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A nonlinear heat equation

Now, the time t comes into play. Let us consider a standard uncontrolled 1D
semilinear parabolic equation for the temperature y = y(x , t) with initial and
boundary conditions.

1D semilinear parabolic problem

∂y
∂t
− ∂2y
∂x2 +

1
3

y3 = 0 (x , t) ∈ (0,L)× (0,T )

y(x ,0) = y0(x), x ∈ (0,L)

∂y
∂x

(0, t) = 0,
∂y
∂x

(L, t) = 0, t ∈ (0,T ).

For L = 20, we test the following initial function y0:

y0(x) =

{
1.2
√

3, x ∈ [9,11]
0, else.

We shall later write
∂y
∂t

=: yt
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Distribution of heat

Video: Uncontrolled state function y

The temperature decreases to
a small constant value. We do
not observe any wave type
behavior.

Because the equation
is parabolic?

Notice: Throughout the handout of the slides, the videos cannot be played, you see
only their first snapshot.

Fredi Tröltzsch (TU Berlin) Optimal Control September 2016 5 / 74



A Schlögl model (Nagumo equation)

Consider now a slightly changed semilinear heat equation with the same initial
and boundary conditions as above. The term −y essentially changes the
behavior!

A special 1D Schlögl model

∂y
∂t
− ∂2y
∂x2 +

1
3

y3−y = 0, (x , t) ∈ (0,L)× (0,T ).

F. Schlögl,
A characteristic critical quantity in nonequilibrium phase transitions
Z. Phys. B – Condensed Matter (1983).

The associated elliptic equation 0 = −yxx + 1
3 y3−y has 3 constant

solutions (fixed points)
y(x) ≡ −

√
3, 0,

√
3.

Notice that the nonlinearity y 7→ y3 − y is not a monotone function.
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Propagating wave fronts

We consider the same initial function y0 as above for the Schlögl model.

Video: Propagating fronts A different visualization
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The N-dimensional Schlögl model
We consider the equation in Q := Ω× (0,T ), where Ω ⊂ RN , N ≥ 1, is a
bounded Lipschitz domain with boundary Γ; n is the outward unit normal vector.

yt −∆ y + R(y) = u in Q

∂ny = 0 in Γ× (0,T )

y(x ,0) = y0(x) in Ω

with reaction term

R = ρ (y − y1)(y − y2)(y − y3), ρ > 0, yi ∈ R.

In the next numerical examples we have N = 1, Ω = (0, L), and R = 1
3 y3 − y = 1

3 (y +
√

3) y (y −
√

3).

Important property
There is some R0 ∈ R such that

R′(y) ≥ R0 ∀y ∈ R.
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Weak solutions of the Schlögl model

→W 0,1
2 (Q), W 1,1

2 (Q)

Definition (Weak solution)

A function y ∈W 0,1
2 (Q) ∩ L∞(Q) is said to be a weak solution of the Schlögl

model above, if

−
∫

Q
y vt dxdt +

∫
Q
∇xy ·∇xv dxdt +

∫
Q

R(y)v dxdt =

∫
Ω

y0 v(0) dx +

∫
Q

u v dxdt

holds for all v ∈W 1,1
2 (Q) with v(T ) = 0.

The existence and uniqueness of a unique weak solution can be shown.

However, this concept does not yet fit to the needs of optimal control. Here, the
test function must belong to W 1,1

2 (Q). Later, an adjoint state must be inserted
as test function. And this adjoint state only has the same regularity as y .

Fortunately enough, one can prove that y and p belong to W (0,T ).

Fredi Tröltzsch (TU Berlin) Optimal Control September 2016 9 / 74



Well-posedness of the Schlögl model

Definition (W (0,T ))

W (0,T ) = {y ∈ L2(0,T ; H1(Ω)) :
∂y
∂t
∈ L2(0,T ; H1(Ω)′)},

where ∂y/∂t is defined in the sense of vector-valued distributions.

Theorem (Existence and uniqueness)

To each control u ∈ Lp(Q), p > N/2 + 1, there exists a unique weak
solution yu ∈W (0,T ) ∩ L∞(Q) that obeys yu ∈ C(Ω̄× (0,T ]).

If y0 is continuous in Ω̄, then the solution yu is continuous in Q.

The mapping G : u 7→ yu is of class C∞.
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Main idea of the proof

It holds
R′(y) ≥ R0.

We take η > |R0|, perform the well known transformation y(x , t) = eηtv(x , t)

⇒ ∂

∂t
(eηtv(x , t)) = η eηtv(x , t) + eηt ∂

∂t
v(x , t)

and we get the equation

vt −∆v + e−ηtR(eηtv)+η v︸ ︷︷ ︸
monotone

= e−ηtu.

This is an equation with a monotone nonlinearity. Now we follow E. Casas,
SICON 1998, or J.P. Raymond and H. Zidani, SICON 1999; or my AMS-book,
Thm. 5.5
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Optimal control problem

min J(y ,u) :=
1
2

∫
Q

(y(x , t)− yQ(x , t))2 dxdt +
ν

2

∫
Q

u2(x , t) dxdt

(ν > 0 fixed) subject to

yt −∆ y + R(y) = u

∂ny = 0

y(·,0) = y0,

u ∈ Uad := {u ∈ L2(Q) : α ≤ u(x , t) ≤ β for a.a. (x , t) ∈ Q}.

This problem has at least one optimal solution.

Notice
Without control constraints, for ν = 0 the existence of an optimal solution is not
guaranteed. If ν > 0, this does not happen provided that N ≤ 2. Otherwise we need
control bounds. In computations, we take ν ∼ 10−5 . . . 10−8.
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Natural wave front

Uncontrolled, i.e. for u = 0, the nonnegative initial function y0 below generates
the ”natural” propagating front ynat shown in the right-hand side.

y0(x) =

{
1.2
√

3, x ∈ [9,11]
0, else.
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Re-routing

Our goal is to re-route this expanding wave front.

Video: Desired front yQ
Different visualization
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Re-routing of a propagating front

We applied the nonlinear cg method by Hestenes and Stiefel with the
Hager-Zhang step-size rule.

Desired state yQ Optimal state ȳ
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Associated optimal control
The control is acting just in the places, where the traveling wave front has to be
pushed. This somehow confirms our intuition.

Optimal control ū

To implement the nonlinear cg method, we needed the reduced gradient, i.e.
the gradient of the reduced functional. Let us discuss now the theory for this.
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The Lagrangian function

Now, the equation is parabolic. It is not obvious, how the adjoint equation
should look like. Let us employ our formal Lagrangian technique to derive it.

Definition (Lagrangian function)

L(y ,u,p) := J(y ,u)−
∫

Q
(yt −∆y + R(y)− u) p dxdt

−
∫

Σ

∂ny ps dsdt −
∫

Ω

(y(0)− y0)p0 dx

with multiplier functions p, ps, p0.

The adjoint equation is obtained by ∂yL(y ,u,p) = 0, i.e. by

∂yL(y ,u,p) v = 0 ′′∀′′ v .

Here, we vary with respect to all ”sufficiently smooth” v .
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Derivation of the adjoint equation

0 = ∂yL(y ,u,p) v =

∫
Q

(y − yQ) v dx −
∫

Q
(vt −∆v + R′(y) v) p dxdt

−
∫

Σ

∂nv ps dsdt −
∫

Ω

v(0) p0 dx .

First, we perform an integration by parts w.r. to t and x

0 =

∫
Q

(y − yQ) v dx −
∫

Ω

v(T )p(T )− v(0) p(0) dx +

∫
Σ

(p ∂nv − v ∂np)dsdx

−
∫

Q
v (−pt −∆p + R′(y)p) dxdt −

∫
Ω

v(0)p0 dx −
∫

Σ

∂nv ps dsdt .

Now, we vary w.r. to all v with ∂nv = v = 0 on Σ and v(0) = v(T ) = 0 in Ω,

0 =

∫
Q

[
y − yQ − (−pt −∆p + R′(y)p)

]
v dxdt ∀ v ,

hence
−pt −∆p + R′(y)p = y − yQ in Q.

This is the adjoint partial differential equation.
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Derivation of the adjoint equation

Now, we allow also v(T) to vary freely, while ∂nv = v = 0 on Σ and v(0) = 0
are still required. This gives

p(T ) = 0.

Next, also v(0) can vary freely,

0 =

∫
Ω

v(0)(p0 − p(0)) dx ⇒ p0 = p(0).

Now, also v is allowed to be arbitrary on Σ, hence

∂np = 0 on Σ.

Finally, ∂nv is not required to vanish. We find

ps = p|Σ.
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Adjoint equation and reduced gradient
Summarizing, we have obtained the

Adjoint equation
−pt −∆ p + R′(y) p = y − yQ

∂np = 0

p(·,T ) = 0.

This is a well-posed backward parabolic equation (it can be transformed to a
standard forward equation by the transformation t̃ := T − t).

Analogously to the elliptic control problem we set:

Definition (Reduced objective functional)

f (u) :=
1
2

∫
Q
|yu − yQ |2 +

ν

2
u2 dxdt .

The mapping G : u 7→ yu is Fréchet differentiable in L∞(Q), the same holds
true for f . What is the expression for the derivative?
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The reduced gradient

Again, completely analogous to the elliptic case, one can show that

f ′(u)v =

∫
Q

(yu − yQ) z dxdt +

∫
Q

u v dxdt ,

where z is the solution of the linearized state equation

zt −∆ z + R′(y) z = v

∂nz = 0

z(·,0) = 0.

This is a quite implicit representation of f ′(u). To tickle out the increment v in
the first term, we need the adjoint state p. After some work, we find

f ′(u)v =

∫
Q

(p(x , t) + νu(x , t)) v(x , t) dxdt .
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Reduced gradient

It turns out that the linear functional f ′(u) can be extended continuously from
L∞(Q) to the Hilbert space L2(Q). Thanks to the Riesz representation
theorem, we know that f ′(u) can be identified with a function of L2(Q). This
function is the reduced gradient. The representation from the last slide shows

Reduced gradient
The reduced gradient f ′(u) is given by the function d ∈ L2(Q),

d(x , t) := p(x , t) + νu(x , t).

In the space L∞(Q), located in the point u, the reduced gradient points in the
direction of steepest ascent of f . Hence −d points in the direction of steepest
descent.
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The gradient method
We briefly sketch the gradient method for the unconstrained case, i.e. for

Uad = L∞(Q).

Continuous version of the gradient method:

1 Set k = 0; fix ε > 0, fix u0 ∈ L∞(Q).

2 Solve the Schlögl equation to find yk

3 Insert y := yk in the adjoint equation and compute pk

4 Set dk := −(pk + ν uk )

5 Find a suitable stepsize sk > 0
6 New iterate

uk+1(x , t) = uk (x , t)− sk [pk (x , t) + ν uk (x , t)].

7 If ‖dk‖L2(Q) < ε, then STOP

8 k := k + 1, goto (1)
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Necessary optimality conditions for ū

In principle, the structure of the necessary optimality conditions is the same as
for the case of the semilinear elliptic control problem. But the associated
analysis is more demanding. We just state them without proof.

Theorem
Let ū be optimal for the control problem above. Then there exists an adjoint
state p̄ ∈W (0,T ) ∩ L∞(Q) (solving the adjoint equation above with ȳ = yū
inserted) such that the variational inequality∫

Q
(p̄(x , t) + ν ū(x , t))(u(x , t)− ū(x , t)) dxdt ≥ 0 ∀u ∈ Uad

is satisfied.
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Recall the Schlögl model

We consider again the

State equation
yt −∆y + R(y) = u in Q

∂ny = 0 in Γ× (0,T )

y(x ,0) = y0(x) in Ω.

with
R(y) = ρ (y − y1) (y − y2) (y − y3).

From now on, we have Ω ⊂ RN , N ≤ 3.
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Optimal control problem

min
u∈Uad

J(u) := I(u) + µ j(u)

where

I(u) := quadratic tracking type functional (next slide)

j(u):=

∫
Q
|u(x , t)|dxdt = ‖u‖L1(Q), µ ≥ 0, notice: nondifferentiable!

Uad := {u ∈ L∞(Q) | u(x , t) ∈ [α, β] for a.a. (x , t) ∈ Q}

Assume α < 0 < β. Special case: α = −β, i.e. |u(x , t)| ≤ β.

Sparsity
By the term µ j(u), the optimal control becomes sparse. The larger µ is, the
smaller is the support of the optimal control ū.
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A standard tracking type functional

I(u) :=
1
2

∫
Q

cQ(x , t) (yu(x , t)− yQ(x , t))2 dxdt

+
ν

2

∫
Q

u2(x , t) dxdt with ν > 0

and a nonnegative bounded coefficient function cQ .

They are chosen positive (say = 1) in the regions, where we are interested in
approaching yQ or yT and zero in the other regions.
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Some references on sparse controls

G. Stadler

Elliptic optimal control problems with L1-control cost and applications for the placement of control devices,
Computational Optimization and Applications (2009)

E. Casas, R. Herzog, G. Wachsmuth

Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functional,
SIAM Journal on Optimization (2012)

R. Herzog, G. Stadler, G. Wachsmuth
Directional sparsity in optimal control of partial differential equations,
SIAM Journal on Control and Optimization (2012)

E. Casas, C. Clason, K. Kunisch
Approximation of elliptic control problems in measure spaces with sparse solutions,
SIAM Journal on Control and Optimization (2012)

E. Casas, R. Herzog, G. Wachsmuth
Analysis of sparse optimal control problems of semilinear parabolic equations,
In preparation

E. Casas, C. Clason, K. Kunisch
Parabolic control problems in measure spaces with sparse solutions,
SIAM Journal on Control and Optimization (2013)
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Sparsity in a nutshell
Explanation for a very simple optimization problem in R.

Optimization problem

min
{1

2
(u − yd )2 +

ν

2
u2 + µ |u|

}
subject to − 1 ≤ u ≤ 1.

The problem has a unique solution ū. Assume that µ is large and ū > 0. Then

|ū| = ū ⇒ |ū|′ = 1.

Variational inequality

[ū − yd + ν ū + µ](u − ū) ≥ 0 ∀u ∈ [−1,1],

hence

ū = −1, if ū − yd + ν ū + µ > 0, i.e. if µ is large enough.

Therefore ū = −1 contradicting ū > 0. Analogously, we cannot have ū < 0,
hence ū = 0 follows for all sufficiently large µ.
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The subdifferential

Assume that U is a real Banach space with dual space U ′ (space of all linear
and continuous functionals on U), and let φ : U → R is a proper convex
functional.

Definition (Subdifferential)
Let u ∈ U be fixed. The subdifferential ∂φ(u) ⊂ U ′ is the set

∂φ(u) = {λ ∈ U ′ : φ(v) ≥ φ(u) + 〈λ , v − u〉U′,U ∀v ∈ U.

Example 1:

U = U ′ = R, φ : u 7→ |u|:

∂φ(u) =

 {1}, u > 0
[−1,1], u = 0
{−1}, u < 0.
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The subdifferential

Example 2:

U = L1(Q), U ′ = L∞(Q), φ : u 7→ ‖u‖L1(Q):

∂φ(u) = {λ ∈ L∞(Q) satisfying a.e. the conditions below}

λ(x , t) ∈

 {1}, u(x , t) > 0
[−1,1], u(x , t) = 0
{−1} u(x , t) < 0.

Then∫
Q
|v(x , t)|dxdt ≥

∫
Q
|u(x , t)|dxdt+

∫
Q
λ(x , t)(v(x , t)−u(x , t)) dxdt ∀v ∈ L1(Q).
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Necessary optimality conditions

In what follows, let us denote the adjoint state by ϕ instead of p. This even
improves the forme parallel use of the integrability index p and the adjoint state
p(·).

Theorem (Necessary optimality conditions)
If ū is a local solution to the optimal control problem, then there exists a unique
adjoint state ϕ̄ ∈W (0,T ) such that, with λ̄ ∈ ∂j(ū) ⊂ L∞(Q),∫

Q

(
ϕ̄(x , t) + ν ū(x , t) + µ λ̄(x , t)

)
(u(x , t)− ū(x , t)) dxdt ≥ 0 ∀u ∈ Uad .
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Sparsity

Theorem
For almost all (x , t) ∈ Q,

ū(x , t) = 0 iff |ϕ̄(x , t)| ≤ µ,

λ̄(x , t) = P[−1,1]

{
−1
µ
ϕ̄(x , t)

}
.

Proof: Long and tricky.

The first relation expresses the effects of sparsity.

The second is used for updating the conjugate gradient in the nonlinear
projected cg method. This is remarkable, since λ̄ is uniquely determined
here.
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Example: Turning a wave front

R(y) = y(y − 0.25)(y + 1) Example and Computations:

Ω = (0,70)× (0,70) Christopher Ryll (TU Berlin)

141× 141 node points in Ω

y0(x) :=

(
1 + exp

(
70
3 −x1√

2

))−1

+

(
1 + exp

(
x1− 140

3√
2

))−1

− 1

Uncontrolled, the wave fronts

expand in left and right

x1-direction and cover

the whole spatial domain

after t ∼ 65.

Initial state y0.
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Desired trajectory

Desired trajectory yQ at time instants

t = 20 t = 40 t = 60

This desired turning trajectory is implemented in the objective functional
as yQ, cQ = 1.
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Turning a wave, optimal control

µ = 0 video
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Turning a wave, sparse optimal control

µ = 1, video sparse control
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Reference

E. Casas, C. Ryll, F. T.
Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems
Computational Methods in Applied Mathematics 13 (2014), 415–442
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The FitzHugh-Nagumo model

This model consists of two PDEs, the equation for the activator and the
inhibitor. It plays an important role in neurobiology and is known to generate
wave fronts (1D), spiral waves (2D), or scroll rings (3D).

FitzHugh-Nagumo equations
yt (x , t)−∆y(x , t) + R (y(x , t)) + z(x , t) = u(x , t) in Q

∂ny(x , t) = 0 in ΣT

y(x ,0) = y0(x) in Ω

zt (x , t) + β z(x , t)− γ y(x , t) + δ = 0 in Q

z(x ,0) = z0(x) in Ω.

Nonlinearity

R(y) = ρ (y − y1)(y − y2)(y − y3), ρ > 0
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Some references

R. FitzHugh
Impulses and physiological states in theoretical models of nerve membrane,
Biophys. Journal (1961)

A. J. V. Brandão, E. Fernández-Cara, P. M. D. Paulo, M. A. Rojas-Medar
Theoretical analysis and control results for the FitzHugh-Nagumo equation,
Electron. J. Differential Equations (2008)

Kunisch, K., Wang, L.
Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise
control constraints
J. Math. Anal. Appl. 395, 2012

E. Casas, C. Ryll, F. Tröltzsch
Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems
Computational Methods in Applied Mathematics 13 (2014), 415–442
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FitzHugh-Nagumo model

FitzHugh-Nagumo equations
yt (x , t)−∆y(x , t) + R (y(x , t)) + z(x , t) = u(x , t) in Q

∂ny(x , t) = 0 in ΣT

y(x ,0) = y0(x) in Ω

zt (x , t) + β z(x , t)− γ y(x , t) + δ = 0 in Q

z(x ,0) = z0(x) in Ω.

R(y) = ρ (y − y1)(y − y2)(y − y3).

Simplification
To simplify the presentation, assume z0 = 0, δ = 0.

• Assumption: Ω ⊂ Rn, n ≤ 3, bounded Lipschitz domain
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Transformation to an integro-differential equation

zt (x , t) + β z(x , t)− y(x , t) = 0 in Q

z(x ,0) = 0 in Ω.

=⇒ z(x , t) =

∫ t

0
e−β(t−s) y(x , s)ds = (K y) (x , t),

with

(K y)(x , t) =

∫ t

0
e−β(t−s)y(x , s)ds.
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Transformation to an integro-differential equation
We insert the expression for z in the PDE for y ,

yt −∆y + R(y) + K y = u.

Since R is not monotone, we apply the same trick as for the Schlögl model,

y(x , t) := eη t v(x , t)

with sufficiently large η > 0:

∂

∂t
v −∆v + e−η tR(eη tv) + ηv + Kη v = e−η tu

(Kη v) (x , t) :=

∫ t

0
e−(β+η)(t−s) v(x , s)ds.

An important property
”Kη is small for large η”. This means that the monotone term η v dominates Kη
for sufficiently large η.

Fredi Tröltzsch (TU Berlin) Optimal Control September 2016 48 / 74



A priori estimate for v
The parameter η is taken sufficiently large to

make the operator Kη small and

to get a monotone nonlinearity.

We write the parabolic PDE in the form

∂

∂t
v −∆v + e−η tR

(
eη tv

)
+
η

3
v︸ ︷︷ ︸

Rη(t,v), monotone

+
η

3
v︸︷︷︸

additional

coercivity

+
(η

3
v + Kηv

)
︸ ︷︷ ︸

”positive”

= e−η tu.

Therefore, in energy estimates, this PDE behaves like the semilinear equation
with monotone nonlinearity

∂

∂t
v −∆v + Rη(t , v) +

η

3
v = e−η tu.

Now there come L2- and L∞ a priori estimates to find out, in which ball we
should find a solution.
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Existence and uniqueness

Theorem
For all η ≥ η0, u ∈ Lp(Q) with p > 5/2, and y0 ∈ L∞(Ω), the integro-differential
system has a unique solution v ∈W (0,T ) ∩ L∞(Q) ∩ C

(
Ω× (0,T ]

)
. There is

a constant C∞ > 0 such that

‖v‖L∞(Q) + ‖v‖W (0,T ) ≤ C∞
(
‖u‖Lp(Q) + ‖y0‖L∞(Ω) + |R(0)|

)
.
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Main idea of the proof – fixed point principle

For given w ∈ L2(Q), we consider the semilinear equation

∂

∂t
v −∆v + R̂η(t , v)︸ ︷︷ ︸

cut−off−fct.

+
2
3
η v = u − Kηw︸ ︷︷ ︸

∈L2(Q)

subject to v(·,0) = y0 and ∂νv = 0 which has a unique solution
v ∈W (0,T ).

Let
F : L2(Q)→ L2(Q), F : w 7→ v .

By our L2-a-priori estimate, we can fix

M := C2

(
‖u‖L2(Q) + ‖y0‖L2(Ω) + |R(0)|

)
and can find the solution in the L2-ball with radius 2M centered at 0,

‖w‖L2(Q) ≤ 2 M.

We show F : B2M(0)→ B2M(0) in L2(Q).
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Steps of the proof

By W (0,T ) ⊂⊂ L2(Q), F is compact.

Schauder’s theorem: F has a fixed point v ∈ B2M(0).

v solves the integro-differential system with the cutoff R̂η.

L∞−a priori estimate⇒ R̂η(v) = Rη(v).

Uniqueness is standard. �

Fredi Tröltzsch (TU Berlin) Optimal Control September 2016 52 / 74



Existence and uniqueness

Theorem (Existence and uniqueness)
For all η ≥ η0, u ∈ Lp(Q) with p > 5/2, and y0 ∈ L∞(Ω), the FitzHugh-Nagumo
system has a unique solution (yu, zu) ∈ (W (0,T ) ∩ L∞(Q) ∩ C

(
Ω× (0,T ]

)
)2.

There is a constant C∞ > 0 such that

max{‖y‖L∞(Q) , ‖y‖W (0,T ) , ‖z‖L∞(Q) , ‖z‖W (0,T )}
≤ C∞ {‖u‖Lp(Q) + ‖y0‖L∞(Ω) + |R(0)|}.

E. Casas, C. Ryll, F. Tröltzsch

Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems

Computational Methods in Applied Mathematics 13 (2014), 415–442
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Differentiability of the control-to-state mapping

Similarly, we prove the differentiability of the control-to-state mapping.

Theorem (Differentiability)
The solution mapping G : u 7→ (yu, zu) associated with the FitzHugh-Nagumo
system is of class C2 from Lp(Q), p > 5/2, to(
W (0,T ) ∩ L∞(Q) ∩ C(Ω× (0,T ])

)2
. The derivative (yh, zh) := G′(u)h is equal

to the pair (y , z) solving the system

∂

∂t
y −∆y + R′(yu)y + z = h in Q

∂ny = 0 in ΣT

y(x ,0) = 0 in Ω

∂

∂t
z + β z − γ y = 0 in Q

z(x ,0) = 0 in Ω.
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Adjoint system

For completeness, let us mention also the adjoint system for a pair of adjoint
states (ϕ1, ϕ2) ∈W (0,T )×W (0,T )

Adjoint system

− ∂

∂t
ϕ1 −∆ϕ1 + R′(y)ϕ1 − γ ϕ2 = cY

Q (y − yQ) in Q

∂nϕ1 = 0 in ΣT

ϕ1(x ,T ) = cY
T (x) (y(x ,T )− yT (x)) in Ω

− ∂

∂t
ϕ2 + β ϕ2 + ϕ1 = cZ

Q (z − zQ) in Q

ϕ2(x ,T ) = cZ
T (x) (z(x ,T )− zT (x)) in Ω.
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Sparse optimal control of the FitzHugh-Nagumo system
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Optimal control problem

min
u∈Uad

J(u) := I(u) + µ j(u)

where

I(u) := quadratic tracking type functional (next slide)

j(u) :=

∫
Q
|u(x , t)|dxdt , µ ≥ 0

Uad := {u ∈ L∞(Q) | u(x , t) ∈ [α, β] for a.a. (x , t) ∈ Q}

Assume α < 0 < β.

Sparsity
By the term µ j(u), the optimal control becomes again sparse.
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Quadratic functional

I(u) :=
1
2

∫
Q

cy
Q(x , t) (yu(x , t)− yd (x , t))2 dxdt

+
1
2

∫
Q

cz
Q(x , t) (zu(x , t)− zd (x , t))2 dxdt

+
ν

2

∫
Q

u2(x , t) dxdt with ν > 0

and nonnegative bounded and measurable coefficient functions cy
Q , cz

Q .

More general functionals can also be discussed.
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Necessary optimality conditions

Lemma (Variational inequality)
If (ȳ , z̄, ū) is a local solution to the optimal control problem, then there exists
λ̄ ∈ ∂j(ū) such that

I′(ū)(u − ū) +

∫
Q
µ λ̄(x , t)(u(x , t)− ū(x , t)) dxdt ≥ 0 ∀u ∈ Uad .

Theorem (Necessary optimality conditions)
If ū is a local solution to the optimal control problem, then there exists a unique
pair of adjoint states (ϕ̄1, ϕ̄2) ∈W (0,T )2 such that, with λ̄ ∈ µ∂j(ū)∫

Q

(
ϕ̄1(x , t) + ν ū(x , t) + µ λ̄(x , t)

)
(u(x , t)− ū(x , t)) dxdt ≥ 0 ∀u ∈ Uad .
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Sparsity

After a detailed pointwise discussion of the necessary optimality conditions, we
find the following

Theorem
For almost all (x , t) ∈ Q,

ū(x , t) = 0 iff |ϕ̄1(x , t)| ≤ µ,

λ̄(x , t) = P[−1,1]

{
−1
µ
ϕ̄1(x , t)

}
.

The first relation expresses the effects of sparsity.

The second is used to set up the conjugate gradient in the nonlinear
projected cg method for solving the optimal control problem.
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Computational examples

Exciting a spiral wave
Let Ω be rectangular and u = 1 close to the bottom boundary of Ω in a certain short
period of time and u = 0 elsewhere. As result, a traveling wave appears that
propagates to the upper boundary of the spatial domain. After a short period of time,
when the wave front is located between the upper and the bottom boundary, we set the
state (y , z) equal to zero in the left half of Ω. Then the wave starts to curl up and forms
a spiral pattern.

Example: Acceleration of a spiral wave

Ω = (−150,150)2, T = 50,

γ = 1/500, δ = 0, β = 1/100,

Constraint |u(x , t)| ≤ 5

R(y) = y(y − 1/20)(y − 1)

Initial state (y0, z0) as in the next figure
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Initial states

The initial spirals were generated by the method explained at the last slide.

Initial state y0 initial state z0
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Desired states

Desired states yQ and zQ

(ynat, znat) := Natural development of (y , z) for u ≡ 0, starting at (y0, z0).

yQ(x , t) := ynat
(
x , 1

5 t2 + t
)
, zQ(x , t) := znat

(
x , 1

5 t2 + t
)
.

The term t2/5 accounts for the acceleration.
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Accelerating spiral waves; videos

µ = 0

µ = 1
3
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Effects of sparsity

A positive parameter µ > 0 causes sparsity of the optimal control and
accelerates the cg method considerably.

Instead of 850 iterations in the case of µ = 0, the CG-method stopped
after only 59 iterations for µ = 1/3.
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Extinction of a spiral wave

Data

Ω = (−120,120)2, T = 2500

γ = 3
400 , y2 = 1

200

Control bounds

|u(x , t)| ≤ 5
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Moving domain of observation; videos

A hint from our physicists:
Control a spiral in its center! (Diploma thesis, Breuer 2006)

We take as observation domain a (moving) circle around the initial center point
of the spiral and move this point to the boundary of Ω.
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Extinction of a spiral wave; videos

µ = 0

µ = 1
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Directional sparsity
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The optimal control problem

min
u∈Uad

J(y ,u) :=
1
2
‖y − yΩ‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) + µ ‖u‖1,2

subject to the Poisson equation with right-hand side u,

Uad := {u ∈ L2(Ω) : α ≤ u(x) ≤ β a.e. in Ω}.

and given yΩ ∈ L2(Ω), ν > 0, µ > 0.

Definition

‖u‖1,2 =

∫
Ω1

(∫
Ω2

u2(x1, x2)dx2

) 1
2

dx1 =

∫
Ω1

‖u(x1, ·)‖L2(Ω2)dx1

Here, the L1-norm w.r. to x1 causes sparsity in the L2-norm w.r. to x2. This
means that, for certain subsets of Ω1, the L2-norm vanishes. The optimal
control forms striped patterns.
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Examples of optimal controls with directional sparsity, copied out of

R. Herzog, G. Stadler, G. Wachsmuth
Directional sparsity in optimal control of partial differential equations,
SIAM Journal on Control and Optimization (2012)
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Annular sparsity
Sparsity by the norm

∫ R

0

(∫ 2π

0
u(r , ϕ)2 dϕ

)1/2

r dr .

Copied out of
R. Herzog, J. Obermeier, G. Wachsmuth

Annular and Sectorial Sparsity in Optimal Control of Elliptic Equations

Computational Optimization and Applications 62, 2015
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Sectorial sparsity
Sparsity by the norm

∫ 2π

0

(∫ R

0
u(r , ϕ)2 r dr

)1/2

dϕ.

Copied out of
R. Herzog, J. Obermeier, G. Wachsmuth

Annular and Sectorial Sparsity in Optimal Control of Elliptic Equations

Computational Optimization and Applications 62, 2015
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