varphi \in \mathscr{D}(V) : \langle u, \varphi \rangle = \int_{V} f(x)\varphi(x)dx.$

 $\operatorname{sing\,supp} u := \{x \in X; \, \nexists \, V \subseteq X \text{ open, } x \in V: \, u \text{ smooth in } V\}$

is called singular support of u.

For $u \in \mathscr{D}'(X), h \in \mathscr{E}(X)$, and $P \neq 0$ we have

- sing supp u is a closed subset of X (by definition)
- $X \setminus sing supp u$ is the largest open subset of X where u is smooth
- sing $\mathrm{supp}\, u\subseteq \mathrm{supp}\, u$ and $\mathrm{sing}\, \mathrm{supp}\, (hu)\subseteq \mathrm{supp}\, h\cap \mathrm{sing}\, \mathrm{supp}\, u$
- sing supp $P(D)u \subseteq \operatorname{sing\,supp} u$

2.5 Theorem (Hörmander, 1962, see ALPDO Section 10.7)

For open $X \subseteq \mathbb{R}^d$ we have $\mathscr{D}'(X)/\mathscr{E}(X) = P(D)(\mathscr{D}'(X)/\mathscr{E}(X))$ iff X *P*-convex for singular supports, i.e.

 $\forall \, u \in \mathscr{E}'(X): \mathsf{dist}(\mathsf{sing\,supp}\, P(-D)u, X^c) = \mathsf{dist}(\mathsf{sing\,supp}\, u, X^c).$

Because sing supp $P(-D)u \subseteq \text{sing supp } u$ we always have $\operatorname{dist}(\operatorname{sing supp} P(-D)u, X^c) \ge \operatorname{dist}(\operatorname{sing supp} u, X^c).$

Consequence of "Theorem of Singular Supports":

$$\forall \, u \in \mathscr{E}'(\mathbb{R}^d), P \neq 0: \, \operatorname{conv}(\operatorname{sing\,supp} u) = \operatorname{conv}(\operatorname{sing\,supp} P(-D)u),$$

which implies: every convex open set $X \subseteq \mathbb{R}^d$ is *P*-convex for singular supports.

If $(X_{\iota})_{\iota \in I}$ is a family of open sets which are *P*-convex for singular supports then $\operatorname{int}(\bigcap_{\iota \in I} X_{\iota})$ is *P*-convex for singular supports, too.

X strongly P-convex : \Leftrightarrow X P-convex for supports and singular supports

Geometric conditions for/characterisation of $\ensuremath{\mathit{P}}\xspace$ -convexity for singular supports?

Problem: <u>not</u> a local property!

Every open $X \subseteq \mathbb{R}^d$ is *P*-convex for singular supports iff *P* is hypoelliptic, i.e.

$$\forall \, X \subseteq \mathbb{R}^d \, \, \text{open}, u \in \mathscr{D}'(X): \, \text{sing supp} \, P(D)u = \text{sing supp} \, u$$

(e.g. elliptic and parabolic operators are hypoelliptic) Algebraic characterisation of hypoellipticity of P (Hörmander, 1955):

$$\forall \alpha \neq 0 : \lim_{\xi \in \mathbb{R}^d, |\xi| \to \infty} \frac{P^{(\alpha)}(\xi)}{P(\xi)} = 0,$$

thus P hypoelliptic $\Leftrightarrow \check{P}$ hypoelliptic

For d = 2 *P*-convexity for singular supports is completely characterized (K., '10).

3. Conditions for *P*-convexity for (singular) supports

X P-convex for (singular) supports \Leftrightarrow

 $\forall u \in \mathscr{E}'(X) : \operatorname{dist}((\operatorname{sing}) \operatorname{supp} P(-D)u, X^c) = \operatorname{dist}((\operatorname{sing}) \operatorname{supp} u, X^c)$

What can we say about the location of (sing) supp u if we know (sing) supp P(-D)u?

X P-convex for (singular) supports \Leftrightarrow

 $\forall u \in \mathscr{E}'(X) : \operatorname{dist}((\operatorname{sing}) \operatorname{supp} P(-D)u, X^c) = \operatorname{dist}((\operatorname{sing}) \operatorname{supp} u, X^c)$

What can we say about the location of (sing) supp u if we know (sing) supp P(-D)u?

 $\operatorname{conv}((\operatorname{sing})\operatorname{supp} P(-D)u) = \operatorname{conv}((\operatorname{sing})\operatorname{supp} u)$

A hyperplane $H = \{x \in \mathbb{R}^d; \langle x, N \rangle = \gamma\}$ $(N \in S^{d-1}, \gamma \in \mathbb{R})$ is called characteristic for P if $P_m(N) = 0$ $(P_m \text{ principal part of } P)$.

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let $H = \{x \in \mathbb{R}^d; \langle N, x \rangle = \gamma\}$ be a characteristic hyperplane for P. Then there is $f \in \mathscr{E}(\mathbb{R}^d)$ with supp $f = \{x \in \mathbb{R}^d; \langle x, N \rangle \leq \gamma\}$ and P(-D)f = 0.

$$f$$
 as above for $\gamma = \langle N, x_0 \rangle, \chi \in \mathscr{D}(\mathbb{R}^d)$ with
supp $\chi = B(x_0, 2\varepsilon), \chi = 1$ in $B(x_0, \varepsilon), u := \chi f$

$$\begin{split} \sup p \, u &= B(x_0, 2\varepsilon) \cap \{x; \, \langle x, N \rangle \leq \gamma \} \\ \sup P(-D) u &\subseteq (\operatorname{supp} u) \setminus B(x_0, \varepsilon) \end{split}$$

 \Rightarrow X not P-convex for supports

A hyperplane $H = \{x \in \mathbb{R}^d; \langle x, N \rangle = \gamma\}$ $(N \in S^{d-1}, \gamma \in \mathbb{R})$ is called characteristic for P if $P_m(N) = 0$ $(P_m \text{ principal part of } P)$.

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let $H = \{x \in \mathbb{R}^d; \langle N, x \rangle = \gamma\}$ be a characteristic hyperplane for P. Then there is $f \in \mathscr{E}(\mathbb{R}^d)$ with supp $f = \{x \in \mathbb{R}^d; \langle x, N \rangle \leq \gamma\}$ and P(-D)f = 0.

 $g: X \to \mathbb{R}$ satisfies the minimum principle in a closed subset C of \mathbb{R}^d if for every compact set $K \subseteq C \cap X$ we have $\inf_{x \in K} g(x) = \inf_{\partial_C K} g(x)$. We set $d_X: X \to \mathbb{R}, x \mapsto \operatorname{dist}(x, X^c)$, the boundary distance of X.

3.2 Corollary (Hörmander, 1971, see ALPDO II, Theorem 10.8.1)

If X is P-convex for supports then d_X satisfies the minimum principle in every characteristic hyperplane for P.

For d = 2 this necessary condition is also sufficient:

3.3 Theorem (Hörmander, 1971, see ALPDO II, Theorem 10.8.3)

- Let $X \subseteq \mathbb{R}^2$ be open and connected, $P \in \mathbb{C}[X_1, X_2]$. Tfae:
 - i) X is P-convex for supports.
 - ii) d_X satisfies the minimum principle in every characteristic hyperplane for P.

 x_1

$$P_1(\xi_1,\xi_2) = i\xi_1 \Rightarrow P_1(D) = \partial_1$$

characteristic hyperplanes are parallels to x_1 -axis

$$P_2(\xi_1, \xi_2) = i\xi_2 \Rightarrow P_2(D) = \partial_2$$

characteristic hyperplanes are parallels to x_2 -axis

We now come to sufficient conditions for P-convexity for supports for arbitrary d. A starting point is a unique continuation result due to Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let $X_1 \subseteq X_2 \subseteq \mathbb{R}^d$ be open and convex. Tfae:

i) $\forall v \in \mathscr{D}'(X_2), P(-D)v = 0 : (v_{|X_1|} = 0 \Rightarrow v = 0)$

ii) Every characteristic hyperplane for P which intersects X_2 already intersects X_1 .

$$\begin{split} &v:=u_{\mid X_2} \text{ satisfies } P(-D)v=0\\ &\text{and } v_{\mid X_1}=0\\ &H=\{x\in \mathbb{R}^d; \langle x,N\rangle=\alpha\} \text{ with }\\ P_m(N)=0 \end{split}$$

We now come to sufficient conditions for P-convexity for supports for arbitrary d. A starting point is a unique continuation result due to Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let $X_1 \subseteq X_2 \subseteq \mathbb{R}^d$ be open and convex. Tfae:

i) $\forall v \in \mathscr{D}'(X_2), P(-D)v = 0 : (v_{|X_1|} = 0 \Rightarrow v = 0)$

ii) Every characteristic hyperplane for P which intersects X_2 already intersects X_1 .

$$\begin{split} v &:= u_{|X_2} \text{ satisfies } P(-D)v = 0\\ \text{and } v_{|X_1} &= 0\\ H &= \{x \in \mathbb{R}^d; \langle x, N \rangle = \alpha\} \text{ with }\\ P_m(N) &= 0 \end{split}$$

Let $\emptyset \neq \Gamma \subset \mathbb{R}^d$ be an open convex cone and

$$\Gamma^{\circ} := \{ \xi \in \mathbb{R}^d ; \forall x \in \Gamma : \langle x, \xi \rangle \ge 0 \}$$

its dual cone.

 Γ° is a closed, proper, convex cone

From now on always $\emptyset \neq \Gamma \neq \mathbb{R}^d \Rightarrow 0 \notin \Gamma$ and $\Gamma^{\circ} \notin \{\mathbb{R}^d, \{0\}\}$

3.5 Theorem (Exterior Cone Condition I - K., '12)

Let $P \in \mathbb{C}[X_1, \ldots, X_d]$ with principal part P_m .

i) X is P-convex for supports if for every $x\in\partial X$ there is an open convex cone $\Gamma\subset\mathbb{R}^d$ such that

$$(x + \Gamma^{\circ}) \cap X = \emptyset$$
 and $P_m(\xi) \neq 0 \,\forall \, \xi \in \Gamma$.

ii) If Γ is an open convex cone and $X := \mathbb{R}^d \setminus \Gamma^\circ$ then X is P-convex for supports iff $P_m(\xi) \neq 0$ for every $\xi \in \Gamma$.

As another sufficient condition for *P*-convexity for supports we have:

3.6 Theorem (K., '14)

Let $\{0\} \neq W \subseteq \mathbb{R}^d$ be a subspace such that d_X satisfies the minimum principle in every affine subspace parallel to W. If $\{\xi \in \mathbb{R}^d; P_m(\xi) = 0\} \subseteq W^{\perp}$ then X is P-convex for supports.

The above condition easily implies that for every elliptic P each open $X \subseteq \mathbb{R}^d$ is P-convex for supports (take $W = \mathbb{R}^d$).

3.7 Corollary (K., '14)

If $\{\xi \in \mathbb{R}^d; P_m(\xi) = 0\}$ is a one-dimensional subspace then X is P-convex for supports iff d_X satisfies the minimum principle in in every characteristic hyperplane for P.

Applicable to the free Schrödinger operator $-i\partial_t - \Delta_x$ and parabolic operators, i.e. $P(\xi) = Q(\xi_1, \ldots, \xi_{d-1}) + i\xi_d$ with elliptic $Q \in \mathbb{C}[X_1, \ldots, X_{d-1}]$, e.g. $\partial_t - \Delta_x$.

We now consider P-convexity for singular supports of X, i.e. conditions for

 $\forall \, \mathscr{E}'(X): \, \operatorname{dist}(\operatorname{sing\,supp} P(-D)u, X^c) = \operatorname{dist}(\operatorname{sing\,supp} u, X^c)$

("
$$\geq$$
" always holds).

Some preparations have to be made: for $\zeta \in \mathbb{C}^d$ we define

$$e_{\zeta}: \mathbb{R}^d \to \mathbb{C}, x \mapsto e^{-i\langle x, \zeta \rangle}$$
 (where $\langle x, \zeta \rangle = \sum_{j=1}^d x_j \zeta_j$)

and for $u \in \mathscr{E}'(\mathbb{R}^d)$

$$\mathscr{F}(u) := \hat{u} : \mathbb{C}^d \to \mathbb{C}, \zeta \mapsto u(e_{\zeta})$$

the Fourier-Laplace transform of u which is a entire analytic function.

3.8 Theorem (Paley-Wiener-Schwartz, 1952, see ALPDO I, Theorem 7.3.1)

 \hat{u} is an entire analytic function for each $u \in \mathscr{E}'(\mathbb{R}^d)$. i) If $u \in \mathscr{E}'(\mathbb{R}^d)$ satisfies supp $u \subseteq B[0, R]$ then

 $\exists N \in \mathbb{N}_0, C > 0 \,\forall \, \zeta \in \mathbb{C}^d : \, |\hat{u}(\zeta)| \le C(1 + |\zeta|)^N e^{R|\operatorname{\mathsf{Im}} \zeta|}$

(one can choose $N = \operatorname{ord}(u)$). Conversely, every entire analytic function satisfying an estimate like the above is the Fourier-Laplace transform of a distribution with support in B[0, R].

ii) If $u \in \mathscr{D}(\mathbb{R}^d)$ satisfies supp $u \subseteq B[0,R]$ then

 $\forall N \in \mathbb{N}_0 \exists C > 0 \,\forall \zeta \in \mathbb{C}^d : |\hat{u}(\zeta)| \le C(1+|\zeta|)^{-N} e^{R|\operatorname{\mathsf{Im}} \zeta|}.$

Conversely, every entire analytic function satisfying estimates like the above is the Fourier-Laplace transform of a test function with support in B[0, R].

Fix $u \in \mathscr{E}'(X) (\subseteq \mathscr{E}'(\mathbb{R}^d))$. For every $\varphi \in \mathscr{D}(X \setminus sing \operatorname{supp} P(-D)u)$, $\eta \in \mathbb{R}^d$:

$$\langle e_{\eta} P(-D)u, \varphi \rangle \rightarrow_{|\eta| \to \infty} 0.$$

Thus, in $\mathscr{D}'(X \setminus \operatorname{sing supp} P(-D)u)$,

$$0 = \lim_{|\eta| \to \infty} \frac{\check{P}_{\eta}(D)}{\check{\tilde{P}}(\eta, 1)} \bigl(\check{\tilde{P}}(\eta, 1) e_{\eta} u \bigr).$$

 $\begin{aligned} \forall (\eta_k)_{k \in \mathbb{N}}, \lim_{k \to \infty} |\eta_k| &= \infty \exists (\eta_{k_l})_{l \in \mathbb{N}} : \exists \lim_{l \to \infty} \check{P}(\eta_{k_l}, 1) e_{\eta_{k_l}} u \text{ in } \\ \mathscr{D}'(\mathbb{R}^d) \text{ (limit } = 0 \text{ in } \mathbb{R}^d \backslash \text{sing supp } u \text{)} \\ \forall (\eta_k)_{k \in \mathbb{N}}, \lim_{k \to \infty} |\eta_k| &= \infty \exists (\eta_{k_l})_{l \in \mathbb{N}} : \exists \lim_{l \to \infty} \frac{\check{P}_{\eta_{k_l}}(\xi)}{\check{P}(\eta_{k_l}, 1)} =: Q(\xi) \text{ in } \\ \mathbb{C}[X_1, \ldots, X_d], Q \text{ invariant under some non-trivial subspace } V \subseteq \mathbb{R}^d, \text{ i.e.} \\ \forall x \in V, \xi \in \mathbb{R}^d : Q(\xi + x) = Q(\xi) \end{aligned}$

so - if Q does not have a constant term - every $w \in \mathscr{E}'(\mathbb{R}^d)$ depending only on variables from V^{\perp} satisfies Q(D)w = 0 \rightsquigarrow plausibility/conjecture: to every such $V \exists w \in \mathscr{E}'(\mathbb{R}^d)$: $P(-D)w \in \mathscr{E}(\mathbb{R}^d)$ and sing supp $w = V^{\perp} \cap \text{supp } w$ How to recognize these V?

Q non-constant $\Rightarrow \infty = \lim_{t \to \infty} \tilde{Q}(0,t) (= \lim_{t \to \infty} \sup_{|\xi| \le t} |Q(\xi)|)$ while $\tilde{Q}_V(0,t) := \sup_{x \in V, |x| \le t} |Q(x+0)| = |Q(0)|$ by definition of VFor suitable $(\eta_n)_{n \in \mathbb{N}}$ tending to infinity:

$$0 = \inf_{t \ge 1} \frac{\tilde{Q}_V(0,t)}{\tilde{Q}(0,t)} = \inf_{t \ge 1} \lim_{n \to \infty} \frac{\check{P}_V(\eta_n,t)}{\check{P}(\eta_n,t)}$$
$$\geq \inf_{t \ge 1} \liminf_{\eta \to \infty} \frac{\check{P}_V(\eta,t)}{\check{P}(\eta,t)},$$

where $\check{P}_V(\eta, t) = \sup_{\xi \in V, |\xi| \le t} |\check{P}(\xi + \eta)|$ Hörmander: For $V \subseteq \mathbb{R}^d$ subspace define

$$\sigma_P(V) = \inf_{t \ge 1} \liminf_{\eta \to \infty} \frac{\check{\check{P}}_V(\eta, t)}{\check{\check{P}}(\eta, t)}$$

Abbreviation: $\forall y \in \mathbb{R}^d$: $\sigma_P(y) = \sigma_P(\text{span}\{y\})$

3.9 Theorem (Hörmander, 1972, see ALPDO II, Theorem 11.3.1)

Let $V \subseteq \mathbb{R}^d$ be a subspace with $\sigma_P(V) = 0$. Then there is $u \in \mathscr{D}'(\mathbb{R}^d)$ with P(-D)u = 0 and sing supp $u = V^{\perp}$.

Like Theorem 3.1 is used to prove Corollary 3.2 the above theorem gives a necessary condition for P-convexity for singular supports:

3.10 Corollary (Hörmander, 1972, see ALPDO II, Corollary 11.3.2)

Let $V \subseteq \mathbb{R}^d$ be a subspace with $\sigma_P(V) = 0$. If X is P-convex for singular supports then d_X satisfies the minimum principle in every affine subspace parallel to V^{\perp} .

This necessary condition is also sufficient for d = 2:

3.11 Theorem (K., '11)

Let $X \subseteq \mathbb{R}^2$ be open and connected, $P \in \mathbb{C}[X_1, X_2]$. Tfae:

i) X is P-convex for singular supports.

ii) d_X satisfies the minimum principle in every hyperplane $H = \{x \in \mathbb{R}^2; \langle x, N \rangle = \gamma\}$ with $\sigma_P(N) = 0$.

 σ_P can also be used to give sufficient conditions for *P*-convexity for singular supports for arbitrary *d*.

3.12 Theorem (Exterior Cone Condition II - K., '12)

- Let $P \in \mathbb{C}[X_1, \ldots, X_d]$.
 - i) X is P-convex for singular supports if for every $x \in \partial X$ there is an open convex cone $\Gamma \subset \mathbb{R}^d$ such that

$$(x + \Gamma^{\circ}) \cap X = \emptyset$$
 and $\sigma_P(\xi) \neq 0 \,\forall \xi \in \Gamma$.

ii) If Γ is an open convex cone and $X := \mathbb{R}^d \setminus \Gamma^\circ$ then X is P-convex for singular supports iff $\sigma_P(\xi) \neq 0$ for every $\xi \in \Gamma$.

4. Interlude: Some Functional Analysis General references: IFA and AFO

E be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$

a) A family of seminorms \mathscr{P} is called directed if

$$\forall p,q \in \mathscr{P} \exists r \in \mathscr{P} : p \leq r \text{ and } q \leq r.$$

b) A locally convex space (lcs for short) is a pair (E, 𝒫) consisting of a vector space E over K and a directed family of seminorms 𝒫.
c) A lcs (E, 𝒫) is called separated if

$$\forall x \in E \setminus \{0\} \exists p \in \mathscr{P} : p(x) > 0.$$

 (E, \mathscr{P}) lcs, $U \subseteq E$ is called open (in (E, \mathscr{P})) : \Leftrightarrow

$$\forall x \in U \exists p \in \mathscr{P}, \varepsilon > 0 : B_p(x, \varepsilon) \subseteq U,$$

where $B_p(x,\varepsilon) := \{y \in E; \ p(x-y) < \varepsilon\}$

Since \mathscr{P} is a directed family of seminorms

$$\{U \subseteq E; U \text{ open in } (E, \mathscr{P})\}$$

is stable under finite intersections (and obviously under arbitrary unions) and thus a topology on $E(B_p(x,\varepsilon) \text{ convex} \rightsquigarrow \text{"locally convex"})$ which is Hausdorff iff (E,\mathscr{P}) is separated,

$$E \times E \to E, (x, y) \mapsto x + y$$
 and $\mathbb{K} \times E \to E, (\lambda, x) \mapsto \lambda x$

are both continuous

Examples:

- a) Every normed space is a separated lcs.
- b) For $X \subseteq \mathbb{R}^d$ open $\mathscr{P}_{\infty,c} := \{ \| \cdot \|_{l,K}; l \in \mathbb{N}_0, K \subseteq X \}$ is a directed family of seminorms on $C^{\infty}(X)$. (Recall that

$$||f||_{l,K} = \sup_{\alpha \in \mathbb{N}_0^d, |\alpha| \le l} \sup_{x \in K} |\partial^{\alpha} f(x)|).$$

This (separated) lcs is denoted by $\mathscr{E}(X)$.

c) $X \subseteq \mathbb{R}^d$ open, $K \Subset X$, $f \in C(X)$ we set $||f||_K := \sup_{x \in \mathbb{K}} |f(x)|$. Then $\mathscr{P}_c := \{|| \cdot ||_K; K \Subset X\}$ is a directed family of seminorms making C(X) a (separated) lcs. (E,\mathscr{P}) be a lcs $\mathscr{P}_0\subseteq \mathscr{P}$ is called fundamental system of seminorms iff

$$\forall q \in \mathscr{P} \exists p \in \mathscr{P}_0, C > 0 \,\forall x \in E : q(x) \le Cp(x)$$

 (E, \mathscr{P}) is called Fréchet space : $\Leftrightarrow (E, \mathscr{P})$ is separated, there is a countable fundamental sequence of seminorms, and (E, \mathscr{P}) is (sequentially) complete, i.e. every Cauchy sequence converges

Examples:

- a) Every Banach space is a Fréchet space.
- b) (E,\mathscr{P}) Fréchet space, $F\subseteq E$ closed subspace \Rightarrow (F,\mathscr{P}) Fréchet space.
- c) $(K_n)_{n \in \mathbb{N}_0}$ compact exhaustion of $X \subseteq \mathbb{R}^d$ open $\Rightarrow \{ \| \cdot \|_{n,K_n}; n \in \mathbb{N}_0 \}$ is a countable fundamental system of seminorms for $\mathscr{E}(X)$ and $\{ \| \cdot \|_{n,K_n}; n \in \mathbb{N}_0 \}$ for $(C(X), \mathscr{P}_c)$. Both lcs are Fréchet spaces.

A linear $T: E_1 \to E_2$ between lcs (E_1, \mathscr{P}_1) and (E_2, \mathscr{P}_2) is continuous iff

$$\forall q \in \mathscr{P}_2 \exists p \in \mathscr{P}_1, C > 0 \,\forall x \in E_1 : q(Tx) \le Cp(x).$$

 $L(E_1, E_2) := \{T : E_1 \to E_2; \text{ linear and continuous}\}.$

Dual space of the lcs (E, \mathscr{P})

$$E' := (E, \mathscr{P})' := \{u : E \to \mathbb{K}; u \text{ linear, continuous}\}$$

 $u: E \to \mathbb{K}$ linear belongs to E' iff

$$\exists p \in \mathscr{P}, C > 0 \,\forall x \in E : |u(x)| \le Cp(x).$$

We want to make $(E, \mathscr{P})'$ into a lcs. $B \subseteq E$ is called bounded iff

$$\forall p \in \mathscr{P} : \sup_{x \in B} p(x) < \infty.$$

For bounded $B,\ p_B:E'\to\mathbb{R}, u\mapsto \sup_{x\in B}|u(x)|$ is a well-defined seminorm and

$$b(E',E) := \{p_B; B \subseteq E \text{ bounded}\}\$$

is a directed family of seminorms on E'.

The lcs (E', b(E', E)) is called strong dual of E.

For a normed space $(E, \|\cdot\|)$ a fundamental system of seminorms for b(E', E) is $\{\|\cdot\|_{op}\}$ with $\|u\|_{op} = \sup_{\|x\| \le 1} |u(x)|$.

5. Vector valued distributions and differential operators

Although we do not give a directed family of seminorms for $\mathscr{D}(X)$ explicitly, there is a unique way to turn $\mathscr{D}(X)$ into a (reasonable) separated, complete lcs. For a lcs (E, \mathscr{P}) a linear $T : \mathscr{D}(X) \to E$ is continuous iff

 $(*) \forall q \in \mathscr{P} \forall K \Subset X \exists l \in \mathbb{N}_0, C > 0 \forall \varphi \in \mathscr{D}(K) : q(T\varphi) \le C \|\varphi\|_{l,K}.$

 $Y\subseteq \mathbb{R}^n \text{ open, } T:Y \to \mathscr{D}'(X), y \mapsto T_y \text{ continuous } :\Leftrightarrow$

$$\forall \, \varphi \in \mathscr{D}(X) : \, \lambda(T)(\varphi) : Y \to \mathbb{C}, y \mapsto \langle T_y, \varphi \rangle$$

is continuous. With (*) and 2.1 b): $\lambda(T) \in L(\mathscr{D}(X), (C(Y), \mathscr{P}_c)).$

 λ is an isomorphism between $\{T: Y \to \mathscr{D}'(X); T \text{ continuous}\}$ and $L(\mathscr{D}(X), (C(Y), \mathscr{P}_c)).$

Moreover, for continuous $T: Y \to \mathscr{D}'(X)$ we also have that

$$P(D)T:Y\to \mathscr{D}'(X), y\mapsto P(D)T_y$$

is continuous with $\lambda(P(D)T)(\varphi) = \lambda(T)(P(-D)\varphi).$

For general lcs E instead of C(Y) we define $\mathscr{D}'(X, E) := L(\mathscr{D}(X), E)$ *E*-valued distributions over $X \subseteq \mathbb{R}^d$ and

$$P(D): \mathscr{D}'(X, E) \to \mathscr{D}'(X, E), (P(D)T)(\varphi) := T(P(-D)\varphi).$$

For E a space of functions the problem of surjectivity of P(D) on $\mathscr{D}'(X, E)$ translates to the corresponding problem of parameter dependence: for each f_y in $\mathscr{D}'(X)$ depending on the parameter y as the functions in E, is there a solution u_y of $P(D)u_y = f_y$ depending in the same way on y (e.g. $E \in \{C(Y), C^{\infty}(Y), \ldots\}$)?

We also consider the question of surjectivity of P(D) on $C^{\infty}(X, E)$.

We restrict ourselves to E being a Fréchet space or the strong dual of a Fréchet space.

A Fréchet space E has property (DN) $(E \in (DN))$ iff there is a fundamental system of seminorms $\{p_k; k \in \mathbb{N}\}$ with

$$\forall k \ge 2 \,\forall x \in E : p_k(x)^2 \le p_{k-1}(x)p_{k+1}(x).$$

 p_1 is then a norm on E (so-called dominating norm)

Banach spaces have (DN)

The space of rapidly decreasing sequences

$$s := \{ x = (x_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}; \, \forall \, k \in \mathbb{N} : \, p_k(x)^2 := \sum_{n=1}^{\infty} |x_n|^2 n^{2k} < \infty \}$$

with the sequence of seminorms $(p_k)_{k\in\mathbb{N}}$ is a Fréchet space with (DN) (by Hölder).

Spaces linearly homeomorphic to $s: C_p^{\infty}(\mathbb{R}^d), H(\mathbb{C}), C^{\infty}(\overline{X})$ $(X \subseteq \mathbb{R}^d$ open, bounded, C^1 -boundary), $\mathscr{D}(K)$ $(K \in \mathbb{R}^d), \mathscr{S}(\mathbb{R}^d)$

5.1 Theorem

Let $X \subseteq \mathbb{R}^d, P \in \mathbb{C}[X_1, ..., X_d], P^+(\xi_1, ..., \xi_{d+1}) := P(\xi_1, ..., \xi_d)$

- i) (Grothendieck, 1955) X be P-convex for supports and E be a Fréchet space. Then $P(D): C^{\infty}(X, E) \to C^{\infty}(X, E)$ is surjective.
- ii) (Vogt, 1983) P be elliptic and E = F' the strong dual of a Fréchet space F. Then $P(D) : C^{\infty}(X, E) \to C^{\infty}(X, E)$ is surjective iff $F \in (DN)$.
- iii) (Vogt, 1983 + Bonet, Domański '06) P be hypoelliptic, X P-convex for supports, and E = F' the strong dual of a Fréchet space $F \in (DN)$. Then $P(D) : C^{\infty}(X, E) \to C^{\infty}(X, E)$ is surjective if $P^+(D) : \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R})$ is surjective. This condition is also necessary for $F \cong s$.
- iv) (Bonet, Domański, '06) X be strongly P-convex and E = F' be the strong dual of a Fréchet space $F \cong$ closed subspace of s. Then $P(D) : \mathscr{D}'(X, E) \to \mathscr{D}'(X, E)$ is surjective if this is true for $P^+(D) : \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R}).$

Given $P \in \mathbb{C}[X_1, \dots, X_d]$ and $X \subseteq \mathbb{R}^d$ open such that $P(D) : \mathscr{D}'(X) \to \mathscr{D}'(X)$

is surjective. When is

$$P^+(D): \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R})$$

surjective, too, where $P^+(\xi_1, ..., \xi_{d+1}) = P(\xi_1, ..., \xi_d)$?

Equivalent formulation: X strongly P-convex $\stackrel{?}{\Rightarrow} X \times \mathbb{R}$ strongly P+convex

If X is convex then $X \times \mathbb{R}$ is convex, so then "yes".

If P is elliptic, then "yes" due to Vogt (see Theorem 5.1 ii), iii)).

 $X \ P$ -convex for supports $\Rightarrow P^+(D) : C^{\infty}(X \times \mathbb{R}) \to C^{\infty}(X \times \mathbb{R})$ surjective due to Grothendieck (compare Theorem 5.1 i)), i.e. $X \times \mathbb{R}$ P^+ -convex for supports

Thus, the question is:

X strongly P-convex $\stackrel{?}{\Rightarrow} X \times \mathbb{R} P^+$ -convex for singular supports

Conditions for P^+ -convexity for singular supports from section 3 involve σ_{P^+} . However, σ_{P^+} is not appropriate to evaluate conditions for P^+ -convexity for singular supports of $X \times \mathbb{R}$ in terms of P and X. To achieve this, we define for a subspace $V \subseteq \mathbb{R}^d$

$$\sigma^0_P(V) := \inf_{t \ge 1} \inf_{\eta \in \mathbb{R}^d} rac{ ilde{P}_V(\eta,t)}{ ilde{P}(\eta,t)}$$

recall that $\check{\tilde{P}}_V(\eta, t) = \sup_{\xi \in V, |\xi| \le t} |\check{P}(\xi + \eta)|$ and $\check{\tilde{P}}(\eta, t) = \check{\tilde{P}}_{\mathbb{R}^d}(\eta, t)$. Again we abbreviate

$$\forall \, y \in \mathbb{R}^d \backslash \{0\}: \, \sigma^0_P(y) := \sigma^0_P(\operatorname{span}\{y\}).$$

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X := \mathbb{R}^d \setminus \Gamma^\circ$ then $X \times \mathbb{R}$ is P^+ -convex for singular supports iff $\sigma_P^0(\xi) \neq 0$ for every $\xi \in \Gamma$.

5.3 Lemma (K., '12)

Let P have principal part P_m and let $y \in \mathbb{R}^d \setminus \{0\}$.

- i) $\sigma_P^0(y) \le \sigma_P(y)$ and $\forall k \in \mathbb{N} : \sigma_{P^k}^0(y) = (\sigma_P^0(y))^k$. ii) $\sigma_P^0(y) \le \sigma_P^0(y)$
- ii) $\sigma_P^0(y) \le \sigma_{P_m}^0(y).$

Let $d \geq 3$, $A(\xi) = \xi_1^2 - \xi_2^2 - \ldots - \xi_d^2 \Rightarrow A(e_d) \neq 0$, $\sigma_A(e_d) = 0$ (Here, $d \geq 3$ is needed!) $\stackrel{i)}{\Rightarrow} \forall k \in \mathbb{N} : \sigma_{A^k}^0(e_d) = 0$ $\stackrel{ii)}{\Rightarrow}$ Each P with principal part $P_m = A^k$ satisfies $\sigma_P^0(e_d) = 0$ and $P_m(e_d) \neq 0$.

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X := \mathbb{R}^d \setminus \Gamma^\circ$ then $X \times \mathbb{R}$ is P^+ -convex for singular supports iff $\sigma_P^0(\xi) \neq 0$ for every $\xi \in \Gamma$.

5.3 Lemma (K., '12)

Let P have principal part P_m and let $y \in \mathbb{R}^d \setminus \{0\}$.

i)
$$\sigma_P^0(y) \leq \sigma_P(y)$$
 and $\forall k \in \mathbb{N} : \sigma_{P^k}^0(y) = (\sigma_P^0(y))^k$.
ii) $\sigma_P^0(y) \leq \sigma_{P_m}^0(y)$.

Let $d \ge 3$, $A(\xi) = \xi_1^2 - \xi_2^2 - \ldots - \xi_d^2$ \Rightarrow Each P with principal part $P_m = A^k$ satisfies $\sigma_P^0(e_d) = 0$ and $P_m(e_d) \ne 0$.

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X := \mathbb{R}^d \setminus \Gamma^\circ$ then $X \times \mathbb{R}$ is P^+ -convex for singular supports iff $\sigma_P^0(\xi) \neq 0$ for every $\xi \in \Gamma$.

5.3 Lemma (K., '12)

Let P have principal part P_m and let $y \in \mathbb{R}^d \setminus \{0\}$.

$$\begin{split} \text{i)} \ \ \sigma_P^0(y) &\leq \sigma_P(y) \text{ and } \forall \, k \in \mathbb{N}: \ \sigma_{P^k}^0(y) = (\sigma_P^0(y))^k. \\ \text{ii)} \ \ \sigma_P^0(y) &\leq \sigma_{P_m}^0(y). \end{split}$$

Let $d \ge 3$, $A(\xi) = \xi_1^2 - \xi_2^2 - \ldots - \xi_d^2$ \Rightarrow Each P with principal part $P_m = A^k$ satisfies $\sigma_P^0(e_d) = 0$ and $P_m(e_d) \ne 0$.

 $\Rightarrow \exists \Gamma \subset \mathbb{R}^d$ open proper convex cone, $e_d \in \Gamma \, \forall \, x \in \Gamma : P_m(x) \neq 0$

 $X := \mathbb{R}^d \setminus \Gamma^\circ$ is *P*-convex for supports (by 3.5 ii) and $X \times \mathbb{R}$ is not P^+ -convex for singular supports for every such *P*.

With $R(\xi) = (\xi_1^2 + \ldots + \xi_d^2)^3$ set $P(\xi) := A^4(\xi) + R(\xi)$. Then P is hypoelliptic so that X is P-convex for singular support. Thus:

5.4 Theorem (K., '12)

For $d \geq 3$ there are hypoelliptic P and open $X \subseteq \mathbb{R}^d$ such that $P(D) : \mathscr{D}'(X) \to \mathscr{D}'(X)$ is surjective but $P^+(D) : \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R})$ is not surjective. In particular, P(D) is surjective on $C^{\infty}(X)$ but not on $C^{\infty}(X, \mathscr{S}'(\mathbb{R}^n))$.

 $d\geq 3$ is essential here:

5.5 Theorem (K., '12)

For $P \in \mathbb{C}[X_1, X_2]$ and $X \subseteq \mathbb{R}^2$ tfae:

- i) $P(D): \mathscr{D}'(X) \to \mathscr{D}'(X)$ is surjective.
- ii) $P^+(D): \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R})$ is surjective.

Positive results for arbitrary dimension:

5.6 Theorem (K., '14) Let $P(D) : \mathscr{D}'(X) \to \mathscr{D}'(X)$ be surjective. Then $P^+(D) : \mathscr{D}'(X \times \mathbb{R}) \to \mathscr{D}'(X \times \mathbb{R})$ is surjective in the following cases. i) P is parabolic, e.g. the heat operator $P(D) = \partial_t - \Delta_x$. ii) P acts along a subspace W and is elliptic as a polynomial on W, e.g.

$$P(D) = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \text{ on } \mathbb{R}^3.$$

iii) P factorises into linear factors, i.e. $P(\xi) = \alpha \prod_{j=1}^{k} (\langle \xi, a_j \rangle - \beta_j), \ \alpha, \beta_j \in \mathbb{C}, a_j \in \mathbb{C}^d.$

References

- J. Bonet, P. Domański. Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. *J. Funct. Anal.* 230 (2006), 329-381.
- A. Grothendieck. *Produits tensoriels topologique et espaces nucléaires*, Mem. Am. Math. Soc. 16, 1955.
- (ALPDO) L. Hörmander. *The Analysis of Linear Partial Differential Operators I and II*, Springer-Verlag, Berlin, 1983.
- (AFO) W. Kaballo. *Aufbaukurs Funktionalanalysis und Operatortheorie*, Springer Spektrum, 2014.
- T. Kalmes. Every P-convex subset of ℝ² is already strongly P-convex. Math. Z. 269 (2011), 721-731.

References continued

- T. Kalmes. Some results on surjectivity of augmented differential operators. J. Math. Anal. Appl. 386 (2012), 125-134.
- T. Kalmes. The augmented operator of a surjective partial differential operator with constant coefficients needs not to be surjective. *Bull. London Math. Soc.* 44 (2012), 610-614.
- T. Kalmes. Some results on *P*-convexity and the problem of parameter dependence for solutions of linear partial differential equations. arXiv-Preprint 1408.4356.
- (IFA) R. Meise, D. Vogt. *Introduction to Functional Analysis*, Clarendon Press, Oxford, 2004.
- D. Vogt. On the solvability of P(D)f = g for vector valued functions. *RIMS Kokyoroku* 508 (1983), 168-182.