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In many mathematical models linear partial differential operators show up,
e.g.

A=A, =1 52

(time dependent free Schrodinger operator
%(81 + i)

i=19; (Laplace operator),
O — Ay (Heat operator),
02 — A, (Wave operator),
—10; — Ay )
)

(Cauchy Riemann operator



For general P € C[X1,..., X4 set

P(D) := P(—id,...,—i0q).
Eg A=Py(D)for P(¢) = -1, &
0 — Ay = Py (D) for Py(€1,..., &) = i& + S0, €2
0 — Ay = Py (D) for Py (&1,...,&) = -+ 30,8
—i0h — Ay = Ps(D) for Ps(&1,...,6a) = & + 0, &
For X C R? open and f given, solve P(D)u = f in X.

Possible for every f from a fixed space of functions? " Solution” in which
sense; classical, distributional?



Let P € C[Xy,...,Xq)\{0} and let X C R? be open.
i) When is P(D) : C*°(X) — C*°(X) surjective?
i) When is C>(X) C P(D)(2'(X))?

i) When is P(D) : 2'(X) — 2'(X) surjective?

Answers will depend on combined properties of P and X.



Example:

X = ((0,2) X (—4,4)) U ((—1, 1) x (—4, —2)) U ((—1, 1) x (2,4))

2
Pi(&1,&2) = i1 = Pi(D) = 0y; 4
3 —e (z1,72)
given fe C°°( ) = (1, 22)
IL‘1,ZE2 fl t 1‘2 dt S COO( ) 1
satisfies 81u =f
—1 L 0 2 T1
= Pi(D) : C®(X) — C*°(X) surjective
=
—4




Example:

X::«Q2)x(—&40LJ«—1J)x(—&—QDLJ«—1J)x(Z4D

2
Py(&1,&2) = & = Po(D) = 0y; 4
319 (x1,3)
choose n € C*>(R) with n(t) = 0 for
t¢[-1,1] and [' n(t)dt > 0; set 1
n@2) i g >0

— Tl x
fl@r,z) = 0, if 21 <0 - 2
= f € C°(X); suppose
Ju e CHX): Oou = f; =3 {4 (@1,-3)
for z1 € (0,2) we then have i

u(z1,3) —u(xy, —3) = fi,’ Oou(z1,t)dt

1
= i 1 n(t) dt —z, 0 00

= Py(D) : C1(X) — C°°(X) not surjective



Example:

X = ((0,2) X (—4,4)) U ((—1, 1) x (—4, —2)) U ((—1, 1) x (2,4))

x2
For P(&1,62) = &1 resp. P(&1,&2) = i&s is 4
3
Py (D) : C*(X) — C*°(X) surjective,
1
Py(D) : CH(X) — C*(X) not surjective.
-1 |0 2 1
Is it possible to "see” this without
calculation? What about P»(D) if we B
allow for more general solutions

of Po(D)u = f, f € C*°(X), than —4
u € CHX)?






X C R% open, K € X(:& K C X compact), [ € Ny

|- llx : C(X) = [0,00), f—= sup sup |[0°f(z)]

a€eNg lal<lzeK

defines a seminorm on C*°(X).
(fr)nen € C®(X)N converges to f € C®(X) &

VK € X,1€No: lim [|fy = fllx =0

This convergence can be described by a metric on C°°(X) which is
complete; we denote by &(X) the space C°°(X) equipped with this
notion of convergence.



For M C R? we set 2(M) := {p € C®°(R%); suppy C M compact},
where supp p = {x € RY; () # 0}; 2(M) is a subspace of C=(R?).

(Vn)nen € 2(M)N converges to p € (M) &
- limy, 00 0 = @ in E(RY),
- dK @ M : Upensupp pn, Usuppp C K

For every non-compact M, this convergence cannot be described by a
metric on Z(M) but by a (locally convex) topology which is complete;
from now on we always equip Z(M) with the above notion of convergence.

For open X C R the "inclusion” i : Z(X) < &(X), 0 — ¢|x is
continuous, has dense range; thus, every continuous u : &(X) — C
induces continuous u : Z(X) — C, and u uniquely determined by u|4(x).



For X C R? open we define
72'(X ) = {u: 2(X) — C; u linear, continuous}
&'(X) :=A{u:&(X) — C; u linear, continuous}
.@’(X),@‘”"(X) are vector spaces, u € 2'(X) is called a distribution on X

By the previous slide:
éa/(X) — _@,(X),’LL = U|g(X)

is well-defined, obviously linear, and one-to-one.



2.1 Proposition

a) For linear u : £(X) — C tfae:

i) ue é'(X),

i) 3K € X,1eNo,C >0V f e &X): [u()| < Clfllx.
b) For linear u : Z(X) — C tfae:

i) ue 2'(X),

i) VK € X31eNy,C>0Vpe 2(K): |u(e) <Clelk-

Notation: (u, ) := u(yp)

If in b) ii) I € Ny may be chosen independently of K € X then u is of
finite order and

ord(u) := min{l € No; VK € X3C > 0¥y € Z(K) : |u(e)| < Cllollix}

is called order of u; Z.(X) := {u € 2'(X); ord(u) < oo} is a subspace of
2'(X) with &'(X) € Z5:(X).




Examples:

i) For fe Ll (X)

loc

uf: 2(X) = C,p— /X f(@)p(z)dx

is a well-defined linear mapping, VK € X,p € Z(K):

(g, )] < /K F(@)p(a)|de < /K f(@)ldx

= uy € 7'(X), ord(uy) = 0.
Recall the "Fundamental lemma of calculus of variations”:

VieLl (X): Vpe2(X /f z)dr =0= f=0)

= the linear mapping L. (X) — 2'(X), f + uy is one-to-one
: we can/W|II erte f instead of the distribution uy, i.e.

= Jx f(@)p(x) de



Examples continued:

ii) For every regular, resp. complex, measure p on the Borel-o-algebra
over X

u,: 2(X) = C,p— /X o(x)du(x)

is a well-defined linear mapping, VK € X, 9 € 2(K) :

[(ups @) < (Kl ello.x

= uy, € 72'(X), ord(u,) = 0.
By the Riesz-Markov Theorem, p +— u,, is one-to-one, so we write p
instead of w,,.

Concrete example: u=0,,z € X



Examples continued:

iii) o surface measure on S, f € Ll(0) with [¢u, f(w) do(w) = 0.
For ¢ € 2(RY) we have:

- pla) Ty, pla) —p0) oz,
lig /ggx EEA T L B U AP I

where the last integral exists due to [p(z) — ©(0)] < [|[V@|loolx]
(polar coordinates, Lebesgue's Theorem, ...)

By the same argument: V¢ € 2(K) where K C B0, R]:

(|d) (|$|)da:\ < R/sd—l | f(w)|do (W)l

| lim
eJ0 e<|z| |£C

= <Up(\iﬁ|7df(ﬁ)),so> = limg o f€<|$| et f(|x|)dx defines a
distribution on R? of order 1; these are kernels of classical singular

integral operators, e.g. Hilbert transform on R (f(w) = sign(w)),
Riesz operators (f(w) = wj,1,...,d).



X CReopen, M C X = 2(M) C 2(X) subspace
For u € 2'(X) we set | := ujg(ar) the restriction of u to M

u € 2'(X) vanishes in M & v =0, ie. Yo € D(M): (u,0) =0
suppu:={r € X; AV C X open, z € V : upy = 0}

is called support of u.For f € C(X) it holds

suppuy = {w € X; [(x) 0}

For u € 2'(X) we have
@ suppu is a closed subset of X (by definition)
e X\suppu is the largest open subset of X where u vanishes, i.e.

Voe P(X): (supppNsuppu=0= (u,p) =0)

2.2 Theorem
For X C R? open we have &'(X) = {u € 2'(R%); suppu C X compact}. J




For h € &(X) and 1 < j < d the operators
mp: 2(X) = 2(X), o hpand 0j : 2(X) = 2(X), o — 0jp
are well-defined, linear, and continuous.

For arbitrary ¢ € Z(X) we have

VieLL(X): (hf.y / h(a )dz = (f,ma(p))
and if f € CH(X)(C L}

loc

0,1, / 9, (2)p(x)dz = — /X (@05 0(x)dz = —(f,050).

(X)) integration by parts gives

For arbitrary u € 2'(X) we define (hu, ¢) := (u, mp(p)) and
(Oju, ) = —(u,0jp) = hu,0ju € 2'(X) and u — hu,u — Oju are
linear.

For P € C[X},...,X4] it follows P(D)u € 9'(X) and
(P(D)u,¢) = (u, P(D)p), where P(¢) = P(~£).



2.3 Proposition

For h € £(X) and P € C[Xy,..., Xq4] the following hold.
i) YVue 2'(X) : supp (hu) € supph Nsuppu and ord (hu) < ord u.
i) Vue 2'(X) : supp P(D)u C suppu and if P of degree m then
ord (P(D)u) < ordu + m.
i) P(D): 2'(X) — 2'(X),u— P(D) is a linear mapping with
P(D)(&'(X)) € €'(X) and P(D)(Zp(X)) € Zp(X).




Examples:
i) For the Heaviside function Y = 1 (g o) we have for p € Z(R)

Y, 0) = (¥, ) = — / " (@) = 9(0) = (50, 0)

i) X C R? be open with C'-boundary. For ¢ € 2'(R%):

O1lx. ) = / e / v; (@) p(w)do(w) = (~vj0, @),

with v(w) = (v1(w), ..., vq(w)) denoting the outer unit normal in
w € 0X and o the surface measure on 0.X.

For m € Ny we define the local Sobolev space of order m over X as

Hit(X) ={f € Li(X); V]a| <m: 0°f € L (X))}

loc

which is a subspace of Z},(X).



~ differential equations for distributions or in any subspace E of 2'(

like, e.g. £(X), H™(X), L (X), Z5(X):

loc

given arbitrary f € E is there u € 2'(X) (resp. u € E) with P(D)u =

ie.

Voe 2(X): (f,p) = (P(D)u,p)( = (u, P(=D)p))?
2.4 Theorem (Malgrange, 1955, see ALPDO |II, Section 10.6)

For open X C R? and P € C[Xy,..., X ] tfae:
i) P(D):&(X)— &(X) is surjective.
i) Vfed(X)Iue 2'(X): P(D)u=f.
i) P(D): Z2p(X) = 25(X) is surjective.
iv) Vfe H'(X)3ue H(X): P(D)u=f.
)

v) Yu € &(X) : dist(supp P(—D)u, X¢) = dist(supp u, X°).

X)

f

Inv) "Vu e & (X)" can be replaced by "Vu € 2(X)".




Given P € C[Xy,...,X4)\{0}. X is called P-convex for supports iff
Vu e &'(X): dist(supp P(—D)u, X¢) = dist(supp u, X°).
Recall: supp P(—D)u C suppu, thus we always have
Vu e &'(X) : dist(supp P(—D)u, X°) > dist(supp u, X).
Consequence of " Theorem of Supports”:
Vu e & (RY) : conv(suppu) = conv(supp P(—D)u),
which implies: every convex open set X C R? is P-convex for supports.

If (X,).er is a family of open sets which are P-convex for supports then
int((,e; X.) is P-convex for supports, too.



Geometrical conditions for/characterisation of P-convexity for supports?
Problem: not a local property!

Every open X C R? is P-convex for supports iff P is elliptic, i.e. if
P(g) == Z|a|§m aafa then

Ve e RA{0};0 # P(€) == Z an&® (principal part of P)
|a|=m

If P acts along a subspace of R% and is elliptic there, then P-convexity for
supports is completely characterized (Nakane, 1979).
For polynomials with principal part P»(§) = &3 — Z?;ll 5]2- P-convexity for
supports is completely characterized (Persson, 1981).
For P of real principal type there are characterizations if

- X is bounded and 90X is analytic (Tintarev, 1988)

- X C R3 (Tintarev, 1992)

For d = 2 P-convexity for supports is completely characterized
(Hormander, 1971).



When is P(D)(2'(X)) = 2'(X)? Unfortunately, P-convexity for supports
of X is not enough!
Idea (Hormander): Because P(D)(& (X)) C &(X), iff

- &(X)C P(D)(Z'(X)) (& X P-convex for supports)

- P(D) surjective on 2'(X)/&(X)
For open V C X CR? and u € 2'(X), we say that u is smooth in
Vie uyy € £(V), ie

Afe&V)Vee 2(V / f(z

singsuppu := {x € X; AV C X open, x € V : u smooth in V}
is called singular support of u.

Foru € 2'(X),h € £(X), and P # 0 we have
@ singsuppu is a closed subset of X (by definition)
e X\singsuppu is the largest open subset of X where u is smooth
@ singsuppu C suppw and singsupp (hu) C supp h N sing supp
@ singsupp P(D)u C singsuppu



2.5 Theorem (Hoérmander, 1962, see ALPDO Section 10.7)

For open X C R? we have 2'(X)/&(X) = P(D)(2'(X)/& (X)) iff X
P-convex for singular supports, i.e.

Vu € &(X) : dist(singsupp P(—D)u, X°) = dist(sing supp u, X°).

Because sing supp P(—D)u C singsupp u we always have
dist(sing supp P(—D)u, X¢) > dist(sing supp u, X°).

Consequence of " Theorem of Singular Supports”:
Vue &' (RY, P +#0: conv(singsuppu) = conv(sing supp P(—D)u),
which implies: every convex open set X C R? is P-convex for singular

supports.

If (X,).er is a family of open sets which are P-convex for singular supports
then int((1,c; X.) is P-convex for singular supports, too.

X strongly P-convex :< X P-convex for supports and singular supports



Geometric conditions for/characterisation of P-convexity for singular
supports?

Problem: not a local property!
Every open X C R? is P-convex for singular supports iff P is hypoelliptic,
i.e.

VX C R? open,u € 2'(X) : singsupp P(D)u = singsupp u

(e.g. elliptic and parabolic operators are hypoelliptic)
Algebraic characterisation of hypoellipticity of P (Hormander, 1955):

(a)
Va#0: lim P (5)20,

geRd Je| w00 P(§)

thus P hypoelliptic < P hypoelliptic

For d = 2 P-convexity for singular supports is completely characterized
(K., '10).






X P-convex for (singular) supports <
Vu e &' (X) : dist((sing) supp P(—D)u, X¢) = dist((sing) supp u, X)

What can we say about the location of (sing) supp u if we know
(sing) supp P(—D)u?
X
conv((sing) supp P(—D)u)
= conv/((sing) supp u)

(sing) supp P( 2 (sing) suppu



X P-convex for (singular) supports <
Vu e &(X) : dist((sing) supp P(—D)u, X¢) = dist((sing) supp u, X)

What can we say about the location of (sing) supp u if we know
(sing) supp P(—D)u?

X
conv((sing) supp P(—D)u)
= conv/((sing) supp u)

(sing) supp P(



A hyperplane H = {z € R%; (2, N) =4} (N € S 1,y € R) is called
characteristic for P if Pp,(N) = 0 (P, principal part of P).

3.1 Theorem (Hormander, 1955, see ALPDO |, Theorem 8.6.7)

Let H = {x € R% (N,z) =~} be a characteristic hyperplane for P. Then

there is f € &(R%) with supp f = {z € R%; (2, N) < v} and

P(-D)f =0.

X

f as above for v = (N, zg), x € 2(RY) with
suppx = B(z0,2¢),x =1 in B(xg,e),u:= xf

suppu = B(xg, 2e) N {x; (2, N) <~}
supp P(=D)u C (suppu)\B(zo,¢)

= X not P-convex for supports



A hyperplane H = {z € R%; (2, N) =4} (N € S 1,y € R) is called
characteristic for P if Pp,(N) = 0 (P, principal part of P).

3.1 Theorem (Hormander, 1955, see ALPDO |, Theorem 8.6.7)

Let H = {x € R% (N,z) =~} be a characteristic hyperplane for P. Then
there is f € &(R%) with supp f = {z € R%; (2, N) < v} and
P(-D)f =0.

X

g : X — R satisfies the minimum principle in a closed subset C' of R? if
for every compact set K C C'N X we have inf,cx g(z) = infy, x g(z).
We set dy : X — R,z — dist(x, X¢), the boundary distance of X.



3.2 Corollary (Hérmander, 1971, see ALPDO Il, Theorem 10.8.1)

If X is P-convex for supports then dx satisfies the minimum principle in
every characteristic hyperplane for P.

For d = 2 this necessary condition is also sufficient:

3.3 Theorem (Hormander, 1971, see ALPDO II, Theorem 10.8.3)

Let X C R? be open and connected, P € C[X1, X3]. Tfae:
i) X is P-convex for supports.

i) dx satisfies the minimum principle in every characteristic hyperplane
for P.

2
Pyi(&1,&) =& = Pi(D) =01
characteristic hyperplanes are parallels to x1-axis
T xX
Py(&1,8&2) = i€a = Po(D) = 02 '
characteristic hyperplanes are parallels to x2-axis




We now come to sufficient conditions for P-convexity for supports for

arbitrary d. A starting point is a unique continuation result due to
Hormander:

3.4 Theorem (Hormander, 1955, see ALPDO |, Theorem 8.6.8)

Let X; € Xo C R? be open and convex. Tfae:
i) Vv e 2'(X2),P(-D)v=0: (vx, =0=v=0)

ii) Every characteristic hyperplane for P which intersects X9 already
intersects X;.

v =y, satisfies P(=D)v =0
and vjx, =0

H = {z € R% (x, N) = a} with
Po(N)=0




We now come to sufficient conditions for P-convexity for supports for

arbitrary d. A starting point is a unique continuation result due to
Hormander:

3.4 Theorem (Hormander, 1955, see ALPDO |, Theorem 8.6.8)

Let X; € Xo C R? be open and convex. Tfae:
i) Vv e 2'(X2),P(-D)v=0: (vx, =0=v=0)

ii) Every characteristic hyperplane for P which intersects X9 already
intersects X;.

v =y, satisfies P(=D)v =0
and vjx, =0

H = {z € R% (x, N) = a} with
Po(N)=0




Let () # I' € R? be an open convex cone and

its dual cone.

°:={cREVz el : (z,6) >0}

I'° is a closed, proper, convex cone

Conversely: Every closed proper convex cone C' is
the dual cone of a unique open convex cone

From now on always ) #T' #R? = 0 ¢ T
and T° ¢ (R, {0}}



3.5 Theorem (Exterior Cone Condition | - K., '12)

Let P € C[X},..., Xy4] with principal part P,,.

i) X is P-convex for supports if for every x € X there is an open
convex cone I' € R? such that

(x+T°)NX =0and P,(§) #0VE e T.

ii) If T is an open convex cone and X := R%\I'® then X is P-convex for
supports iff P, (§) # 0 for every £ € T,




As another sufficient condition for P-convexity for supports we have:
3.6 Theorem (K., '14)

Let {0} # W C R? be a subspace such that dyx satisfies the minimum
principle in every affine subspace parallel to .
If {¢ € RY; Po(€) = 0} € W+ then X is P-convex for supports.

The above condition easily implies that for every elliptic P each open
X C R?is P-convex for supports (take W = R9).

3.7 Corollary (K., '14)

If {¢ € RY; P,(€) = 0} is a one-dimensional subspace then X is P-convex
for supports iff dx satisfies the minimum principle in in every characteristic
hyperplane for P.

Applicable to the free Schrodinger operator —i0;, — A, and parabolic
operators, i.e. P(§) = Q(&1,...,&4-1) + &g with elliptic
Q € (C[Xl, R 7Xd71]: e.g. O — A



We now consider P-convexity for singular supports of X, i.e. conditions for
V&'(X) : dist(singsupp P(—D)u, X¢) = dist(sing supp u, X)
(">" always holds).

Some preparations have to be made: for ¢ € C? we define
ec 1 RY = C,z - e H®O (where (z,¢) = Za:JCJ

and for u € &'(R%)
F(u):=10:C? = C,¢— ulee)

the Fourier-Laplace transform of u which is a entire analytic function.



3.8 Theorem (Paley-Wiener-Schwartz, 1952, see ALPDO |, Theorem
7.3.1)

@i is an entire analytic function for each u € &'(R%).
i) If u € &'(RY) satisfies suppu C B[0, R] then

AN €Ny, C >0V (¢ eC: |a(Q)] < C(1 + |¢|)NeRlImd]

(one can choose N = ord(u)). Conversely, every entire analytic
function satisfying an estimate like the above is the Fourier-Laplace
transform of a distribution with support in B0, R].

i) If u € 2(RY) satisfies suppu C B[0, R] then
VN €Ng3C >0V(¢eC?: |a(¢)] < C(1 + |¢|)~NeRlmdl,
Conversely, every entire analytic function satisfying estimates like the

above is the Fourier-Laplace transform of a test function with support
in B0, R].




Fix u € & (X)(C &'(R?)). For every ¢ € P(X \singsupp P(—D)u),
n € RY:

<6nP(—D)’U,7 QO) 7 |n|—oc 0.
Thus, in 2'(X \singsupp P(—D)u),

P.(D) =
0= lim #(P(n,l)enu).
= Py, 1)
Y (k) kens iy o0 5] = 003 (i ien = 3 limysee Pk, ey, u in
2'(RY) (limit = 0 in R¥\sing supp u)
. ) Py (9 )
V (01 ) ken, img o0 (7] = 00 3 (g, )1en + 3 limy00 15(]:; 5= Q(&) in
l7
Cl[X1,...,X4], Q invariant under some non-trivial subspace V' C R4 j.e.

VezeV,eeRY: Q6+ ) =Q(E)

so - if ) does not have a constant term - every w € &' (R?) depending
only on variables from V1 satisfies Q(D)w = 0

~~ plausibility /conjecture: to every such V Jw € &'(R?) :

P(—=D)w € &(R%) and singsuppw = V- N suppw



How to recognize these V7?7 3
@ non-constant = 00 = lim 00 (0, ) (= im0 sUPje <4 |Q(E)]) while

Qv (0,t) :== SUPgev o<t |Q(z + 0)] = |Q(0)| by definition of V/
For suitable (7, )nen tending to infinity:

t>1 Q(O t) t>1 n—00 P(nn7t)
> inf liminf M

t>1 n—oo P( ) !

where Py (1, t) = supgey,g1<; | P(€ + 1)
Hoérmander: For V' C R¢ subspace define

P
op(V) = inf liminf ————+ (. )
t>1 n—oo P( )

Abbreviation: ¥y € R?: op(y) = op(span{y})



3.9 Theorem (Hormander, 1972, see ALPDO I, Theorem 11.3.1)

Let V C RY be a subspace with op(V) = 0. Then there is u € 2'(R?)
with P(—D)u = 0 and singsuppu = V+.

Like Theorem 3.1 is used to prove Corollary 3.2 the above theorem gives a
necessary condition for P-convexity for singular supports:

3.10 Corollary (Hormander, 1972, see ALPDO II, Corollary 11.3.2)

Let V C R? be a subspace with op(V) = 0. If X is P-convex for singular
supports then dx satisfies the minimum principle in every affine subspace
parallel to V.

This necessary condition is also sufficient for d = 2:
3.11 Theorem (K., '11)
Let X C R? be open and connected, P € C[X1, X»]. Tfae:

i) X is P-convex for singular supports.

ii) dx satisfies the minimum principle in every hyperplane
H = {x € R% (x, N) = v} with op(N) = 0.




op can also be used to give sufficient conditions for P-convexity for
singular supports for arbitrary d.

3.12 Theorem (Exterior Cone Condition Il - K., '12)
Let P € (C[Xl, 500 ,Xd].
i) X is P-convex for singular supports if for every x € 90X there is an
open convex cone I' C R? such that

(x4+T°)NX =0and op(§) A0VE €T

ii) If T'is an open convex cone and X := RA\I™® then X is P-convex for
singular supports iff op(€) # 0 for every £ € T




4. Interlude: Some Functional Analysis
General references: IFA and AFO




E be a vector space over K € {R,C}

a) A family of seminorms &7 is called directed if

Vp,ge dre P :p<randqg<r.

b) A locally convex space (Ics for short) is a pair (E, &) consisting of a
vector space F over K and a directed family of seminorms Z.

c) Alcs (E,2) is called separated if

Vo e E\{0}3dpe Z :p(x) > 0.



(E,2) lcs, U C E is called open (in (£, Z)) &
VeeUdpe P,e >0: By(z,e) CU,
where By (z,¢) :={y € E; p(x —y) < e}
Since & is a directed family of seminorms
{UCE;Uopenin (E,Z2)}

is stable under finite intersections (and obviously under arbitrary unions)
and thus a topology on E (B)(z,€) convex ~» "locally convex") which is
Hausdorff iff (E, &) is separated,

EXE—E (r,y)—rz+yand Kx F— E (\x)— \x

are both continuous



Examples:

a) Every normed space is a separated Ics.

b) For X C RY open P :={|| - |l1.; | € No, K € X} is a directed
family of seminorms on C*°(X). (Recall that

[fllxg = sup  sup|9”f(z)]).
aeNg |a|<lzeK

This (separated) Ics is denoted by &'(X).

c) X CR%open, K € X, f € O(X) we set || f||x := sup,ex | f(z)].
Then Z.:={|| - ||x; K € X} is a directed family of seminorms
making C(X) a (separated) Ics.



(E,Z) be alecs Py C & is called fundamental system of seminorms iff

Vge P3dpe Py, C >0Vx € E: q(x) < Cp(x)

(E, 2) is called Fréchet space :< (E, &) is separated, there is a
countable fundamental sequence of seminorms, and (E, &) is
(sequentially) complete, i.e. every Cauchy sequence converges

Examples:

a) Every Banach space is a Fréchet space.

b) (E, Z) Fréchet space, F' C E closed subspace = (F, &) Fréchet
space.

¢) (Kn)nen, compact exhaustion of X C R open = {|| - ||ln.x, ;7 € No}
is a countable fundamental system of seminorms for & (X) and
{Il * [[n,kn;m € No} for (C(X), Z.). Both Ics are Fréchet spaces.



A linear T': Ey — E between Ics (Eq, &71) and (Eq, &) is continuous iff
Vg€ Podpe P,C>0Vzx € Ey: q(Tx) < Cp(x).

L(E, Es) :={T : Ey — E3; linear and continuous}.

Dual space of the Ics (E, &)
E' :=(E,2) :={u: E — K; u linear, continuous}

u: E — K linear belongs to E’ iff

dpe Z,C >0Vx € E: |u(z) < Cp(x).



We want to make (E, 22) into a lcs. B C E is called bounded iff

Vpe Z: supp(x) < oo.
zeB

For bounded B, pp : E' — R, u — sup,cp |u(z)| is a well-defined
seminorm and
b(E', E) := {pp; B C E bounded}

is a directed family of seminorms on E’.
The lcs (E',b(E', E)) is called strong dual of E.

For a normed space (E, || - ||) a fundamental system of seminorms for
b(E', E) is {|| - [lop} with [[ullop = supjjz<1 [u(z)].



5. Vector valued distributions and differential operators




Although we do not give a directed family of seminorms for Z(X)
explicitly, there is a unique way to turn Z(X) into a (reasonable)
separated, complete Ics. For a lcs (E, Z?) alinear T': 2(X) — E'is
continuous iff

(x)Vge VK € X3l e Ny, C>0Vp e D(K): q(Te) <Cllolix-
Y CR" open, T:Y — 2'(X),y — T, continuous :&
Voe 2(X): MT)(¢):Y = Coy—(Ty, )

is continuous. With (x) and 2.1 b): \(T) € L(2(X),(C(Y), Z.)).

A is an isomorphism between {T": Y — 2'(X); T continuous} and
L(2(X),(C(Y), 2.)).

Moreover, for continuous 7' : Y — 2'(X) we also have that
P(D)T:Y — 9'(X),y — P(D)T,

is continuous with A(P(D)T')(¢) = AN(T)(P(—D)¢p).



For general Ics E instead of C(Y') we define 2'(X,E) := L(2(X), E)
E-valued distributions over X C R% and

P(D):2'(X,E) = 2'(X,E), (P(D)T)(¢) :=T(P(—D)p).

For E a space of functions the problem of surjectivity of P(D) on
2'(X, E) translates to the corresponding problem of parameter
dependence: for each f, in 2’'(X) depending on the parameter y as the
functions in E, is there a solution u, of P(D)u, = f, depending in the
same way on y (e.g. B € {C(Y),C>®(Y),...})?

We also consider the question of surjectivity of P(D) on C*°(X, E).

We restrict ourselves to E being a Fréchet space or the strong dual of a
Fréchet space.



A Fréchet space E has property (DN) (E € (DN)) iff there is a
fundamental system of seminorms {py; k € N} with

VE>2Vz € E: pp(2)? < pp_1(2)pry1(2).
p1 is then a norm on E (so-called dominating norm)
Banach spaces have (DN)

The space of rapidly decreasing sequences
S —{ﬁ—($n)neN€C VEeN: pp(z Z’wnP 2k<oo}

with the sequence of seminorms (py)xen is a Fréchet space with (DN) (by
Holder).

Spaces linearly homeomorphic to s: C5°(R?), H(C), C*(X) (X C R*
open, bounded, C'-boundary), 2(K) (K € R%), .7 (R%)



5.1 Theorem
Let X C Rd,P S (C[Xl,...,Xd],P+(§1,...,§d+1) = P(fl,...,gd)

i) (Grothendieck, 1955) X be P-convex for supports and E be a
Fréchet space. Then P(D) : C®(X, E) — C®(X, E) is surjective.

i) (Vogt, 1983) P be elliptic and E = F’ the strong dual of a Fréchet
space F'. Then P(D) : C>®(X,FE) — C>*(X, E) is surjective iff
F € (DN).

iii) (Vogt, 1983 + Bonet, Domariski '06) P be hypoelliptic, X P-convex
for supports, and E = F” the strong dual of a Fréchet space
F € (DN). Then P(D) : C®(X, E) - C®(X, E) is surjective if
PH(D): 2'(X xR) = 2'(X x R) is surjective. This condition is
also necessary for F' = s.

iv) (Bonet, Domanski, '06) X be strongly P-convex and E = F’ be the
strong dual of a Fréchet space F' = closed subspace of s. Then
P(D): 9'(X,E) — 9'(X, E) is surjective if this is true for
PH(D): 2/(X xR) = 2'(X x R).




Given P € C[X1,...,X,4] and X C R? open such that
P(D): 9'(X) = 2'(X)
is surjective. When is
PT(D): 2'(X xR) —» Z2'(X x R)
surjective, too, where PT(&1,...,&411) = P(&1,...,&4)?

R
Equivalent formulation: X strongly P-convex = X X R strongly
PT-convex

If X is convex then X x R is convex, so then "yes".

If P is elliptic, then "yes" due to Vogt (see Theorem 5.1 ii), iii)).



X P-convex for supports = PT (D) : C®(X x R) - C>®(X x R)
surjective due to Grothendieck (compare Theorem 5.1 i)), i.e. X x R
PT-convex for supports

Thus, the question is:
”
X strongly P-convex = X x R P*-convex for singular supports

Conditions for PT-convexity for singular supports from section 3 involve
op+. However, op+ is not appropriate to evaluate conditions for

P~ -convexity for singular supports of X x R in terms of P and X. To
achieve this, we define for a subspace V' C R4

P
0% (V) := inf inf }/(n’ ),
ek B, 1)

recall that Py (n,t) = SUDgcv¢|<t |P(& +n)| and P(n,t) = Pga(n,t).
Again we abbreviate

Vy € R\{0} : 0P (y) := op(span{y}).



5.2 Theorem (Exterior Cone Condition Il - K., '12)

If T is an open convex cone and X := R\I'® then X x R is P*-convex
for singular supports iff 0%(&) # 0 for every £ € T

5.3 Lemma (K., '12)
Let P have principal part P, and let y € R%\{0}.
) 0%(y) <op(y) and VE e N: 0%, (y) = (oD (y))".
i) op(y) < op, (y).
Letd >3, A(6) =&7— & —...— &%= Aleq) # 0,04(eq) = 0 (Here, d > 3
is needed!)
Ly eN: 0%, (eq) =0

% Each P with principal part P, = A* satisfies 0% (e4) = 0 and Py, (eq) #
0.

v
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for singular supports iff 0%(&) # 0 for every £ € T

5.3 Lemma (K., '12)

Let P have principal part P, and let y € R%\{0}.
i) op(y) <op(y) and Vk € N: 03,(y) = (o3 (y)".
i) op(y) < op, ().
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5.2 Theorem (Exterior Cone Condition Il - K., '12)

If T is an open convex cone and X := R\I'® then X x R is P*-convex
for singular supports iff 0%(&) # 0 for every £ € T

5.3 Lemma (K., '12)

Let P have principal part P, and let y € R%\{0}.
i) op(y) <op(y) and Vk e N: 0, (y) = (op(y))".
i) o%(y) < 0% ().

Let d >3, A(&) =& — & —... — &

= Each P with principal part P, = A" satisfies 0%(e4) = 0 and Py, (eq) #
0.

= 3T C R open proper convex cone,eq € 'V € T': Py, (x) # 0

X :=RNI* is P-convex for supports (by 3.5 i) and X xR is not P*-convex
for singular supports for every such P.

With R(¢) = (& + ...+ €2)3 set P(¢) := A*(¢) + R(€). Then P is
hypoelliptic so that X is P-convex for singular support. Thus:



5.4 Theorem (K., '12)

For d > 3 there are hypoelliptic P and open X C R? such that

P(D): 9'(X) — 2'(X) is surjective but

PT(D): 2'(X xR) = 2'(X x R) is not surjective. In particular, P(D)
is surjective on C*°(X) but not on C*°(X,.7'(R™)).

d > 3 is essential here:

5.5 Theorem (K., '12)
For P € C[X1, X3] and X C R? tfae:
i) P(D): 2'(X) — 2'(X) is surjective.
i) PT(D): 2'(X xR) — 2'(X x R) is surjective.




Positive results for arbitrary dimension:

5.6 Theorem (K., '14)
Let P(D): 2'(X) — 2'(X) be surjective. Then
PT(D): 2'(X xR) = 2'(X x R) is surjective in the following cases.

i) P is parabolic, e.g. the heat operator P(D) = 0; — A,.

ii) P acts along a subspace W and is elliptic as a polynomial on W, e.g.

2 2
P(D) = 5’75 - 3673 on R3.
iii) P factorises into linear factors, i.e.

P(&) = alli_ (€, a;) — Bj), @, B; € C,a; € CY.




References

@ J. Bonet, P. Domariski. Parameter dependence of solutions of differential
equations on spaces of distributions and the splitting of short exact
sequences. J. Funct. Anal. 230 (2006), 329-381.

@ A. Grothendieck. Produits tensoriels topologique et espaces nucléaires,
Mem. Am. Math. Soc. 16, 1955.

o (ALPDO) L. Hérmander. The Analysis of Linear Partial Differential
Operators | and II, Springer-Verlag, Berlin, 1983.

o (AFO) W. Kaballo. Aufbaukurs Funktionalanalysis und Operatortheorie,
Springer Spektrum, 2014,

@ T. Kalmes. Every P-convex subset of R? is already strongly P-convex.
Math. Z. 269 (2011), 721-731.



References continued

@ T. Kalmes. Some results on surjectivity of augmented differential operators.
J. Math. Anal. Appl. 386 (2012), 125-134.

@ T. Kalmes. The augmented operator of a surjective partial differential
operator with constant coefficients needs not to be surjective. Bull. London
Math. Soc. 44 (2012), 610-614.

@ T. Kalmes. Some results on P-convexity and the problem of parameter
dependence for solutions of linear partial differential equations.
arXiv-Preprint 1408.4356.

@ (IFA) R. Meise, D. Vogt. Introduction to Functional Analysis, Clarendon
Press, Oxford, 2004.

@ D. Vogt. On the solvability of P(D)f = g for vector valued functions. RIMS
Kokyoroku 508 (1983), 168-182.





