Surjectivity of linear partial differential operators on spaces of scalar valued and vector valued distributions

Thomas Kalmes
TU Chemnitz

Summer School on Applied Analysis,
TU Chemnitz,
September 19-23, 2016

1. Introduction

In many mathematical models linear partial differential operators show up, e.g.

$$
\begin{array}{rr}
\Delta=\Delta_{x}=\sum_{j=1}^{d} \partial_{j}^{2} & \text { (Laplace operator), } \\
\partial_{t}-\Delta_{x} & \text { (Heat operator), } \\
\partial_{t}^{2}-\Delta_{x} & \text { (Wave operator) } \\
-i \partial_{t}-\Delta_{x} & \text { (time dependent free Schrödinger operator) }, \\
\frac{1}{2}\left(\partial_{1}+i \partial_{2}\right) & \text { (Cauchy Riemann operator). }
\end{array}
$$

For general $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ set

$$
P(D):=P\left(-i \partial_{1}, \ldots,-i \partial_{d}\right)
$$

E.g. $\Delta=P_{L}(D)$ for $P_{L}(\xi)=-\sum_{j=1}^{d} \xi_{j}^{2}$
$\partial_{t}-\Delta_{x}=P_{H}(D)$ for $P_{H}\left(\xi_{1}, \ldots, \xi_{d}\right)=i \xi_{1}+\sum_{j=2}^{d} \xi_{j}^{2}$
$\partial_{t}^{2}-\Delta_{x}=P_{W}(D)$ for $P_{W}\left(\xi_{1}, \ldots, \xi_{d}\right)=-\xi_{1}^{2}+\sum_{j=2}^{d} \xi_{j}^{2}$
$-i \partial_{t}-\Delta_{x}=P_{S}(D)$ for $P_{S}\left(\xi_{1}, \ldots, \xi_{d}\right)=\xi_{1}+\sum_{j=2}^{d} \xi_{j}^{2}$
For $X \subseteq \mathbb{R}^{d}$ open and f given, solve $P(D) u=f$ in X.
Possible for every f from a fixed space of functions? "Solution" in which sense; classical, distributional?

Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right] \backslash\{0\}$ and let $X \subseteq \mathbb{R}^{d}$ be open.
i) When is $P(D): C^{\infty}(X) \rightarrow C^{\infty}(X)$ surjective?
ii) When is $C^{\infty}(X) \subseteq P(D)\left(\mathscr{D}^{\prime}(X)\right)$?
iii) When is $P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X)$ surjective?

Answers will depend on combined properties of P and X.

Example:

$$
X=((0,2) \times(-4,4)) \cup((-1,1) \times(-4,-2)) \cup((-1,1) \times(2,4))
$$

$$
\begin{aligned}
& P_{1}\left(\xi_{1}, \xi_{2}\right)=i \xi_{1} \Rightarrow P_{1}(D)=\partial_{1} \\
& \text { given } f \in C^{\infty}(X) \Rightarrow \\
& u\left(x_{1}, x_{2}\right):=\int_{1}^{x_{1}} f\left(t, x_{2}\right) d t \in C^{\infty}(X) \\
& \text { satisfies } \partial_{1} u=f \\
& \Rightarrow P_{1}(D): C^{\infty}(X) \rightarrow C^{\infty}(X) \text { surjective }
\end{aligned}
$$

Example:

$$
X=((0,2) \times(-4,4)) \cup((-1,1) \times(-4,-2)) \cup((-1,1) \times(2,4))
$$

$$
P_{2}\left(\xi_{1}, \xi_{2}\right)=i \xi_{2} \Rightarrow P_{2}(D)=\partial_{2} ;
$$

choose $\eta \in C^{\infty}(\mathbb{R})$ with $\eta(t)=0$ for $t \notin[-1,1]$ and $\int_{-1}^{1} \eta(t) d t>0$; set
$f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{\eta\left(x_{2}\right)}{x_{1}}, & \text { if } x_{1}>0 \\ 0, & \text { if } x_{1} \leq 0\end{cases}$
$\Rightarrow f \in C^{\infty}(X)$; suppose
$\exists u \in C^{1}(X): \partial_{2} u=f$;
for $x_{1} \in(0,2)$ we then have
$u\left(x_{1}, 3\right)-u\left(x_{1},-3\right)=\int_{-3}^{3} \partial_{2} u\left(x_{1}, t\right) d t$
$=\frac{1}{x_{1}} \int_{-1}^{1} \eta(t) d t \rightarrow_{x_{1} \rightarrow 0} \infty$
$\Rightarrow P_{2}(D): C^{1}(X) \rightarrow C^{\infty}(X)$ not surjective

Example:
$X=((0,2) \times(-4,4)) \cup((-1,1) \times(-4,-2)) \cup((-1,1) \times(2,4))$

For $P_{1}\left(\xi_{1}, \xi_{2}\right)=i \xi_{1}$ resp. $P_{2}\left(\xi_{1}, \xi_{2}\right)=i \xi_{2}$ is
$P_{1}(D): C^{\infty}(X) \rightarrow C^{\infty}(X)$ surjective,
$P_{2}(D): C^{1}(X) \rightarrow C^{\infty}(X)$ not surjective.
Is it possible to "see" this without calculation? What about $P_{2}(D)$ if we allow for more general solutions of $P_{2}(D) u=f, f \in C^{\infty}(X)$, than
 $u \in C^{1}(X)$?
2. Distributions and differential operators

$$
\begin{aligned}
& X \subseteq \mathbb{R}^{d} \text { open, } K \subseteq X(: \Leftrightarrow K \subseteq X \text { compact }), l \in \mathbb{N}_{0} \\
& \\
& \|\cdot\|_{l, K}: C^{\infty}(X) \rightarrow[0, \infty), f \mapsto \sup _{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq l} \sup _{x \in K}\left|\partial^{\alpha} f(x)\right|
\end{aligned}
$$

defines a seminorm on $C^{\infty}(X)$.
$\left(f_{n}\right)_{n \in \mathbb{N}} \in C^{\infty}(X)^{\mathbb{N}}$ converges to $f \in C^{\infty}(X): \Leftrightarrow$

$$
\forall K \Subset X, l \in \mathbb{N}_{0}: \lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{l, K}=0
$$

This convergence can be described by a metric on $C^{\infty}(X)$ which is complete; we denote by $\mathscr{E}(X)$ the space $C^{\infty}(X)$ equipped with this notion of convergence.

For $M \subseteq \mathbb{R}^{d}$ we set $\mathscr{D}(M):=\left\{\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right) ;\right.$ supp $\varphi \subseteq M$ compact $\}$, where supp $\varphi=\left\{x \in \mathbb{R}^{d} ; \varphi(x) \neq 0\right\} ; \mathscr{D}(M)$ is a subspace of $C^{\infty}\left(\mathbb{R}^{d}\right)$.

$$
\begin{aligned}
& \left(\varphi_{n}\right)_{n \in \mathbb{N}} \in \mathscr{D}(M)^{\mathbb{N}} \text { converges to } \varphi \in \mathscr{D}(M): \Leftrightarrow \\
& \quad-\lim _{n \rightarrow \infty} \varphi_{n}=\varphi \text { in } \mathscr{E}\left(\mathbb{R}^{d}\right), \\
& \quad-\exists K \Subset M: \cup_{n \in \mathbb{N}} \operatorname{supp} \varphi_{n} \cup \operatorname{supp} \varphi \subseteq K
\end{aligned}
$$

For every non-compact M, this convergence cannot be described by a metric on $\mathscr{D}(M)$ but by a (locally convex) topology which is complete; from now on we always equip $\mathscr{D}(M)$ with the above notion of convergence.

For open $X \subseteq \mathbb{R}^{d}$ the "inclusion" $i: \mathscr{D}(X) \hookrightarrow \mathscr{E}(X), \varphi \mapsto \varphi_{\mid X}$ is continuous, has dense range; thus, every continuous $u: \mathscr{E}(X) \rightarrow \mathbb{C}$ induces continuous $u: \mathscr{D}(X) \rightarrow \mathbb{C}$, and u uniquely determined by $u_{\mid \mathscr{D}(X)}$.

For $X \subseteq \mathbb{R}^{d}$ open we define
$\mathscr{D}^{\prime}(X):=\{u: \mathscr{D}(X) \rightarrow \mathbb{C} ; u$ linear, continuous $\}$
$\mathscr{E}^{\prime}(X):=\{u: \mathscr{E}(X) \rightarrow \mathbb{C} ; u$ linear, continuous $\}$
$\mathscr{D}^{\prime}(X), \mathscr{E}^{\prime}(X)$ are vector spaces, $u \in \mathscr{D}^{\prime}(X)$ is called a distribution on X

By the previous slide:

$$
\mathscr{E}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X), u \mapsto u_{\mid \mathscr{D}(X)}
$$

is well-defined, obviously linear, and one-to-one.

2.1 Proposition

a) For linear $u: \mathscr{E}(X) \rightarrow \mathbb{C}$ tfae:
i) $u \in \mathscr{E}^{\prime}(X)$,
ii) $\exists K \Subset X, l \in \mathbb{N}_{0}, C>0 \forall f \in \mathscr{E}(X):|u(f)| \leq C\|f\|_{l, K}$.
b) For linear $u: \mathscr{D}(X) \rightarrow \mathbb{C}$ tfae:
i) $u \in \mathscr{D}^{\prime}(X)$,
ii) $\forall K \Subset X \exists l \in \mathbb{N}_{0}, C>0 \forall \varphi \in \mathscr{D}(K):|u(\varphi)| \leq C\|\varphi\|_{l, K}$.

Notation: $\langle u, \varphi\rangle:=u(\varphi)$
If in b) ii) $l \in \mathbb{N}_{0}$ may be chosen independently of $K \Subset X$ then u is of finite order and
$\operatorname{ord}(u):=\min \left\{l \in \mathbb{N}_{0} ; \forall K \Subset X \exists C>0 \forall \varphi \in \mathscr{D}(K):|u(\varphi)| \leq C\|\varphi\|_{l, K}\right\}$ is called order of $u ; \mathscr{D}_{F}^{\prime}(X):=\left\{u \in \mathscr{D}^{\prime}(X) ; \operatorname{ord}(u)<\infty\right\}$ is a subspace of $\mathscr{D}^{\prime}(X)$ with $\mathscr{E}^{\prime}(X) \subsetneq \mathscr{D}_{F}^{\prime}(X)$.

Examples:

i) For $f \in L_{\text {loc }}^{1}(X)$

$$
u_{f}: \mathscr{D}(X) \rightarrow \mathbb{C}, \varphi \mapsto \int_{X} f(x) \varphi(x) d x
$$

is a well-defined linear mapping, $\forall K \Subset X, \varphi \in \mathscr{D}(K)$:

$$
\left|\left\langle u_{f}, \varphi\right\rangle\right| \leq \int_{K}|f(x) \varphi(x)| d x \leq \int_{K}|f(x)| d x\|\varphi\|_{0, K}
$$

$\Rightarrow u_{f} \in \mathscr{D}^{\prime}(X), \operatorname{ord}\left(u_{f}\right)=0$.
Recall the "Fundamental lemma of calculus of variations":

$$
\forall f \in L_{\mathrm{loc}}^{1}(X):\left(\forall \varphi \in \mathscr{D}(X): \int_{X} f(x) \varphi(x) d x=0 \Rightarrow f=0\right)
$$

\Rightarrow the linear mapping $L_{\text {loc }}^{1}(X) \rightarrow \mathscr{D}^{\prime}(X), f \mapsto u_{f}$ is one-to-one \Rightarrow we can/will write f instead of the distribution u_{f}, i.e.
$\langle f, \varphi\rangle=\int_{X} f(x) \varphi(x) d x$

Examples continued:

ii) For every regular, resp. complex, measure μ on the Borel- σ-algebra over X

$$
u_{\mu}: \mathscr{D}(X) \rightarrow \mathbb{C}, \varphi \mapsto \int_{X} \varphi(x) d \mu(x)
$$

is a well-defined linear mapping, $\forall K \Subset X, \varphi \in \mathscr{D}(K)$:

$$
\left|\left\langle u_{\mu}, \varphi\right\rangle\right| \leq|\mu|(K)\|\varphi\|_{0, K}
$$

$\Rightarrow u_{\mu} \in \mathscr{D}^{\prime}(X), \operatorname{ord}\left(u_{\mu}\right)=0$.
By the Riesz-Markov Theorem, $\mu \mapsto u_{\mu}$ is one-to-one, so we write μ instead of u_{μ}.

Concrete example: $\mu=\delta_{x}, x \in X$

Examples continued:

iii) σ surface measure on $S^{d-1}, f \in L^{1}(\sigma)$ with $\int_{S^{d-1}} f(\omega) d \sigma(\omega)=0$. For $\varphi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ we have:

$$
\begin{aligned}
\lim _{\varepsilon \downarrow 0} \int_{\varepsilon \leq|x|} \frac{\varphi(x)}{|x|^{d}} f\left(\frac{x}{|x|}\right) d x & =\lim _{\varepsilon \downarrow 0} \int_{\varepsilon \leq|x|} \frac{\varphi(x)-\varphi(0)}{|x|^{d}} f\left(\frac{x}{|x|}\right) d x \\
& =\int \frac{\varphi(x)-\varphi(0)}{|x|^{d}} f\left(\frac{x}{|x|}\right) d x
\end{aligned}
$$

where the last integral exists due to $|\varphi(x)-\varphi(0)| \leq\|\nabla \varphi\|_{\infty}|x|$ (polar coordinates, Lebesgue's Theorem, ...)

By the same argument: $\forall \varphi \in \mathscr{D}(K)$ where $K \subseteq B[0, R]$:

$$
\left|\lim _{\varepsilon \downarrow 0} \int_{\varepsilon \leq|x|} \frac{\varphi(x)}{|x|^{d}} f\left(\frac{x}{|x|}\right) d x\right| \leq R \int_{S^{d-1}}|f(\omega)| d \sigma(\omega)\|\varphi\|_{1, K}
$$

$\Rightarrow\left\langle v p\left(|x|^{-d} f\left(\frac{x}{|x|}\right)\right), \varphi\right\rangle:=\lim _{\varepsilon \downarrow 0} \int_{\varepsilon \leq|x|} \frac{\varphi(x)}{|x|^{d}} f\left(\frac{x}{|x|}\right) d x$ defines a distribution on \mathbb{R}^{d} of order 1 ; these are kernels of classical singular integral operators, e.g. Hilbert transform on $\mathbb{R}(f(\omega)=\operatorname{sign}(\omega))$, Riesz operators $\left(f(\omega)=\omega_{j}, 1, \ldots, d\right)$.
$X \subseteq \mathbb{R}^{d}$ open, $M \subseteq X \Rightarrow \mathscr{D}(M) \subseteq \mathscr{D}(X)$ subspace
For $u \in \mathscr{D}^{\prime}(X)$ we set $u_{\mid M}:=u_{\mid \mathscr{D}(M)}$ the restriction of u to M
$u \in \mathscr{D}^{\prime}(X)$ vanishes in $M: \Leftrightarrow u_{\mid M}=0$, i.e. $\forall \varphi \in \mathscr{D}(M):\langle u, \varphi\rangle=0$

$$
\text { supp } u:=\left\{x \in X ; \nexists V \subseteq X \text { open, } x \in V: u_{\mid V}=0\right\}
$$

is called support of u. For $f \in C(X)$ it holds

$$
\operatorname{supp} u_{f}=\overline{\{x \in X ; f(x) \neq 0\}}^{X}
$$

For $u \in \mathscr{D}^{\prime}(X)$ we have

- supp u is a closed subset of X (by definition)
- $X \backslash \operatorname{supp} u$ is the largest open subset of X where u vanishes, i.e.

$$
\forall \varphi \in \mathscr{D}(X):(\operatorname{supp} \varphi \cap \operatorname{supp} u=\emptyset \Rightarrow\langle u, \varphi\rangle=0)
$$

2.2 Theorem

For $X \subseteq \mathbb{R}^{d}$ open we have $\mathscr{E}^{\prime}(X)=\left\{u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right) ;\right.$ supp $u \subseteq X$ compact $\}$.

For $h \in \mathscr{E}(X)$ and $1 \leq j \leq d$ the operators

$$
m_{h}: \mathscr{D}(X) \rightarrow \mathscr{D}(X), \varphi \mapsto h \varphi \text { and } \partial_{j}: \mathscr{D}(X) \rightarrow \mathscr{D}(X), \varphi \mapsto \partial_{j} \varphi
$$

are well-defined, linear, and continuous.
For arbitrary $\varphi \in \mathscr{D}(X)$ we have

$$
\forall f \in L_{\mathrm{loc}}^{1}(X):\langle h f, \varphi\rangle=\int_{X} h(x) f(x) \varphi(x) d x=\left\langle f, m_{h}(\varphi)\right\rangle
$$

and if $f \in C^{1}(X)\left(\subseteq L_{\text {loc }}^{1}(X)\right)$ integration by parts gives

$$
\left\langle\partial_{j} f, \varphi\right\rangle=\int_{X} \partial_{j} f(x) \varphi(x) d x=-\int_{X} f(x) \partial_{j} \varphi(x) d x=-\left\langle f, \partial_{j} \varphi\right\rangle
$$

For arbitrary $u \in \mathscr{D}^{\prime}(X)$ we define $\langle h u, \varphi\rangle:=\left\langle u, m_{h}(\varphi)\right\rangle$ and $\left\langle\partial_{j} u, \varphi\right\rangle:=-\left\langle u, \partial_{j} \varphi\right\rangle \Rightarrow h u, \partial_{j} u \in \mathscr{D}^{\prime}(X)$ and $u \mapsto h u, u \mapsto \partial_{j} u$ are linear.

For $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ it follows $P(D) u \in \mathscr{D}^{\prime}(X)$ and

$$
\langle P(D) u, \varphi\rangle=\langle u, \check{P}(D) \varphi\rangle, \text { where } \check{P}(\xi)=P(-\xi)
$$

2.3 Proposition

For $h \in \mathscr{E}(X)$ and $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ the following hold.
i) $\forall u \in \mathscr{D}^{\prime}(X): \operatorname{supp}(h u) \subseteq \operatorname{supp} h \cap \operatorname{supp} u$ and ord $(h u) \leq \operatorname{ord} u$.
ii) $\forall u \in \mathscr{D}^{\prime}(X): \operatorname{supp} P(D) u \subseteq \operatorname{supp} u$ and if P of degree m then ord $(P(D) u) \leq$ ord $u+m$.
iii) $P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X), u \mapsto P(D)$ is a linear mapping with $P(D)\left(\mathscr{E}^{\prime}(X)\right) \subseteq \mathscr{E}^{\prime}(X)$ and $P(D)\left(\mathscr{D}_{F}^{\prime}(X)\right) \subseteq \mathscr{D}_{F}^{\prime}(X)$.

Examples:

i) For the Heaviside function $Y=\mathbb{1}_{(0, \infty)}$ we have for $\varphi \in \mathscr{D}(\mathbb{R})$

$$
\left\langle Y^{\prime}, \varphi\right\rangle=-\left\langle Y, \varphi^{\prime}\right\rangle=-\int_{0}^{\infty} \varphi^{\prime}(x) d x=\varphi(0)=\left\langle\delta_{0}, \varphi\right\rangle
$$

ii) $X \subset \mathbb{R}^{d}$ be open with C^{1}-boundary. For $\varphi \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$:

$$
\left\langle\partial_{j} \mathbb{1}_{X}, \varphi\right\rangle=-\int_{X} \partial_{j} \varphi(x) d x=-\int_{\partial X} \nu_{j}(\omega) \varphi(\omega) d \sigma(\omega)=\left\langle-\nu_{j} \sigma, \varphi\right\rangle,
$$

with $\nu(\omega)=\left(\nu_{1}(\omega), \ldots, \nu_{d}(\omega)\right)$ denoting the outer unit normal in $\omega \in \partial X$ and σ the surface measure on ∂X.

For $m \in \mathbb{N}_{0}$ we define the local Sobolev space of order m over X as

$$
H_{\mathrm{loc}}^{m}(X)=\left\{f \in L_{\mathrm{loc}}^{2}(X) ; \forall|\alpha| \leq m: \partial^{\alpha} f \in L_{\mathrm{loc}}^{2}(X)\right\}
$$

which is a subspace of $\mathscr{D}_{F}^{\prime}(X)$.
\rightsquigarrow differential equations for distributions or in any subspace E of $\mathscr{D}^{\prime}(X)$ like, e.g. $\mathscr{E}(X), H_{\text {loc }}^{m}(X), L_{\text {loc }}^{1}(X), \mathscr{D}_{F}^{\prime}(X)$: given arbitrary $f \in E$ is there $u \in \mathscr{D}^{\prime}(X)$ (resp. $u \in E$) with $P(D) u=f$, i.e.

$$
\forall \varphi \in \mathscr{D}(X):\langle f, \varphi\rangle=\langle P(D) u, \varphi\rangle(=\langle u, P(-D) \varphi\rangle) ?
$$

2.4 Theorem (Malgrange, 1955, see ALPDO II, Section 10.6)

For open $X \subseteq \mathbb{R}^{d}$ and $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ tfae:
i) $P(D): \mathscr{E}(X) \rightarrow \mathscr{E}(X)$ is surjective.
ii) $\forall f \in \mathscr{E}(X) \exists u \in \mathscr{D}^{\prime}(X): P(D) u=f$.
iii) $P(D): \mathscr{D}_{F}^{\prime}(X) \rightarrow \mathscr{D}_{F}^{\prime}(X)$ is surjective.
iv) $\forall f \in H_{\mathrm{loc}}^{m}(X) \exists u \in H_{\mathrm{loc}}^{m}(X): P(D) u=f$.
v) $\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left(\operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left(\operatorname{supp} u, X^{c}\right)$.

In v) " $\forall u \in \mathscr{E}^{\prime}(X)$ " can be replaced by " $\forall u \in \mathscr{D}(X)$ ".

Given $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right] \backslash\{0\}$. X is called P-convex for supports iff

$$
\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left(\operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left(\operatorname{supp} u, X^{c}\right)
$$

Recall: supp $P(-D) u \subseteq \operatorname{supp} u$, thus we always have

$$
\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left(\operatorname{supp} P(-D) u, X^{c}\right) \geq \operatorname{dist}\left(\operatorname{supp} u, X^{c}\right)
$$

Consequence of "Theorem of Supports":

$$
\forall u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right): \operatorname{conv}(\operatorname{supp} u)=\operatorname{conv}(\operatorname{supp} P(-D) u)
$$

which implies: every convex open set $X \subseteq \mathbb{R}^{d}$ is P-convex for supports.
If $\left(X_{\iota}\right)_{\iota \in I}$ is a family of open sets which are P-convex for supports then $\operatorname{int}\left(\bigcap_{\iota \in I} X_{\iota}\right)$ is P-convex for supports, too.

Geometrical conditions for/characterisation of P-convexity for supports?
Problem: not a local property!
Every open $X \subseteq \mathbb{R}^{d}$ is P-convex for supports iff P is elliptic, i.e. if $P(\xi)=\sum_{|\alpha| \leq m} a_{\alpha} \xi^{\alpha}$ then

$$
\forall \xi \in \mathbb{R}^{d} \backslash\{0\} ; 0 \neq P_{m}(\xi):=\sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha}(\text { principal part of } P)
$$

If P acts along a subspace of \mathbb{R}^{d} and is elliptic there, then P-convexity for supports is completely characterized (Nakane, 1979).
For polynomials with principal part $P_{2}(\xi)=\xi_{d}^{2}-\sum_{j=1}^{d-1} \xi_{j}^{2} P$-convexity for supports is completely characterized (Persson, 1981).

For P of real principal type there are characterizations if

- X is bounded and ∂X is analytic (Tintarev, 1988)
- $X \subseteq \mathbb{R}^{3}$ (Tintarev, 1992)

For $d=2 P$-convexity for supports is completely characterized (Hörmander, 1971).

When is $P(D)\left(\mathscr{D}^{\prime}(X)\right)=\mathscr{D}^{\prime}(X)$? Unfortunately, P-convexity for supports of X is not enough!

Idea (Hörmander): Because $P(D)(\mathscr{E}(X)) \subseteq \mathscr{E}(X)$, iff

- $\mathscr{E}(X) \subseteq P(D)\left(\mathscr{D}^{\prime}(X)\right)(\Leftrightarrow X P$-convex for supports)
- $P(D)$ surjective on $\mathscr{D}^{\prime}(X) / \mathscr{E}(X)$

For open $V \subseteq X \subseteq \mathbb{R}^{d}$ and $u \in \mathscr{D}^{\prime}(X)$, we say that u is smooth in $V: \Leftrightarrow u_{\mid V} \in \mathscr{E}(V)$, i.e.

$$
\exists f \in \mathscr{E}(V) \forall \varphi \in \mathscr{D}(V):\langle u, \varphi\rangle=\int_{V} f(x) \varphi(x) d x
$$

$$
\operatorname{sing} \operatorname{supp} u:=\{x \in X ; \nexists V \subseteq X \text { open, } x \in V: u \text { smooth in } V\}
$$

is called singular support of u.
For $u \in \mathscr{D}^{\prime}(X), h \in \mathscr{E}(X)$, and $P \neq 0$ we have

- $\operatorname{sing} \operatorname{supp} u$ is a closed subset of X (by definition)
- $X \backslash$ sing supp u is the largest open subset of X where u is smooth
- sing supp $u \subseteq \operatorname{supp} u$ and $\operatorname{sing} \operatorname{supp}(h u) \subseteq \operatorname{supp} h \cap \operatorname{sing} \operatorname{supp} u$
- $\operatorname{sing} \operatorname{supp} P(D) u \subseteq \operatorname{sing} \operatorname{supp} u$

2.5 Theorem (Hörmander, 1962, see ALPDO Section 10.7)

For open $X \subseteq \mathbb{R}^{d}$ we have $\mathscr{D}^{\prime}(X) / \mathscr{E}(X)=P(D)\left(\mathscr{D}^{\prime}(X) / \mathscr{E}(X)\right)$ iff X P-convex for singular supports, i.e.

$$
\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left(\operatorname{sing} \operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left(\operatorname{sing} \operatorname{supp} u, X^{c}\right)
$$

Because sing supp $P(-D) u \subseteq$ sing supp u we always have $\operatorname{dist}\left(\right.$ sing supp $\left.P(-D) u, X^{c}\right) \geq \operatorname{dist}\left(\right.$ sing supp $\left.u, X^{c}\right)$.

Consequence of "Theorem of Singular Supports":

$$
\forall u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right), P \neq 0: \operatorname{conv}(\operatorname{sing} \operatorname{supp} u)=\operatorname{conv}(\operatorname{sing} \operatorname{supp} P(-D) u)
$$

which implies: every convex open set $X \subseteq \mathbb{R}^{d}$ is P-convex for singular supports.

If $\left(X_{\iota}\right)_{\iota \in I}$ is a family of open sets which are P-convex for singular supports then $\operatorname{int}\left(\bigcap_{\iota \in I} X_{\iota}\right)$ is P-convex for singular supports, too.
X strongly P-convex $: \Leftrightarrow X P$-convex for supports and singular supports

Geometric conditions for/characterisation of P-convexity for singular supports?

Problem: not a local property!
Every open $X \subseteq \mathbb{R}^{d}$ is P-convex for singular supports iff P is hypoelliptic, i.e.

$$
\forall X \subseteq \mathbb{R}^{d} \text { open, } u \in \mathscr{D}^{\prime}(X): \text { sing supp } P(D) u=\operatorname{sing} \operatorname{supp} u
$$

(e.g. elliptic and parabolic operators are hypoelliptic) Algebraic characterisation of hypoellipticity of P (Hörmander, 1955):

$$
\forall \alpha \neq 0: \lim _{\xi \in \mathbb{R}^{d},|\xi| \rightarrow \infty} \frac{P^{(\alpha)}(\xi)}{P(\xi)}=0
$$

thus P hypoelliptic $\Leftrightarrow \check{P}$ hypoelliptic
For $d=2 P$-convexity for singular supports is completely characterized (K., '10).
3. Conditions for P-convexity for (singular) supports
$X P$-convex for (singular) supports \Leftrightarrow
$\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left((\right.$ sing $\left.) \operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left((\right.$ sing $\left.) \operatorname{supp} u, X^{c}\right)$
What can we say about the location of (sing) supp u if we know (sing) supp $P(-D) u$?

$X P$-convex for (singular) supports \Leftrightarrow
$\forall u \in \mathscr{E}^{\prime}(X): \operatorname{dist}\left((\right.$ sing $\left.) \operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left((\right.$ sing $\left.) \operatorname{supp} u, X^{c}\right)$
What can we say about the location of (sing) supp u if we know (sing) supp $P(-D) u$?

$$
\begin{aligned}
& \operatorname{conv}((\operatorname{sing}) \operatorname{supp} P(-D) u) \\
& =\operatorname{conv}((\text { sing }) \operatorname{supp} u)
\end{aligned}
$$

A hyperplane $H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\gamma\right\}\left(N \in S^{d-1}, \gamma \in \mathbb{R}\right)$ is called characteristic for P if $P_{m}(N)=0\left(P_{m}\right.$ principal part of $\left.P\right)$.

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let $H=\left\{x \in \mathbb{R}^{d} ;\langle N, x\rangle=\gamma\right\}$ be a characteristic hyperplane for P. Then there is $f \in \mathscr{E}\left(\mathbb{R}^{d}\right)$ with supp $f=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle \leq \gamma\right\}$ and $P(-D) f=0$.

f as above for $\gamma=\left\langle N, x_{0}\right\rangle, \chi \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \chi=B\left(x_{0}, 2 \varepsilon\right), \chi=1$ in $B\left(x_{0}, \varepsilon\right), u:=\chi f$
supp $u=B\left(x_{0}, 2 \varepsilon\right) \cap\{x ;\langle x, N\rangle \leq \gamma\}$ supp $P(-D) u \subseteq(\operatorname{supp} u) \backslash B\left(x_{0}, \varepsilon\right)$
$\Rightarrow X$ not P-convex for supports

A hyperplane $H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\gamma\right\}\left(N \in S^{d-1}, \gamma \in \mathbb{R}\right)$ is called characteristic for P if $P_{m}(N)=0\left(P_{m}\right.$ principal part of $\left.P\right)$.

3.1 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.7)

Let $H=\left\{x \in \mathbb{R}^{d} ;\langle N, x\rangle=\gamma\right\}$ be a characteristic hyperplane for P. Then there is $f \in \mathscr{E}\left(\mathbb{R}^{d}\right)$ with supp $f=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle \leq \gamma\right\}$ and $P(-D) f=0$.

$g: X \rightarrow \mathbb{R}$ satisfies the minimum principle in a closed subset C of \mathbb{R}^{d} if for every compact set $K \subseteq C \cap X$ we have $\inf _{x \in K} g(x)=\inf _{\partial_{C} K} g(x)$. We set $d_{X}: X \rightarrow \mathbb{R}, x \mapsto \operatorname{dist}\left(x, X^{c}\right)$, the boundary distance of X.

3.2 Corollary (Hörmander, 1971, see ALPDO II, Theorem 10.8.1)

If X is P-convex for supports then d_{X} satisfies the minimum principle in every characteristic hyperplane for P.

For $d=2$ this necessary condition is also sufficient:
3.3 Theorem (Hörmander, 1971, see ALPDO II, Theorem 10.8.3)

Let $X \subseteq \mathbb{R}^{2}$ be open and connected, $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$. Tfae:
i) X is P-convex for supports.
ii) d_{X} satisfies the minimum principle in every characteristic hyperplane for P.

$$
P_{1}\left(\xi_{1}, \xi_{2}\right)=i \xi_{1} \Rightarrow P_{1}(D)=\partial_{1}
$$

characteristic hyperplanes are parallels to x_{1}-axis
$P_{2}\left(\xi_{1}, \xi_{2}\right)=i \xi_{2} \Rightarrow P_{2}(D)=\partial_{2}$
characteristic hyperplanes are parallels to x_{2}-axis

We now come to sufficient conditions for P-convexity for supports for arbitrary d. A starting point is a unique continuation result due to Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let $X_{1} \subseteq X_{2} \subseteq \mathbb{R}^{d}$ be open and convex. Tfae:
i) $\forall v \in \mathscr{D}^{\prime}\left(X_{2}\right), P(-D) v=0:\left(v_{\mid X_{1}}=0 \Rightarrow v=0\right)$
ii) Every characteristic hyperplane for P which intersects X_{2} already intersects X_{1}.

$v:=u_{\mid X_{2}}$ satisfies $P(-D) v=0$ and $v_{\mid X_{1}}=0$

$$
\begin{aligned}
& H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\alpha\right\} \text { with } \\
& P_{m}(N)=0
\end{aligned}
$$

We now come to sufficient conditions for P-convexity for supports for arbitrary d. A starting point is a unique continuation result due to Hörmander:

3.4 Theorem (Hörmander, 1955, see ALPDO I, Theorem 8.6.8)

Let $X_{1} \subseteq X_{2} \subseteq \mathbb{R}^{d}$ be open and convex. Tfae:
i) $\forall v \in \mathscr{D}^{\prime}\left(X_{2}\right), P(-D) v=0:\left(v_{\mid X_{1}}=0 \Rightarrow v=0\right)$
ii) Every characteristic hyperplane for P which intersects X_{2} already intersects X_{1}.

$v:=u_{\mid X_{2}}$ satisfies $P(-D) v=0$ and $v_{\mid X_{1}}=0$

$$
\begin{aligned}
& H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\alpha\right\} \text { with } \\
& P_{m}(N)=0
\end{aligned}
$$

Let $\emptyset \neq \Gamma \subset \mathbb{R}^{d}$ be an open convex cone and

$$
\Gamma^{\circ}:=\left\{\xi \in \mathbb{R}^{d} ; \forall x \in \Gamma:\langle x, \xi\rangle \geq 0\right\}
$$

its dual cone.

Γ° is a closed, proper, convex cone
Conversely: Every closed proper convex cone C is the dual cone of a unique open convex cone

From now on always $\emptyset \neq \Gamma \neq \mathbb{R}^{d} \Rightarrow 0 \notin \Gamma$ and $\Gamma^{\circ} \notin\left\{\mathbb{R}^{d},\{0\}\right\}$

3.5 Theorem (Exterior Cone Condition I - K., '12)

Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ with principal part P_{m}.
i) X is P-convex for supports if for every $x \in \partial X$ there is an open convex cone $\Gamma \subset \mathbb{R}^{d}$ such that

$$
\left(x+\Gamma^{\circ}\right) \cap X=\emptyset \text { and } P_{m}(\xi) \neq 0 \forall \xi \in \Gamma .
$$

ii) If Γ is an open convex cone and $X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ then X is P-convex for supports iff $P_{m}(\xi) \neq 0$ for every $\xi \in \Gamma$.

As another sufficient condition for P-convexity for supports we have:

3.6 Theorem (K., '14)

Let $\{0\} \neq W \subseteq \mathbb{R}^{d}$ be a subspace such that d_{X} satisfies the minimum principle in every affine subspace parallel to W.
If $\left\{\xi \in \mathbb{R}^{d} ; P_{m}(\xi)=0\right\} \subseteq W^{\perp}$ then X is P-convex for supports.
The above condition easily implies that for every elliptic P each open $X \subseteq \mathbb{R}^{d}$ is P-convex for supports (take $W=\mathbb{R}^{d}$).

3.7 Corollary (K., '14)

If $\left\{\xi \in \mathbb{R}^{d} ; P_{m}(\xi)=0\right\}$ is a one-dimensional subspace then X is P-convex for supports iff d_{X} satisfies the minimum principle in in every characteristic hyperplane for P.

Applicable to the free Schrödinger operator $-i \partial_{t}-\Delta_{x}$ and parabolic operators, i.e. $P(\xi)=Q\left(\xi_{1}, \ldots, \xi_{d-1}\right)+i \xi_{d}$ with elliptic $Q \in \mathbb{C}\left[X_{1}, \ldots, X_{d-1}\right]$, e.g. $\partial_{t}-\Delta_{x}$.

We now consider P-convexity for singular supports of X, i.e. conditions for

$$
\forall \mathscr{E}^{\prime}(X): \operatorname{dist}\left(\operatorname{sing} \operatorname{supp} P(-D) u, X^{c}\right)=\operatorname{dist}\left(\text { sing supp } u, X^{c}\right)
$$

(" \geq " always holds).
Some preparations have to be made: for $\zeta \in \mathbb{C}^{d}$ we define

$$
e_{\zeta}: \mathbb{R}^{d} \rightarrow \mathbb{C}, x \mapsto e^{-i\langle x, \zeta\rangle}\left(\text { where }\langle x, \zeta\rangle=\sum_{j=1}^{d} x_{j} \zeta_{j}\right)
$$

and for $u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)$

$$
\mathscr{F}(u):=\hat{u}: \mathbb{C}^{d} \rightarrow \mathbb{C}, \zeta \mapsto u\left(e_{\zeta}\right)
$$

the Fourier-Laplace transform of u which is a entire analytic function.
3.8 Theorem (Paley-Wiener-Schwartz, 1952, see ALPDO I, Theorem 7.3.1)
\hat{u} is an entire analytic function for each $u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)$.
i) If $u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfies supp $u \subseteq B[0, R]$ then

$$
\exists N \in \mathbb{N}_{0}, C>0 \forall \zeta \in \mathbb{C}^{d}:|\hat{u}(\zeta)| \leq C(1+|\zeta|)^{N} e^{R \| \mid m} \zeta \mid
$$

(one can choose $N=\operatorname{ord}(u)$). Conversely, every entire analytic function satisfying an estimate like the above is the Fourier-Laplace transform of a distribution with support in $B[0, R]$.
ii) If $u \in \mathscr{D}\left(\mathbb{R}^{d}\right)$ satisfies supp $u \subseteq B[0, R]$ then

$$
\forall N \in \mathbb{N}_{0} \exists C>0 \forall \zeta \in \mathbb{C}^{d}:|\hat{u}(\zeta)| \leq C(1+|\zeta|)^{-N} e^{R| | m} \zeta \mid .
$$

Conversely, every entire analytic function satisfying estimates like the above is the Fourier-Laplace transform of a test function with support in $B[0, R]$.

Fix $u \in \mathscr{E}^{\prime}(X)\left(\subseteq \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)\right)$. For every $\varphi \in \mathscr{D}(X \backslash \operatorname{sing} \operatorname{supp} P(-D) u)$, $\eta \in \mathbb{R}^{d}$:

$$
\left\langle e_{\eta} P(-D) u, \varphi\right\rangle \rightarrow_{|\eta| \rightarrow \infty} 0
$$

Thus, in $\mathscr{D}^{\prime}(X \backslash$ sing supp $P(-D) u)$,

$$
0=\lim _{|\eta| \rightarrow \infty} \frac{\check{P}_{\eta}(D)}{\tilde{\tilde{P}}(\eta, 1)}\left(\tilde{\tilde{P}}(\eta, 1) e_{\eta} u\right)
$$

$\forall\left(\eta_{k}\right)_{k \in \mathbb{N}}, \lim _{k \rightarrow \infty}\left|\eta_{k}\right|=\infty \exists\left(\eta_{k_{l}}\right)_{l \in \mathbb{N}}: \exists \lim _{l \rightarrow \infty} \tilde{\tilde{P}}\left(\eta_{k_{l}}, 1\right) e_{\eta_{k_{l}}} u$ in $\mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)\left(\right.$ limit $=0$ in $\left.\mathbb{R}^{d} \backslash \operatorname{sing} \operatorname{supp} u\right)$
$\forall\left(\eta_{k}\right)_{k \in \mathbb{N}}, \lim _{k \rightarrow \infty}\left|\eta_{k}\right|=\infty \exists\left(\eta_{k_{l}}\right)_{l \in \mathbb{N}}: \exists \lim _{l \rightarrow \infty} \frac{\check{P}_{\eta_{k_{l}}}(\xi)}{\tilde{\tilde{P}}\left(\eta_{k_{l}}, 1\right)}=: Q(\xi)$ in $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right], Q$ invariant under some non-trivial subspace $V \subseteq \mathbb{R}^{d}$, i.e.

$$
\forall x \in V, \xi \in \mathbb{R}^{d}: Q(\xi+x)=Q(\xi)
$$

so - if Q does not have a constant term - every $w \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)$ depending only on variables from V^{\perp} satisfies $Q(D) w=0$
\rightsquigarrow plausibility/conjecture: to every such $V \exists w \in \mathscr{E}^{\prime}\left(\mathbb{R}^{d}\right)$:
$P(-D) w \in \mathscr{E}\left(\mathbb{R}^{d}\right)$ and $\operatorname{sing} \operatorname{supp} w=V^{\perp} \cap \operatorname{supp} w$

How to recognize these V ?
Q non-constant $\Rightarrow \infty=\lim _{t \rightarrow \infty} \tilde{Q}(0, t)\left(=\lim _{t \rightarrow \infty} \sup _{|\xi| \leq t}|Q(\xi)|\right)$ while $\tilde{Q}_{V}(0, t):=\sup _{x \in V,|x| \leq t}|Q(x+0)|=|Q(0)|$ by definition of V
For suitable $\left(\eta_{n}\right)_{n \in \mathbb{N}}$ tending to infinity:

$$
\begin{aligned}
0 & =\inf _{t \geq 1} \frac{\tilde{Q}_{V}(0, t)}{\tilde{Q}(0, t)}=\inf _{t \geq 1} \lim _{n \rightarrow \infty} \frac{\tilde{\tilde{P}}_{V}\left(\eta_{n}, t\right)}{\tilde{P}\left(\eta_{n}, t\right)} \\
& \geq \inf _{t \geq 1} \liminf _{\eta \rightarrow \infty} \frac{\tilde{\tilde{P}}_{V}(\eta, t)}{\tilde{\tilde{P}}(\eta, t)}
\end{aligned}
$$

where $\tilde{\tilde{P}}_{V}(\eta, t)=\sup _{\xi \in V,|\xi| \leq t}|\check{P}(\xi+\eta)|$
Hörmander: For $V \subseteq \mathbb{R}^{d}$ subspace define

$$
\sigma_{P}(V)=\inf _{t \geq 1} \liminf _{\eta \rightarrow \infty} \frac{\tilde{\tilde{P}}_{V}(\eta, t)}{\tilde{P}(\eta, t)}
$$

Abbreviation: $\forall y \in \mathbb{R}^{d}: \sigma_{P}(y)=\sigma_{P}(\operatorname{span}\{y\})$

3.9 Theorem (Hörmander, 1972, see ALPDO II, Theorem 11.3.1)

 Let $V \subseteq \mathbb{R}^{d}$ be a subspace with $\sigma_{P}(V)=0$. Then there is $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{d}\right)$ with $P(-D) u=0$ and $\operatorname{sing} \operatorname{supp} u=V^{\perp}$.Like Theorem 3.1 is used to prove Corollary 3.2 the above theorem gives a necessary condition for P-convexity for singular supports:
3.10 Corollary (Hörmander, 1972, see ALPDO II, Corollary 11.3.2)

Let $V \subseteq \mathbb{R}^{d}$ be a subspace with $\sigma_{P}(V)=0$. If X is P-convex for singular supports then d_{X} satisfies the minimum principle in every affine subspace parallel to V^{\perp}.

This necessary condition is also sufficient for $d=2$:

3.11 Theorem (K., '11)

Let $X \subseteq \mathbb{R}^{2}$ be open and connected, $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$. Tfae:
i) X is P-convex for singular supports.
ii) d_{X} satisfies the minimum principle in every hyperplane

$$
H=\left\{x \in \mathbb{R}^{2} ;\langle x, N\rangle=\gamma\right\} \text { with } \sigma_{P}(N)=0
$$

σ_{P} can also be used to give sufficient conditions for P-convexity for singular supports for arbitrary d.
3.12 Theorem (Exterior Cone Condition II - K., '12)

Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$.
i) X is P-convex for singular supports if for every $x \in \partial X$ there is an open convex cone $\Gamma \subset \mathbb{R}^{d}$ such that

$$
\left(x+\Gamma^{\circ}\right) \cap X=\emptyset \text { and } \sigma_{P}(\xi) \neq 0 \forall \xi \in \Gamma .
$$

ii) If Γ is an open convex cone and $X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ then X is P-convex for singular supports iff $\sigma_{P}(\xi) \neq 0$ for every $\xi \in \Gamma$.
4. Interlude: Some Functional Analysis

General references: IFA and AFO
E be a vector space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$
a) A family of seminorms \mathscr{P} is called directed if

$$
\forall p, q \in \mathscr{P} \exists r \in \mathscr{P}: p \leq r \text { and } q \leq r .
$$

b) A locally convex space (Ics for short) is a pair (E, \mathscr{P}) consisting of a vector space E over \mathbb{K} and a directed family of seminorms \mathscr{P}.
c) $\mathrm{A} \operatorname{lcs}(E, \mathscr{P})$ is called separated if

$$
\forall x \in E \backslash\{0\} \exists p \in \mathscr{P}: p(x)>0
$$

(E, \mathscr{P}) Ics, $U \subseteq E$ is called open (in (E, \mathscr{P})) $: \Leftrightarrow$

$$
\forall x \in U \exists p \in \mathscr{P}, \varepsilon>0: B_{p}(x, \varepsilon) \subseteq U
$$

where $B_{p}(x, \varepsilon):=\{y \in E ; p(x-y)<\varepsilon\}$
Since \mathscr{P} is a directed family of seminorms

$$
\{U \subseteq E ; U \text { open in }(E, \mathscr{P})\}
$$

is stable under finite intersections (and obviously under arbitrary unions) and thus a topology on $E\left(B_{p}(x, \varepsilon)\right.$ convex \rightsquigarrow "locally convex" $)$ which is Hausdorff iff (E, \mathscr{P}) is separated,

$$
E \times E \rightarrow E,(x, y) \mapsto x+y \text { and } \mathbb{K} \times E \rightarrow E,(\lambda, x) \mapsto \lambda x
$$

are both continuous

Examples:

a) Every normed space is a separated Ics.
b) For $X \subseteq \mathbb{R}^{d}$ open $\mathscr{P}_{\infty, c}:=\left\{\|\cdot\|_{l, K} ; l \in \mathbb{N}_{0}, K \Subset X\right\}$ is a directed family of seminorms on $C^{\infty}(X)$. (Recall that

$$
\left.\|f\|_{l, K}=\sup _{\alpha \in \mathbb{N}_{0}^{d},|\alpha| \leq l} \sup _{x \in K}\left|\partial^{\alpha} f(x)\right|\right) .
$$

This (separated) Ics is denoted by $\mathscr{E}(X)$.
c) $X \subseteq \mathbb{R}^{d}$ open, $K \Subset X, f \in C(X)$ we set $\|f\|_{K}:=\sup _{x \in \mathbb{K}}|f(x)|$. Then $\mathscr{P}_{c}:=\left\{\|\cdot\|_{K} ; K \Subset X\right\}$ is a directed family of seminorms making $C(X)$ a (separated) Ics.
(E, \mathscr{P}) be a lcs $\mathscr{P}_{0} \subseteq \mathscr{P}$ is called fundamental system of seminorms iff

$$
\forall q \in \mathscr{P} \exists p \in \mathscr{P}_{0}, C>0 \forall x \in E: q(x) \leq C p(x)
$$

(E, \mathscr{P}) is called Fréchet space $: \Leftrightarrow(E, \mathscr{P})$ is separated, there is a countable fundamental sequence of seminorms, and (E, \mathscr{P}) is (sequentially) complete, i.e. every Cauchy sequence converges

Examples:
a) Every Banach space is a Fréchet space.
b) (E, \mathscr{P}) Fréchet space, $F \subseteq E$ closed subspace $\Rightarrow(F, \mathscr{P})$ Fréchet space.
c) $\left(K_{n}\right)_{n \in \mathbb{N}_{0}}$ compact exhaustion of $X \subseteq \mathbb{R}^{d}$ open $\Rightarrow\left\{\|\cdot\|_{n, K_{n}} ; n \in \mathbb{N}_{0}\right\}$ is a countable fundamental system of seminorms for $\mathscr{E}(X)$ and $\left\{\|\cdot\|_{n, K_{n}} ; n \in \mathbb{N}_{0}\right\}$ for $\left(C(X), \mathscr{P}_{c}\right)$. Both Ics are Fréchet spaces.

A linear $T: E_{1} \rightarrow E_{2}$ between Ics $\left(E_{1}, \mathscr{P}_{1}\right)$ and $\left(E_{2}, \mathscr{P}_{2}\right)$ is continuous iff

$$
\forall q \in \mathscr{P}_{2} \exists p \in \mathscr{P}_{1}, C>0 \forall x \in E_{1}: q(T x) \leq C p(x)
$$

$L\left(E_{1}, E_{2}\right):=\left\{T: E_{1} \rightarrow E_{2} ;\right.$ linear and continuous $\}$.
Dual space of the Ics (E, \mathscr{P})

$$
E^{\prime}:=(E, \mathscr{P})^{\prime}:=\{u: E \rightarrow \mathbb{K} ; u \text { linear, continuous }\}
$$

$u: E \rightarrow \mathbb{K}$ linear belongs to E^{\prime} iff

$$
\exists p \in \mathscr{P}, C>0 \forall x \in E:|u(x)| \leq C p(x)
$$

We want to make $(E, \mathscr{P})^{\prime}$ into a lcs. $B \subseteq E$ is called bounded iff

$$
\forall p \in \mathscr{P}: \sup _{x \in B} p(x)<\infty .
$$

For bounded $B, p_{B}: E^{\prime} \rightarrow \mathbb{R}, u \mapsto \sup _{x \in B}|u(x)|$ is a well-defined seminorm and

$$
b\left(E^{\prime}, E\right):=\left\{p_{B} ; B \subseteq E \text { bounded }\right\}
$$

is a directed family of seminorms on E^{\prime}.
The Ics $\left(E^{\prime}, b\left(E^{\prime}, E\right)\right)$ is called strong dual of E.
For a normed space $(E,\|\cdot\|)$ a fundamental system of seminorms for $b\left(E^{\prime}, E\right)$ is $\left\{\|\cdot\|_{\mathrm{op}}\right\}$ with $\|u\|_{\mathrm{op}}=\sup _{\|x\| \leq 1}|u(x)|$.
5. Vector valued distributions and differential operators

Although we do not give a directed family of seminorms for $\mathscr{D}(X)$ explicitly, there is a unique way to turn $\mathscr{D}(X)$ into a (reasonable) separated, complete Ics. For a Ics (E, \mathscr{P}) a linear $T: \mathscr{D}(X) \rightarrow E$ is continuous iff

$$
(*) \forall q \in \mathscr{P} \forall K \Subset X \exists l \in \mathbb{N}_{0}, C>0 \forall \varphi \in \mathscr{D}(K): q(T \varphi) \leq C\|\varphi\|_{l, K} .
$$

$Y \subseteq \mathbb{R}^{n}$ open, $T: Y \rightarrow \mathscr{D}^{\prime}(X), y \mapsto T_{y}$ continuous $: \Leftrightarrow$

$$
\forall \varphi \in \mathscr{D}(X): \lambda(T)(\varphi): Y \rightarrow \mathbb{C}, y \mapsto\left\langle T_{y}, \varphi\right\rangle
$$

is continuous. With $(*)$ and 2.1 b$): \lambda(T) \in L\left(\mathscr{D}(X),\left(C(Y), \mathscr{P}_{c}\right)\right)$.
λ is an isomorphism between $\left\{T: Y \rightarrow \mathscr{D}^{\prime}(X) ; T\right.$ continuous $\}$ and $L\left(\mathscr{D}(X),\left(C(Y), \mathscr{P}_{c}\right)\right)$.
Moreover, for continuous $T: Y \rightarrow \mathscr{D}^{\prime}(X)$ we also have that

$$
P(D) T: Y \rightarrow \mathscr{D}^{\prime}(X), y \mapsto P(D) T_{y}
$$

is continuous with $\lambda(P(D) T)(\varphi)=\lambda(T)(P(-D) \varphi)$.

For general Ics E instead of $C(Y)$ we define $\mathscr{D}^{\prime}(X, E):=L(\mathscr{D}(X), E)$ E-valued distributions over $X \subseteq \mathbb{R}^{d}$ and

$$
P(D): \mathscr{D}^{\prime}(X, E) \rightarrow \mathscr{D}^{\prime}(X, E),(P(D) T)(\varphi):=T(P(-D) \varphi)
$$

For E a space of functions the problem of surjectivity of $P(D)$ on $\mathscr{D}^{\prime}(X, E)$ translates to the corresponding problem of parameter dependence: for each f_{y} in $\mathscr{D}^{\prime}(X)$ depending on the parameter y as the functions in E, is there a solution u_{y} of $P(D) u_{y}=f_{y}$ depending in the same way on y (e.g. $\left.E \in\left\{C(Y), C^{\infty}(Y), \ldots\right\}\right)$?

We also consider the question of surjectivity of $P(D)$ on $C^{\infty}(X, E)$.
We restrict ourselves to E being a Fréchet space or the strong dual of a Fréchet space.

A Fréchet space E has property $(D N)(E \in(D N))$ iff there is a fundamental system of seminorms $\left\{p_{k} ; k \in \mathbb{N}\right\}$ with

$$
\forall k \geq 2 \forall x \in E: p_{k}(x)^{2} \leq p_{k-1}(x) p_{k+1}(x)
$$

p_{1} is then a norm on E (so-called dominating norm)
Banach spaces have ($D N$)
The space of rapidly decreasing sequences

$$
s:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} ; \forall k \in \mathbb{N}: p_{k}(x)^{2}:=\sum_{n=1}^{\infty}\left|x_{n}\right|^{2} n^{2 k}<\infty\right\}
$$

with the sequence of seminorms $\left(p_{k}\right)_{k \in \mathbb{N}}$ is a Fréchet space with $(D N)$ (by Hölder).

Spaces linearly homeomorphic to $s: C_{p}^{\infty}\left(\mathbb{R}^{d}\right), H(\mathbb{C}), C^{\infty}(\bar{X})\left(X \subseteq \mathbb{R}^{d}\right.$ open, bounded, C^{1}-boundary), $\mathscr{D}(K)\left(K \Subset \mathbb{R}^{d}\right), \mathscr{S}\left(\mathbb{R}^{d}\right)$

5.1 Theorem

Let $X \subseteq \mathbb{R}^{d}, P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right], P^{+}\left(\xi_{1}, \ldots, \xi_{d+1}\right):=P\left(\xi_{1}, \ldots, \xi_{d}\right)$
i) (Grothendieck, 1955) X be P-convex for supports and E be a Fréchet space. Then $P(D): C^{\infty}(X, E) \rightarrow C^{\infty}(X, E)$ is surjective.
ii) (Vogt, 1983) P be elliptic and $E=F^{\prime}$ the strong dual of a Fréchet space F. Then $P(D): C^{\infty}(X, E) \rightarrow C^{\infty}(X, E)$ is surjective iff $F \in(D N)$.
iii) (Vogt, $1983+$ Bonet, Domański '06) P be hypoelliptic, $X P$-convex for supports, and $E=F^{\prime}$ the strong dual of a Fréchet space $F \in(D N)$. Then $P(D): C^{\infty}(X, E) \rightarrow C^{\infty}(X, E)$ is surjective if $P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})$ is surjective. This condition is also necessary for $F \cong s$.
iv) (Bonet, Domański, '06) X be strongly P-convex and $E=F^{\prime}$ be the strong dual of a Fréchet space $F \cong$ closed subspace of s. Then $P(D): \mathscr{D}^{\prime}(X, E) \rightarrow \mathscr{D}^{\prime}(X, E)$ is surjective if this is true for $P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})$.

Given $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ and $X \subseteq \mathbb{R}^{d}$ open such that

$$
P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X)
$$

is surjective. When is

$$
P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})
$$

surjective, too, where $P^{+}\left(\xi_{1}, \ldots, \xi_{d+1}\right)=P\left(\xi_{1}, \ldots, \xi_{d}\right)$?
Equivalent formulation: X strongly P-convex $\stackrel{?}{\Rightarrow} X \times \mathbb{R}$ strongly P^{+}-convex

If X is convex then $X \times \mathbb{R}$ is convex, so then "yes".
If P is elliptic, then "yes" due to Vogt (see Theorem 5.1 ii), iii)).
$X P$-convex for supports $\Rightarrow P^{+}(D): C^{\infty}(X \times \mathbb{R}) \rightarrow C^{\infty}(X \times \mathbb{R})$ surjective due to Grothendieck (compare Theorem 5.1 i)), i.e. $X \times \mathbb{R}$ P^{+}-convex for supports

Thus, the question is:
X strongly P-convex $\stackrel{?}{\Rightarrow} X \times \mathbb{R} P^{+}$-convex for singular supports
Conditions for P^{+}-convexity for singular supports from section 3 involve $\sigma_{P^{+}}$. However, $\sigma_{P^{+}}$is not appropriate to evaluate conditions for P^{+}-convexity for singular supports of $X \times \mathbb{R}$ in terms of P and X. To achieve this, we define for a subspace $V \subseteq \mathbb{R}^{d}$

$$
\sigma_{P}^{0}(V):=\inf _{t \geq 1} \inf _{\eta \in \mathbb{R}^{d}} \frac{\frac{\tilde{P}_{V}(\eta, t)}{\tilde{P}}(\eta, t)}{}
$$

recall that $\tilde{P}_{V}(\eta, t)=\sup _{\xi \in V,|\xi| \leq t}|\check{P}(\xi+\eta)|$ and $\tilde{\tilde{P}}(\eta, t)=\tilde{\tilde{P}}_{\mathbb{R}^{d}}(\eta, t)$.
Again we abbreviate

$$
\forall y \in \mathbb{R}^{d} \backslash\{0\}: \sigma_{P}^{0}(y):=\sigma_{P}^{0}(\operatorname{span}\{y\})
$$

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ then $X \times \mathbb{R}$ is P^{+}-convex for singular supports iff $\sigma_{P}^{0}(\xi) \neq 0$ for every $\xi \in \Gamma$.
5.3 Lemma (K., '12)

Let P have principal part P_{m} and let $y \in \mathbb{R}^{d} \backslash\{0\}$.
i) $\sigma_{P}^{0}(y) \leq \sigma_{P}(y)$ and $\forall k \in \mathbb{N}: \sigma_{P^{k}}^{0}(y)=\left(\sigma_{P}^{0}(y)\right)^{k}$.
ii) $\sigma_{P}^{0}(y) \leq \sigma_{P_{m}}^{0}(y)$.

Let $d \geq 3, A(\xi)=\xi_{1}^{2}-\xi_{2}^{2}-\ldots-\xi_{d}^{2} \Rightarrow A\left(e_{d}\right) \neq 0, \sigma_{A}\left(e_{d}\right)=0$ (Here, $d \geq 3$ is needed!)
$\stackrel{i)}{\Rightarrow} \forall k \in \mathbb{N}: \sigma_{A^{k}}^{0}\left(e_{d}\right)=0$
$\stackrel{i i)}{\Rightarrow}$ Each P with principal part $P_{m}=A^{k}$ satisfies $\sigma_{P}^{0}\left(e_{d}\right)=0$ and $P_{m}\left(e_{d}\right) \neq$ 0 .

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ then $X \times \mathbb{R}$ is P^{+}-convex for singular supports iff $\sigma_{P}^{0}(\xi) \neq 0$ for every $\xi \in \Gamma$.
5.3 Lemma (K., '12)

Let P have principal part P_{m} and let $y \in \mathbb{R}^{d} \backslash\{0\}$.
i) $\sigma_{P}^{0}(y) \leq \sigma_{P}(y)$ and $\forall k \in \mathbb{N}: \sigma_{P^{k}}^{0}(y)=\left(\sigma_{P}^{0}(y)\right)^{k}$.
ii) $\sigma_{P}^{0}(y) \leq \sigma_{P_{m}}^{0}(y)$.

Let $d \geq 3, A(\xi)=\xi_{1}^{2}-\xi_{2}^{2}-\ldots-\xi_{d}^{2}$
\Rightarrow Each P with principal part $P_{m}=A^{k}$ satisfies $\sigma_{P}^{0}\left(e_{d}\right)=0$ and $P_{m}\left(e_{d}\right) \neq$ 0.

5.2 Theorem (Exterior Cone Condition III - K., '12)

If Γ is an open convex cone and $X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ then $X \times \mathbb{R}$ is P^{+}-convex for singular supports iff $\sigma_{P}^{0}(\xi) \neq 0$ for every $\xi \in \Gamma$.

5.3 Lemma (K., '12)

Let P have principal part P_{m} and let $y \in \mathbb{R}^{d} \backslash\{0\}$.
i) $\sigma_{P}^{0}(y) \leq \sigma_{P}(y)$ and $\forall k \in \mathbb{N}: \sigma_{P^{k}}^{0}(y)=\left(\sigma_{P}^{0}(y)\right)^{k}$.
ii) $\sigma_{P}^{0}(y) \leq \sigma_{P_{m}}^{0}(y)$.

Let $d \geq 3, A(\xi)=\xi_{1}^{2}-\xi_{2}^{2}-\ldots-\xi_{d}^{2}$
\Rightarrow Each P with principal part $P_{m}=A^{k}$ satisfies $\sigma_{P}^{0}\left(e_{d}\right)=0$ and $P_{m}\left(e_{d}\right) \neq$ 0 .
$\Rightarrow \exists \Gamma \subset \mathbb{R}^{d}$ open proper convex cone, $e_{d} \in \Gamma \forall x \in \Gamma: P_{m}(x) \neq 0$
$X:=\mathbb{R}^{d} \backslash \Gamma^{\circ}$ is P-convex for supports (by 3.5 ii) and $X \times \mathbb{R}$ is not P^{+}-convex for singular supports for every such P.
With $R(\xi)=\left(\xi_{1}^{2}+\ldots+\xi_{d}^{2}\right)^{3}$ set $P(\xi):=A^{4}(\xi)+R(\xi)$. Then P is hypoelliptic so that X is P-convex for singular support. Thus:

5.4 Theorem (K., '12)

For $d \geq 3$ there are hypoelliptic P and open $X \subseteq \mathbb{R}^{d}$ such that $P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X)$ is surjective but $P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})$ is not surjective. In particular, $P(D)$ is surjective on $C^{\infty}(X)$ but not on $C^{\infty}\left(X, \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)\right)$.
$d \geq 3$ is essential here:
5.5 Theorem (K., '12)

For $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$ and $X \subseteq \mathbb{R}^{2}$ tfae:
i) $P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X)$ is surjective.
ii) $P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})$ is surjective.

Positive results for arbitrary dimension:
5.6 Theorem (K., '14)

Let $P(D): \mathscr{D}^{\prime}(X) \rightarrow \mathscr{D}^{\prime}(X)$ be surjective. Then $P^{+}(D): \mathscr{D}^{\prime}(X \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(X \times \mathbb{R})$ is surjective in the following cases.
i) P is parabolic, e.g. the heat operator $P(D)=\partial_{t}-\Delta_{x}$.
ii) P acts along a subspace W and is elliptic as a polynomial on W, e.g. $P(D)=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}$ on \mathbb{R}^{3}.
iii) P factorises into linear factors, i.e.

$$
P(\xi)=\alpha \prod_{j=1}^{k}\left(\left\langle\xi, a_{j}\right\rangle-\beta_{j}\right), \alpha, \beta_{j} \in \mathbb{C}, a_{j} \in \mathbb{C}^{d}
$$

References

- J. Bonet, P. Domański. Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230 (2006), 329-381.
- A. Grothendieck. Produits tensoriels topologique et espaces nucléaires, Mem. Am. Math. Soc. 16, 1955.
- (ALPDO) L. Hörmander. The Analysis of Linear Partial Differential Operators I and II, Springer-Verlag, Berlin, 1983.
- (AFO) W. Kaballo. Aufbaukurs Funktionalanalysis und Operatortheorie, Springer Spektrum, 2014.
- T. Kalmes. Every P-convex subset of \mathbb{R}^{2} is already strongly P-convex. Math. Z. 269 (2011), 721-731.

References continued

- T. Kalmes. Some results on surjectivity of augmented differential operators. J. Math. Anal. Appl. 386 (2012), 125-134.
- T. Kalmes. The augmented operator of a surjective partial differential operator with constant coefficients needs not to be surjective. Bull. London Math. Soc. 44 (2012), 610-614.
- T. Kalmes. Some results on P-convexity and the problem of parameter dependence for solutions of linear partial differential equations. arXiv-Preprint 1408.4356.
- (IFA) R. Meise, D. Vogt. Introduction to Functional Analysis, Clarendon Press, Oxford, 2004.
- D. Vogt. On the solvability of $P(D) f=g$ for vector valued functions. RIMS Kokyoroku 508 (1983), 168-182.

