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1. Introduction



In many mathematical models linear partial differential operators show up,
e.g.

∆ = ∆x =
∑d

j=1 ∂
2
j (Laplace operator),

∂t −∆x (Heat operator),

∂2
t −∆x (Wave operator),

−i∂t −∆x (time dependent free Schrödinger operator),
1
2(∂1 + i∂2) (Cauchy Riemann operator).



For general P ∈ C[X1, . . . , Xd] set

P (D) := P (−i∂1, . . . ,−i∂d).

E.g. ∆ = PL(D) for PL(ξ) = −
∑d

j=1 ξ
2
j

∂t −∆x = PH(D) for PH(ξ1, . . . , ξd) = iξ1 +
∑d

j=2 ξ
2
j

∂2
t −∆x = PW (D) for PW (ξ1, . . . , ξd) = −ξ2

1 +
∑d

j=2 ξ
2
j

−i∂t −∆x = PS(D) for PS(ξ1, . . . , ξd) = ξ1 +
∑d

j=2 ξ
2
j

For X ⊆ Rd open and f given, solve P (D)u = f in X.

Possible for every f from a fixed space of functions? ”Solution” in which
sense; classical, distributional?



Let P ∈ C[X1, . . . , Xd]\{0} and let X ⊆ Rd be open.

i) When is P (D) : C∞(X)→ C∞(X) surjective?

ii) When is C∞(X) ⊆ P (D)(D ′(X))?

iii) When is P (D) : D ′(X)→ D ′(X) surjective?

Answers will depend on combined properties of P and X.



Example:

X =
(

(0, 2)× (−4, 4)
)
∪
(

(−1, 1)× (−4,−2)
)
∪
(

(−1, 1)× (2, 4)
)

x2

x10 2−1

−4

−3

−1

1

3

4

(1, x2)
(x1, x2)

P1(ξ1, ξ2) = iξ1 ⇒ P1(D) = ∂1;

given f ∈ C∞(X) ⇒
u(x1, x2) :=

∫ x1
1 f(t, x2) dt ∈ C∞(X)

satisfies ∂1u = f

⇒ P1(D) : C∞(X)→ C∞(X) surjective
⇒ P2(D) : C1(X)→ C∞(X) not surjective



Example:

X =
(

(0, 2)× (−4, 4)
)
∪
(

(−1, 1)× (−4,−2)
)
∪
(

(−1, 1)× (2, 4)
)

x2

x10 2−1

−4

−3

−1

1

3

4

(x1,−3)

(x1, 3)

P2(ξ1, ξ2) = iξ2 ⇒ P2(D) = ∂2;

choose η ∈ C∞(R) with η(t) = 0 for

t /∈ [−1, 1] and
∫ 1
−1 η(t) dt > 0; set

f(x1, x2) =

{
η(x2)
x1

, if x1 > 0

0, if x1 ≤ 0

⇒ f ∈ C∞(X); suppose
∃u ∈ C1(X) : ∂2u = f ;
for x1 ∈ (0, 2) we then have

u(x1, 3)− u(x1,−3) =
∫ 3
−3 ∂2u(x1, t)dt

= 1
x1

∫ 1
−1 η(t) dt→x1→0 ∞

⇒ P2(D) : C1(X)→ C∞(X) not surjective



Example:

X =
(

(0, 2)× (−4, 4)
)
∪
(

(−1, 1)× (−4,−2)
)
∪
(

(−1, 1)× (2, 4)
)

x2

x10 2−1

−4

−3

−1

1

3

4For P1(ξ1, ξ2) = iξ1 resp. P2(ξ1, ξ2) = iξ2 is

P1(D) : C∞(X)→ C∞(X) surjective,

P2(D) : C1(X)→ C∞(X) not surjective.

Is it possible to ”see” this without
calculation? What about P2(D) if we
allow for more general solutions
of P2(D)u = f, f ∈ C∞(X), than
u ∈ C1(X)?
⇒ P2(D) : C1(X)→ C∞(X) not surjective



2. Distributions and differential operators



X ⊆ Rd open, K b X(:⇔ K ⊆ X compact), l ∈ N0

‖ · ‖l,K : C∞(X)→ [0,∞), f 7→ sup
α∈Nd0,|α|≤l

sup
x∈K
|∂αf(x)|

defines a seminorm on C∞(X).
(fn)n∈N ∈ C∞(X)N converges to f ∈ C∞(X) :⇔

∀K b X, l ∈ N0 : lim
n→∞

‖fn − f‖l,K = 0

This convergence can be described by a metric on C∞(X) which is
complete; we denote by E (X) the space C∞(X) equipped with this
notion of convergence.



For M ⊆ Rd we set D(M) := {ϕ ∈ C∞(Rd); suppϕ ⊆M compact},
where suppϕ = {x ∈ Rd; ϕ(x) 6= 0}; D(M) is a subspace of C∞(Rd).

(ϕn)n∈N ∈ D(M)N converges to ϕ ∈ D(M) :⇔
- limn→∞ ϕn = ϕ in E (Rd),

- ∃K bM : ∪n∈Nsuppϕn ∪ suppϕ ⊆ K
For every non-compact M , this convergence cannot be described by a
metric on D(M) but by a (locally convex) topology which is complete;
from now on we always equip D(M) with the above notion of convergence.

For open X ⊆ Rd the ”inclusion” i : D(X) ↪→ E (X), ϕ 7→ ϕ|X is
continuous, has dense range; thus, every continuous u : E (X)→ C
induces continuous u : D(X)→ C, and u uniquely determined by u|D(X).



For X ⊆ Rd open we define

- D ′(X) := {u : D(X)→ C; u linear, continuous}
- E ′(X) := {u : E (X)→ C; u linear, continuous}

D ′(X),E ′(X) are vector spaces, u ∈ D ′(X) is called a distribution on X

By the previous slide:

E ′(X)→ D ′(X), u 7→ u|D(X)

is well-defined, obviously linear, and one-to-one.



2.1 Proposition

a) For linear u : E (X)→ C tfae:

i) u ∈ E ′(X),
ii) ∃K b X, l ∈ N0, C > 0 ∀ f ∈ E (X) : |u(f)| ≤ C‖f‖l,K .

b) For linear u : D(X)→ C tfae:

i) u ∈ D ′(X),
ii) ∀K b X ∃ l ∈ N0, C > 0 ∀ϕ ∈ D(K) : |u(ϕ)| ≤ C‖ϕ‖l,K .

Notation: 〈u, ϕ〉 := u(ϕ)

If in b) ii) l ∈ N0 may be chosen independently of K b X then u is of
finite order and

ord(u) := min{l ∈ N0; ∀K b X ∃C > 0 ∀ϕ ∈ D(K) : |u(ϕ)| ≤ C‖ϕ‖l,K}

is called order of u; D ′F (X) := {u ∈ D ′(X); ord(u) <∞} is a subspace of
D ′(X) with E ′(X) ( D ′F (X).



Examples:

i) For f ∈ L1
loc(X)

uf : D(X)→ C, ϕ 7→
∫
X
f(x)ϕ(x)dx

is a well-defined linear mapping, ∀K b X,ϕ ∈ D(K):

|〈uf , ϕ〉| ≤
∫
K
|f(x)ϕ(x)|dx ≤

∫
K
|f(x)|dx ‖ϕ‖0,K ,

⇒ uf ∈ D ′(X), ord(uf ) = 0.
Recall the ”Fundamental lemma of calculus of variations”:

∀ f ∈ L1
loc(X) : (∀ϕ ∈ D(X) :

∫
X
f(x)ϕ(x)dx = 0⇒ f = 0)

⇒ the linear mapping L1
loc(X)→ D ′(X), f 7→ uf is one-to-one

⇒ we can/will write f instead of the distribution uf , i.e.
〈f, ϕ〉 =

∫
X f(x)ϕ(x) dx



Examples continued:

ii) For every regular, resp. complex, measure µ on the Borel-σ-algebra
over X

uµ : D(X)→ C, ϕ 7→
∫
X
ϕ(x)dµ(x)

is a well-defined linear mapping, ∀K b X,ϕ ∈ D(K) :

|〈uµ, ϕ〉| ≤ |µ|(K)‖ϕ‖0,K

⇒ uµ ∈ D ′(X), ord(uµ) = 0.
By the Riesz-Markov Theorem, µ 7→ uµ is one-to-one, so we write µ
instead of uµ.

Concrete example: µ = δx, x ∈ X



Examples continued:

iii) σ surface measure on Sd−1, f ∈ L1(σ) with
∫
Sd−1 f(ω) dσ(ω) = 0.

For ϕ ∈ D(Rd) we have:

lim
ε↓0

∫
ε≤|x|

ϕ(x)

|x|d
f(

x

|x|
)dx = lim

ε↓0

∫
ε≤|x|

ϕ(x)− ϕ(0)

|x|d
f(

x

|x|
)dx

=

∫
ϕ(x)− ϕ(0)

|x|d
f(

x

|x|
)dx,

where the last integral exists due to |ϕ(x)− ϕ(0)| ≤ ‖∇ϕ‖∞|x|
(polar coordinates, Lebesgue’s Theorem, . . .)

By the same argument: ∀ϕ ∈ D(K) where K ⊆ B[0, R]:

| lim
ε↓0

∫
ε≤|x|

ϕ(x)

|x|d
f(

x

|x|
)dx| ≤ R

∫
Sd−1

|f(ω)|dσ(ω)‖ϕ‖1,K

⇒ 〈vp
(
|x|−df( x

|x|)
)
, ϕ〉 := limε↓0

∫
ε≤|x|

ϕ(x)
|x|d f( x

|x|)dx defines a

distribution on Rd of order 1; these are kernels of classical singular
integral operators, e.g. Hilbert transform on R (f(ω) = sign(ω)),
Riesz operators (f(ω) = ωj , 1, . . . , d).



X ⊆ Rd open, M ⊆ X ⇒ D(M) ⊆ D(X) subspace

For u ∈ D ′(X) we set u|M := u|D(M) the restriction of u to M

u ∈ D ′(X) vanishes in M :⇔ u|M = 0, i.e. ∀ϕ ∈ D(M) : 〈u, ϕ〉 = 0

suppu := {x ∈ X; @V ⊆ X open, x ∈ V : u|V = 0}

is called support of u. For f ∈ C(X) it holds

suppuf = {x ∈ X; f(x) 6= 0}X

For u ∈ D ′(X) we have

suppu is a closed subset of X (by definition)

X\suppu is the largest open subset of X where u vanishes, i.e.

∀ϕ ∈ D(X) : (suppϕ ∩ suppu = ∅ ⇒ 〈u, ϕ〉 = 0)

2.2 Theorem

For X ⊆ Rd open we have E ′(X) = {u ∈ D ′(Rd); suppu ⊆ X compact}.



For h ∈ E (X) and 1 ≤ j ≤ d the operators

mh : D(X)→ D(X), ϕ 7→ hϕ and ∂j : D(X)→ D(X), ϕ 7→ ∂jϕ

are well-defined, linear, and continuous.

For arbitrary ϕ ∈ D(X) we have

∀ f ∈ L1
loc(X) : 〈hf, ϕ〉 =

∫
X
h(x)f(x)ϕ(x)dx = 〈f,mh(ϕ)〉

and if f ∈ C1(X)(⊆ L1
loc(X)) integration by parts gives

〈∂jf, ϕ〉 =

∫
X
∂jf(x)ϕ(x)dx = −

∫
X
f(x)∂jϕ(x)dx = −〈f, ∂jϕ〉.

For arbitrary u ∈ D ′(X) we define 〈hu, ϕ〉 := 〈u,mh(ϕ)〉 and
〈∂ju, ϕ〉 := −〈u, ∂jϕ〉 ⇒ hu, ∂ju ∈ D ′(X) and u 7→ hu, u 7→ ∂ju are
linear.

For P ∈ C[X1, . . . , Xd] it follows P (D)u ∈ D ′(X) and

〈P (D)u, ϕ〉 = 〈u, P̌ (D)ϕ〉, where P̌ (ξ) = P (−ξ).



2.3 Proposition

For h ∈ E (X) and P ∈ C[X1, . . . , Xd] the following hold.

i) ∀u ∈ D ′(X) : supp (hu) ⊆ supph ∩ suppu and ord (hu) ≤ ordu.

ii) ∀u ∈ D ′(X) : suppP (D)u ⊆ suppu and if P of degree m then
ord
(
P (D)u

)
≤ ordu+m.

iii) P (D) : D ′(X)→ D ′(X), u 7→ P (D) is a linear mapping with
P (D)(E ′(X)) ⊆ E ′(X) and P (D)(D ′F (X)) ⊆ D ′F (X).



Examples:

i) For the Heaviside function Y = 11(0,∞) we have for ϕ ∈ D(R)

〈Y ′, ϕ〉 = −〈Y, ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = ϕ(0) = 〈δ0, ϕ〉

ii) X ⊂ Rd be open with C1-boundary. For ϕ ∈ D ′(Rd):

〈∂j11X , ϕ〉 = −
∫
X
∂jϕ(x)dx = −

∫
∂X

νj(ω)ϕ(ω)dσ(ω) = 〈−νjσ, ϕ〉,

with ν(ω) = (ν1(ω), . . . , νd(ω)) denoting the outer unit normal in
ω ∈ ∂X and σ the surface measure on ∂X.

For m ∈ N0 we define the local Sobolev space of order m over X as

Hm
loc(X) = {f ∈ L2

loc(X); ∀ |α| ≤ m : ∂αf ∈ L2
loc(X)}

which is a subspace of D ′F (X).



 differential equations for distributions or in any subspace E of D ′(X)
like, e.g. E (X), Hm

loc(X), L1
loc(X),D ′F (X):

given arbitrary f ∈ E is there u ∈ D ′(X) (resp. u ∈ E) with P (D)u = f ,
i.e.

∀ϕ ∈ D(X) : 〈f, ϕ〉 = 〈P (D)u, ϕ〉
(

= 〈u, P (−D)ϕ〉
)
?

2.4 Theorem (Malgrange, 1955, see ALPDO II, Section 10.6)

For open X ⊆ Rd and P ∈ C[X1, . . . , Xd] tfae:

i) P (D) : E (X)→ E (X) is surjective.

ii) ∀ f ∈ E (X)∃u ∈ D ′(X) : P (D)u = f .

iii) P (D) : D ′F (X)→ D ′F (X) is surjective.

iv) ∀ f ∈ Hm
loc(X) ∃u ∈ Hm

loc(X) : P (D)u = f .

v) ∀u ∈ E ′(X) : dist(suppP (−D)u,Xc) = dist(suppu,Xc).

In v) ”∀u ∈ E ′(X)” can be replaced by ”∀u ∈ D(X)”.



Given P ∈ C[X1, . . . , Xd]\{0}. X is called P -convex for supports iff

∀u ∈ E ′(X) : dist(suppP (−D)u,Xc) = dist(suppu,Xc).

Recall: suppP (−D)u ⊆ suppu, thus we always have

∀u ∈ E ′(X) : dist(suppP (−D)u,Xc) ≥ dist(suppu,Xc).

Consequence of ”Theorem of Supports”:

∀u ∈ E ′(Rd) : conv(suppu) = conv(suppP (−D)u),

which implies: every convex open set X ⊆ Rd is P -convex for supports.

If (Xι)ι∈I is a family of open sets which are P -convex for supports then
int
(⋂

ι∈I Xι

)
is P -convex for supports, too.



Geometrical conditions for/characterisation of P -convexity for supports?

Problem: not a local property!

Every open X ⊆ Rd is P -convex for supports iff P is elliptic, i.e. if
P (ξ) =

∑
|α|≤m aαξ

α then

∀ ξ ∈ Rd\{0}; 0 6= Pm(ξ) :=
∑
|α|=m

aαξ
α (principal part of P )

If P acts along a subspace of Rd and is elliptic there, then P -convexity for
supports is completely characterized (Nakane, 1979).

For polynomials with principal part P2(ξ) = ξ2
d −

∑d−1
j=1 ξ

2
j P -convexity for

supports is completely characterized (Persson, 1981).

For P of real principal type there are characterizations if

- X is bounded and ∂X is analytic (Tintarev, 1988)

- X ⊆ R3 (Tintarev, 1992)

For d = 2 P -convexity for supports is completely characterized
(Hörmander, 1971).



When is P (D)(D ′(X)) = D ′(X)? Unfortunately, P -convexity for supports
of X is not enough!

Idea (Hörmander): Because P (D)(E (X)) ⊆ E (X), iff

- E (X) ⊆ P (D)(D ′(X)) (⇔ X P -convex for supports)

- P (D) surjective on D ′(X)/E (X)

For open V ⊆ X ⊆ Rd and u ∈ D ′(X), we say that u is smooth in
V :⇔ u|V ∈ E (V ), i.e.

∃ f ∈ E (V ) ∀ϕ ∈ D(V ) : 〈u, ϕ〉 =

∫
V
f(x)ϕ(x)dx.

sing suppu := {x ∈ X; @V ⊆ X open, x ∈ V : u smooth in V }

is called singular support of u.

For u ∈ D ′(X), h ∈ E (X), and P 6= 0 we have

sing suppu is a closed subset of X (by definition)

X\sing suppu is the largest open subset of X where u is smooth

sing suppu ⊆ suppu and sing supp (hu) ⊆ supph ∩ sing suppu

sing suppP (D)u ⊆ sing suppu



2.5 Theorem (Hörmander, 1962, see ALPDO Section 10.7)

For open X ⊆ Rd we have D ′(X)/E (X) = P (D)(D ′(X)/E (X)) iff X
P -convex for singular supports, i.e.

∀u ∈ E ′(X) : dist(sing suppP (−D)u,Xc) = dist(sing suppu,Xc).

Because sing suppP (−D)u ⊆ sing suppu we always have
dist(sing suppP (−D)u,Xc) ≥ dist(sing suppu,Xc).

Consequence of ”Theorem of Singular Supports”:

∀u ∈ E ′(Rd), P 6= 0 : conv(sing suppu) = conv(sing suppP (−D)u),

which implies: every convex open set X ⊆ Rd is P -convex for singular
supports.

If (Xι)ι∈I is a family of open sets which are P -convex for singular supports
then int

(⋂
ι∈I Xι

)
is P -convex for singular supports, too.

X strongly P -convex :⇔ X P -convex for supports and singular supports



Geometric conditions for/characterisation of P -convexity for singular
supports?

Problem: not a local property!

Every open X ⊆ Rd is P -convex for singular supports iff P is hypoelliptic,
i.e.

∀X ⊆ Rd open, u ∈ D ′(X) : sing suppP (D)u = sing suppu

(e.g. elliptic and parabolic operators are hypoelliptic)
Algebraic characterisation of hypoellipticity of P (Hörmander, 1955):

∀α 6= 0 : lim
ξ∈Rd,|ξ|→∞

P (α)(ξ)

P (ξ)
= 0,

thus P hypoelliptic ⇔ P̌ hypoelliptic

For d = 2 P -convexity for singular supports is completely characterized
(K., ’10).



3. Conditions for P -convexity for (singular) supports



X P -convex for (singular) supports ⇔

∀u ∈ E ′(X) : dist((sing) suppP (−D)u,Xc) = dist((sing) suppu,Xc)

What can we say about the location of (sing) suppu if we know
(sing) suppP (−D)u?

X

(sing) suppP (−D)u ⊇ (sing) suppu

conv
(
(sing) suppP (−D)u

)
= conv

(
(sing) suppu

)



X P -convex for (singular) supports ⇔

∀u ∈ E ′(X) : dist((sing) suppP (−D)u,Xc) = dist((sing) suppu,Xc)

What can we say about the location of (sing) suppu if we know
(sing) suppP (−D)u?

X

(sing) suppP (−D)u

⊇ (sing) suppu

conv
(
(sing) suppP (−D)u

)
= conv

(
(sing) suppu

)



A hyperplane H = {x ∈ Rd; 〈x,N〉 = γ} (N ∈ Sd−1, γ ∈ R) is called
characteristic for P if Pm(N) = 0 (Pm principal part of P ).

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let H = {x ∈ Rd; 〈N, x〉 = γ} be a characteristic hyperplane for P . Then
there is f ∈ E (Rd) with supp f = {x ∈ Rd; 〈x,N〉 ≤ γ} and
P (−D)f = 0.

X
N

x0

K

f as above for γ = 〈N, x0〉, χ ∈ D(Rd) with
suppχ = B(x0, 2ε), χ = 1 in B(x0, ε), u := χf

suppu = B(x0, 2ε) ∩ {x; 〈x,N〉 ≤ γ}
suppP (−D)u ⊆ (suppu)\B(x0, ε)

⇒ X not P -convex for supports

g : X → R satisfies the minimum principle in a closed subset C of Rd if
for every compact set K ⊆ C ∩X we have infx∈K g(x) = inf∂CK g(x).
We set dX : X → R, x 7→ dist(x,Xc), the boundary distance of X.



A hyperplane H = {x ∈ Rd; 〈x,N〉 = γ} (N ∈ Sd−1, γ ∈ R) is called
characteristic for P if Pm(N) = 0 (Pm principal part of P ).

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let H = {x ∈ Rd; 〈N, x〉 = γ} be a characteristic hyperplane for P . Then
there is f ∈ E (Rd) with supp f = {x ∈ Rd; 〈x,N〉 ≤ γ} and
P (−D)f = 0.

X
N

x0

K

f as above for γ = 〈N, x0〉, χ ∈ D(Rd) with
suppχ = B(x0, 2ε), χ = 1 in B(x0, ε), u := χf

suppu = B(x0, 2ε) ∩ {x; 〈x,N〉 ≤ γ}
suppP (−D)u ⊆ (suppu)\B(x0, ε)

⇒ X not P -convex for supports

g : X → R satisfies the minimum principle in a closed subset C of Rd if
for every compact set K ⊆ C ∩X we have infx∈K g(x) = inf∂CK g(x).
We set dX : X → R, x 7→ dist(x,Xc), the boundary distance of X.



3.2 Corollary (Hörmander, 1971, see ALPDO II, Theorem 10.8.1)

If X is P -convex for supports then dX satisfies the minimum principle in
every characteristic hyperplane for P .

For d = 2 this necessary condition is also sufficient:

3.3 Theorem (Hörmander, 1971, see ALPDO II, Theorem 10.8.3)

Let X ⊆ R2 be open and connected, P ∈ C[X1, X2]. Tfae:

i) X is P -convex for supports.

ii) dX satisfies the minimum principle in every characteristic hyperplane
for P .

x2

x1

P1(ξ1, ξ2) = iξ1 ⇒ P1(D) = ∂1

characteristic hyperplanes are parallels to x1-axis

P2(ξ1, ξ2) = iξ2 ⇒ P2(D) = ∂2

characteristic hyperplanes are parallels to x2-axis



We now come to sufficient conditions for P -convexity for supports for
arbitrary d. A starting point is a unique continuation result due to
Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let X1 ⊆ X2 ⊆ Rd be open and convex. Tfae:

i) ∀ v ∈ D ′(X2), P (−D)v = 0 :
(
v|X1

= 0⇒ v = 0
)

ii) Every characteristic hyperplane for P which intersects X2 already
intersects X1.

X

suppP (−D)u

X2X1

bad

H

N

good
H

N

v := u|X2
satisfies P (−D)v = 0

and v|X1
= 0

H = {x ∈ Rd; 〈x,N〉 = α} with
Pm(N) = 0



We now come to sufficient conditions for P -convexity for supports for
arbitrary d. A starting point is a unique continuation result due to
Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let X1 ⊆ X2 ⊆ Rd be open and convex. Tfae:

i) ∀ v ∈ D ′(X2), P (−D)v = 0 :
(
v|X1

= 0⇒ v = 0
)

ii) Every characteristic hyperplane for P which intersects X2 already
intersects X1.

X

suppP (−D)u

X2X1

bad

H

N

good
H

N

v := u|X2
satisfies P (−D)v = 0

and v|X1
= 0

H = {x ∈ Rd; 〈x,N〉 = α} with
Pm(N) = 0



Let ∅ 6= Γ ⊂ Rd be an open convex cone and

Γ◦ := {ξ ∈ Rd;∀x ∈ Γ : 〈x, ξ〉 ≥ 0}

its dual cone.

ΓΓ◦

0

Γ◦ is a closed, proper, convex cone

Conversely: Every closed proper convex cone C is
the dual cone of a unique open convex cone

From now on always ∅ 6= Γ 6= Rd ⇒ 0 /∈ Γ
and Γ◦ /∈ {Rd, {0}}



3.5 Theorem (Exterior Cone Condition I - K., ’12)

Let P ∈ C[X1, . . . , Xd] with principal part Pm.

i) X is P -convex for supports if for every x ∈ ∂X there is an open
convex cone Γ ⊂ Rd such that

(x+ Γ◦) ∩X = ∅ and Pm(ξ) 6= 0∀ ξ ∈ Γ.

ii) If Γ is an open convex cone and X := Rd\Γ◦ then X is P -convex for
supports iff Pm(ξ) 6= 0 for every ξ ∈ Γ.



As another sufficient condition for P -convexity for supports we have:

3.6 Theorem (K., ’14)

Let {0} 6= W ⊆ Rd be a subspace such that dX satisfies the minimum
principle in every affine subspace parallel to W .
If {ξ ∈ Rd; Pm(ξ) = 0} ⊆W⊥ then X is P -convex for supports.

The above condition easily implies that for every elliptic P each open
X ⊆ Rd is P -convex for supports (take W = Rd).

3.7 Corollary (K., ’14)

If {ξ ∈ Rd; Pm(ξ) = 0} is a one-dimensional subspace then X is P -convex
for supports iff dX satisfies the minimum principle in in every characteristic
hyperplane for P .

Applicable to the free Schrödinger operator −i∂t −∆x and parabolic
operators, i.e. P (ξ) = Q(ξ1, . . . , ξd−1) + iξd with elliptic
Q ∈ C[X1, . . . , Xd−1], e.g. ∂t −∆x.



We now consider P -convexity for singular supports of X, i.e. conditions for

∀E ′(X) : dist(sing suppP (−D)u,Xc) = dist(sing suppu,Xc)

(”≥” always holds).

Some preparations have to be made: for ζ ∈ Cd we define

eζ : Rd → C, x 7→ e−i〈x,ζ〉 (where 〈x, ζ〉 =

d∑
j=1

xjζj)

and for u ∈ E ′(Rd)

F (u) := û : Cd → C, ζ 7→ u(eζ)

the Fourier-Laplace transform of u which is a entire analytic function.



3.8 Theorem (Paley-Wiener-Schwartz, 1952, see ALPDO I, Theorem
7.3.1)

û is an entire analytic function for each u ∈ E ′(Rd).

i) If u ∈ E ′(Rd) satisfies suppu ⊆ B[0, R] then

∃N ∈ N0, C > 0 ∀ ζ ∈ Cd : |û(ζ)| ≤ C(1 + |ζ|)NeR|Im ζ|

(one can choose N = ord(u)). Conversely, every entire analytic
function satisfying an estimate like the above is the Fourier-Laplace
transform of a distribution with support in B[0, R].

ii) If u ∈ D(Rd) satisfies suppu ⊆ B[0, R] then

∀N ∈ N0 ∃C > 0 ∀ ζ ∈ Cd : |û(ζ)| ≤ C(1 + |ζ|)−NeR|Im ζ|.

Conversely, every entire analytic function satisfying estimates like the
above is the Fourier-Laplace transform of a test function with support
in B[0, R].



Fix u ∈ E ′(X)(⊆ E ′(Rd)). For every ϕ ∈ D(X\sing suppP (−D)u),
η ∈ Rd:

〈eηP (−D)u, ϕ〉 →|η|→∞ 0.

Thus, in D ′(X\sing suppP (−D)u),

0 = lim
|η|→∞

P̌η(D)
˜̌P (η, 1)

( ˜̌P (η, 1)eηu
)
.

∀ (ηk)k∈N, limk→∞ |ηk| = ∞∃ (ηkl)l∈N : ∃ liml→∞
˜̌P (ηkl , 1)eηklu in

D ′(Rd) (limit = 0 in Rd\sing suppu)

∀ (ηk)k∈N, limk→∞ |ηk| =∞∃ (ηkl)l∈N : ∃ liml→∞
P̌ηkl

(ξ)

˜̌P (ηkl ,1)
=: Q(ξ) in

C[X1, . . . , Xd], Q invariant under some non-trivial subspace V ⊆ Rd, i.e.

∀x ∈ V, ξ ∈ Rd : Q(ξ + x) = Q(ξ)

so - if Q does not have a constant term - every w ∈ E ′(Rd) depending
only on variables from V ⊥ satisfies Q(D)w = 0
 plausibility/conjecture: to every such V ∃w ∈ E ′(Rd) :
P (−D)w ∈ E (Rd) and sing suppw = V ⊥ ∩ suppw



How to recognize these V ?
Q non-constant ⇒∞ = limt→∞ Q̃(0, t)(= limt→∞ sup|ξ|≤t |Q(ξ)|) while

Q̃V (0, t) := supx∈V,|x|≤t |Q(x+ 0)| = |Q(0)| by definition of V

For suitable (ηn)n∈N tending to infinity:

0 = inf
t≥1

Q̃V (0, t)

Q̃(0, t)
= inf

t≥1
lim
n→∞

˜̌PV (ηn, t)
˜̌P (ηn, t)

≥ inf
t≥1

lim inf
η→∞

˜̌PV (η, t)
˜̌P (η, t)

,

where ˜̌PV (η, t) = supξ∈V,|ξ|≤t |P̌ (ξ + η)|
Hörmander: For V ⊆ Rd subspace define

σP (V ) = inf
t≥1

lim inf
η→∞

˜̌PV (η, t)
˜̌P (η, t)

.

Abbreviation: ∀ y ∈ Rd : σP (y) = σP (span{y})



3.9 Theorem (Hörmander, 1972, see ALPDO II, Theorem 11.3.1)

Let V ⊆ Rd be a subspace with σP (V ) = 0. Then there is u ∈ D ′(Rd)
with P (−D)u = 0 and sing suppu = V ⊥.

Like Theorem 3.1 is used to prove Corollary 3.2 the above theorem gives a
necessary condition for P -convexity for singular supports:

3.10 Corollary (Hörmander, 1972, see ALPDO II, Corollary 11.3.2)

Let V ⊆ Rd be a subspace with σP (V ) = 0. If X is P -convex for singular
supports then dX satisfies the minimum principle in every affine subspace
parallel to V ⊥.

This necessary condition is also sufficient for d = 2:

3.11 Theorem (K., ’11)

Let X ⊆ R2 be open and connected, P ∈ C[X1, X2]. Tfae:

i) X is P -convex for singular supports.

ii) dX satisfies the minimum principle in every hyperplane
H = {x ∈ R2; 〈x,N〉 = γ} with σP (N) = 0.



σP can also be used to give sufficient conditions for P -convexity for
singular supports for arbitrary d.

3.12 Theorem (Exterior Cone Condition II - K., ’12)

Let P ∈ C[X1, . . . , Xd].

i) X is P -convex for singular supports if for every x ∈ ∂X there is an
open convex cone Γ ⊂ Rd such that

(x+ Γ◦) ∩X = ∅ and σP (ξ) 6= 0∀ ξ ∈ Γ.

ii) If Γ is an open convex cone and X := Rd\Γ◦ then X is P -convex for
singular supports iff σP (ξ) 6= 0 for every ξ ∈ Γ.



4. Interlude: Some Functional Analysis

General references: IFA and AFO



E be a vector space over K ∈ {R,C}
a) A family of seminorms P is called directed if

∀ p, q ∈P ∃ r ∈P : p ≤ r and q ≤ r.

b) A locally convex space (lcs for short) is a pair (E,P) consisting of a
vector space E over K and a directed family of seminorms P.

c) A lcs (E,P) is called separated if

∀x ∈ E\{0} ∃ p ∈P : p(x) > 0.



(E,P) lcs, U ⊆ E is called open (in (E,P)) :⇔

∀x ∈ U ∃ p ∈P, ε > 0 : Bp(x, ε) ⊆ U,

where Bp(x, ε) := {y ∈ E; p(x− y) < ε}

Since P is a directed family of seminorms

{U ⊆ E; U open in (E,P)}

is stable under finite intersections (and obviously under arbitrary unions)
and thus a topology on E (Bp(x, ε) convex  ”locally convex”) which is
Hausdorff iff (E,P) is separated,

E × E → E, (x, y) 7→ x+ y and K× E → E, (λ, x) 7→ λx

are both continuous



Examples:

a) Every normed space is a separated lcs.

b) For X ⊆ Rd open P∞,c := {‖ · ‖l,K ; l ∈ N0,K b X} is a directed
family of seminorms on C∞(X). (Recall that

‖f‖l,K = sup
α∈Nd0,|α|≤l

sup
x∈K
|∂αf(x)|).

This (separated) lcs is denoted by E (X).

c) X ⊆ Rd open, K b X, f ∈ C(X) we set ‖f‖K := supx∈K |f(x)|.
Then Pc := {‖ · ‖K ; K b X} is a directed family of seminorms
making C(X) a (separated) lcs.



(E,P) be a lcs P0 ⊆P is called fundamental system of seminorms iff

∀ q ∈P ∃ p ∈P0, C > 0 ∀x ∈ E : q(x) ≤ Cp(x)

(E,P) is called Fréchet space :⇔ (E,P) is separated, there is a
countable fundamental sequence of seminorms, and (E,P) is
(sequentially) complete, i.e. every Cauchy sequence converges

Examples:

a) Every Banach space is a Fréchet space.

b) (E,P) Fréchet space, F ⊆ E closed subspace ⇒ (F,P) Fréchet
space.

c) (Kn)n∈N0 compact exhaustion of X ⊆ Rd open ⇒ {‖ · ‖n,Kn ;n ∈ N0}
is a countable fundamental system of seminorms for E (X) and
{‖ · ‖n,Kn ;n ∈ N0} for (C(X),Pc). Both lcs are Fréchet spaces.



A linear T : E1 → E2 between lcs (E1,P1) and (E2,P2) is continuous iff

∀ q ∈P2 ∃ p ∈P1, C > 0 ∀x ∈ E1 : q(Tx) ≤ Cp(x).

L(E1, E2) := {T : E1 → E2; linear and continuous}.

Dual space of the lcs (E,P)

E′ := (E,P)′ := {u : E → K; u linear, continuous}

u : E → K linear belongs to E′ iff

∃ p ∈P, C > 0∀x ∈ E : |u(x)| ≤ Cp(x).



We want to make (E,P)′ into a lcs. B ⊆ E is called bounded iff

∀ p ∈P : sup
x∈B

p(x) <∞.

For bounded B, pB : E′ → R, u 7→ supx∈B |u(x)| is a well-defined
seminorm and

b(E′, E) := {pB; B ⊆ E bounded}

is a directed family of seminorms on E′.

The lcs (E′, b(E′, E)) is called strong dual of E.

For a normed space (E, ‖ · ‖) a fundamental system of seminorms for
b(E′, E) is {‖ · ‖op} with ‖u‖op = sup‖x‖≤1 |u(x)|.



5. Vector valued distributions and differential operators



Although we do not give a directed family of seminorms for D(X)
explicitly, there is a unique way to turn D(X) into a (reasonable)
separated, complete lcs. For a lcs (E,P) a linear T : D(X)→ E is
continuous iff

(∗) ∀ q ∈P ∀K b X ∃ l ∈ N0, C > 0 ∀ϕ ∈ D(K) : q(Tϕ) ≤ C‖ϕ‖l,K .

Y ⊆ Rn open, T : Y → D ′(X), y 7→ Ty continuous :⇔

∀ϕ ∈ D(X) : λ(T )(ϕ) : Y → C, y 7→ 〈Ty, ϕ〉

is continuous. With (∗) and 2.1 b): λ(T ) ∈ L
(
D(X), (C(Y ),Pc)

)
.

λ is an isomorphism between {T : Y → D ′(X); T continuous} and
L
(
D(X), (C(Y ),Pc)

)
.

Moreover, for continuous T : Y → D ′(X) we also have that

P (D)T : Y → D ′(X), y 7→ P (D)Ty

is continuous with λ(P (D)T )(ϕ) = λ(T )(P (−D)ϕ).



For general lcs E instead of C(Y ) we define D ′(X,E) := L(D(X), E)
E-valued distributions over X ⊆ Rd and

P (D) : D ′(X,E)→ D ′(X,E),
(
P (D)T

)
(ϕ) := T (P (−D)ϕ).

For E a space of functions the problem of surjectivity of P (D) on
D ′(X,E) translates to the corresponding problem of parameter
dependence: for each fy in D ′(X) depending on the parameter y as the
functions in E, is there a solution uy of P (D)uy = fy depending in the
same way on y (e.g. E ∈ {C(Y ), C∞(Y ), . . .})?

We also consider the question of surjectivity of P (D) on C∞(X,E).

We restrict ourselves to E being a Fréchet space or the strong dual of a
Fréchet space.



A Fréchet space E has property (DN) (E ∈ (DN)) iff there is a
fundamental system of seminorms {pk; k ∈ N} with

∀ k ≥ 2 ∀x ∈ E : pk(x)2 ≤ pk−1(x)pk+1(x).

p1 is then a norm on E (so-called dominating norm)

Banach spaces have (DN)

The space of rapidly decreasing sequences

s := {x = (xn)n∈N ∈ CN; ∀ k ∈ N : pk(x)2 :=

∞∑
n=1

|xn|2n2k <∞}

with the sequence of seminorms (pk)k∈N is a Fréchet space with (DN) (by
Hölder).

Spaces linearly homeomorphic to s: C∞p (Rd), H(C), C∞(X) (X ⊆ Rd

open, bounded, C1-boundary), D(K) (K b Rd), S (Rd)



5.1 Theorem

Let X ⊆ Rd, P ∈ C[X1, . . . , Xd], P
+(ξ1, . . . , ξd+1) := P (ξ1, . . . , ξd)

i) (Grothendieck, 1955) X be P -convex for supports and E be a
Fréchet space. Then P (D) : C∞(X,E)→ C∞(X,E) is surjective.

ii) (Vogt, 1983) P be elliptic and E = F ′ the strong dual of a Fréchet
space F . Then P (D) : C∞(X,E)→ C∞(X,E) is surjective iff
F ∈ (DN).

iii) (Vogt, 1983 + Bonet, Domański ’06) P be hypoelliptic, X P -convex
for supports, and E = F ′ the strong dual of a Fréchet space
F ∈ (DN). Then P (D) : C∞(X,E)→ C∞(X,E) is surjective if
P+(D) : D ′(X × R)→ D ′(X × R) is surjective. This condition is
also necessary for F ∼= s.

iv) (Bonet, Domański, ’06) X be strongly P -convex and E = F ′ be the
strong dual of a Fréchet space F ∼= closed subspace of s. Then
P (D) : D ′(X,E)→ D ′(X,E) is surjective if this is true for
P+(D) : D ′(X × R)→ D ′(X × R).



Given P ∈ C[X1, . . . , Xd] and X ⊆ Rd open such that

P (D) : D ′(X)→ D ′(X)

is surjective. When is

P+(D) : D ′(X × R)→ D ′(X × R)

surjective, too, where P+(ξ1, . . . , ξd+1) = P (ξ1, . . . , ξd)?

Equivalent formulation: X strongly P -convex
?⇒ X × R strongly

P+-convex

If X is convex then X × R is convex, so then ”yes”.

If P is elliptic, then ”yes” due to Vogt (see Theorem 5.1 ii), iii)).



X P -convex for supports ⇒ P+(D) : C∞(X × R)→ C∞(X × R)
surjective due to Grothendieck (compare Theorem 5.1 i)), i.e. X × R
P+-convex for supports

Thus, the question is:

X strongly P -convex
?⇒ X × R P+-convex for singular supports

Conditions for P+-convexity for singular supports from section 3 involve
σP+ . However, σP+ is not appropriate to evaluate conditions for
P+-convexity for singular supports of X × R in terms of P and X. To
achieve this, we define for a subspace V ⊆ Rd

σ0
P (V ) := inf

t≥1
inf
η∈Rd

˜̌PV (η, t)
˜̌P (η, t)

,

recall that ˜̌PV (η, t) = supξ∈V,|ξ|≤t |P̌ (ξ + η)| and ˜̌P (η, t) = ˜̌PRd(η, t).
Again we abbreviate

∀ y ∈ Rd\{0} : σ0
P (y) := σ0

P (span{y}).



5.2 Theorem (Exterior Cone Condition III - K., ’12)

If Γ is an open convex cone and X := Rd\Γ◦ then X × R is P+-convex
for singular supports iff σ0

P (ξ) 6= 0 for every ξ ∈ Γ.

5.3 Lemma (K., ’12)

Let P have principal part Pm and let y ∈ Rd\{0}.
i) σ0

P (y) ≤ σP (y) and ∀ k ∈ N : σ0
Pk

(y) = (σ0
P (y))k.

ii) σ0
P (y) ≤ σ0

Pm
(y).

Let d ≥ 3, A(ξ) = ξ2
1− ξ2

2− . . .− ξ2
d⇒ A(ed) 6= 0, σA(ed) = 0 (Here, d ≥ 3

is needed!)
i)⇒ ∀ k ∈ N : σ0

Ak
(ed) = 0

ii)⇒ Each P with principal part Pm = Ak satisfies σ0
P (ed) = 0 and Pm(ed) 6=

0.



5.2 Theorem (Exterior Cone Condition III - K., ’12)

If Γ is an open convex cone and X := Rd\Γ◦ then X × R is P+-convex
for singular supports iff σ0

P (ξ) 6= 0 for every ξ ∈ Γ.

5.3 Lemma (K., ’12)

Let P have principal part Pm and let y ∈ Rd\{0}.
i) σ0

P (y) ≤ σP (y) and ∀ k ∈ N : σ0
Pk

(y) = (σ0
P (y))k.

ii) σ0
P (y) ≤ σ0

Pm
(y).

Let d ≥ 3, A(ξ) = ξ2
1 − ξ2

2 − . . .− ξ2
d

⇒ Each P with principal part Pm = Ak satisfies σ0
P (ed) = 0 and Pm(ed) 6=

0.



5.2 Theorem (Exterior Cone Condition III - K., ’12)

If Γ is an open convex cone and X := Rd\Γ◦ then X × R is P+-convex
for singular supports iff σ0

P (ξ) 6= 0 for every ξ ∈ Γ.

5.3 Lemma (K., ’12)

Let P have principal part Pm and let y ∈ Rd\{0}.
i) σ0

P (y) ≤ σP (y) and ∀ k ∈ N : σ0
Pk

(y) = (σ0
P (y))k.

ii) σ0
P (y) ≤ σ0

Pm
(y).

Let d ≥ 3, A(ξ) = ξ2
1 − ξ2

2 − . . .− ξ2
d

⇒ Each P with principal part Pm = Ak satisfies σ0
P (ed) = 0 and Pm(ed) 6=

0.
⇒ ∃Γ ⊂ Rd open proper convex cone, ed ∈ Γ∀x ∈ Γ : Pm(x) 6= 0

X := Rd\Γ◦ is P -convex for supports (by 3.5 ii) and X×R is not P+-convex
for singular supports for every such P .

With R(ξ) = (ξ2
1 + . . . + ξ2

d)3 set P (ξ) := A4(ξ) + R(ξ). Then P is
hypoelliptic so that X is P -convex for singular support. Thus:



5.4 Theorem (K., ’12)

For d ≥ 3 there are hypoelliptic P and open X ⊆ Rd such that
P (D) : D ′(X)→ D ′(X) is surjective but
P+(D) : D ′(X × R)→ D ′(X × R) is not surjective. In particular, P (D)
is surjective on C∞(X) but not on C∞(X,S ′(Rn)).

d ≥ 3 is essential here:

5.5 Theorem (K., ’12)

For P ∈ C[X1, X2] and X ⊆ R2 tfae:

i) P (D) : D ′(X)→ D ′(X) is surjective.

ii) P+(D) : D ′(X × R)→ D ′(X × R) is surjective.



Positive results for arbitrary dimension:

5.6 Theorem (K., ’14)

Let P (D) : D ′(X)→ D ′(X) be surjective. Then
P+(D) : D ′(X × R)→ D ′(X × R) is surjective in the following cases.

i) P is parabolic, e.g. the heat operator P (D) = ∂t −∆x.

ii) P acts along a subspace W and is elliptic as a polynomial on W , e.g.

P (D) = ∂2

∂x21
+ ∂2

∂x22
on R3.

iii) P factorises into linear factors, i.e.
P (ξ) = α

∏k
j=1(〈ξ, aj〉 − βj), α, βj ∈ C, aj ∈ Cd.
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