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Abstract

The present thesis considers the problem of reconstructing a function f that is de�ned
on the d-dimensional unit sphere from its mean values along hyperplane sections. In case
of the two-dimensional sphere, these plane sections are circles. In many tomographic
applications, however, only limited data is available. Therefore, one is interested in
the reconstruction of the function f from its mean values with respect to only some
subfamily of all hyperplane sections of the sphere. Compared with the full data case,
the limited data problem is more challenging and raises several questions. The �rst one
is the injectivity, i. e., can any function be uniquely reconstructed from the available
data? Further issues are the stability of the reconstruction, which is closely connected
with a description of the range, as well as the demand for actual inversion methods or
algorithms.

We provide a detailed coverage and answers of these questions for di�erent families
of hyperplane sections of the sphere such as vertical slices, sections with hyperplanes
through a common point and also incomplete great circles. Such reconstruction problems
arise in various practical applications like Compton camera imaging, magnetic resonance
imaging, photoacoustic tomography, Radar imaging or seismic imaging. Furthermore,
we apply our �ndings about spherical means to the cone-beam transform and prove its
singular value decomposition.
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1
Introduction

The reconstruction of an unknown function from indirect measurements plays a key
role in various areas of pure and applied mathematics. Since the second half of the
last century, di�erent imaging modalities have been developed and brought advances in
�elds like medical examinations or nondestructive testing. Mathematically, the main
challenge in many imaging devices is the reconstruction of a function f that is de�ned
on a subset of R3 from measurements

g(L) =

∫︂

L

f(x) dx, (1.1)

along certain submanifolds L of R3, where dx denotes the surface measure on L. The
submanifolds L can be di�erent geometric objects such as lines, planes, circles [And88],
spheres [FPR04, Kun07, Hal11] or cones [TKK18], depending on the imaging modality.

The computerized tomography (CT) is a well-known imaging modality, where one
captures X-ray images of an object, often the human body, from several directions and
reconstructs the object from these images. Cormack [Cor63] won the 1979 Nobel Price in
Medicine for the development of CT. The mathematical model is the Radon transform,
which assigns to a function f : R2 → R de�ned in the Euclidean plane R2 its integrals
along all lines L ⊂ R2, i. e.,

Rf(L) :=
∫︂

L

f(x) dx, (1.2)

where dx denotes the line integral along the line L. The main task in computerized
tomography is to reconstruct the function f from its Radon transform Rf . The trans-
form (1.2) was �rst described in 1917 by Radon [Rad17], who showed an inversion
formula of R. The generalization to hyperplanes in Rd is due to Mader [Mad27].

New imaging modalities give raise to the investigation of Radon-like transforms (1.1)
on other manifolds. In this thesis, we focus on functions f that are de�ned on the unit
sphere Sd−1 := {ξ ∈ Rd ; ∥ξ∥ = 1} and their integrals along hyperplane sections. We
denote the section of the sphere Sd−1 with the hyperplane with normal vector ξ ∈ Sd−1
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1 Introduction

and signed distance t ∈ [−1, 1] to the origin by

C(ξ, t) := {η ∈ Sd−1 ; ξ⊤η = t}.

Any hyperplane section C(ξ, t) is a (d − 2)-dimensional subsphere of Sd−1. In the
practically most relevant case of the two-dimensional sphere S2 ⊂ R3, the plane sec-
tion C(ξ, t) is a circle. We de�ne the mean operator M that integrates a continuous
function f : Sd−1 → C along all sections C(ξ, t) by

Mf(ξ, t) :=

∫︂

C(ξ,t)

f(η) dµ(η), ξ ∈ Sd−1, t ∈ [−1, 1], (1.3)

where dµ denotes the surface measure on C(ξ, t) that is normalized to one.

The reconstruction of a function f from integrals (1.3) along circles of the sphere S2 has
been studied since the early twentieth century in convex geometry to investigate bodies
of constant width [Min05], star bodies [Gro98] or intersection bodies [Gar06, Chapter 8].
This problem also arises in many practical applications such as cone-beam tomography
[Lou16, QHL18], Compton camera imaging [Ter15, Moo17, TKK18], magnetic resonance
imaging [Tuc04], photoacoustic tomography [ZS10, HMS16], Radar imaging [YY11] and
seismic imaging [AMS08]. While our motivation comes from imaging problems on S2,
we consider the general situation Sd−1 for d ≥ 3 in this thesis.

In many applications, we want to reconstruct the function f given limited data of
the mean operator Mf(ξ, t), where (ξ, t) is in some subset D ⊂ Sd−1 × [−1, 1]. Since
f is de�ned on Sd−1, it seems reasonable that also the set D is (d − 1)-dimensional.
However, there are several questions and challenges attached to this problem. Fixing
a set D, which functions f can be uniquely reconstructed from given data Mf on D?
Furthermore, we are interested in a description of the range ofM: Given some function g
on D, does there exist a function f such that g = Mf? In case the reconstruction of f
is possible, we would like to have an inversion formula or algorithm and investigate the
stability of the inverse.

A well-studied case of a restriction of the mean operator M is the Funk�Radon trans-
form

Ff(ξ) := Mf(ξ, 0), ξ ∈ Sd−1, (1.4)

which was originally posted by Funk [Fun11] in 1911, preceding Radon's paper [Rad17]
by six years. The Funk�Radon transform F on the two-dimensional sphere S2 takes the
integrals along all great circles C(ξ, 0). We note that both the lines in R2, which are
used for the Radon transform (1.2), and the great circles of the sphere S2 are geodesics,
i. e., the shortest curves connecting two points.

A powerful tool to investigate such integral operators like the Funk�Radon transform
is provided by the singular value decomposition (SVD). Not only does the SVD allow
for characterizations of the kernel and range of an operator as well as the stability of
the inversion, which becomes less stable as the singular values decay faster; but it also
gives a direct and straightforward approach to compute the inverse numerically. For the
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Funk�Radon transform F on S2, the SVD essentially goes back to Minkowski [Min05];
the spherical harmonics are the eigenfunctions of F . It was used to show that the kernel
of F consists of the odd functions f(ξ) = −f(−ξ). Furthermore, since its singular values
asymptotically decay as n− d−2

2 , the Funk�Radon transform F is a continuous, one-to-one

map from L2
even(Sd−1) to the Sobolev space H

d−2
2

even(Sd−1), see [Str81, Paragraph 4]. This
decay rate implies that the inversion of F is a mildly ill-posed problem.

While many facts about the Funk�Radon transform are well-known, the situation
becomes more di�cult when we turn to other families of circles or hyperplane sections
on the sphere. The main contribution of this thesis is that we characterize those families
for which the restriction of M is injective and that we extend the classical theory of the
Funk�Radon transform F to more general families of circles or hyperplane sections on
the sphere. We prove uniqueness theorems, singular value decompositions and Sobolev
space estimates. In particular, we are interested in the following cases.

Sections through a common point. We consider
the sections of the sphere with all the hyperplanes that
have a common point ζ inside the sphere, i.e., ∥ζ∥ < 1.
Formally, we write for a �xed vector ζ with ∥ζ∥ < 1 the
mean operator Uf(ξ) = Mf(ξ, ξ⊤ζ). This operator
is dubbed the spherical transform or the non-geodesic
Funk transform [Pal17]. If ζ = 0 is the origin, we
obtain the classical Funk�Radon transform F . The
�rst description of this spherical transform as well as
an inversion formula on S2 was shown in [Sal16] and
extended to the d-dimensional case in [Sal17]. They
make use of the stereographic projection to reduce the
problem to a certain circular Radon transform in the equatorial plane R2. It seems worth
mentioning that these inversion formulas avoided the non-injectivity by restricting the
support of the function f .

We establish a geometric connection of the spherical transform with the classical Funk�
Radon transform F . This approach allows us to transfer much of the classical theory to
the spherical transform. In particular, we will show that the nullspace consists of the
functions f on Sd−1 that are odd with respect to the point re�ection in ζ and the multipli-

cation of some weight. Furthermore, the range is the same Sobolev space H
d−2
2

even(Sd−1) as
for the Funk�Radon transform. However, the spherical transform U behaves di�erently
if the common point ζ is located on the sphere, i. e., ∥ζ∥ = 1, which was considered in
[AD93]. Then U is injective for all bounded functions, which was shown via stereographic
projection, see [Hel99, Rub17b].

Vertical slices of the sphere. In the next setting, we restrict the normal vectors ξ ∈
Sd−1 of the hyperplanes to be on the equator ξd = 0 of the sphere. The respective
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1 Introduction

sections C(ξ, t) of such hyperplanes with the sphere are parallel to the ξd�axis. Thus,
the mean operator on these sections is called the vertical slice transform. The study of
this problem is motivated by a setup of photoacoustic tomography [ZS10].

It is rather obvious that only functions f that are
even in the last coordinate could be reconstructed
given the integrals along all vertical slices. We prove
an SVD and show that the vertical slice transform is
indeed injective for functions that are even in the last
coordinate. The asymptotic decay of the singular val-
ues is more elaborate than for those of the Funk�Radon
transform. Nevertheless, we are able to obtain tight
upper and lower bounds. Furthermore, the SVD forms
the basis of a reconstruction scheme, which does not
depend on a projection to the unbounded plane as the
method suggested in [ZS10]. Recently, an alternative
method of showing the SVD has been proposed in [Rub18]: The vertical slices are pro-
jected orthogonally to the equatorial hyperplane, where they become straight lines (or
planes if d > 3), and the integrals along these lines are treated with the Radon transform.
We note that the latter approach on S2 goes back to [GRS94].

More generally, we take a look at what happens if the normal vectors ξ ∈ Sd−1 are on
a di�erent circle of latitude ξd = z of the sphere for some z ∈ (−1, 1), which includes
the vertical slices for z = 0. It turns out that this transform is injective for all except
countably many values of z. In particular, it is non-injective on all zeros of the associated
Legendre functions of dimension d. For a speci�c value of z, however, it is usually not
easy to decide whether this problem is injective. The case that the normal vectors ξ
are in some arbitrary subset S ⊂ Sd−1 was investigated in [AQ96, AVZ99], where it was
shown that the mean operator M restricted to S × [−1, 1] is injective if and only if S is
not contained in the zero set of any spherical harmonic.

Arcs of great circles. In seismic imaging or, more
speci�cally, spherical surface wave tomography, one
has to deal with the integrals along arcs of great
circles instead of full circles of the sphere S2, see
[WD84, AMS08]. Given two distinct points on the
sphere S2, the shortest curve that connects these points
on the sphere is always a great circle arc. If the two
points are not antipodal, the shortest arc connecting
them is unique. Conversely, any great circle arc that
is smaller than a semicircle is determined by its two
endpoints. Hence, the manifold of all great circle arcs
on S2 is four-dimensional. As for the mean opera-
tor M, the inversion problem of the arc transform is overdetermined. However, there
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are only few results about the injectivity of the arc transform when restricted to cer-
tain families of great circle arcs. A result from [Ami07] shows that, from the integrals
along all great circle arcs connecting two subsets of S2, any function can be uniquely
reconstructed on the closure of the two sets. We will further see that any function on
a convex subset of S2 that is contained in a hemisphere is uniquely determined by its
integrals along all great circle arcs connecting two boundary points of this set.

An interesting case is the family of great circle arcs with �xed arc-length, which forms
a three-dimensional manifold. As for the case with full data, we show an SVD that
implies the injectivity of the arc transform with �xed arc-length. If the arc-length is π,
we have the set of all great semicircles. The injectivity of the semicircle transform has
already been proven in [Gro98], where it was used to show a uniqueness result about
half-plane sections of star bodies.

Derivatives perpendicular to hyperplane sections.

Like the classical Funk�Radon transform in (1.4), the
so-called generalized Funk�Radon transform is also
about great circle integrals, but this time we take the
directional derivative ∂

∂ξ
of j-th order, which acts per-

pendicular to the circle of integration. This transform
was de�ned by [Lou16] in the context of cone-beam to-
mography, an equivalent de�nition for j = 1 is due to
[MMÓ00]. We show an SVD of the generalized Funk�
Radon transform, which turns out to be injective only
on the subset of either the even functions or the odd
functions on Sd−1, depending on whether the order j
of the derivative is even or odd, respectively. For j > 0, The singular values decay with
a faster rate than those of the Funk�Radon transform, which is explained by the addi-
tional di�erentiation of f . Formally, the generalized Funk�Radon transform extends to
negative j; for j = −1 we have the hemispherical transform.

The motivation of studying this problem comes from the cone-beam tomography,
where one measures the integrals of a function on the Euclidean space Rd, usually with
compact support, along all rays that start in a certain scanning set. Some reconstruction
formulas for the cone-beam tomography rely on the generalized Funk�Radon transform,
see [Lou16]. Grangeat's formula gives a connection between the cone-beam transform
and the Radon transform. This connection can be expressed as follows: the generalized
Funk�Radon transform applied to the cone-beam transform is exactly a derivative of the
Radon transform of the same function, see (4.5). We will use Grangeat's formula together
with our previous �ndings in order to obtain an SVD of the cone-beam transform, where
the scanning set is the unit sphere and the function is supported inside the unit ball
of Rd.
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1 Introduction

Outline of this thesis

Apart from this introduction, the present thesis is divided into four chapters.

Chapter 2: Harmonic analysis on the sphere and the rotation group

We introduce the fundamental theory of harmonic analysis on the sphere Sd−1 and the
rotation group SO(3). The chapter provides the notation and the essential tools that will
be utilized throughout this thesis. We start with studying the sphere in the framework
of smooth submanifolds of Rd in Section 2.1.1. The spherical harmonics Y k

n,d, which form
an orthonormal basis of polynomials on the sphere Sd−1, are introduced recursively on
the dimension d in Section 2.1.3. Spherical Sobolev spaces give a characterization of
the smoothness of functions de�ned on Sd−1. The respective Sobolev norm is de�ned by
the decay of the spherical Fourier coe�cents or, equivalently, by powers of the Laplace�
Beltrami operator, see Section 2.1.5. We prove the continuity of the multiplication and
the composition operator with a smooth function in the spherical Sobolev spaces in the
Theorems 2.6 and 2.7, respectively. These theorems form generalizations of continuity
results from [IKT13].

On the rotation group SO(3), the role of orthogonal basis polynomials is played by the
rotational harmonics or Wigner D-functions, see Section 2.2. They are closely related
with the spherical harmonics on S2, see (2.65). Moreover, we collect some useful identities
about double factorials and the Gamma function in Section 2.3.

Chapter 3: Circular means on the sphere

This chapter serves the most important part of the present thesis. It starts with the
de�nition and basic properties of the mean operatorM, which maps to a function on the
sphere Sd−1 its mean values along all hyperplane sections. We state a proof of its singular
value decomposition in Theorem 3.4. For S2, it states that MY k

n (ξ, t) = Y k
n (ξ)Pn(t),

where Y k
n is a spherical harmonic of degree n ∈ N0 and Pn is the Legendre polynomial

of degree n.

In Theorem 3.7, we show that every functionMf in the range of the mean operatorM
satis�es the partial di�erential equation (3.13), which constitutes a generalization of
John's equation for the mean operator M. We �nd a description of the range of the
mean operator in terms of Sobolev spaces on the product manifold Sd−1 × (−1, 1) in
Section 3.1.2. The John-type equation (3.13) turns out to provide a condition that is
not only necessary but also su�cient for a function to be in the range of the mean
operator M, provided that the function f is su�ciently smooth with respect to Sobolev
spaces, see Theorem 3.11. In the rest of the chapter, we take a closer look at di�erent
restrictions of the mean operator.

In Section 3.2, we collect some classical results about the Funk�Radon transform F ,
which is the restriction Ff(ξ) = Mf(ξ, 0) to great circles. We state the singular value
decomposition and a Sobolev estimate, which follows from the asymptotic behavior of
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the singular values, in the Theorems 3.12 and 3.13, respectively. These results build
the foundation of di�erent generalizations we consider later on. We provide an overview
about inversion methods of the Funk�Radon transform and explain how the singular
value decomposition is utilized to obtain a computationally e�cient inversion algorithm
in Section 3.2.2. Lastly, in Section 3.2.3, we present di�erent both inner-mathematical
and practical applications of the Funk�Radon transform.

Fixing the second argument of the mean operator M to some value z ∈ [−1, 1], we
arrive at the spherical section transform Tz(ξ) = Mf(ξ, z) in Section 3.3. It takes the
integrals of the function f along all (d − 2)-dimensional subspheres of Sd−1 with the
radius

√
1− z2. The injectivity of this transform depends of course on the value z.

The so-called �Freak Theorem� by Schneider, Proposition 3.19, states that the spherical
section transform Tz is injective for all but countably many values of z ∈ [−1, 1].

In Section 3.4, we come to a variation of the Funk�Radon transform, where we take the
j-th order directional derivative of the function f perpendicular to the great circle along
which we integrate f . Formally, we can write the generalized Funk�Radon transform of
order j ∈ N0 as

S(j)f(ξ) =

∫︂

ξ⊤η=0

(︃
− ∂

∂ξ

)︃j
f(η) dη, ξ ∈ Sd−1,

see (3.31). For j = 0, we have S(0) = F . Apart from this case, the generalized Funk�
Radon transform S(j) is not directly a restriction of the mean operator M. We ob-
tain a singular value decomposition of S(j) in Theorem 3.24. As for the Funk�Radon
transform F , the spherical harmonics are eigenfunctions of S(j). Furthermore, this
transform S(j) is injective on a subset of either the even or the odd functions on Sd−1,
depending on the order j. We show a tight Sobolev estimate for the generalized Funk�
Radon transform S(j) in Theorem 3.26. We point out special cases of j, in which S(j)

coincides with the hemispherical transform for j = −11 or the spherical cosine transform
for j = −2 in Section 3.4.3. The section closes by considering other similarly de�ned
Radon-like transforms that coincide with S(j) in certain situations, see Section 3.4.4.

In Section 3.5, we consider the sections of Sd−1 with hyperplanes whose normal vec-
tors ξ are in a �xed set S ⊂ Sd−1, i.e., we consider the restriction of the mean operatorM
to the set S × [−1, 1]. It is known that this restriction is injective if and only if S is not
contained in the zero set of any spherical harmonic, see Proposition 3.33. We �nd in
Theorem 3.35 that the injectivity of the mean operator on the set S is equivalent to the
question whether the radial functions with centers in S are dense in L2(Sd−1). For the
case that the set S itself is a hyperplane section of Sd−1, we obtain the injectivity for
all but countably many values of the distance in Theorem 3.39, which resembles Schnei-
der's Freak Theorem. If S is the equator {(ξ1, . . . , ξd) ∈ Sd−1 ; ξd = 0}, the respective
circles of integration are vertical slices of the sphere. Formally, we have the vertical
slice transform Vf(σ, t) = Mf((σ0), t) for σ ∈ Sd−2 and t ∈ [−1, 1]. The singular value
decomposition of V is presented in Theorem 3.43. The reconstruction of a function f
from these vertical slices is unique only if f is even with respect to the last coordinate.
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Furthermore, we see in Theorem 3.44 that the singular values of V decay a little slower
than those of the Funk�Radon transform F . Afterwards, we show in Theorem 3.46 that,
with the help of orthogonal projection, the vertical slice transform V can be reduced to
the Radon transform in the equatorial hyperplane. The respective connection of the
inverse problem is given in Theorem 3.47.

In Section 3.6, the circles are obtained by the intersection of the sphere with hyper-
planes that have a common point inside the sphere. Formally, we take for z ∈ (−1, 1)
the common point (0, . . . , 0, z) inside the sphere and write the restriction of the mean
operator

Uzf(ξ) = Mf(ξ, zξd), ξ ∈ Sd−1.

If z = 0, which means that the common point is the origin, we have the classical Funk�
Radon transform F = U0. In Section 3.6.1, we �nd two geometric transformations that
connect Uz with the classical Funk�Radon transform F . Then the transform Uz is fac-
torized into the Funk�Radon transform F and two simple operators that correspond to a
weighted south- or northwards drift on the sphere, respectively, see Theorem 3.58. With
the help of this factorization, we are able to characterize the nullspace of Uz as the set of
functions that are symmetric with respect to the point re�ection in (0, . . . , 0, z) and the
multiplication of some weight, see Theorem 3.60. Furthermore, in Theorem 3.64, we ob-
tain a Sobolev estimate and a description of the range of this operator Uz, which behaves,
up to some constants depending only on z, almost like the Funk�Radon transform F .
Moreover, an inversion formula of Uz is shown in Theorem 3.65 that forms a generaliza-
tion of an inversion formula of the Funk�Radon transform F by Helgason [Hel90].

Chapter 4: Applications

In this chapter, we consider two particular applications of the spherical transforms that
are investigated in the previous chapter. In Section 4.1, we are going to take a look at
the cone-beam transform, which integrates a function de�ned on the Euclidean space Rd

along all rays that start in a certain set. The cone-beam transform provides the math-
ematical background of a common setup in the three-dimensional X-ray computed to-
mography. Grangeat's formula gives a connection of the cone-beam transform with the
generalized Funk�Radon transform S(j) and the Radon transform R, see (4.5). We
utilize the results obtained in Section 3.4 about the transform S(j) in order to show
the singular value decomposition of the cone-beam transform in Theorem 4.4, where
the function is supported on the d-dimensional unit ball with d odd and the sources
are located on the sphere. We present upper and lower bounds of the singular values
in Theorems 4.8 and 4.10, respectively. We state our results for the practically most
relevant case d = 3 in Theorem 4.13.

In the second section, 4.2, we consider the integrals along incomplete great circles
of the two-sphere S2. These integrals play an important role in the modeling of the
spherical surface wave tomography. We call the operator that maps a function f on S2

to its integrals along incomplete great circles the arc transform on the sphere. We show
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the singular value decomposition of the arc transform with full data in Theorem 4.19.
The task of recovering a function f from all great circle arc integrals is overdetermined.
As for the mean operator M, we can think of restrictions of the arc transform that
uniquely determine the function f . In Section 4.2.3, we present two simple cases of
injective restrictions of the arc transform. In Section 4.2.4, we focus on the special
case that only the integrals along certain great circle arcs are known, namely those arcs
having a �xed length. Even from this limited data, it is still possible to recover the
original function on the sphere. We obtain a singular value decomposition for this case
in Theorem 4.22.

Chapter 5: Conclusion

The last chapter summarizes the results of this thesis. Table 5.1 provides a nice overview
about the notation, the injectivity, the range and the singular value decompositions of
all the di�erent restrictions of the mean operator M that we have investigated in the
present thesis.

Publications by the author

Parts of this thesis have already been published in peer-reviewed publications by the
author. Section 3.4 about the generalized Funk�Radon transform contains material
from �rst part of our article [QHL18]. Section 3.6 about the spherical transform contains
material that is submitted for publication [Que18], which forms the continuation and
extension of the article [Que17]. Section 4.1 about the cone-beam transform contains, up
to some editorial changes and additional remarks, material from the second part of our
article [QHL18]. Section 4.2 about integrals along great circles arcs contains, up to some
editorial changes and additional remarks, material from parts of our paper [HPQ18].
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2
Harmonic analysis on the sphere and the rotation

group

In this chapter, we introduce our notation and the fundamental theory of harmonic anal-
ysis on the sphere and the rotation group, which will be utilized throughout this thesis.
We start by reviewing some facts about integration on smooth manifolds with a special
focus on the sphere. In Section 2.1.3, we show an explicit construction of the spheri-
cal harmonics, which form a basis of orthogonal polynomials on the sphere. Spherical
Sobolev spaces, which are covered in Section 2.1.5, give a precise characterization of the
smoothness of functions.

On the rotation group SO(3), the role of orthogonal basis functions is played by the
rotational harmonics, see Section 2.2. Moreover, we collect some formulas about double
factorials and the Gamma function in Section 2.3. We mostly skip the proofs of well-
known results that can be found in the referenced literature.

2.1 Harmonic analysis on the sphere

We are going to summarize some basic facts about harmonic analysis on the sphere as
it can be found, e. g., in [DX13, FGS98, AH12]. We denote with Z the set of integers,
with N the positive integers, with N0 the nonnegative integers, and with R and C the
real and complex numbers, respectively. We denote the unit vectors in Rd with

ϵ1 := (1, 0, . . . , 0)⊤

...
...

ϵd := (0, . . . , 0, 1)⊤.

Then any vector x = (x1, . . . , xd)
⊤ ∈ Rd can be written by its components

x = x1ϵ
1 + · · ·+ xdϵ

d.
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2 Harmonic analysis on the sphere and the rotation group

We de�ne the (d− 1)-dimensional sphere

Sd−1 := {ξ ∈ Rd ; ∥ξ∥ = 1}

as the set of unit vectors ξ = (ξ1, . . . , ξd)
⊤ in the d-dimensional Euclidean space Rd.

Throughout this thesis, we will use bold Greek letters to denote points on the sphere Sd−1.
We will reserve d for the dimension of the Euclidean space and, if not stated otherwise,
we always assume that d ≥ 2. In the case d = 1, the sphere consists only of two points,
S0 = {−1, 1}.

2.1.1 The sphere as a smooth manifold

In order to give a proper meaning of the surface measure on the sphere Sd−1 and on
its subspheres, we will need to introduce some formalism. In this section, we give an
introduction to the notion of a smooth manifold, more precisely, a smooth submanifold
of Rd. This brief introduction follows [Que18] and is based on [AF02].

Let n ∈ N0. We say that a function Rn → Rn is smooth if it has partial derivatives
of arbitrary order. A di�eomorphism is a bijective, smooth function f : Rn → Rn whose
inverse f−1 is also smooth. We denote the derivative or Jacobian of f by

Jf (x) :=

⎛
⎜⎝

∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
...

∂fn(x)
∂x1

· · · ∂fn(x)
∂xn

⎞
⎟⎠ .

Manifolds A subset M ⊂ Rd is called an n-dimensional smooth submanifold without
boundary if for every ξ ∈ M there exists an open neighborhood N(ξ) ⊂ Rd containing
ξ, an open set U ⊂ Rd, and a di�eomorphism m̃ : U → N(ξ) such that

m̃(U ∩ (Rn × {0}d−n)) =M ∩N(ξ).

We denote by m = m̃|V the restriction of such di�eomorphism m to the set V =
U ∩ (Rn×{0}d−n). Then m : V →M is called a map of the manifold M . A map can be
seen as a local parameterization of the manifold. An atlas of the manifold M is a �nite
family

{(mi, Vi) ; i = 1 . . . , l}

consisting of sets Vi ⊂ Rn and maps mi : Vi →M , i = 1, . . . , l, such that the sets mi(Vi)
cover M , i. e.,

l⋃︂

i=1

mi(Vi) =M.
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2.1 Harmonic analysis on the sphere

Tangent space The tangent space TξM of the manifold M at ξ ∈ M is the set of
vectors x ∈ Rd for which there exists a smooth path γ : [0, 1] → M satisfying γ(0) = ξ
and γ′(0) = x. With the help of a map m : V → M , the tangent space Tm(x)M at the
point m(x) ∈M for x ∈ V is expressed as the range of the Jacobian Jm, i. e.,

Tm(x)M = range Jm(x) = {Jm(x)y ; y ∈ Rn}.

The last equation does not depend on the choice of the map m. The tangent space
TξM of an n-dimensional manifold M is a linear subspace of Rd with dimension n. The
tangent space of the d-dimensional Euclidean space Rd is TxRd = Rd for any x ∈ Rd.

In order to de�ne integrals of di�erential forms, we have to discuss the orientation
of the tangent space. In the Euclidean space Rn, we use the canonical orientation:
we say that a basis [v1, . . . ,vn] of Rn has a positive orientation if det(v1, . . . ,vn) is
positive. Note that the latter condition already implies that the vectors vi are linearly
independent. With the help of a mapm, we can push the orientation of Rn to the tangent
space of a manifold M . We set that [Jmv1, . . . , Jmv

n] of TξM has positive orientation
with respect to the map m if [v1, . . . ,vn] has positive orientation in Rn. We call an atlas
{mi : Vi →M}li=1 an orientation of the manifold M if for each point ξ ∈M , every map
mi with ξ ∈ mi(Vi) gives the same orientation of the tangent space TξM .

Forms A k-form ω on the manifoldM is a family (ωξ)ξ∈M of antisymmetric multilinear
functionals

ωξ : (TξM)k → R,
where (TξM)k = TξM × · · · × TξM . We call the functional ωξ antisymmetric if for any
v1, . . . ,vk ∈ TξM and i, j = 1, . . . , k, we have

ωξ(v
1, . . .vi, . . . ,vj, . . . ,vk) = −ωξ(v

1, . . .vj, . . . ,vi, . . . ,vk),

and multilinear if all coordinate functions

TξM ∋ x ↦→ ωξ(v
1, . . .vi−1,x,vi+1, . . . ,vk)

are linear.

Let f : M → N be a smooth mapping between the manifolds M and N and let ω be
a k-form on N . The pullback of the form ω with respect to f is the k-form f ∗(ω) on M
that is de�ned for any v1, . . . ,vk ∈ TξM by

(f ∗(ω))ξ([v
i]ki=1) := ωf(ξ)

(︄[︃
d

dt
f ◦ γi(t)

⃓⃓
⃓⃓
t=0

]︃k

i=1

)︄
,

where γi : [0, 1] → M are smooth paths satisfying γi(0) = ξ and γ′i(0) = vi. If the
smooth function f : Rd → Rd extends to the surrounding space Rd, the pullback of ω
can be expressed with the Jacobian Jf as

(f ∗(ω))ξ([v
i]ki=1) = ωf(ξ)([Jf v

i]ki=1). (2.1)
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2 Harmonic analysis on the sphere and the rotation group

On an n-dimensional manifoldM , there exists only one n-form up to the multiplication
of a constant real number depending only on ξ ∈ M . Let e1, . . . , en be a positively
oriented, orthonormal basis of the tangent space TξM . Then the volume form dM is
de�ned as the unique n-form on M satisfying

(dM)ξ(e
1, . . . , en) = 1.

For the volume form (dM)ξ at the point ξ ∈M , we also write dM(ξ). The volume form
on the Euclidean space Rd is then just the determinant, i. e., at any point x ∈ Rd, we
have for v1, . . . ,vd ∈ TxRd = Rd

dRd(x)(v1, . . . ,vd) = det(v1, . . . ,vd).

A set {φi}li=1 of functions φi ∈ C∞(M) is a partition of unity of the manifold M
with respect to the oriented atlas {mi : Vi → M}li=1 if supp(φi) ⊂ mi(Vi) for all i and∑︁l

i=1 φi ≡ 1 on M . Then the integral of a k-form ω on M is de�ned as

∫︂

M

ω :=
l∑︂

i=1

∫︂

Vi

m∗
i (φi · ω) =

l∑︂

i=1

∫︂

Vi

ci dRn,

where the latter is the standard volume integral dRn on Vi ⊂ Rn and the functions
ci : Vi → R are uniquely determined by the condition m∗

i (φi · ω) = ci dRn.

Let f : M → N = f(M) be a di�eomorphism between the n-dimensional manifolds
M and f(M), and let ω be an n-form on N . Then the substitution rule [Jän01, page 94]
holds, ∫︂

f(M)

ω =

∫︂

M

f ∗(ω). (2.2)

The volume form on the sphere Let d ≥ 2. The (d − 1)-dimensional unit sphere
Sd−1 is a (d− 1)-dimensional manifold in Rd with tangent space

TξSd−1 = {x ∈ Rd ; ⟨ξ,x⟩ = 0}
for ξ ∈ Sd−1. We choose an orientation on Sd−1 by saying that a basis [x1, . . . ,xd−1] of
the tangent space TξSd−1 is oriented positively if

det[ξ,x1, . . . ,xd−1] > 0. (2.3)

This choice implies that on the one-dimensional sphere S1, which is the unit circle in R2,
the positive orientation is counterclockwise.

Let ξ ∈ Sd−1 and v1, . . . ,vd−1 ∈ TξSd−1. Then the volume form on the sphere Sd−1 is
given by

dSd−1(ξ)(v1, . . . ,vd−1) := det(ξ,v1, . . . ,vd−1).

The so-de�ned (d − 1)-form dSd−1(ξ) is indeed the volume form on the sphere Sd−1

since is antisymmetric and multilinear and that for a basis e1, . . . , ed−1 of TξSd−1 that
is oriented positively according to (2.3), we have dSd−1(e1, . . . , ed−1) = 1. We will
occasionally write dξ instead of dSd−1(ξ) if the choice of the measure is unambiguous.
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2.1 Harmonic analysis on the sphere

Proposition 2.1. Let V be an open subset of Rd−1, and let φ : V → Sd−1 be a map of
the sphere Sd−1. Then, at x ∈ V , the pullback of the volume form on the sphere is

[φ∗(dSd−1)](x) = det(φ(x), Jφ(x)) dRd−1(x). (2.4)

Proof. We follow the derivation of [Mül98, (�1.25)]. Let x ∈ V , and let u1, . . . ,ud−1 ∈
TxV = Rd−1. By (2.1), we have the pullback

[φ∗(dSd−1)](x)(u1, . . . ,ud−1) = dSd−1(φ(x))(Jφ(x)u
1, . . . , Jφ(x)u

d−1)

= det
(︁
φ(x), Jφ(x)u

1, . . . , Jφ(x)u
d−1
)︁
.

Setting M := (φ(x), Jφ(x)) ∈ Rd×d, we obtain

[φ∗(dSd−1)](x)(u1, . . . ,ud−1) = det

(︃
Mϵ1,M

(︃
0
u1

)︃
, . . . ,M

(︃
0

ud−1

)︃)︃

= det(M) det

(︃
ϵ1,

(︃
0
u1

)︃
, . . . ,

(︃
0

ud−1

)︃)︃

= det(φ(x), Jφ(x)) det
(︁
u1, . . . ,ud−1

)︁
.

We can apply the last proposition to reduce the integration on the sphere Sd−1 to the
integration on the (d− 1)-dimensional unit ball

Bd−1 := {x ∈ Rd−1 ; ∥x∥ < 1}

as follows.

Proposition 2.2. We denote by

Sd−1
+ := {ξ ∈ Sd−1 ; ξd > 0}

and

Sd−1
− := {ξ ∈ Sd−1 ; ξd < 0}

the upper and lower hemisphere of Sd−1, respectively. We de�ne the two maps

φ± : Bd−1 → Sd−1
± , φ±(x) :=

(︄
x

±
√︂

1− ∥x∥2

)︄
. (2.5)

Then we have

∫︂

Sd−1
±

f(ξ) dSd−1(ξ) =

∫︂

Bd−1

f(φ±(x))
1√︁

1− ∥x∥2
dRd−1(x). (2.6)
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2 Harmonic analysis on the sphere and the rotation group

Proof. We are going to apply (2.4) for the maps φ±. We have

det(φ±(x), Jφ±(x)) = det
(︂
φ±(x), ∂φ±(x)

∂x1
, · · · , ∂φ±

1

∂xd−1

)︂
.

Computing the derivatives, we have

det(φ±(x), Jφ±(x)) = det

⎛
⎜⎜⎜⎜⎝

x1 1 · · · 0
...

...
. . .

...
xd−1 0 · · · 1

±
√︁
1− ∥x∥2 ∓x1√

1−∥x∥2
· · · ∓xd−1√

1−∥x∥2

⎞
⎟⎟⎟⎟⎠
.

For i = 1, . . . , d− 1, we add ± xi√
1−∥x∥2

times the i-th row to the last row of the matrix

and obtain

det(φ±(x), Jφ±(x)) = det

⎛
⎜⎜⎜⎜⎝

x1 1 · · · 0
...

...
. . .

...
xd−1 0 · · · 1

±
√︁
1− ∥x∥2 ± ∥x∥2√

1−∥x∥2
0 · · · 0

⎞
⎟⎟⎟⎟⎠
.

The Laplace expansion rule of the determinant with respect to the last row gives

det(φ±(x), Jφ±(x)) = (−1)d−1

(︄
±
√︁
1− ∥x∥2 ± ∥x∥2√︁

1− ∥x∥2

)︄

=
±(−1)d−1

√︁
1− ∥x∥2

.

The sign ±(−1)d−1 indicates whether φ± is orientation-preserving. However, since the
integration depends on positive orientation, we have to change the sign in case that φ±

switches the orientation. Hence, we have shown (2.6).

Additionally to the map (2.5) from the ball to the sphere, the volume form on Sd−1 can
also be expressed with the help of the volume form on Sd−2 as follows. We decompose a
vector ξ = (ξ1, . . . , ξd)

⊤ ∈ Sd−1 as

ξ = ξd ϵ
d +

√︂
1− ξ2d ξ(d−1), (2.7)

where ξd ∈ [−1, 1] and ξ(d−1) ∈ Sd−2 × {0}. The surface measure dSd−1 of the sphere
Sd−1 can be decomposed for d ≥ 3 by the formula [AH12, (1.16)]

dSd−1(ξ) = dSd−2(ξ(d−1)) (1− ξ2d)
d−3
2 dξd, (2.8)

which can be shown analogously to Proposition 2.2. Accordingly, the integral is written
as ∫︂

Sd−1

f(ξ) dSd−1(ξ) =

∫︂ 1

−1

∫︂

Sd−2

f(ξ) dSd−2(ξ(d−1)) (1− ξ2d)
d−3
2 dξd. (2.9)
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2.1 Harmonic analysis on the sphere

Equation (2.9) allows to proof inductively that the volume of the sphere Sd−1 is given
by [AH12, (1.19)]

⃓⃓
Sd−1

⃓⃓
=

∫︂

Sd−1

dSd−1 =
2πd/2

Γ(d/2)
=

⎧
⎨
⎩

2πd/2

( d
2
−1)!

, d even

2
d+1
2 π

d−1
2

(d−2)!!
, d odd.

(2.10)

We note that (2.10) also holds in the case d = 1, where we have |S0| = 2.

2.1.2 Spherical harmonics

The Hilbert space L2(Sd−1) is de�ned as the space of all measurable functions f : Sd−1 →
C, whose norm

∥f∥L2(Sd−1) :=
√︂

⟨f, f⟩L2(Sd−1)

is �nite, where

⟨f, g⟩L2(Sd−1) :=

∫︂

Sd−1

f(ξ) g(ξ) dξ

denotes the inner product in L2(Sd−1).

In this section, we introduce the construction of spherical harmonics, which form an
orthonormal basis of L2(Sd−1). We mostly follow Atkinson and Han [AH12, Section 2],
see also [Mül98, DX13].

A function f : Rd → C is called homogeneous of degree n if

f(λx) = λnf(x), x ∈ Rd,

for all λ > 0. The function f is called harmonic if the Laplacian ∆f = 0. For n ∈ N0,
we denote by Hn,d(Rd) the space of harmonic polynomials on Rd that are homogeneous
of degree n and we call its restriction to the sphere

Yn,d(Sd−1) :=
{︁
f
⃓⃓
Sd−1 ; f ∈ Hn,d(Rd)

}︁
(2.11)

the space of spherical harmonics of degree n, which has the dimension

Nn,d = dim
(︁
Yn,d(Sd−1)

)︁
=

(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
. (2.12)

Legendre polynomials. We collect some facts about Legendre polynomials as found in
our paper [QHL18]. The Legendre polynomial Pn,d of degree n ∈ N0 in dimension d ≥ 2
is given by the Rodrigues formula [AH12, (2.70)]

Pn,d(t) := (−1)n
(d− 3)!!

(2n+ d− 3)!!
(1− t2)

3−d
2

(︃
d

dt

)︃n
(1− t2)n+

d−3
2 , t ∈ [−1, 1]. (2.13)
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2 Harmonic analysis on the sphere and the rotation group

The classical Legendre polynomials are Pn := Pn,3. Here, we use this name also in
the general situation d > 3 as in [Mül98, AH12]. For d = 2, the Legendre polynomial
Pn,2 is known as the Chebyshev polynomial of the �rst kind. For d = 4, the Legendre
polynomial Pn,4 is known as the Chebyshev polynomial of the second kind. The Legendre
polynomials can be de�ned recursively by [AH12, (2.86)]

Pn,d(t) =
2n+ d− 4

n+ d− 3
tPn−1,d(t)−

n− 1

n+ d− 3
Pn−2,d(t), t ∈ [−1, 1], (2.14)

for n ≥ 2, initialized by P0,d(t) = 1 and P1,d(t) = t. The Legendre polynomials Pn,d
satisfy for all n ∈ N0 [AH12, (2.116)]

|Pn,d(t)| ≤ Pn,d(1) = 1, t ∈ [−1, 1]. (2.15)

The Legendre polynomials are orthogonal with respect to the weight function

wd(t) := (1− t2)
d−3
2 , t ∈ (−1, 1). (2.16)

In particular, they satisfy the orthogonality relation
∫︂ 1

−1

Pn,d(t)Pm,d(t) (1− t2)
d−3
2 dt = δn,m

⃓⃓
Sd−1

⃓⃓

Nn,d |Sd−2| (2.17)

for all m,n ∈ N0. We also de�ne the normalized Legendre polynomial ˜︁Pn,d of degree
n ∈ N0 by

˜︁Pn,d(t) :=
√︄
Nn,d |Sd−2|
|Sd−1| Pn,d(t) =

√︁
(2n+ d− 2) (n+ d− 3)!

2(d−2)/2
√
n! Γ(d−1

2
)

Pn,d(t). (2.18)

The normalized Legendre polynomials { ˜︁Pn,d ; n ∈ N0} form an orthonormal basis of the
weighted Lebesgue space L2((−1, 1);wd) induced by the inner product

⟨f, g⟩L2((−1,1);wd)
:=

∫︂ 1

−1

f(t) g(t) (1− t2)
d−3
2 dt.

Up to its normalization, the Legendre polynomial Pn,d is equal to the Gegenbauer or
ultraspherical polynomial

C
( d−2

2
)

n =

(︃
n+ d− 3

n

)︃
Pn,d (2.19)

for d ≥ 3, see [AH12, (2.145)]. The Gegenbauer polynomial C
(α)
n of degree n ∈ N0 and

order α > −1/2 satis�es the explicit expression [AS72, 22.3]

C(α)
n (t) :=

1

Γ(α)

⌊n
2 ⌋∑︂

m=0

(−1)m Γ(n−m+ α)

m! (n− 2m)!
(2t)n−2m (2.20)

and the Rodrigues formula

C(α)
n (t) =

(−1)n Γ(α + 1
2
) Γ(n+ 2α)

2n n! Γ(2α) Γ(α + n+ 1
2
)
(1− t2)

1
2
−α
(︃

d

dt

)︃n
(1− t2)n+α−

1
2 . (2.21)
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2.1 Harmonic analysis on the sphere

Jacobi polynomials. The Legendre polynomials are special cases of the Jacobi poly-
nomials. The Jacobi polynomial P

(α,β)
n of degree n ∈ N0 and orders α, β > −1 is given

by the Rodrigues formula [AS72, Section 22.11] for t ∈ [−1, 1],

P (α,β)
n (t) :=

(−1)n

2nn!
(1− t)−α (1 + t)−β

dn

dtn
(︁
(1− t)n+α (1 + t)n+β

)︁
. (2.22)

Comparing (2.13) with (2.22), we see the relation of the Legendre polynomial Pn,d with

the Jacobi polynomial P
( d−3

2
, d−3

2
)

n . We have for d ≥ 3

Pn,d(t) =
2n n! (d− 3)!!

(n+ d− 3)!!
P

( d−3
2
, d−3

2
)

n (t).

The Jacobi polynomials P (α,β)
n satisfy for n, n′ ∈ N0 the orthogonality relation [AS72,

Section 22.2]

∫︂ 1

−1

P (α,β)
n (t)P

(α,β)
n′ (t) (1− t)α(1 + t)β dx

= δn,n′
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ α + β + 1)n!
. (2.23)

Zonal harmonics. Let n ∈ N0, and let Y k
n,d, k = 1, . . . , Nn,d, be an orthonormal basis

of the space Yn,d(Sd−1). We de�ne the zonal harmonic Zn,d : Sd−1 × Sd−1 → R of degree
n ∈ N0 by

Zn,d(ξ,η) :=

Nn,d∑︂

k=1

Y k
n,d(ξ)Y

k
n,d(η), ξ,η ∈ Sd−1. (2.24)

The zonal harmonic Zn,d is the reproducing kernel of the space Yn,d(Sd−1), i. e., for any
Yn,d ∈ Yn,d(Sd−1) we have

Yn,d(ξ) =

∫︂

Sd−1

Yn,d(η)Zn,d(ξ,η) dη, ξ ∈ Sd−1.

The addition theorem [AH12, (2.24)] states that for n ∈ N0

Nn,d∑︂

k=1

Y k
n,d(ξ)Y

k
n,d(η) =

Nn,d

|Sd−1| Pn,d(ξ
⊤η), ξ,η ∈ Sd−1. (2.25)

Spherical Fourier series. Every function f ∈ L2(Sd−1) satis�es the expansion in the
spherical Fourier series

f =
∞∑︂

n=0

Nn,d∑︂

k=1

f̂
k

n,d Y
k
n,d (2.26)
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2 Harmonic analysis on the sphere and the rotation group

with the spherical Fourier coe�cients

f̂
k

n,d :=

∫︂

Sd−1

f(ξ)Y k
n,d(ξ) dξ, n ∈ N0, k = 1, . . . , Nn,d, (2.27)

and it satis�es Parseval's equality

∥f∥2L2(Sd−1) =
∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
⃓f̂kn,d

⃓⃓
⃓
2

. (2.28)

Convolution on the sphere. The spherical convolution of a function ψ : [−1, 1] → C
with a function f : Sd−1 → C is de�ned by

[ψ ⋆ f ](ξ) :=

∫︂

Sd−1

f(η)ψ(ξ⊤η) dη, ξ ∈ Sd−1. (2.29)

The Funk�Hecke formula [AH12, Theorem 2.22] states that for a spherical harmonic
Yn,d ∈ Yn,d(Sd−1) and a function ψ ∈ L1([−1, 1]) for which

∫︁ 1

−1
|ψ(t)| (1 − t2)

d−3
2 dt is

�nite, we have

[ψ ⋆ Yn,d](ξ) = Yn,d(ξ)
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

ψ(t)Pn,d(t) (1− t2)
d−3
2 dt, ξ ∈ Sd−1. (2.30)

The Funk�Hecke formula was introduced for S2 by Funk [Fun15b] and Hecke [Hec17].

2.1.3 An explicit construction of spherical harmonics

We give an explicit construction of an orthonormal basis of spherical harmonics Y k
n,d of

Yn,d(Sd−1). This construction is done recursively with respect to the dimension d and
it is based on the decomposition (2.7) of the volume form on Sd−1. We mostly follow
[AH12, Section 2].

Spherical harmonics on S1

We start with the case d = 2. The one-dimensional unit sphere

S1 = {(cosφ, sinφ)⊤ ∈ R2 ; φ ∈ [0, 2π)}

is the unit circle in the plane R2. The two complex-valued functions (x, y) ↦→ (x± yi)n

are harmonic polynomials that are homogeneous of degree n in the plane R2. Restricted
to S1 and using polar coordinates (x, y) = (cosφ, sinφ) ∈ S1, the two functions can be
expressed as the trigonometric polynomials

x+ yi = e±iφ.
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2.1 Harmonic analysis on the sphere

An orthonormal basis of the space Yn,2(S1) for n ∈ N consists of the two trigonometric
polynomials

Y 1
n,2(cosφ, sinφ) :=

1√
2π

einφ, Y 2
n,2(cosφ, sinφ) :=

1√
2π

e−inφ, φ ∈ [0, 2π).

(2.31)
For n = 0, an orthonormal basis of the space Y0,2(S1) consists of the single constant
function 1√

2π
.

Spherical harmonics on Sd−1

The case for general d ≥ 3 requires some more e�ort. We de�ne the associated Legendre
function Pm

n,d of degree n ∈ N0 and order m = 0, . . . , n in dimension d ≥ 3 by [AH12,
Proposition 2.42]

Pm
n,d(t) :=

n! Γ(d−1
2
)

2m (n−m)! Γ(m+ d−1
2
)
(1− t2)m/2 Pn−m,d+2m(t), t ∈ [−1, 1], (2.32)

which is equal to the Legendre polynomial Pn,d = P 0
n,d for m = 0. The associated Leg-

endre functions Pm
n,d are occasionally called associated Legendre polynomials, however,

they are polynomials only if the order m is even. The normalized associated Legendre
functions [AH12, (2.158)] are given by

˜︁Pm
n,d :=

√︁
(2n+ d− 2) (n−m)! (n+m+ d− 3)!

2(d−2)/2 n! Γ(d−1
2
)

Pm
n,d. (2.33)

We see that the normalized Legendre polynomial can be written as ˜︁Pn,d = ˜︁P 0
n,d. The

normalized associated Legendre functions ˜︁Pm
n,d satisfy the orthogonality relation [AH12,

(2.160)] ∫︂ 1

−1

˜︁Pm
n,d(t) ˜︁Pm

n′,d(t) (1− t2)
d−3
2 dt = δn,n′ (2.34)

for n, n′ ∈ N0 and m = 0, . . . ,min{n, n′}.
We de�ne an orthonormal basis of L2(Sd−1) recursively with respect to the dimension

d ≥ 3. As the base case of this recursion with respect to d, the spherical harmonics for
dimension d = 2 are given in (2.31). For m ∈ N0, let {Y j

m,d−1 ; j = 1, . . . , Nm,d−1} be an
orthonormal basis of Ym,d−1(Sd−2). As in (2.7), we write

ξ =
√︂

1− ξ2d ξ(d−1) + ξdε
d ∈ Sd−1.

Then the polynomials

Y m,j
n,d (ξ) := ˜︁Pm

n,d(ξd)Y
j
m,d−1(ξ(d−1)), m = 0, . . . , n, j = 1, . . . , Nm,d−1, (2.35)
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2 Harmonic analysis on the sphere and the rotation group

form an orthonormal basis of Yn,d(Sd−1), see [AH12, (2.164)]. We note that the orthonor-
mality of the functions (2.35) is a direct consequence of the assumed orthonormality of
the spherical harmonics Y j

m,d−1 on Sd−1, the orthonormality (2.34) of the normalized

associated Legendre functions ˜︁Pm
n,d and the substitution rule (2.8). The spherical har-

monics Y m,j
n,d are complete in L2(Sd−1), i. e., the set

{︁
Y m,j
n,d ; n ∈ N0, m = 0, . . . , n, j = 1, . . . , Nm,d−1

}︁

forms an orthonormal basis of L2(Sd−1).

In each step of the recursion with respect to d, we have to perform a reparameterization
of the indices of the spherical harmonics. We want to obtain an orthonormal basis of the
space of spherical harmonics Yn,d(Sd−1) of the form Y k

n,d, k = 1, . . . , Nn,d. However, we
have given the basis Y m,j

n,d as de�ned in (2.35). To this end, we convert the two indices
(m, j) to a single index k. We set

k = k(m, j) := j +
m−1∑︂

l=0

Nl,d−1, m = 0, . . . , n, j = 1, . . . , Nm,d−1.

We note that the number of indices does not change this way, i.e., we have

k(n,Nn,d−1) =
m∑︂

l=0

Nm,d−1 = Nm,d,

cf. [AH12, (2.14)]. Then

Y k
n,d := Y m,j

n,d , k = k(m, j) ∈ {1, . . . , Nn,d−1}

is the desired orthonormal basis of the space of spherical harmonics Yn,d(Sd−1).

Spherical harmonics on S2

In this section, we take a special look at the spherical harmonics for d = 3. Compared
to the general case d ≥ 3, we introduce a simpli�ed notation for d = 3, as we used in
[QHL18], see also [Mic13]. The two-dimensional sphere S2 has a parameterization in
terms of the spherical coordinates

ξ(φ, ϑ) = (cosφ sinϑ, sinφ sinϑ, cosϑ)⊤, φ ∈ [0, 2π), t ∈ [−1, 1]. (2.36)

We de�ne the normalized associated Legendre function of degree n ∈ N0 and order
k = 0, . . . , n by the Rodrigues formula

˜︁P k
n (t) :=

√︄
2n+ 1

4π

(n− k)!

(n+ k)!

(−1)k

2nn!

(︁
1− t2

)︁k/2 dn+k

dtn+k
(︁
t2 − 1

)︁n
, t ∈ [−1, 1], (2.37)
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2.1 Harmonic analysis on the sphere

and
˜︁P−k
n := (−1)k ˜︁P k

n . (2.38)

Note that this de�nition is in line with the associated Legendre functions P k
n,3 from

(2.33). In particular, we have for n ∈ N0 and k = −n, . . . , n

˜︁P k
n (t) = (−1)

k−|k|
2 ˜︁P |k|

n,3(t), t ∈ [−1, 1].

An orthonormal basis in the Hilbert space L2(S2) of square-integrable functions on
the sphere is formed by the spherical harmonics

Y k
n (ξ(φ, t)) := ˜︁P k

n (t) e
ikφ, ξ(φ, t) ∈ S2, (2.39)

of degree n ∈ N0 and order k ∈ {−n, . . . , n}. This de�nition of the spherical harmonic Y k
n

on S2 is closely related to the general de�nition of Y m,j
n,3 in (2.35). In particular, we have

Y k
n = (−1)

k−|k|
2 Y

|k|,j(k)
n,3 , n ∈ N0, k ∈ {−n, . . . , n},

where j(k) = 1 if k ≥ 0 and j(k) = 2 if k < 0.

Remark 2.3. The factor (−1)k in the de�nition (2.38) of the associated Legendre poly-
nomials ˜︁P k

n for negative k is sometimes called the Condon�Shortley phase factor, which
implies that the relation

Y k
n (ξ) = (−1)k Y −k

n (ξ), ξ ∈ S2

holds. The usage of this factor is inconsistent in the literature. Some authors like
[PST98] de�ne the spherical harmonics without this factor.

2.1.4 Derivatives

In this section, which is based on [Que18], we introduce the surface gradient and Lapla-
cian on the sphere as well as the space Cs(Sd−1) of functions with continuous derivatives.
For brevity, we denote by

∂i :=
∂

∂xi

the partial derivative with respect to the i-th coordinate of x = (x1, . . . , xd)
⊤ ∈ Rd. We

extend a function f : Sd−1 → C to the ambient space Rd \ {0} by

f •(x) := f

(︃
x

∥x∥

)︃
, x ∈ Rd \ {0}, (2.40)

cf. [Mül98, (�14.32)]. The surface gradient ∇• on the sphere is the projection of the
gradient

∇ :=

(︃
∂

∂x1
, . . . ,

∂

∂xd

)︃⊤
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2 Harmonic analysis on the sphere and the rotation group

in Rd onto the tangent space of the unit sphere Sd−1. For ξ ∈ Sd−1, we have

∇•f(ξ) := ∇f •(ξ).

The restriction of the Laplacian

∆ :=
∂2

∂x21
+ · · ·+ ∂2

∂x2d

to the sphere Sd−1 is known as the Laplace�Beltrami operator [Mül98, (�14.20)]

∆•f(ξ) := ∆f •(ξ). (2.41)

The spherical harmonics Yn,d are eigenfunctions of the Laplace�Beltrami operator ∆•,
see [DX13, (1.4.9)]. In particular, we have for any Yn,d ∈ Yn,d(Sd−1)

∆•Yn,d = −n (n+ d− 2)Yn,d, n ∈ N0. (2.42)

Spaces of functions having continuous derivatives. For a multi-index

α = (α1, . . . , αd)
⊤ ∈ Nd

0,

we de�ne its one-norm

∥α∥1 :=
d∑︂

i=1

|αi| .

Let s ∈ N0. We denote by Cs(Sd−1) the space of functions f : Sd−1 → C whose extension
f • has continuous derivatives up to the order s with the norm

∥f∥Cs(Sd−1) := max
∥α∥1≤s

sup
ξ∈Sd−1

|∂α1
1 · · · ∂αd

d f •(ξ)| .

Furthermore, the space C∞(Sd−1) consists of all functions f : Sd−1 → C for which f • has
continuous derivatives of arbitrary order. The space C(Sd−1) := C0(Sd−1) is the space
of continuous functions with the uniform norm

∥f∥C(Sd−1) := sup
ξ∈Sd−1

|f(ξ)| .

The de�nition implies for f ∈ Cs+1(Sd−1)

∥f∥Cs(Sd−1) ≤ ∥f∥Cs+1(Sd−1) . (2.43)

We de�ne the space Cs(Sd−1 → Rd) of vector �elds

f : Sd−1 → Rd, f(ξ) = [fi(ξ)]
d
i=1,
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2.1 Harmonic analysis on the sphere

with component functions fi ∈ Cs(Sd−1). The norm in Cs(Sd−1 → Rd) is the Euclidean
norm over the Cs-norms of its component functions, i. e., we set

∥f∥Cs(Sd−1→Rd) :=

⌜⃓
⎷⃓

d∑︂

i=1

∥fi∥2Cs(Sd−1). (2.44)

We see that for f ∈ Cs+1(Sd−1)

∥∇•f∥2Cs(Sd−1→Rd) =
d∑︂

i=1

∥∂if •∥2Cs(Sd−1) ≤
d∑︂

i=1

∥f∥2Cs+1(Sd−1) = d ∥f∥2Cs+1(Sd−1) . (2.45)

2.1.5 Spherical Sobolev spaces

We introduce spherical Sobolev spaces, which give a rigorous de�nition of the smoothness
of functions that are de�ned on the sphere Sd−1. This section uses material from [Que18],
see also [AH12, Section 3.8].

A function f : Sd−1 → C that has a �nite representation

f =
N∑︂

n=0

Nn,d∑︂

k=0

f̂
k

n,d Y
k
n,d

with respect to spherical harmonics Y k
n,d is called a spherical polynomial of degreeN ∈ N0

if f̂
k

N,d ̸= 0 for some k. For a spherical polynomial f : Sd−1 → C with d ≥ 3 and some
s ∈ R, we introduce the Sobolev norm

∥f∥2Hs(Sd−1) :=
∞∑︂

n=0

Nn,d∑︂

k=1

(︁
n+ d−2

2

)︁2s ⃓⃓⃓
⟨︁
f, Y k

n,d

⟩︁
L2(Sd−1)

⃓⃓
⃓
2

, (2.46)

cf. [AH12, (3.98)]. The Sobolev space Hs(Sd−1) of order s is de�ned as the completion
of the space of all spherical polynomials with respect to the Sobolev norm ∥·∥Hs(Sd−1).
We note that (2.46) is a norm only for d ≥ 3, whereas it is a semi-norm if d = 2.

By construction, the linear span of all spherical harmonics Y k
n,d, which is equal to the

set of all spherical polynomials, is dense in the Sobolev space Hs(Sd−1). The Sobolev
spaces are nested: the continuous embedding Hs(Sd−1) ↪→ H t(Sd−1) holds whenever
s > t. The space H0(Sd−1) can be identi�ed with L2(Sd−1), then (2.46) with s = 0 is
equal to Parseval's equality (2.28). If s is a non-negative integer, then Hs(Sd−1) can be
imagined as the space of functions de�ned on Sd−1 whose (distributional) derivatives up
to order s are in L2(Sd−1). If s > d−1

2
, the continuous embedding

Hs(Sd−1) ↪→ C(Sd−1) (2.47)

holds [AH12, (3.102)]. This basically means that every function in the Sobolev space
Hs(Sd−1) for s > d−1

2
is continuous.
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2 Harmonic analysis on the sphere and the rotation group

We have seen in (2.42) that the spherical harmonics Y k
n,d are eigenfunctions of the

Laplace�Beltrami operator ∆• with respective eigenvalues −n (n + d − 2). We obtain
for s ∈ N0 (︃

−∆• +
(d− 2)2

4

)︃s
Y k
n,d =

(︃
n+

d− 2

2

)︃2s

Y k
n,d. (2.48)

Formally, we see (2.48) as a de�nition of fractional powers s ∈ R of the Laplace�
Beltrami operator acting on spherical harmonics Y k

n,d. With this de�nition, we can
extend the Laplace�Beltrami operator as a pseudo-di�erential operator on the Sobolev
space Hs(Sd−1), cf. [FGS98, Section 5.1]. We set for s ∈ R and f ∈ Hs(Sd−1)

(︃
−∆• +

(d− 2)2

4

)︃s/2
f :=

∞∑︂

n=0

Nn,d∑︂

k=1

(︃
n+

d− 2

2

)︃s
f̂
k

n,d Y
k
n,d. (2.49)

The so-de�ned operator
(︂
−∆• + (d−2)2

4

)︂s/2
is a continuous linear operator fromHs(Sd−1)

to L2(Sd−1). It coincides with the classical de�nition in (2.41) if s is positive and even.
The Sobolev norm (2.46) can also be stated with the help of the Laplace�Beltrami
operator ∆• by

∥f∥Hs(Sd−1) =

⃦⃦
⃦⃦
⃦

(︃
−∆• +

(d− 2)2

4

)︃s/2
f

⃦⃦
⃦⃦
⃦
L2(Sd−1)

, (2.50)

cf. [AH12, (3.98)].

There are other de�nitions of the Sobolev norm ∥·∥Hs(Sd−1) that yield equivalent norms

and thus the same Sobolev space Hs(Sd−1). The factor (n + d−2
2
) in (2.46) is replaced

by (n+ 1) in [Str81], by max(n, 1) in [CF97], or by
√︁

1 + n(n+ d− 2) in [JSW99].

Sobolev spaces of vector-valued functions

In the spirit of (2.44), we extend the de�nition of the Sobolev norm (2.46) to vector
�elds. Let s ∈ R. The Sobolev norm of the vector �eld f : Sd−1 → Rd is the Euclidean
norm over the Sobolev norms of its component functions f(ξ) = [f1(ξ), . . . , fd(ξ)]

⊤, i. e.,

∥f∥2Hs(Sd−1→Rd) :=
d∑︂

i=1

∥fi∥2Hs(Sd−1) . (2.51)

Lemma 2.4. Let s ∈ N0 and f ∈ Hs+1(Sd−1). We have

∥f∥2Hs+1(Sd−1) = ∥∇•f∥2Hs(Sd−1→Rd) +
(d−2)2

4
∥f∥2Hs(Sd−1) . (2.52)

Proof. Since the negative Laplace�Beltrami operator −∆• is self-adjoint, we can write
the Sobolev norm (2.50) as

∥f∥2Hs(Sd−1) =
⟨︂(︂

−∆• + (d−2)2

4

)︂s
f, f
⟩︂
L2(Sd−1)

.
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2.1 Harmonic analysis on the sphere

We have for s ∈ N0

∥f∥2Hs+1(Sd−1) =

∫︂

Sd−1

(︃(︂
−∆• + (d−2)2

4

)︂s+1

f(ξ)

)︃
f(ξ) dSd−1(ξ)

=

∫︂

Sd−1

(︂(︂
−∆• + (d−2)2

4

)︂(︂
−∆• + (d−2)2

4

)︂s
f(ξ)

)︂
f(ξ) dSd−1(ξ).

Then the Green�Beltrami identity [Mül98, �14, Lemma 1]

−
∫︂

Sd−1

f(ξ)∆•g(ξ) dSd−1(ξ) =

∫︂

Sd−1

⟨∇•f(ξ), ∇•g(ξ)⟩ dSd−1(ξ),

f ∈ C2(Sd−1), g ∈ C1(Sd−1)

(2.53)

implies that

∥f∥2Hs+1(Sd−1) =

∫︂

Sd−1

⟨︂
∇•f(ξ), ∇•

(︂
−∆• + (d−1)2

4

)︂s
f(ξ)

⟩︂
dSd−1(ξ)

+
(d− 2)2

4

∫︂

Sd−1

(︂(︂
−∆• + (d−2)2

4

)︂s
f(ξ)

)︂
f(ξ) dSd−1(ξ).

Since the gradient ∇• and the Laplacian ∆• commute by Schwarz's theorem, we obtain
(2.52).

Interpolation with respect to the scale of Sobolev spaces

The norm of a bounded linear operator A : X → Y between two Banach spaces X and
Y with norms ∥·∥X and ∥·∥Y , respectively, is de�ned as

∥A∥X→Y := sup
x∈X\{0}

∥Ax∥Y
∥x∥X

.

The following proposition shows that the boundedness of linear operators in Sobolev
spaces Hs(Sd−1) can be interpolated with respect to the smoothness parameter s. This
result is derived from a more general interpolation theorem that can be found in [Tri95,
Section 1.18].

Proposition 2.5. Let 0 ≤ s0 ≤ s1, and let

A : Hs0(Sd−1) → Hs0(Sd−1)

be a bounded linear operator such that its restriction

A
⃓⃓
Hs1(Sd−1) : H

s1(Sd−1) → Hs1(Sd−1)

is also bounded. For θ ∈ [0, 1], we set sθ := (1 − θ)s0 + θs1. Then the restriction of A
to Hsθ(Sd−1) → Hsθ(Sd−1) is bounded with

∥A∥Hsθ (Sd−1)→Hsθ (Sd−1) ≤ ∥A∥1−θHs0 (Sd−1)→Hs0 (Sd−1) ∥A∥θHs1 (Sd−1)→Hs1 (Sd−1) .
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2 Harmonic analysis on the sphere and the rotation group

Proof. For n ∈ N0, let {Y k
n,d ; k = 1, . . . , Nn,d} be an orthonormal basis of the space

Yn,d(Sd−1), and let f ∈ L2(Sd−1). We write f as the Fourier series

f =
∞∑︂

n=0

Nn,d∑︂

k=1

⟨︁
f, Y k

n,d

⟩︁
L2(Sd−1)

Y k
n,d.

On the index set
I := {(n, k) ; n ∈ N0, k = 1, . . . , Nn,d},

we de�ne for s ≥ 0 the weight function

ws(n, k) := (n+ d−2
2
)2s.

Then the Sobolev space Hs(Sd−1) is isometrically isomorphic to the weighted L2-space

L2(I;ws) =

⎧
⎨
⎩f̂ : I → C ; ∥f̂∥2L2(I;ws)

=
∑︂

(n,k)∈I

⃓⃓
⃓f̂(n, k)

⃓⃓
⃓
2

ws(n, k) <∞

⎫
⎬
⎭

that consists of the Fourier coe�cients

f̂(n, k) =
⟨︁
f, Y k

n,d

⟩︁
L2(Sd−1)

, (n, k) ∈ I,

on the set I with the counting measure. By [Tri95, Theorem 1.18.5], the complex
interpolation space between L2(I;ws0)

∼= Hs0(Sd−1) and L2(I;ws1)
∼= Hs1(Sd−1) is

[︁
L2(I;ws0), L

2(I;ws1)
]︁
θ
= L2(I;w),

where

w(n, k) = (ws0(n, k))
1−θ (ws1(n, k))

θ =
(︁
n+ d−2

2

)︁2((1−θ)s+θt)
= wsθ(n, k).

Hence, L2(I;w) ∼= Hsθ(Sd−1). The assertion is a property of the interpolation space.

Multiplication and composition operators

The following two theorems show that the multiplication and composition with a smooth
function are continuous operators in spherical Sobolev spaces Hs(Sd−1).

Theorem 2.6. Let s ∈ N0. The multiplication operator

Hs(Sd−1)× Cs(Sd−1) → Hs(Sd−1), (f, v) ↦→ fv

is continuous. In particular, for all f ∈ Hs(Sd−1) and v ∈ Cs(Sd−1), we have

∥fv∥Hs(Sd−1) ≤ csd ∥f∥Hs(Sd−1) ∥v∥Cs(Sd−1) , (2.54)

where
cd =

√
2d+ 2.
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2.1 Harmonic analysis on the sphere

Proof. We use induction over s ∈ N0. For s = 0, we have

∥fv∥2L2(Sd−1) =

∫︂

Sd−1

|f(ξ) v(ξ)|2 dξ ≤ ∥f∥2L2(Sd−1) ∥v∥
2
C(Sd−1) .

Let the claimed equation (2.54) hold for s ∈ N0, and let f ∈ Hs+1(Sd−1) and v ∈
Cs+1(Sd−1). Then the decomposition (2.52) of the Sobolev norm yields

∥fv∥2Hs+1(Sd−1) = ∥∇•(fv)∥2Hs(Sd−1→Rd) +
(d−2)2

4
∥fv∥2Hs(Sd−1)

= ∥f∇•v + v∇•f∥2Hs(Sd−1→Rd) +
(d−2)2

4
∥fv∥2Hs(Sd−1) .

By the triangle inequality and since (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R, we obtain

∥fv∥2Hs+1(Sd−1) ≤ 2 ∥f∇•v∥2Hs(Sd−1→Rd) + 2 ∥v∇•f∥2Hs(Sd−1)→Rd +
(d−2)2

4
∥fv∥2Hs(Sd−1) .

By the induction hypothesis, we have

c−2s
d ∥fv∥2Hs+1(Sd−1) ≤ 2 ∥f∥2Hs(Sd−1) ∥∇•v∥2Cs(Sd−1→Rd) + 2 ∥∇•f∥2Hs(Sd−1→Rd) ∥v∥

2
Cs(Sd−1)

+ (d−2)2

4
∥f∥2Hs(Sd−1) ∥v∥

2
Cs(Sd−1) .

= 2 ∥f∥2Hs(Sd−1) ∥∇•v∥2Cs(Sd−1→Rd) + ∥∇•f∥2Hs(Sd−1→Rd) ∥v∥
2
Cs(Sd−1)

+ ∥f∥2Hs+1(Sd−1) ∥v∥
2
Cs(Sd−1) ,

where we made use of the decomposition (2.52) of the Sobolev norm. Furthermore, we
insert the bound (2.45) of the Sobolev norm of the gradient and obtain

c−2s
d ∥fv∥2Hs+1(Sd−1) ≤ 2d ∥f∥2Hs(Sd−1) ∥v∥

2
Cs+1(Sd−1) + ∥f∥2Hs+1(Sd−1) ∥v∥

2
Cs(Sd−1)

+ ∥f∥2Hs+1(Sd−1) ∥v∥
2
Cs(Sd−1) .

Because the involved norms are non-decreasing with respect to s, we see that

∥fv∥Hs+1(Sd−1) ≤ csd
√
2d+ 2 ∥f∥Hs+1(Sd−1) ∥v∥Cs+1(Sd−1) ,

which shows (2.54).

Theorem 2.7. Let s ∈ N0, and let v : Sd−1 → Sd−1 be bijective with v ∈ Cs(Sd−1 →
Sd−1) and v−1 ∈ C1(Sd−1 → Sd−1). Then there exists a constant bd,s(v) such that for all
f ∈ Hs(Sd−1), we have

∥f ◦ v∥Hs(Sd−1) ≤ bd,s(v) ∥f∥Hs(Sd−1) .

Proof. We have for s = 0

∥f ◦ v∥2L2(Sd−1) =

∫︂

Sd−1

|f(v(ξ))|2 dSd−1(ξ).
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2 Harmonic analysis on the sphere and the rotation group

The substitution η = v(ξ) yields with the substitution rule (2.2)

∥f ◦ v∥2L2(Sd−1) =

∫︂

Sd−1

|f(η)|2
[︁
(v−1)∗(dSd−1)

]︁
(η).

Since v−1 ∈ C1(Sd−1 → Sd−1) and thus the Jacobian Jv−1(ξ) depends continuously on
ξ, there exists a continuous function ν : Sd−1 → R such that the pullback (2.1) satis�es
(v−1)∗(dSd−1) = ν dSd−1. Hence, we have

∥f ◦ v∥2L2(Sd−1) ≤ ∥f∥2L2(Sd−1) ∥ν∥C(Sd−1) ,

which shows the claim for s = 0.

We use induction on s ∈ N0. By the decomposition (2.52) of the Sobolev norm, we
have

∥f ◦ v∥2Hs+1(Sd−1) = ∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) +
(d−2)2

4
∥f ◦ v∥2Hs(Sd−1) . (2.55)

By the induction hypothesis, the second summand of (2.55) is bounded by

∥f ◦ v∥Hs(Sd) ≤ bd,s(v) ∥f∥Hs(Sd) . (2.56)

Furthermore, by (2.51) and the chain rule, we have for the �rst summand of (2.55)

∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) = ∥∇(f ◦ v)•∥2Hs(Sd−1→Rd)

=
d∑︂

i=1

∥∂i(f ◦ v)•∥2Hs(Sd−1)

=
d∑︂

i=1

⃦⃦
⃦⃦
⃦

d∑︂

j=1

((∂jf
•) ◦ v•) ∂iv

•
j

⃦⃦
⃦⃦
⃦

2

Hs(Sd−1)

.

Applying the triangle inequality for the sum over j and Jensen's inequality (
∑︁d

j=1 xj)
2 ≤

d
∑︁d

j=1 x
2
j , we obtain

∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) ≤
d∑︂

i=1

d
d∑︂

j=1

⃦⃦
((∂jf

•) ◦ v•) ∂iv
•
j

⃦⃦2
Hs(Sd−1)

.

By Theorem 2.6, we have

∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) ≤ d c2sd

d∑︂

j=1

∥(∂jf •) ◦ v•∥2Hs(Sd−1)

d∑︂

i=1

⃦⃦
∂iv

•
j

⃦⃦2
Cs(Sd−1)

≤ d2 c2sd

d∑︂

j=1

∥(∂jf •) ◦ v•∥2Hs(Sd−1) ∥vj∥
2
Cs+1(Sd−1) ,

40



2.1 Harmonic analysis on the sphere

where the last line follows from (2.45). By the induction hypothesis, we see that

∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) ≤ d2 c2sd bd,s(v)
2

d∑︂

j=1

∥∂jf •∥2Hs(Sd−1) ∥vj∥
2
Cs+1(Sd−1) .

By (2.51) and the fact that ∥vj∥2Cs+1(Sd−1) ≤ ∥v∥2Cs+1(Sd−1→Rd) for all j = 1, . . . , d, we
obtain

∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) ≤ d2 c2sd bd,s(v)
2 ∥∇•f∥2Hs(Sd−1→Rd) ∥v∥

2
Cs+1(Sd−1→Rd) .

Inserting the last equation and (2.56) into (2.55), we obtain

∥f ◦ v∥2Hs+1(Sd−1)

= ∥∇•(f ◦ v)∥2Hs(Sd−1→Rd) +
(d−2)2

4
∥f ◦ v∥2Hs(Sd−1)

≤ bd,s(v)
2
(︂
d2 c2sd ∥∇•f∥2Hs(Sd−1→Rd) ∥v∥

2
Cs+1(Sd−1→Rd) +

(d−2)2

4
∥f∥2Hs(Sd)

)︂

= bd,s(v)
2
(︂(︂
d2 c2sd ∥v∥2Cs+1(Sd−1→Rd) − 1

)︂
∥∇•f∥2Hs(Sd−1→Rd) + ∥f∥2Hs+1(Sd−1)

)︂

≤ bd,s(v)
2d2 c2sd ∥v∥2Cs+1(Sd−1→Rd) ∥f∥

2
Hs+1(Sd−1) ,

where we have made use of (2.52).

Remark 2.8. The last theorem resembles a similar result found in [IKT13, Theo-
rem 1.2]: Let M be a smooth, closed and oriented d-dimensional manifold and, for
s > d

2
+ 1, let φ ∈ Hs(M →M) be an orientation-preserving C1-di�eomorphism. Then

the composition map
Hs(M) → Hs(M), f ↦→ f ◦ φ

is continuous. However, Theorem 2.7 is not a special case of this result because Theo-
rem 2.7 requires only s ≥ 0 but imposes stronger assumptions on φ.

2.1.6 Linearization of the product of spherical harmonics

Any spherical harmonic Y k
n,d is a polynomial of degree n. The product of two spherical

harmonics, Y k1
n1,d

Y k2
n2,d

, is a polynomial of degree n1 + n2, which can thus be written as
the sum of spherical harmonics of degree up to n1 + n2 as follows. Let us �x a certain
basis of spherical harmonics Y k

n,d ∈ Yn,d(Sd−1) for n ∈ N0 and k = 1, . . . , Nn,d. We de�ne
the Gaunt coe�cients

Gn,k,d
n1,k1,n2,k2

:=

∫︂

Sd−1

Y k1
n1,d

(ξ)Y k2
n2,d

(ξ)Y k
n,d(ξ) dξ. (2.57)

Then the product of two spherical harmonics can be written as the sum

Y k1
n1,d

(ξ)Y k2
n2,d

(ξ) =

n1+n2∑︂

n=|n1−n2|
n−n1−n2 even

Nn,d∑︂

k=1

Gn,k,d
n1,k1,n2,k2

Y k
n,d(ξ), ξ ∈ Sd−1. (2.58)
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2 Harmonic analysis on the sphere and the rotation group

In dimension d = 3, we write the Gaunt coe�cients as

Gn,k
n1,k1,n2,k2

:=

∫︂

S2
Y k1
n1
(ξ)Y k2

n2
(ξ)Y k

n (ξ) dξ, (2.59)

which are zero unless all the conditions

|k1| ≤ n1, |k2| ≤ n2, |k| ≤ n

and
k = k1 + k2, n = |n1 − n2| , |n1 − n2|+ 2, . . . , n1 + n2

are satis�ed. We have by the de�nition of the spherical harmonics in (2.39)

Gn,k
n1,k1,n2,k2

=

∫︂ 1

−1

˜︁P k1
n1
(t) ˜︁P k2

n2
(t) ˜︁P k

n (t) dt

∫︂ 2π

0

eik1φ+k2φ−kφ dφ

= 2πδk,k1−k2

∫︂ 1

−1

˜︁P k1
n1
(t) ˜︁P k2

n2
(t) ˜︁P k

n (t) dt

As in the general case (2.58), the product of two spherical harmonics may be written as
the spherical Fourier series

Y k1
n1
(ξ)Y k2

n2
(ξ) =

n1+n2∑︂

n=max(|n1−n2|,|k1+k2|)
n−n1−n2 even

Gn,k1+k2
n1,k1,n2,k2

Y k1+k2
n (ξ), ξ ∈ S2. (2.60)

The �rst explicit description of the coe�cientsGn,k
n1,k1,n2,k2

was obtained by Gaunt [Gau29]
in 1929. The Gaunt coe�cients are closely related to the Clebsch�Gordan coe�cients
Cn,k
n1,k1,n2,k2

via the equation [VMK88, Section 5.6.2]

Gn,k
n1,k1,n2,k2

=

√︄
(2n1 + 1)(2n2 + 1)

4π(2n+ 1)
Cn,0
n1,0,n2,0

Cn,k
n1,k1,n2,k2

.

An explicit representation of the Clebsch�Gordan coe�cients is given in [VMK88, Sec-
tion 8.2.2] and reads

Cn,k
n1,k1,n2,k2

= δk,k1+k2

√︄
(n1 + n2 − n)! (n1 − n2 + n)! (−n1 + n2 + n)!

(n1 + n2 + n+ 1)!

·
√︄

(n+ k)! (n− k)! (2n+ 1)

(n1 + k1)! (n1 − k1)! (n2 + k2)! (n2 − k2)!

·
∑︂

ℓ

(−1)n2+k2+ℓ (n+ n2 + k1 − ℓ)! (n1 − k1 + ℓ)!

k! (n− n1 + n2 − ℓ)! (n+ k − ℓ)! (n1 − n2 − k + ℓ)!
,
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2.2 Harmonic analysis on the rotation group

where the sum is over all integers ℓ for which the argument of every factorial is nonneg-
ative. In the case k1 = k2 = k = 0, we have [VMK88, (8.32)]

Cn,0
n1,0,n2,0

=
(−1)

n1+n2−n
2

√
2n+ 1 n1+n2+n

2
!

n1+n2−n
2

! n+n1−n2

2
! n−n1+n2

2
!

√︄
(n1 + n2 − n)! (n+ n1 − n2)! (n− n1 + n2)!

(n+ n1 + n2 + 1)!

if n1 + n2 − n is even and zero otherwise. In the case n1 = nn and k1 = k2, we have
[VMK88, (8.23)]

C l,2k
n,k,n,k =

(−1)n−
l
2

√
2l + 1(n+ l

2
)!

l+2k
2

! l−2k
2

!(n− l
2
)

√︄
(l + 2k)!(l − 2k)!(2n− l)!

(2n+ l + 1)!

if 2n + l is even and otherwise 0. Another closely related notation is the Wigner 3j
symbol (︃

n1 n2 n
k1 k2 k

)︃
= (−1)n1−j2−k3

√
2n+ 1Cn,−k

n1,k1,n2,m2
.

2.2 Harmonic analysis on the rotation group

We give a brief overview about the harmonic analysis on the rotation group SO(3).
This introduction uses material from [HPQ18] and is based on [HHK98]. Rotational
Fourier transforms date back to Wigner in 1931, see [Wig31]. The rotation group SO(3)
consists of all orthogonal (3 × 3)�matrices with determinant one equipped with the
matrix multiplication as group operation, i. e.,

SO(3) := {Q ∈ R3×3 ; Q⊤Q = I, det(Q) = 1}.

Every rotation Q ∈ SO(3) can be expressed in terms of its Euler angles α, β, γ by

Q(α, β, γ) := R3(α)R2(β)R3(γ), α, γ ∈ [0, 2π), β ∈ [0, π], (2.61)

where Ri(α) denotes the rotation of the angle α about the ξi�axis, i. e.,

R3(α) :=

⎛
⎝
cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠ , R2(β) :=

⎛
⎝

cos β 0 sin β
0 1 0

− sin β 0 cos β

⎞
⎠ . (2.62)

Note that we use this zyz-convention of the Euler angles throughout this thesis. The
integral of a function g : SO(3) → C on the rotation group is given by

∫︂

SO(3)

g(Q) dQ :=

∫︂ 2π

0

∫︂ π

0

∫︂ 2π

0

g(Q(α, β, γ)) sin(β) dα dβ dγ.

We de�ne the rotational harmonics or Wigner D-functions Dk,j
n of degree n ∈ N0 and

orders k, j ∈ {−n, . . . , n} by

Dk,j
n (Q(α, β, γ)) := e−ikαdk,jn (cos β)e−ijγ,
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2 Harmonic analysis on the sphere and the rotation group

where the Wigner d-functions are given by [VMK88, page 77]

dk,jn (t) :=
(−1)n−j

2n

√︄
(n+ k)!(1− t)j−k

(n− j)!(n+ j)!(n− k)!(1 + t)j+k

(︃
d

dt

)︃n−k
(1 + t)n+j

(1− t)−n+j

for t ∈ [−1, 1]. The Wigner d-functions satisfy the orthogonality relation
∫︂ 1

−1

dk,jn (t) dk,jn′ (t) dt =
2δn,n′

2n+ 1
.

As we did on the sphere, we de�ne the space of square-integrable functions L2(SO(3))
with the inner product

⟨f, g⟩L2(SO(3)) :=

∫︂

SO(3)

f(Q) g(Q) dQ.

By the Peter�Weyl theorem, the rotational harmonics Dk,j
n are complete in L2(SO(3))

and satisfy the orthogonality relation
⟨︂
Dk,j
n , Dk′,j′

n′

⟩︂
L2(SO(3))

=

∫︂

SO(3)

Dk,j
n (Q)Dk′,j′

n′ (Q) dQ =
8π2

2n+ 1
δn,n′δk,k′δj,j′ . (2.63)

We de�ne the rotational Fourier coe�cients of a function g ∈ L2(SO(3)) by

ĝk,jn :=
2n+ 1

8π2

⟨︁
g,Dk,j

n

⟩︁
L2(SO(3))

, n ∈ N0, k, j = −n, . . . , n. (2.64)

Then the rotational Fourier expansion of g holds,

g =
∞∑︂

n=0

n∑︂

k,j=−n

ĝk,jn Dk,j
n .

The rotational Fourier transform is also known as the SO(3) Fourier transform (SOFT)
or the Wigner D-transform.

The rotational harmonics Dk,j
n are eigenfunctions of the Laplace�Beltrami operator

on SO(3) with the corresponding eigenvalues −n(n+1). The rotational harmonics Dj,k
n

are the matrix entries of the left regular representations of SO(3), see [Hie07, VMK88].
In particular, the rotation of a spherical harmonic Y k

n , n ∈ N0, k = −n, . . . , n, which
was introduced in (2.39), satis�es

Y k
n (Q

−1ξ) =
n∑︂

j=−n

Dj,k
n (Q)Y j

n (ξ), Q ∈ SO(3), ξ ∈ S2. (2.65)

Sobolev spaces on SO(3) are de�ned in a similar manner as we did on the sphere S2 in
Section 2.1.5, see [Hie07, Section 2.6]. Let s ∈ R. We de�ne the Sobolev spaceHs(SO(3))
as the completion of the space of smooth functions g : SO(3) → C with respect to the
Sobolev norm

∥g∥2Hs(SO(3)) =
∞∑︂

n=0

n∑︂

k,j=−n

8π2

2n+ 1

(︁
n+ 1

2

)︁2s ⃓⃓
ĝk,jn
⃓⃓2
. (2.66)

For s = 0, we have H0(SO(3)) = L2(SO(3)).

44
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2.3 Factorials, double factorials and the Gamma

function

The factorial of a positive integer n is de�ned by n! := n (n− 1) · · · 1. Similarly, double
factorials are de�ned by

n!! :=

{︄
n(n− 2) · · · 2, n even

n(n− 2) · · · 1, n odd

and 0!! = 1. For negative integers, the recursion n!! = n (n − 2)!! yields the de�nition
(−2n)!! = 0 and (−2n − 1)!! = (−1)n

(2n−1)!!
for n ∈ N0. In particular, we have (−1)!! = 1.

Double factorials are related to the factorial via

(2n)!! = (2n) (2n− 2) · · · 2 = 2n n!

and

(2n− 1)!! =
(2n)!

(2n)!!
=

(2n)!

2n n!
.

The Gamma function serves as generalization of the factorial to non-integers and is
de�ned for x > 0 via the integral

Γ(x) :=

∫︂ ∞

0

yx−1 e−y dy.

It satis�es the relation
Γ(x+ 1) = xΓ(x) (2.67)

as well as Γ(n) = (n− 1)! if n is a positive integer. Special values include Γ(1) = 1 and
Γ(1

2
) =

√
π. Double factorials can also be expressed with the Gamma function. We have

(2n)!! = 2n n! = 2n Γ(n+ 1)

and, by (2.67),

(2n− 1)!! = (2n− 1) (2n− 3) · · · 1

= 2n
(︃
n− 1

2

)︃(︃
n− 3

2

)︃
· · ·
(︃
1

2

)︃

= 2n
Γ
(︁
n+ 1

2

)︁

Γ
(︁
1
2

)︁

=
2n√
π
Γ

(︃
n+

1

2

)︃
.

The following simple relation exists for the quotient of double factorials.
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2 Harmonic analysis on the sphere and the rotation group

Proposition 2.9. Let n, k ∈ N0 with k ≤ 2n. Then

Γ(k
2
)

2m Γ(n+ k
2
)
=

(k − 2)!!

(2n+ k − 2)!!
. (2.68)

Proof. By the functional equation (2.67) of the Gamma function, we have

Γ

(︃
n+

k

2

)︃
=

(︃
n+

k

2
− 1

)︃
· Γ
(︃
n+

k

2
− 1

)︃

=

(︃
n+

k

2
− 1

)︃(︃
n+

k

2
− 2

)︃
· · ·
(︃
k

2

)︃
· Γ
(︃
k

2

)︃

=
(2n+ k − 2) (2n+ k − 4) · · · k

2n
· Γ
(︃
k

2

)︃

=
(2n+ k − 2)!!

2n (k − 2)!!
· Γ
(︃
k

2

)︃
.

The binomial coe�cient of z ∈ C and k ∈ N0 is de�ned by
(︃
z

k

)︃
:=

z (z − 1) · · · (z − k + 1)

k!
. (2.69)

The relation with the Gamma function is
(︃
z

k

)︃
=

Γ(z + 1)

Γ(z − k + 1)Γ(k + 1)
. (2.70)

Asymptotic approximation

We are going to use the notation of asymptotic equivalence. For two sequences (an)n∈N0

and (bn)n∈N0 , we write
an ≃ bn for n→ ∞

if there exists a sequence (cn)n∈N0 such that an = cnbn and limn→∞ cn = 1. Stirling's
approximation says that

n! ≃
√
2π nn+1/2 e−n. (2.71)

The following error bound was proven in [Rob55]. For n = 1, 2, . . .

n! =
√
2πnn+1/2e−ner(n),

where 1/(12n+ 1) < r(n) < 1/(12n). The statement for the Gamma function is

Γ(x) ≃
√
2π xx−

1
2 e−x, x→ ∞. (2.72)

There are also asymptotic approximations of double factorials, cf. [Bau07]. Based on
the Wallis product, we have the formula

(2n− 1)!! ≃ (2n)!!√︂
π (n+ 1

4
)
. (2.73)
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2.3 Factorials, double factorials and the Gamma function

Furthermore, we have for n→ ∞

(2n)!! ≃
(︃
2n

e

)︃n√
2πn (2.74)

and

(2n− 1)!! ≃
√
2

(︃
2n

e

)︃n
. (2.75)

Moreover, we derive the following asymptotic approximation for the binomial coe�-
cient

(︁
n+α
n

)︁
.

Proposition 2.10. Let α ∈ C and n ∈ N0. Then we have

(︃
n+ α

n

)︃
≃ 1

Γ(α + 1)
nα, n→ ∞. (2.76)

Proof. We have by (2.70)
(︃
n+ α

n

)︃
=

Γ(n+ α + 1)

Γ(α + 1)Γ(n+ 1)
.

Inserting the asymptotic expansion (2.72) of the Gamma function, we obtain

(︃
n+ α

n

)︃
≃ 1

Γ(α + 1)

(n+ α + 1)n+α+
1
2 e−n−α−1

(n+ 1)n+
1
2 e−n−1

=
1

Γ(α + 1)

(︃
n+ α + 1

n+ 1

)︃n+ 1
2

(n+ α + 1)α e−α

=
1

Γ(α + 1)

(︃
1 +

α

n+ 1

)︃n+ 1
2

(n+ α + 1)α e−α.

Inserting the de�nition of the exponential ex = limn→∞(1 + x
n
)n, we obtain

(︃
n+ α

n

)︃
≃ 1

Γ(α + 1)
nα, n→ ∞.
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3
Circular means on the sphere

This chapter is devoted to the mean operator M that integrates a function f de�ned on
the sphere Sd−1 along all (d− 2)-dimensional subspheres of Sd−1. The reconstruction of
a function f from its mean values Mf is an overdetermined problem, which says that it
su�ces to have the mean values Mf only for a certain family of subspheres of Sd−1 in
order to uniquely determine the function f . This raises the question, which families of
subspheres are su�cient. We provide a characterization of such families of subspheres
with the help of a partial di�erential equation in the �rst subsection.

Afterwards, we analyze restrictions of the mean operator M to special families of
subspheres of Sd−1. We start with the well-known cases of the Funk�Radon transform,
which takes the family of great circles of S2, in Section 3.2 and the spherical section
transform, which corresponds to the subspheres of �xed radius, in Section 3.3. Later
on, we investigate the generalized Funk�Radon transform in Section 3.4, where we take
the j-th order directional derivative of the function f perpendicular to the great circle
along which we integrate f . The subspheres with a �xed set of centers are subject
to Section 3.5, which includes the vertical slice transform if the centers are on the
equator. The sections of the sphere with hyperplanes through a �xed point are covered
in Section 3.6. For these di�erent restrictions of the mean operator M, we show singular
value decompositions and we investigate their nullspace, which tells us whether the
respective operator is injective, and also their range.

3.1 The mean operator on the sphere

In this section, we start with the de�nition the mean operator M. We show some basic
properties and its singular value decomposition. We investigate the continuity of the
mean operator in spherical Sobolev spaces in Section 3.1.2. Furthermore, we characterize
the range of the mean operator as the set of solutions of a partial di�erential equation,
which resembles John's equation, in Section 3.1.3.
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3 Circular means on the sphere

Figure 3.1: The red circle C(ξ, t) is obtained as the intersection of the two-sphere S2

with a plane. Here, ξ = ϵ3 is the north pole and t = 0.6.

3.1.1 De�nition and basic properties

Any (d − 2)-dimensional subsphere of Sd−1 can be described as the intersection of the
sphere Sd−1 with the hyperplane

{︁
x ∈ Rd ; ξ⊤x = t

}︁
,

which has the normal vector ξ ∈ Sd−1 and the distance t ∈ [−1, 1] to the origin. We
de�ne the (d− 2)-dimensional subsphere

C(ξ, t) :=
{︁
η ∈ Sd−1 ; ξ⊤η = t

}︁
, (ξ, t) ∈ Sd−1 × [−1, 1], (3.1)

which is illustrated in Figure 3.1. We call the normal vectors ξ and −ξ the poles of the
subsphere C(ξ, t).

De�nition 3.1. The mean operator

M : C(Sd−1) → C(Sd−1 × [−1, 1])

applied to a function f ∈ C(Sd−1) is de�ned as

Mf(ξ, t) :=

⎧
⎨
⎩

1

|Sd−2| (1− t2)
d−2
2

∫︂

C(ξ,t)

f(η) dη, ξ ∈ Sd−1, t ∈ (−1, 1)

f(±ξ), ξ ∈ Sd−1, t = ±1,

(3.2)

where dη denotes the standard volume measure on the (d − 2)-dimensional subsphere
C(ξ, t) of Sd−1.

The mean operatorMf(ξ, t) computes the mean value of the function f along the sub-
sphere C(ξ, t). Spherical means have been studied since the second half of the twentieth
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3.1 The mean operator on the sphere

century in approximation theory, see Rudin [Rud50]. To some authors, the operator M
is also known as the spherical transform, see [Sal16].

Since the subsphere C(ξ, t) is a (d−2)-dimensional sphere of radius
√
1− t2, its volume

is given by ∫︂

C(ξ,t)

dη =
⃓⃓
Sd−2

⃓⃓
(1− t2)

d−2
2 .

Hence, the mean operator M maps the constant function f ≡ 1 to the constant function
Mf ≡ 1.

Because C(ξ, t) = C(−ξ,−t), we obtain the symmetry relation

Mf(ξ, t) = Mf(−ξ,−t), (ξ, t) ∈ Sd−1 × [−1, 1]. (3.3)

Remark 3.2. For any η ∈ C(ξ, t), we have

∥ξ − η∥2 = ∥ξ∥2 + ∥η∥2 − 2ξ⊤η = 2− 2t,

since ∥ξ∥ = ∥η∥ = 1. Hence, the subsphere C(ξ, t) can be obtained as the intersection
of the unit sphere Sd−1 with the sphere of radius

√
2− 2t around the pole ξ, i. e.,

C(ξ, t) = {η ∈ Sd−1 ; ∥ξ − η∥2 = 2− 2t}.

The integral of a spherical function f : Sd−1 → C can be rewritten with the mean
operator M as follows.

Corollary 3.3. Let f : Sd−1 → C and ξ ∈ Sd−1. We have
∫︂

Sd−1

f(η) dSd−1(η) =
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

Mf(ξ, t) (1− t2)
d−3
2 dt. (3.4)

Proof. We perform the proof for the case that ξ = ϵd is the north pole, otherwise we
could choose a coordinate system where ξ is the north pole. We have by (2.8)
∫︂

Sd−1

f(η) dSd−1(η) =

∫︂ 1

−1

∫︂

Sd−2

f
(︂√

1− t2 η(d−1) + tϵd
)︂
dSd−2(η(d−1)) (1− t2)

d−3
2 dt

=

∫︂ 1

−1

Mf(ϵd, t)
⃓⃓
Sd−2

⃓⃓
(1− t2)

d−3
2 dt.

The spherical Fourier transform (2.26) turns out to be a powerful tool for analyz-
ing the spherical mean operator M. The following generalization of the Funk�Hecke
formula (2.30) was proven by Berens, Butzer and Pawelke [BBP68, Section 4.2].

Theorem 3.4. Let Yn,d ∈ Yn,d(Sd−1) be a spherical harmonic of degree n ∈ N0, and let
(ξ, t) ∈ Sd−1 × [−1, 1]. Then we have

MYn,d(ξ, t) = Yn,d(ξ)Pn,d(t), (3.5)

where Pn,d is the Legendre polynomial of degree n in dimension d, see (2.13).
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3 Circular means on the sphere

Proof. Let ξ ∈ Sd−1 and Yn,d ∈ Yn,d(Sd−1). If t = 1, the assertion follows directly from
the de�nition of the mean operator M in (3.2) and the fact that Pn,d(1) = 1, see (2.15).
Then both sides of (3.5) equal Yn,d(ξ). In the case t = −1, we have on the left-hand side
of (3.5)

MYn,d(ξ,−1) = Yn,d(−ξ) = (−1)n Yn,d(ξ)

and on the right-hand side

Yn,d(ξ)Pn,d(−1) = (−1)n Yn,d(ξ).

Now let t ∈ (−1, 1). We set the characteristic function

ψ(s) :=

{︄
1, s ≥ t,

0, s < t.

We compute by (3.4) the spherical convolution

∫︂

Sd−1

ψ(ξ⊤η)Yn,d(η) dSd−1(η) =
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

Mf(ξ, s)ψ(s) (1− s2)
d−3
2 ds.

Inserting the de�nition of ψ(s), we see that

∫︂

Sd−1

ψ(ξ⊤η)Yn,d(η) dSd−1(η) =
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

t

Mf(ξ, s) (1− s2)
d−3
2 ds. (3.6)

On the other hand, we obtain by the Funk�Hecke formula (2.30)

∫︂

Sd−1

ψ(ξ⊤η)Yn,d(η) dSd−1(η) =
⃓⃓
Sd−2

⃓⃓
Yn,d(ξ)

∫︂ 1

−1

ψ(s)Pn,d(s) (1− s2)
d−3
2 dt

=
⃓⃓
Sd−2

⃓⃓
Yn,d(ξ)

∫︂ 1

t

Pn,d(s) (1− s2)
d−3
2 ds.

(3.7)

Comparing (3.6) and (3.7), we obtain

∫︂ 1

t

Mf(ξ, s) (1− s2)
d−3
2 ds = Yn,d(ξ)

∫︂ 1

t

Pn,d(s) (1− s2)
d−3
2 ds.

Di�erentiation with respect to t yields

Mf(ξ, t) (1− t2)
d−3
2 = Yn,d(ξ) (1− t2)

d−3
2 Pn,d(t),

which proves the assertion (3.5).
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3.1 The mean operator on the sphere

3.1.2 The mean operator in Sobolev spaces

We analyze the range of the mean operator M with respect to Sobolev spaces. To
this end, we de�ne the Sobolev space Hs,t

mix(Sd−1 × (−1, 1);wd) of mixed orders s, t ∈ R
on Sd−1 × (−1, 1) with the weight wd(t) = (1 − t2)

d−3
2 as the completion of the space

C∞(Sd−1 × (−1, 1)) with respect to the Sobolev norm

∥g∥2Hs,t
mix(Sd−1×(−1,1);wd)

:=
∞∑︂

n=0

Nn,d∑︂

k=1

∞∑︂

l=0

⃓⃓
ĝkn,l,d

⃓⃓2 (︁
n+ d−2

2

)︁2s (︁
l + d−2

2

)︁2t
, (3.8)

where the Fourier coe�cients of g ∈ C∞(Sd−1 × (−1, 1)) are de�ned by

ĝkn,l,d :=

∫︂ 1

−1

∫︂

Sd−1

g(ξ, t)Y k
n,d(ξ)

˜︁Pl,d(t) (1− t2)
d−3
2 dξ dt

for n, l ∈ N0 and k = 1, . . . , Nn,d. In particular, any function g ∈ Hs,t
mix(Sd−1×(−1, 1);wd)

can be written as the Fourier series

g(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

∞∑︂

l=0

ĝkn,l,d Y
k
n,d(ξ) ˜︁Pl,d(t), ξ ∈ Sd−1, t ∈ (−1, 1). (3.9)

We note that the Fourier series (3.9) converges in H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd) with
respect to the Sobolev norm (3.8), but not necessarily pointwise for (ξ, t) ∈ Sd−1×(−1, 1).
The notion of Sobolev spaces Hs

mix of mixed smoothness is used in a similar manner on
the d-dimensional torus, cf. [KSU15, Section 2.1].

For s = t = 0, we obtain the weighted Lebesgue space

L2(Sd−1 × (−1, 1);wd) := H0,0
mix(S

d−1 × (−1, 1);wd).

The functions (ξ, t) ↦→ Y k
n,d(ξ)

˜︁Pl,d(t) form an orthonormal basis of L2(Sd−1×(−1, 1);wd),
see also (2.17). Similar to (2.50) for the Sobolev space Hs(Sd−1), we have for t = 0 and
s ∈ R an equivalent expression of the Sobolev norm

∥g∥Hs,0
mix(Sd−1×(−1,1);wd)

=

⃦⃦
⃦⃦
⃦

(︃
−∆•

ξ +
(d− 2)2

4

)︃s/2
g

⃦⃦
⃦⃦
⃦
L2(Sd−1×(−1,1);wd)

in terms of the Laplace�Beltrami operator ∆•, which was given in (2.48).

Theorem 3.5. Let s ∈ R. The mean operator M on the sphere Sd−1 can be extended
to a continuous linear operator

M : Hs(Sd−1) → H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd).
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3 Circular means on the sphere

Proof. Let f ∈ C∞(Sd−1). We write f as the spherical Fourier series (2.26). By Theo-
rem 3.4 together with (2.18), we obtain

Mf(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

f̂
k

n,d Y
k
n,d(ξ)

√︄
|Sd−1|

Nn,d |Sd−2|
˜︁Pn,d(t). (3.10)

Then we have

∥Mf∥2
H

s+ d−2
2 ,0

mix (Sd−1×(−1,1);wd)
=

∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
⃓f̂kn,d

⃓⃓
⃓
2

⃓⃓
Sd−1

⃓⃓

Nn,d |Sd−2|
(︁
n+ d−2

2

)︁2s+d−2
.

We have by (2.12)

Nn,d =
(2n+ d− 2) (n+ d− 3)!

n!(d− 2)!

=
(2n+ d− 2) (n+ d− 3)(n+ d− 2) · · · (n+ 1)

(d− 2)!
.

Expanding the product, we obtain asymptotically for n→ ∞

Nn,d ≃
2

(d− 2)!
nd−2. (3.11)

Hence, the term 1
Nn,d

(︁
n+ d−2

2

)︁d−2
converges for n→ ∞ to a nonzero real number. Then,

there exists a constant cs,d > 0, which is independent of f such that

∥Mf∥2
H

s+ d−2
2 ,0

mix (Sd−1×(−1,1);wd)
≤ cs,d

∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
⃓f̂kn,d

⃓⃓
⃓
2 (︁
n+ d−2

2

)︁2s

= cs,d ∥f∥Hs(Sd−1) ,

Since C∞(Sd−1) is dense in the Sobolev space Hs(Sd−1), the mean operator M extends

to a continuous linear operator from Hs(Sd−1) to H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd).

Singular value decomposition. Theorem 3.4 forms a singular value decomposition of

the mean operator M : Hs(Sd−1) → H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd). We �rst recall some
general theory about the singular value decomposition of compact operators, see [EHN96,
Section 2.2]. Let K : X → Y be a compact linear operator between two separable Hilbert
spaces X and Y . A complete singular system

{(un, vn, K̂n) ; n ∈ N0} (3.12)

consists of an orthonormal basis {un}∞n=0 of X, a set of orthonormal functions {vn}∞n=0

in Y and singular values {K̂n}∞n=0 ⊂ C, which satisfy K̂n → 0 for n → ∞ such that the
operator K can be diagonalized as

Kf =
∞∑︂

n=0

K̂n ⟨f, un⟩ vn, f ∈ X.
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3.1 The mean operator on the sphere

If all singular values K̂n are nonzero, the operator K is injective and for g = Kf , we
have the inversion formula

f =
∞∑︂

n=0

⟨g, vn⟩
K̂n

un.

The instability of an inverse problem can be characterized by the decay of the singular
values K̂n. The inverse problem of solving Kf = g for f is called mildly ill-posed of
degree α > 0 if K̂n ∈ O(n−α) for n → ∞. The faster the singular values K̂n decay to
zero for n→ ∞, the more ill-posed the inverse problem becomes.

For the case of the mean operator M on the sphere, Theorem 3.5 implies in particular
for s = 0 that M is a compact operator from L2(Sd−1) to L2(Sd−1 × [−1, 1];wd). Hence,
we see that (3.10) forms the singular value decomposition of M as follows.

Corollary 3.6. The mean operator M : L2(Sd−1) → L2(Sd−1 × [−1, 1];wd) on the
sphere Sd−1 has the singular value decomposition consisting of the complete singular
system {︄(︄

Y k
n,d, Y

k
n,d
˜︁Pn,d,

√︄
|Sd−1|

Nn,d |Sd−2|

)︄
; n ∈ N0, k = 1, . . . , Nn,d

}︄
.

3.1.3 A range characterization

We have seen that there are some redundancies in the range of the spherical mean
operator M, like the symmetry condition (3.3). A more sophisticated tool for analyzing
the range of such Radon-type transforms is John's equation, which was �rst shown in
1938 by John [Joh38] for the ray transform, which computes the integrals along all lines
in the Euclidean space Rd. John's equation is an ultrahyperbolic partial di�erential
equation which holds for all functions in the range of the ray transform. An adaption
of John's equation for the Funk transform on the rotation group SO(3) was shown in
[NS99]. We can obtain a similar partial di�erential equation for the mean operator M
on the sphere. We point out that both the ray transform in Rd and the Funk transform
on the rotation group SO(3) are about integrals along one-dimesnsional submanifolds,
whereas the mean operator M takes the integrals along submanifolds whose dimension
is one smaller than the dimension of the sphere Sd−1.

Theorem 3.7. Let f ∈ C2(Sd−1) and d ≥ 2. We denote by ∆•
ξ the Laplace�Beltrami

operator (2.41) that acts with respect to ξ ∈ Sd−1. Then, for ξ ∈ Sd−1 and t ∈ (−1, 1),
the mean operator Mf(ξ, t) = g(ξ, t) satis�es the di�erential equation

∆•
ξg(ξ, t) = (1− t2)

3−d
2

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
g(ξ, t)

)︃
, (3.13)

which can also be written in the form

∆•
ξg(ξ, t) =

(︃
(1− t2)

∂2

∂t2
− (d− 1) t

∂

∂t

)︃
g(ξ, t).
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3 Circular means on the sphere

Proof. We write the function f ∈ C2(Sd−1) ⊂ L2(Sd−1) as spherical Fourier series (2.26)
and obtain by Theorem 3.4

Mf(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

f̂
k

n,d Y
k
n,d(ξ)Pn,d(t), ξ ∈ Sd−1, t ∈ (−1, 1).

Let n ∈ N0 and k ∈ {1, . . . , Nn,d}. We are going to use the fact that any spherical
harmonic Y k

n,d is an eigenfunction of the Laplace�Beltrami operator ∆•. In particular,
we have by (2.42)

∆•Y k
n,d = −n (n+ d− 2)Y k

n,d.

Hence, we have

∆•
ξMf(ξ, t) =

∞∑︂

n=0

Nn,d∑︂

k=1

−n (n+ d− 2) f̂
k

n,d Y
k
n,d(ξ)Pn,d(t). (3.14)

We note that the right-hand side of (3.14) converges in L2(Sd−1) for all t ∈ (−1, 1)
because, by the bound (2.15) of the Legendre polynomials Pn,d, we have

∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
⃓−n (n+ d− 2) f̂

k

n,d Y
k
n,d(ξ)Pn,d(t)

⃓⃓
⃓ ≤

∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
⃓n (n+ d− 2) f̂

k

n,d Y
k
n,d(ξ)

⃓⃓
⃓

and the latter sum converges with respect to L2(Sd−1) since we assumed that f ∈
C2(Sd−1) ⊂ H2(Sd−1). The Legendre polynomials Pn,d satisfy the di�erential equation
[AH12, (2.82)]

(1− t2)
3−d
2

d

dt

(︃
(1− t2)

d−1
2

d

dt
Pn,d(t)

)︃
= −n (n+ d− 2)Pn,d(t). (3.15)

Combining (3.14) and (3.15), we obtain

∆•
ξMf(ξ, t) = (1− t2)

3−d
2

∞∑︂

n=0

Nn,d∑︂

k=1

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
f̂
k

n,d Y
k
n,d(ξ)Pn,d(t)

)︃

= (1− t2)
3−d
2

∂

∂t

⎛
⎝(1− t2)

d−1
2
∂

∂t

∞∑︂

n=0

Nn,d∑︂

k=1

f̂
k

n,d Y
k
n,d(ξ)Pn,d(t)

⎞
⎠

= (1− t2)
3−d
2

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
Mf(ξ, t)

)︃
,

which proves the assertion.

The Theorems 3.7 and 3.5 give necessary conditions for a function to be in the range
of the mean operator M. It turns out that the John-type equation (3.13) forms also a
su�cient condition. In order to give such condition, we provide an interpretation of the
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3.1 The mean operator on the sphere

di�erential equation (3.13) if the function g is not di�erentiable in the classical sense.
We already gave a de�nition of the Laplace�Beltrami operator ∆• on Sobolev spaces in
(2.49). Furthermore, we use the same approach to extend the de�nition of the di�erential
operator (1 − t2)

3−d
2

∂
∂t
(1 − t2)

d−1
2

∂
∂t

to a pseudo-di�erential operator. Following (3.15),
we set for g ∈ H0,2

mix(Sd−1 × (−1, 1);wd)

(1− t2)
3−d
2

∂

∂t
(1− t2)

d−1
2
∂

∂t
g(ξ, t) =

∞∑︂

n,l=0

Nn,d∑︂

k=1

−n (n+ d− 2) ĝkn,l,d Y
k
n,d(ξ) ˜︁Pl,d(t).

Theorem 3.8. Let s ∈ R and let g ∈ H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd) ful�ll the John-type
equation (3.13), i. e.,

∆•
ξg(ξ, t) = (1− t2)

3−d
2

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
g(ξ, t)

)︃
, ξ ∈ Sd−1, t ∈ (−1, 1).

Then there exists a function f ∈ Hs(Sd−1) such that Mf = g.

Proof. Let us write the function g ∈ H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd) as the Fourier se-
ries (3.9), i. e.,

g(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

∞∑︂

l=0

ĝkn,l,d Y
k
n,d(ξ) ˜︁Pl,d(t), ξ ∈ Sd−1, t ∈ (−1, 1).

Since g ful�lls the John-type di�erential equation (3.13), we obtain with (3.14) and
(3.15) that

−n (n+ d− 2) ĝkn,l,d = −l (l + d− 2) ĝkn,l,d

holds for all n, l ∈ N0 and k = 1, . . . , Nn,d. Hence, we see that the Fourier coe�cients
ĝkn,l,d must vanish unless −n (n + d − 2) = −l (l + d − 2). Solving for n yields the two
solutions n = l and n = −l − d + 2, where the latter solution can only be reached for
d = 2 and n = l = 0 because n, l ≥ 0 and d ≥ 2. Hence, we see that ĝkn,l,d vanishes
whenever n ̸= l and thus we have

g(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d Y
k
n,d(ξ) ˜︁Pn,d(t).

By the de�nition (2.18) of the normalized Legendre polynomial ˜︁Pn,d, we have

g(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d Y
k
n,d(ξ)

√︄
Nn,d |Sd−2|
|Sd−1| Pn,d(t). (3.16)

The assumption g ∈ H
s+ d−2

2
,0

mix (Sd−1 × (−1, 1);wd) implies the convergence of the series

∞∑︂

n=0

Nn,d∑︂

k=1

⃓⃓
ĝkn,n,d

⃓⃓2 (︁
n+ d−2

2

)︁2s+d−2
.
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3 Circular means on the sphere

Since we have Nn,d ≃ 2
(d−2)!

nd−2 for n→ ∞ by (3.11), we see that also the series

∞∑︂

n=0

Nn,d∑︂

k=1

Nn,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|
(︁
n+ d−2

2

)︁2s ⃓⃓
ĝkn,n,d

⃓⃓2

converges. Hence, we can de�ne the function f ∈ Hs(Sd−1) by its Fourier series

f :=
∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d

√︄
Nn,d |Sd−2|
|Sd−1| Y k

n,d.

With Theorem 3.4, we obtain

Mf(ξ, t) =
∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d

√︄
Nn,d |Sd−2|
|Sd−1| Y k

n,d(ξ)Pn,d(t), ξ ∈ Sd−1, t ∈ (−1, 1).

Comparing the last equation with (3.5), we see that g = Mf .

Remark 3.9. In the proof of Theorem 3.8, we have seen that the Fourier coe�cients
ĝkn,l,d of the function g = Mf vanish if n ̸= l. For such a function g, it follows from the
de�nition of the Sobolev norm (3.8) that

∥g∥Hs,t
mix(Sd−1×(−1,1);wd)

= ∥g∥Hs+α,t−α
mix (Sd−1×(−1,1);wd)

for any α ∈ R. Hence, in the statement of Theorem 3.8, we could alternatively impose
the condition that g ∈ Hs,t

mix(Sd−1 × (−1, 1);wd) for some s, t ≥ 0 with s+ t = d−2
2
.

Injectivity sets of the mean operator

Let s ≥ 0. A set D ⊂ Sd−1 × [−1, 1] is called an injectivity set of the mean operator M
if the equation Mf

⃓⃓
D

= 0 implies that f = 0 for all functions f ∈ Hs(Sd−1). In
Theorem 3.7, we have seen thatMf is always a solution of the John-type equation (3.13)
for all f ∈ Hs(Sd−1). In Theorem 3.8, we have seen that all solutions of (3.13) can be
expressed as Mf with some function f . In what follows, we show the equivalence
between injectivity sets D of the mean operator M and the unique solvability of the
di�erential equation (3.13) with boundary values on D.

However, if we only assume that Mf is in the Sobolev space Hs,t
mix(Sd−1× [−1, 1];wd),

it is not necessarily possible to have point evaluations of Mf and thus it is not clear
how to understand the restriction Mf

⃓⃓
D
in this case. In order to avoid these di�culties,

we use Sobolev embeddings that guarantee the continuity of the functions f and Mf .
We have already seen the Sobolev embedding (2.47) for Hs(Sd−1). The following lemma
forms an analogue on Hs,0

mix(Sd−1 × [−1, 1];wd).

Lemma 3.10. Let s > d − 3
2
, and let g ∈ Hs,0

mix(Sd−1 × [−1, 1];wd) satisfy ĝkn,l,d = 0
whenever n ̸= l. Then the function g has a continuous representative.
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3.1 The mean operator on the sphere

Proof. We start with the Fourier series expansion (3.9) of the function g,

g =
∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d Y
k
n,d
˜︁Pn,d.

We are going to show that this Fourier series of g converges pointwise absolutely. Let
ξ ∈ Sd−1 and t ∈ [−1, 1]. We have

|g(ξ, t)| =

⃓⃓
⃓⃓
⃓⃓

∞∑︂

n=0

Nn,d∑︂

k=1

ĝkn,n,d Y
k
n,d(ξ) ˜︁Pn,d(t)

⃓⃓
⃓⃓
⃓⃓

≤
∞∑︂

n=0

Nn,d∑︂

k=1

(︁
n+ d−2

2

)︁s ⃓⃓
ĝkn,n,d

⃓⃓ (︁
n+ d−2

2

)︁−s ⃓⃓
Y k
n,d(ξ)

⃓⃓ ⃓⃓
⃓ ˜︁Pn,d(t)

⃓⃓
⃓ .

With the Cauchy-Schwarz inequality, we obtain

|g(ξ, t)| ≤

⎛
⎝

∞∑︂

n=0

Nn,d∑︂

k=1

(︁
n+ d−2

2

)︁2s ⃓⃓
ĝkn,n,d

⃓⃓2
⎞
⎠

1/2

·

⎛
⎝

∞∑︂

n=0

Nn,d∑︂

k=1

(︁
n+ d−2

2

)︁−2s ⃓⃓
Y k
n,d(ξ)

⃓⃓2 ⃓⃓⃓ ˜︁Pn,d(t)
⃓⃓
⃓
2

⎞
⎠

1/2

.

By the de�nition of the Sobolev norm (3.8), the addition formula (2.25) for the spherical
harmonics Y k

n,d, and (2.18) together with the bound (2.15) of the Legendre polynomials,
we obtain

|g(ξ, t)| ≤ ∥g∥Hs,0
mix(Sd−1×[−1,1];wd)

(︄
∞∑︂

n=0

(︁
n+ d−2

2

)︁−2s Nn,d

|Sd−1|
Nn,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|

)︄1/2

.

Since, by (3.11), we have Nn,d ≃ 2
(d−2)!

nd−2 for n → ∞, we see that the last sum

converges if and only if −2s+ 2(d− 2) < −1, which is equivalent to s > d− 3
2
.

Theorem 3.11. LetD ⊂ Sd−1×[−1, 1], g0 : D → C, and let s > d−1
2
. Then the following

two statements are equivalent:

i) The problem
M
⃓⃓
D
f = g0 (3.17)

has a unique solution f ∈ Hs(Sd−1).

ii) The John-type di�erential equation (3.13), i. e.,

∆•
ξg(ξ, t) = (1− t2)

3−d
2

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
g(ξ, t)

)︃
,

with boundary condition g
⃓⃓
D
= g0 has a unique solution

g ∈ H
s+ d−2

2
,0

mix (Sd−1 × [−1, 1];wd).
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3 Circular means on the sphere

Proof. We start by showing that (i) implies (ii). Let f ∈ Hs(Sd−1) be the unique

solution of (3.17). We set g = Mf . By Theorem 3.5, we have g ∈ H
s+ d−2

2
,0

mix (Sd−1 ×
[−1, 1];wd). Then g is a solution of the John-type equation (3.13) by Theorem 3.7
and it satis�es g

⃓⃓
D
= g0 by construction. In order to show the uniqueness, we assume

that g̃ ∈ H
s+ d−2

2
,0

mix (Sd−1 × [−1, 1];wd) is another solution of (3.13) with g̃
⃓⃓
D

= g0. By

Theorem 3.8, there exists a function f̃ ∈ Hs(Sd−1) such that Mf̃ = g̃. By the assumed
uniqueness of problem (i), we see that f = f̃ and hence g = g̃.

Now we show the reverse implication (ii) ⇒ (i). Let g ∈ H
s+ d−2

2
,0

mix (Sd−1 × [−1, 1];wd)
be the unique solution of the John-type equation (3.13) satisfying g

⃓⃓
D

= g0. We note
that, since s > d−1

2
, Lemma 3.10 shows that g is continuous and hence the pointwise

evaluations of g and g
⃓⃓
D

are well-de�ned. By Theorem 3.8, there exists a function
f ∈ Hs(Sd−1) such that Mf = g. Hence, f is a solution of (i). To show the uniqueness,
we assume that a function f̃ solves (i). Then we see that Mf̃ is also a solution of (3.13)
by Theorem 3.7 with Mf̃

⃓⃓
D
= g0. The uniqueness of (ii) implies that Mf̃ must coincide

with g = Mf . Hence, we have f = f̃ .

Remark. The condition s > d−1
2

in Theorem 3.11 implies that f is continuous by the
Sobolev embedding (2.47). This implies that the function Mf is continuous.

3.2 The Funk�Radon transform

The most well-known restriction of the mean operator M is the Funk�Radon transform

Ff(ξ) := Mf(ξ, 0) =
1

|Sd−2|

∫︂

ξ⊤η=0

f(η) dη, ξ ∈ Sd−1. (3.18)

The Funk�Radon transform (FRT) F computes the mean values along all maximal
subspheres of Sd−1. A maximal subsphere of the sphere Sd−1 is the intersection of Sd−1

with a hyperplane that contains the origin. Maximal subspheres are totally geodesic
submanifolds of Sd−1, i. e., any geodesic on the maximal subsphere is also a geodesic on
the whole sphere. A maximal subsphere of the two-dimensional sphere S2 is known as a
great circle. A depiction of great circles on S2 is found in Figure 3.2.

Great circle integrals �rst appeared in 1905 in the work of Minkowski [Min05], which
we cite after its German translation [Min11]. The Funk�Radon transform was intro-
duced by Funk in 1911 and originally called the �Kreisintegralfunktion� (circle integral
function) of f . We cite Funk's 1911 dissertation [Fun11] from the identical parts in his
research article [Fun13]. The Funk�Radon transform is also known by the names Funk
transform, spherical Radon transform [GW92], Minkowski�Funk transform [Rub00] or
totally geodesic Radon transform on the sphere [Hel90].

We observe that the Funk�Radon transform of an odd function f(η) = −f(−η) van-
ishes everywhere because if a maximal subsphere contains a point η ∈ Sd−1, it must

60



3.2 The Funk�Radon transform

Figure 3.2: Two great circles of the sphere S2, along which the Funk�Radon transform
takes the mean values. The green circle, which is the equator of S2, is
perpendicular to the north pole ϵ3 and the red circle is perpendicular to
some other vector ξ ∈ S2.

also contain its antipodal point −η. So we can only expect to recover even functions
f(ξ) = f(−ξ) from their respective Funk�Radon transform Ff . Furthermore, Equa-
tion (3.3) implies that the Funk�Radon transform Ff of any function f is even, i. e.,

Ff(ξ) = Ff(−ξ), ξ ∈ Sd−1.

3.2.1 Eigenvalue decomposition

As a special case of (3.5) for the mean operator M we obtain the eigenvalue decompo-
sition of the Funk�Radon transform F .

Theorem 3.12. Let Yn,d ∈ Yn,d(Sd−1) be a spherical harmonic of degree n ∈ N0. Then,
we have

FYn,d = Pn,d(0)Yn,d, (3.19)

where

Pn,d(0) =

⎧
⎨
⎩

(−1)n/2 (n− 1)!! (d− 3)!!

(n+ d− 3)!!
, n even

0, n odd.

(3.20)

Proof. Equation (3.19) is a special case of (3.5) with t = 0. By the recurrence relation
(2.14) of the Legendre polynomial Pn,d, we obtain for n ∈ N0 and d ≥ 3

Pn,d(0) = − n− 1

n+ d− 3
Pn−2,d(0) =

{︄
(−1)n/2 (n−1)!! (d−3)!!

(n+d−3)!!
, n even

0, n odd.
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3 Circular means on the sphere

Since the spherical harmonics Y k
n,d are complete in L2(Sd−1) shows that this is indeed an

eigenvalue decomposition.

The eigenvalue decomposition (3.19) was shown for S2 by Minkowski [Min05] in 1905.
The general situation of arbitrary dimension d was investigated by Goodey and Groe-
mer [GG90] in 1990. The eigenvalue decomposition also shows that the Funk�Radon
transform is injective for even functions f(ξ) = f(−ξ). The following range description
with respect to spherical Sobolev spaces was shown by Strichartz [Str81, Paragraph 4]
in 1981.

Theorem 3.13. Let Hs
even(Sd−1) denote the Sobolev space of even functions f(ξ) =

f(−ξ). The Funk�Radon transform is a bounded and bijective operator

F : Hs
even(Sd−1) → H

s+ d−2
2

even (Sd−1).

In particular, there exist constants c1, c2 > 0 such that for all f ∈ Hs
even(Sd−1)

c1 ∥Ff∥
H

s+ d−2
2

even (Sd−1)
≤ ∥f∥Hs

even(Sd−1) ≤ c2 ∥Ff∥
H

s+ d−2
2

even (Sd−1)
.

Proof. Even though this is a well-known result, we give the proof in which we examine
the asymptotic decay of the eigenvalues Pn,d(0) in more detail. We have for n ∈ N0

|P2n,d(0)| =
(2n− 1)!! (d− 3)!!

(2n+ d− 3)!!
.

Replacing the double factorials by the Gamma function as in (2.68), we have

|P2n,d(0)| =
(2n− 1)!! Γ(d−1

2
)

2n Γ(2n+ d−1
2
)
.

With the asymptotic approximations (2.75) and (2.72) of the double factorial and the
Gamma function, respectively, we obtain for n→ ∞

|P2n,d(0)| ≃
√
2 (2n)n e−n Γ(d−1

2
)

2n
√
2π (n+ d−1

2
)n+

d−2
2 e−n−

d−1
2

=
nn e

d−1
2 Γ(d−1

2
)

√
π (n+ d−1

2
)n+

d−2
2

= e
d−1
2 Γ(d−1

2
)π− 1

2

(︄
n

n+ d−1
2

)︄n (︃
n+

d− 1

2

)︃ 2−d
2

.

Because ex = limn→∞(1 + x
n
)n for x ∈ C, we obtain

|P2n,d(0)| ≃ e
d−1
2 Γ(d−1

2
) π− 1

2 e
−d+1

2 (n+ d− 1)
2−d
2 .
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3.2 The Funk�Radon transform

Hence, we have for n→ ∞

|P2n,d(0)| ≃ Γ(d−1
2
)π− 1

2 n
2−d
2 . (3.21)

By the de�nition of the Sobolev norm (2.46), we have

∥f∥2Hs
even(Sd−1) =

∞∑︂

n=0
n even

Nn,d∑︂

k=1

(︁
n+ d−2

2

)︁2s ⃓⃓⃓
⟨︁
f, Y k

n,d

⟩︁
L2(Sd−1)

⃓⃓
⃓
2

,

and, by the eigenvalue decomposition (3.19),

∥Ff∥2
H

s+ d−2
2

even (Sd−1)
=

∞∑︂

n=0
n even

Nn,d∑︂

k=1

|Pn,d(0)|2
(︁
n+ d−2

2

)︁2s+d−2
⃓⃓
⃓
⟨︁
f, Y k

n,d

⟩︁
L2(Sd−1)

⃓⃓
⃓
2

.

Hence, we see that (3.13) holds if and only if

c1 |Pn,d(0)| ≤ (n+ d−2
2
)
2−d
2 ≤ c2 |Pn,d(0)|

for all even n ∈ N0. The latter follows from (3.21) and the fact that Pn,d(0) ̸= 0 for all
even n. On the other hand, we have Pn,d(0) = 0 for all odd n ∈ N0.

3.2.2 Inversion

Since the Funk�Radon transform F : Hs
even(Sd−1) → H

s+ d−2
2

even (Sd−1) is bijective as we have

seen in Theorem 3.13, we can ask for its inversion. Given g ∈ H
s+ d−2

2
even (Sd−1), we want to

solve the problem
Ff = g.

In what follows, we give an overview about di�erent inversion methods from the
literature. Funk [Fun13] proved an inversion formula of the Funk�Radon transform on
the two-sphere S2 based on the solution of an Abel integral equation, see also [NW00,
Section 2.5.1]. We have

f(ξ) = Ff(ξ) +
∫︂ π/2

0

1

cosϑ

∂

∂ϑ
M[Ff ](ξ, cosϑ) dϑ, ξ ∈ S2. (3.22)

An inversion formula that makes use of complex analysis is due to Bailey et al. [BEGM03].

The Funk�Radon transform on the two-dimensional sphere S2 can be reduced to the
Radon transform (3.67) on the plane as shown in [GRS94], see also [NW00, Section
2.5.2]. Since the function f : S2 → C is even, it su�ces to consider f in the northern
hemisphere. This reduction is done via a central (gnomonic) projection from the origin
to the plane tangential to sphere at the north pole ϵ3. It was shown that

Ff(ξ) = Rϕ((ξ1, ξ2),−ξ3), ξ ∈ S2,
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3 Circular means on the sphere

where

ϕ(y) = 2(1 + ∥y∥2)− 3
2 f

⎛
⎝ y√︂

1 + ∥y∥2
,

1√︂
1 + ∥y∥2

⎞
⎠ , y ∈ R2.

Inversion formulas of the Funk�Radon transform in higher dimensions on Sd−1 were
found by Helgason [Hel59] for d even and Semjanistyi [Sem61] for d odd. We state the
following inversion formula, which is due to Helgason [Hel90, Theorem 3.2]. An even
function f : Sd−1 → C can be reconstructed from its Funk�Radon transform Ff by

f(ξ) =
2d−2

(d− 3)!

[︄(︃
d

d(u2)

)︃d−2 ∫︂ u

0

M[Ff ](ξ, v) vd−2 (u2 − v2)
d−4
2 dv

]︄

u=1

, ξ ∈ Sd−1.

(3.23)
In the case of the two-sphere S2, Helgason's formula (3.23) can be expressed in the more
simple form [Hel11, Theorem 4.1, Chapter II]

f(η) =
d

du

∫︂ u

0

M[Ff ](η, v) v√
u2 − v2

dv

⃓⃓
⃓⃓
u=1

, η ∈ S2.

Another inversion formula of the Funk�Radon transform on Sd−1 by Helgason [Hel11,
Theorem 1.17, Chapter III] works only if d is even, where we have

f =
(2i)2−d π

Γ(d−1
2
)2

d−4
2∏︂

j=0

(∆• − (d− 3− 2j)(1 + 2j))F2f.

We note that Helgason's work does not use the normalization factor
⃓⃓
Sd−2

⃓⃓−1
of the

Funk�Radon transform as we do in (3.18).

Explicit inversion formulas of the Funk�Radon transform such as (3.22) or (3.23) are
important for many theoretical considerations. In practical applications, however, they
often lack numerical stability, which makes other methods more suitable in this case.
The eigenvalue decomposition from Theorem 3.12 paves a simple and straightforward
way to invert the Funk�Radon transform F as follows.

Proposition 3.14. Let s ≥ 0 and g ∈ H
s+ d−2

2
even (Sd−1). Then the problem Ff = g is

solved by

f(ξ) =
∞∑︂

n=0
n even

Nn,d∑︂

k=1

1

Pn,d(0)
ĝkn,d Y

k
n,d(ξ), ξ ∈ Sd−1, (3.24)

where the spherical Fourier coe�cients ĝkn,d of the function g are given in (2.27).

Remark 3.15. The inversion formula (3.24) of the Funk�Radon transform allows for
a numerical implementation when the sum over n is truncated to n ≤ N ∈ N0, as we
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3.2 The Funk�Radon transform

pointed out in [HQ15]. Let g : Sd−1 → C be given. At �rst, we compute an approximation
of the spherical Fourier coe�cients of g,

ĝkn,d =

∫︂

Sd−1

g(ξ)Y k
n,d(ξ) dξ, n = 0, . . . , N, , k = 1, . . . , Nn,d (3.25)

via a quadrature formula. Then, we can approximate a reconstruction of the function f
via

f(ξ) =
N∑︂

n=0
n even

Nn,d∑︂

k=1

1

Pn,d(0)
ĝkn,d Y

k
n,d(ξ), ξ ∈ Sd−1. (3.26)

For the two-dimensional case of S2, there are spherical Fourier algorithms available for
the fast evaluation of (3.25) and (3.26), see [KP03, KP08, Sch13] as well as [PPST18,
Section 9.6] and the references therein. Some of these fast spherical Fourier algorithms
are implemented in [KKP].

Remark 3.16. In most applications, one usually measures only a noisy version of the
data, g + δ, where δ denotes a small noise. However, it does not make much sense to
make assumptions on the smoothness of the noise like δ ∈ Hs+ d−2

2 (Sd−1). This makes
the reconstruction of the function f an ill-posed problem.

For the reconstruction of a function f given noisy samples of the Funk�Radon trans-
form Ff , it is necessary to apply a regularization method. There is a great variety of
regularization methods in the literature, cf. [EHN96]. Louis et al. [LRSS11] have applied
the molli�er method for the numerical inversion of the Funk�Radon transform; locally
supported molli�ers were discussed in [RS13].

In our article [HQ15], we have combined the molli�er method with the singular value
decomposition (3.24) leading to a fast numerical algorithm that is based on the spherical
Fourier transform. With this approach, the algorithm from Remark 3.15 is modi�ed
such that the summands in (3.26) are multiplied with certain molli�cation coe�cients.
In numerical tests, this algorithm shows a reconstruction error that is comparable to the
error of the direct implementation of the molli�er method, while it is considerably faster
than the direct implementation.

3.2.3 Applications

The Funk�Radon transform and its inverse have several theoretical and practical applica-
tions. Integrals along great circles of the sphere S2 were �rst used by Minkowski [Min05].
He utilized the singular value decomposition (3.19) to solve the geometrical problem
whether the bodies of constant width and the bodies of constant circumference are the
same. We give a brief description of the problem and the solution technique in the
following remark.

Remark 3.17. LetK ⊂ R3 be a convex body, i. e. a convex, compact set with nonempty
interior. We de�ne the support function of K by

hK(ξ) := sup{ξ⊤x ; x ∈ K}, ξ ∈ S2.
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3 Circular means on the sphere

The width function wK of the body K in the direction ξ ∈ S2 is given by

wK(ξ) := hK(ξ) + hK(−ξ).

The width wK(ξ) can be imagined as the smallest distance between two parallel planes
perpendicular to ξ such that K �ts between these planes. The circumference uK(ξ) is
de�ned as the circumference of the intersection of K with the plane {x ∈ R3 : x⊤ξ = 0}.
Minkowski showed the relation with the Funk�Radon transform

uK(ξ) = 2πFhK(ξ).

A body K is of constant width or circumference, if wK or uK is constant, respectively.
We develop hK and uK in spherical Fourier series (2.26). Then wK is constant if and
only if ĥK(n) = 0 for all n ∈ {2, 4, 6, . . . }. This is equivalent to ûK(n) = F̂ (n) ĥK(n) = 0
for all n ≥ 1, which says that uK is constant. So a convex body is of constant width if
and only if it is of constant circumference.

In the mathematical �eld of geometric tomography, the Funk�Radon transform is
useful for the description of star bodies, see [Gar06, Chapter 4].

There are also practical applications of the Funk�Radon transform in di�erent imaging
modalities. One example is the Q�ball imaging [Tuc04], which is a technique in magnetic
resonance imaging. The inversion of the Funk�Radon transform is used in synthetic
aperture radar (SAR) [YY11] and for the inversion of the conical Radon transform
[Ter15], which occurs in Compton imaging.

It is also used for the inversion of another Radon-type transform arising in photoa-
coustic tomography [HMS16]. The Radon-type transform

RPf(θ, t) :=

∫︂

θ⊤α=0

∫︂

S2
f(α+ tβ) dβ dα, (θ, t) ∈ S2 × (0,∞)

�rst integrates a function on R3 along the sphere α + tS2 and then takes the integral
over the midpoints α of the spheres along the circle {α ∈ S2 ; θ⊤α = 0}.

3.3 The spherical section transform

We come to a restriction of the mean operator M, which also serves as a generalization
of the Funk�Radon transform F . Let z ∈ [−1, 1] be arbitrary but �xed. We de�ne the
spherical section transform Tz : C(Sd−1) → C(Sd−1) by

Tzf(ξ) := Mf(ξ, z), ξ ∈ Sd−1.

The operator Tz takes the mean values along all (d − 2)-dimensional subspheres that
have �xed radius

√
1− z2. Such subspheres are illustrated in Figure 3.3. In the case

z = 0, we have the Funk�Radon transform T0 = F . The operator Tz was introduced
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3.3 The spherical section transform

Figure 3.3: This picture shows three circles on the two-sphere S2 with the same radius.
The spherical section transform Tz computes the mean values along such
circles.

by Rudin [Rud50] in 1950 and is known as the spherical section transform [Rub00], the
translation operator [DX13] or the shift operator [Rus93].

As a special case of Theorem 3.4 for the mean operator M, we obtain the eigenvalue
decomposition of the spherical section transform Tz.
Proposition 3.18. Let z ∈ [−1, 1], and let Yn,d ∈ Yn,d(Sd−1) be a spherical harmonic
of degree n ∈ N0. Then, we have

TzYn,d = Pn,d(z)Yn,d, n ∈ N0, (3.27)

where the eigenvalues Pn,d(z) are the Legendre polynomials (2.13) evaluated at z.

As a consequence of the eigenvalue decomposition (3.27), we obtain the following
injectivity result of the spherical section transform Tz.
Proposition 3.19. Let z ∈ [−1, 1]. The spherical section transform Tz : L2(Sd−1) →
L2(Sd−1) is injective if and only if

Pn,d(z) ̸= 0 for all n ∈ N0.

Hence, the operator Tz is injective for all except countably many z ∈ [−1, 1]. In partic-
ular, the set of all z for which the spherical section transform Tz is not injective, has the
Lebesgue measure zero, but it is dense everywhere in [−1, 1].

The injectivity result of the spherical section transform Tz in Proposition 3.19 is due
to Schneider [Sch69] in 1969. It was inspired by the so-called �Freak Theorem� of Ungar
[Ung54] from 1954, who had given a similar injectivity condition for the integrals over
the spherical caps {ξ ∈ S2 ; ξ3 ≥ z} where z ∈ [−1, 1].
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3 Circular means on the sphere

The result of Strichartz about Sobolev estimates for the Funk�Radon transform F in
Theorem 3.13 extends to the following bound of the spherical section transform Tz in
Sobolev spaces.

Theorem 3.20. Let z ∈ (−1, 1) and s ∈ R. The spherical section transform Tz is a
continuous operator

Tz : Hs(Sd−1) → Hs+ d−2
2 (Sd−1).

Proof. Let λ > 0 and n ∈ N0. We use Darboux's extension of Laplace's formula for the
Gegenbauer polynomial [Sze75, (8.21.14)] with p = 1, i. e.,

C(λ)
n (cos θ) = 2

(︃
n+ λ− 1

n

)︃
cos((n+ λ)θ − λπ/2)

(2 sin θ)λ
+O(nλ−2).

Let z ∈ (−1, 1) be �xed. Hence, we have for n→ ∞

⃓⃓
C(λ)
n (z)

⃓⃓
∈ O

(︃
n+ λ− 1

n

)︃
.

By the relation (2.19) between the Legendre polynomial Pn,d and the Gegenbauer poly-
nomial C(λ)

n and inserting λ = d−2
2
, we have for n→ ∞

|Pn,d(z)| ∈ O
(︄(︁

n+ d−2
2

−1
n

)︁
(︁
n+d−3
n

)︁
)︄

Inserting the asymptotic expansion (2.76) of the binomial coe�cient, we obtain

|Pn,d(z)| ∈ O
(︄
n

d−2
2

−1

nd−3

)︄
= O

(︂
n

2−d
2

)︂
. (3.28)

The assertion follows analogously to the proof of Theorem 3.13.

We note that Theorem 3.20 does not hold for the extremal cases z = ±1. However,
we see that T1 is the identity operator and T−1 is the re�ection operator in the origin,
both of which are continuous operators Hs(Sd−1) → Hs(Sd−1).

Remark 3.21. Contrary to Theorem 3.13 for the Funk�Radon transform F , there is no
corresponding lower bound to (3.28) of the form |Pn,d(z)| ≥ c n

2−d
2 . So, even if we choose

a z ∈ (−1, 1) for which the spherical section transform Tz is bijective, the inverse T −1
z

is not always bounded from H
d−2
2 (Sd−1) to L2(Sd−1), depending on z. Theorem 3.20 is

a special case of [Rub00, Theorem 2.9] by Rubin, who also did a more detailed analysis
of the injectivity of the spherical section transform, especially on S3. He showed that
Tcos θ is injective for θ ∈ {π

3
, π
4
} on S2. However, it is unknown whether there exists any

β ∈ Q besides the well-known cases β ∈ {0, 1
2
, 1} for which Tcos(βπ) is not injective.
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3.4 The generalized Funk�Radon transform S(j)

Application. The spherical section transform Tz appears in the study of the conical
Radon transform, which is used in Compton camera imaging, see [Moo17]. The conical
Radon transform C maps a function f : R3 → R to its integral along the circular cone
with center u ∈ R3, direction ξ ∈ S2 and opening angle ψ ∈ (0, π), i. e.,

Cf(u, ξ, ψ) :=
∫︂ ∞

0

∫︂

C(ξ,cosψ)

f(u+ rη) r dη dr,

where the subsphere C(ξ, cosψ) ⊂ S2 is de�ned in (3.1). When we �x the center u, the
inner integral is the spherical section transform Tcosψ of the function η ↦→ f(u + rη) r.
An overview of the conical Radon transform and its application in Compton camera
imaging is provided in [TKK18].

3.4 The generalized Funk�Radon transform S(j)

This section is devoted to the operator S(j) that generalizes the Funk�Radon transform
to derivatives. Most of the material can be found in the �rst part of our article [QHL18].

Let j ∈ N0. We de�ne the generalized Funk�Radon transform S(j) for f ∈ C∞(Sd−1)
by

S(j)f(ξ) :=

∫︂

Sd−1

δ(j)(ξ⊤η) f(η) dη, ξ ∈ Sd−1. (3.29)

Here, δ(j) denotes the j-th derivative of the Dirac delta distribution, which is de�ned by
its application to a test function ψ ∈ C∞[−1, 1]

∫︂ 1

−1

δ(j)(t)ψ(t) dt = (−1)j
∫︂ 1

−1

δ(t)ψ(j)(t) dt = (−1)jψ(j)(0). (3.30)

Equation (3.29) can be interpreted as the spherical convolution (2.29) with δ(j). As
for now, we de�ne S(j) only for smooth functions. Like we did for the Funk�Radon
transform F in Theorem 3.13, we will later extend S(j) to appropriate Sobolev spaces
in Section 3.4.2.

The generalized Funk�Radon transform S(j) was introduced by Louis [Lou16] in 2016.
The study of S(j) is motivated by the cone-beam tomography, to which it is related via
Grangeat's formula, see Section 4.1.

In the following, we explain the above de�nition of the generalized Funk�Radon trans-
form S(j) in (3.29) and present equivalent formulas.

Corollary 3.22. Let f ∈ C∞(Sd−1). The generalized Funk�Radon transform (3.29) can
be written as

S(j)f(ξ) =

∫︂

ξ⊤η=0

(︃
− ∂

∂ξ

)︃j
f(η) dη, ξ ∈ Sd−1, (3.31)

where ∂
∂ξ

denotes the directional derivative with respect to ξ.
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3 Circular means on the sphere

Proof. We state the proof for ξ = ϵd being the north pole of Sd−1, the general case
follows by rotational symmetry. Using the decomposition η =

√︁
1− η2d η(d−1) + ηdϵ

d as
in (2.8), we have

S(j)f(ϵd) =

∫︂

Sd−1

∫︂ 1

−1

δ(j)(ηd) f

(︃√︂
1− η2d η(d−1) + ηdϵ

d

)︃
dηd dη(d−1).

With the de�nition of the delta distribution δ(j) in (3.30), we obtain

S(j)f(ϵd) =

∫︂

Sd−1

(−1)j
(︃

∂

∂ϵd

)︃j
f(η(d−1)) dη(d−1),

which shows the assertion.

The last corollary shows that, in the case j = 0, the operator S(0) matches the
Funk�Radon transform F , see also [Rip11, Lemma 2.2]. Furthermore, we note that the
generalized Funk�Radon transform S(j) is not a restriction of the mean operator M
considered that j ≥ 1.

Corollary 3.23. Let f ∈ C∞(Sd−1) and ξ ∈ Sd−1. We have

S(j)f(ξ) = (−1)j
⃓⃓
Sd−2

⃓⃓ (︃ d

dt

)︃j
(1− t2)

d−3
2 Mf(ξ, t)

⃓⃓
⃓⃓
⃓
t=0

. (3.32)

Furthermore, let Y k
n,d ∈ Yn,d(Sd−1) be a spherical harmonic of degree n ∈ N0 with

k = 1, . . . , Nn,d. Then, we have

S(j)Y k
n,d(ξ) = (−1)j

⃓⃓
Sd−2

⃓⃓
Y k
n,d(ξ)

(︃
d

dt

)︃j
(1− t2)

d−3
2 Pn,d(t)

⃓⃓
⃓⃓
⃓
t=0

. (3.33)

Proof. We apply equation (3.4) to the de�nition (3.29) of the generalized Funk�Radon
transform S(j) and obtain

S(j)f(ξ) =
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

δ(j)(t) (1− t2)
d−3
2 Mf(ξ, t) dt.

Inserting the de�nition (3.30) of the delta distribution δ(j) implies (3.32). Inserting the
spherical harmonic f = Y k

n,d into (3.32) and considering the singular value decomposi-
tion (3.5) of the mean operator M shows (3.33).

We note that equation (3.33) can also be obtained by formally applying the Funk�
Hecke formula (2.30) with ψ = δ(j). However, the Funk�Hecke formula originally requires
that ψ ∈ L1(−1, 1).
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3.4.1 Singular value decomposition

Like for the classical Funk�Radon transform F , we obtain an eigenvalue decomposition
of the generalized Funk�Radon transform S(j) in terms of spherical harmonics.

Theorem 3.24. Let j ∈ N0. The generalized Funk�Radon transform S(j) : C∞(Sd−1) →
C∞(Sd−1) satis�es the eigenvalue decomposition

S(j)Y k
n,d = Ŝ(j)

(n)Y k
n,d, n ∈ N0, k = 1, . . . , Nn,d,

with the eigenvalues for n+ j even and (n ≥ j − d+ 3 or d even)

Ŝ(j)
(n) :=

⃓⃓
Sd−2

⃓⃓
(−1)

n+j
2
(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!
(3.34)

= π
d−2
2 (−1)

n+j
2 2j+1 Γ

(︁
n+j+1

2

)︁

Γ
(︁
n−j+d−1

2

)︁ (3.35)

and otherwise
Ŝ(j)

(n) := 0.

Proof. Let n ∈ N0 and k ∈ {1, . . . , Nn,d}. By (3.33), we have

S(j)Yn,d(ξ) =
⃓⃓
Sd−2

⃓⃓
(−1)j Y k

n,d(ξ)

(︃
d

dt

)︃j
Pn,d(t) (1− t2)

d−3
2

⃓⃓
⃓⃓
⃓
t=0

. (3.36)

By Rodrigues' formula (2.13), we have
(︃

d

dt

)︃j
Pn,d(t) (1− t2)

d−3
2

⃓⃓
⃓⃓
⃓
t=0

= (−1)n
(d− 3)!!

(2n+ d− 3)!!

(︃
d

dt

)︃n+j
(1− t2)n+

d−3
2

⃓⃓
⃓⃓
⃓
t=0

.

(3.37)
We apply the generalized binomial theorem, which states for a, b, z ∈ C

(a+ b)z =
∞∑︂

k=0

(︃
z

k

)︃
az−k bk, (3.38)

where the binomial coe�cient with complex argument is de�ned in (2.69). Let t ∈ R.
The generalized binomial theorem (3.38) implies

(1− t2)n+
d−3
2 =

∞∑︂

k=0

(︃
n+ d−3

2

k

)︃
(−1)k t2k. (3.39)

Evaluating the (n + j)-th derivative of (3.39) at t = 0 and taking into account that(︁
d
dt

)︁ℓ
t2k
⃓⃓
⃓
t=0

= (2k)! δℓ,2k, we obtain if n+ j is even

(︃
d

dt

)︃n+j
(1− t2)n+

d−3
2

⃓⃓
⃓⃓
⃓
t=0

=
∞∑︂

k=0

(︃
n+ d−3

2

k

)︃
(−1)k

(︃
d

dt

)︃n+j
t2k

⃓⃓
⃓⃓
⃓
t=0

=

(︃
n+ d−3

2
n+j
2

)︃
(−1)

n+j
2 (n+ j)!

(3.40)
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and zero otherwise. By its de�nition in (2.69), the binomial coe�cient
(︁
z
k

)︁
is zero if

and only if both z is a nonnegative integer and z < k. Hence, the binomial coe�cient(︁n+ d−3
2

n+j
2

)︁
from (3.40) is nonzero if and only if d−3

2
is not an integer or n + d−3

2
≥ n+j

2
.

This condition can be simpli�ed to that d is even or n ≥ j − d + 3. The binomial

coe�cient
(︁n+ d−3

2
n+j
2

)︁
is nonzero if and only if d−3

2
is not an integer or n+ d−3

2
≥ n+j

2
, which

is equivalent to d even or n ≥ j − d+ 3. Then we have
(︃
n+ d−3

2
n+j
2

)︃
=

(︁
2n+d−3

2

)︁ (︁
2n+d−3

2
− 1
)︁
· · ·
(︁
2n+d−3

2
− n+j

2
+ 1
)︁

(︁
n+j
2

)︁
!

=
(2n+ d− 3)!!

(n− j + d− 3)!! (n+ j)!!
.

(3.41)

Combining (3.37), (3.40) and (3.41), we obtain

(︃
d

dt

)︃j
Pn,d(t) (1− t2)

d−3
2

⃓⃓
⃓⃓
⃓
t=0

= (−1)n
(d− 3)!!

(2n+ d− 3)!!

(2n+ d− 3)!!

(n+ j)!!(n− j + d− 3)!!
(−1)

n+j
2 (n+ j)!

= (−1)
n−j
2

(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!

if n+ j is even and (n ≥ j − d+ 3 or d even), and zero otherwise. Plugging into (3.36)
shows (3.34). Inserting the volume (2.10) of Sd−2 into (3.34), we have for n+ j even and
(n ≥ j − d+ 3 or d even)

Ŝ(j)
(n) =

⃓⃓
Sd−2

⃓⃓
(−1)

n−j
2
(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!

=
2π

d−1
2

Γ
(︁
d−1
2

)︁ (−1)
n−j
2

(n+ j − 1)(n+ j − 3) · · · 1
(n− j + d− 3)(n− j + d− 5) · · · (d− 1)

=
2π

d−1
2

Γ
(︁
d−1
2

)︁ (−1)
n−j
2

2
n+j
2

(︁
n+j−1

2

)︁ (︁
n+j−1

2
− 1
)︁
· · ·
(︁
1
2

)︁

2
n−j
2

(︁
n−j+d−1

2
− 1
)︁ (︁

n−j+d−1
2

− 2
)︁
· · ·
(︁
d−1
2

)︁ .

With the functional equation (2.67) of the Gamma function, we obtain

Ŝ(j)
(n) =

2π
d−1
2

Γ
(︁
d−1
2

)︁ (−1)
n−j
2 2j

Γ
(︁
n+j+1

2

)︁

Γ
(︁
1
2

)︁ Γ
(︁
d−1
2

)︁

Γ
(︁
n−j+d−1

2

)︁

= π
d−2
2 (−1)

n−j
2 2j+1 Γ

(︁
n+j+1

2

)︁

Γ
(︁
n−j+d−1

2

)︁ ,

which shows (3.35).

Theorem 3.24 contains for j = 0 the eigenvalue decomposition (3.19) of the Funk�
Radon transform F .
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3.4.2 S(j) in Sobolev spaces

In this section, we extend the generalized Funk�Radon transform S(j) to a continuous
operator between Sobolev spaces. As a �rst step, we derive an asymptotic approximation

of the eigenvalues Ŝ(j)
(n) from Theorem 3.24 as n goes to in�nity.

Lemma 3.25. Let j ∈ N0. We have for n→ ∞ with n+ j even and n ≥ j
⃓⃓
⃓Ŝ(j)

(n)
⃓⃓
⃓ ≃ nj−

d−2
2 π

d−1
2 2

d
2 .

Proof. Let n+ j be even and n ≥ j. We have by (3.35)

⃓⃓
⃓Ŝ(j)

(n)
⃓⃓
⃓ = π

d−2
2 2j+1 Γ

(︁
n+j+1

2

)︁

Γ
(︁
n−j+d−1

2

)︁ .

We apply Stirling's approximation (2.72) of the Gamma function to the eigenvalues
(3.35) and obtain for n→ ∞
⃓⃓
⃓Ŝ(j)

(n)
⃓⃓
⃓ ≃ π

d−2
2 2j+1

(︁
n+j+1

2

)︁n+j
2 e−

n+j+1
2

(︁
n−j+d−1

2

)︁n−j+d−2
2 e−

n−j+d−1
2

= π
d−2
2 2

d
2 e

d−2
2

−j (n+ j + 1)
n+j
2

(n− j + d− 1)
n−j+d−2

2

= 2
d
2 π

d−2
2 e

d−2
2

−j
(︃
1 +

2j − d+ 2

n− j + d− 1

)︃n
2

(n+ j + 1)
j
2 (n− j + d− 1)

j+2−d
2 .

Considering that ex = limn→∞
(︁
1 + x

n

)︁n
, we obtain

⃓⃓
⃓Ŝ(j)

(n)
⃓⃓
⃓ ≃ 2

d
2 π

d−2
2 e

d−2
2

−j e
2j−d+2

2 nj+
2−d
2 = 2

d
2 π

d−2
2 nj−

d−2
2 .

Now, we are able to show the generalization of the Sobolev estimates from Theo-
rem 3.13 as well as a complete characterization of the nullspace or kernel for the gener-
alized Funk�Radon transform S(j).

Theorem 3.26. Let s ∈ R and j ∈ N0. The generalized Funk�Radon transform S(j)

extends to a continuous operator

S(j) : Hs(Sd−1) → Hs−j+ d−2
2 (Sd−1). (3.42)

If j < d−2
2
, then S(j) : L2(Sd−1) → L2(Sd−1) is compact. The nullspace of S(j) is the

closed linear span

span
{︁
Yn,d(Sd−1) ; n+ j odd or (n ≤ j − d+ 1 and d odd)

}︁
. (3.43)

If d is odd and j ≥ d− 1, the nullspace of S(j) comprises the sum of all polynomials of
degree up to j−d+1 and all odd (even) functions whenever j is even (odd). Otherwise,
the null-space of S(j) comprises all odd (even) functions whenever j is even (odd).
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3 Circular means on the sphere

Proof. It follows from Lemma 3.25 that the sequence

N0 ∋ n ↦→
⃓⃓
⃓Ŝ(j)

(n)
⃓⃓
⃓
(︃
n+

d− 2

2

)︃−j+ d−2
2

has an upper bound that is independent of n. Hence, the continuity of (3.42) follows
from de�nition (2.46) of the Sobolev space analogously to the proof of Theorem 3.13.
The compactness of S(j) : L2(Sd−1) → L2(Sd−1) for j < d−2

2
follows because then the

eigenvalues Ŝ(j)
(n) converge to 0 for n→ ∞. The nullspace of S(j) consists of the closed

linear span of all spherical harmonics Y k
n,d where n ∈ N0 satis�es Ŝ

(j)
(n) = 0, i. e.,

span{Yn,d ∈ Yn,d(Sd−1) ; n ∈ N0, Ŝ
(j)
(n) = 0},

which is equal to (3.43).

The order of smoothness s− j+ d−2
2

of the Sobolev space in (3.42) is not unexpected,
because S(j) consists of j di�erentiations, which lower the order of smoothness by j,
and the integration along a (d − 2)-dimensional submanifold, which raises the order of
smoothness by d−2

2
.

3.4.3 Special cases of j

In this section, we take a look at the generalized Funk�Radon transform S(j) for certain
special choices of j, some of which are already well-known operators from literature.
Even though S(j) was initially de�ned in (3.29) only for j ∈ N0, we can extend it to
negative integers j by the singular value decomposition (3.34).

Example 3.27. Inserting j = −1 in the equation (3.35) of the eigenvalues of S(−1)

yields for odd n ∈ N0

Ŝ(−1)
(n) =

⃓⃓
Sd−2

⃓⃓
(−1)

n−1
2
(n− 2)!! (d− 3)!!

(n+ d− 2)!!
= 2 (−1)

n−1
2

2π
d−1
2

Γ
(︁
1
2

)︁ Γ
(︁
n
2

)︁

Γ
(︁
n+d
2

)︁ . (3.44)

and Ŝ(−1)
(n) = 0 for even n ∈ N0. As shown in [Rub99], the values (3.44) are the

eigenvalues of the modi�ed hemispherical transform

S(−1)f(ξ) =
1

2

∫︂

Sd−1

sgn(ξ⊤η) f(η) dη, ξ ∈ Sd−1, (3.45)

where sgn denotes the sign function, see . The modi�ed hemispherical transform S(−1)

is a continuous and bijective operator

S(−1) : L2
odd(Sd−1) → H

d
2
odd(S

d−1),
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3.4 The generalized Funk�Radon transform S(j)

where L2
odd(Sd−1) denotes the subspace of the Hilbert space L2(Sd−1) that contains only

odd functions f(ξ) = −f(−ξ). Furthermore, we note that the sign function 1
2
sgn(t) can

be interpreted as the antiderivative of the delta distribution δ(t).

Originally, the hemispherical transform was de�ned in a slightly di�erent manner by
Funk [Fun15a] (see also [Cam84]), namely as

Hf(ξ) =
∫︂

ξ⊤η≥0

f(η) dη, ξ ∈ Sd−1,

which computes the integrals of the function f on hemispheres {η ∈ Sd−1 ; ξ⊤η ≥ 0}.
The classical hemispherical transform H is the spherical convolution (2.29) with the
characteristic function ψ(t) = 1(t ≥ 0) instead of 1

2
sgn(t) for S(−1). It has applications

for discrete choice models in statistics, see [GK13]. The two hemispherical transforms H
and S(−1) di�er only for the constant part of a function. In particular, we have for a
continuous function f : Sd−1 → C

Hf(ξ) = S(−1)f(ξ) +
1

2

∫︂

Sd−1

f(η) dη, ξ ∈ Sd−1.

Example 3.28. Inserting j = −2 in the equation (3.35) gives the eigenvalues

Ŝ(−2)
(n) =

{︄
2
⃓⃓
Sd−2

⃓⃓
(−1)

n−2
2

(n−3)!! (d−2)!!
(n+d−1)!!

, n even

0, n odd

of the spherical cosine transform

S(−2)f(ξ) =
1

2

∫︂

Sd−1

⃓⃓
ξ⊤η

⃓⃓
f(η) dη,

cf. [Gro96, Lemma 3.4.5]. The spherical cosine transform S(−2) is the spherical convo-
lution (2.29) with the absolute value function ψ(t) = 1

2
|t| for t ∈ [−1, 1]. The second

(distributional) derivative of 1
2
|t| is the delta distribution δ(t). By Theorem 3.26, the

spherical cosine transform is a continuous and bijective operator

S(−2) : L2
even(Sd−1) → H

d+2
2

even(Sd−1),

see also [Pet61]. The inversion of the spherical cosine transform is important for the
analysis of spatial �ber systems in biology or metallography [KP05] and was subject of
the papers [Rub02, LRSS11, RS13].

The name �spherical cosine transform� arises from the fact that for two points ξ,η ∈
Sd−1 and t = ξ⊤η, we have cos(d(ξ,η)) = t, where d(ξ,η) denotes the geodesic distance
between ξ and η on the sphere Sd−1.

Replacing the cosine by the sine, we see that sin(d(ξ,η)) =
√
1− t2. This fact mo-

tivates the de�nition of the spherical sine transform as the spherical convolution (2.29)
with the function ψ(t) =

√
1− t2. The spherical sine transform is a continuous operator

in the spaces L2
even(Sd−1) → Hd

even(Sd−1), see [HS02].
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3 Circular means on the sphere

Example 3.29. Let d ≥ 2 be even. In the case j = d−2
2
, the generalized Funk�Radon

transform S( d−2
2

) has the eigenvalues

Ŝ( d−2
2

)
(n) =

⃓⃓
Sd−2

⃓⃓
(−1)

2n+d−2
4 (d− 3)!! = 2 (2π)

d−2
2 (−1)

2n+d−2
4 , n+ j even

and

Ŝ( d−2
2

)
(n) = 0, n+ j odd.

The eigenvalues Ŝ( d−2
2

)
(n) are, except for their sign, independent of the degree n. Hence,

if d−2
2

is even (odd), the operator S( d−2
2

) : L2(Sd−1) → L2(Sd−1) restricted to the even
(odd) functions is a constant multiple of an isometry.

The following theorem shows an inversion formula for the Funk�Radon transform in
even dimensions d.

Theorem 3.30. Let d ≥ 2 be even. Then any even function f : Sd−1 → C can be
reconstructed from its Funk�Radon transform g = S(0)f = Ff by

f =
1

|Sd−2|2 ((d− 3)!!)2
S(d−2)g. (3.46)

Proof. Let n ∈ N0 be even. On the one hand, we have the eigenvalues

Ŝ(d−2)
(n) =

⃓⃓
Sd−2

⃓⃓
(−1)

n+d−2
2

(n+ d− 3)!! (d− 3)!!

(n− 1)!!
.

On the other hand, the Funk�Radon transform F = S(0) has the eigenvalues

Ŝ(0)
(n) =

⃓⃓
Sd−2

⃓⃓
(−1)

n
2
(n− 1)!! (d− 3)!!

(n+ d− 3)!!
.

Hence, the product of the two operators has the constant eigenvalues

ˆ︂S(d−2)S(0)(n) =
⃓⃓
Sd−2

⃓⃓2
(−1)

d−2
2 (d− 3)!!2.

We have already seen di�erent inversion formulas of the Funk�Radon transform F in
Section 3.2.2. The inversion formula (3.46) contains d−2 derivatives and the integration
of Ff along a (d− 2)-dimensional subsphere, which are exactly the same numbers as in
Helgason's inversion formula (3.23).

3.4.4 Similar transforms

In this section, we consider two integral transforms, which are equal to the generalized
Funk�Radon transform S(j) for certain but not all parameters j.
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3.4 The generalized Funk�Radon transform S(j)

An integro-di�erential transform. Let j ∈ N0 and ϑ ∈
[︁
−π

2
, π
2

]︁
. We de�ne the

integro-di�erential transform R(j)
ϑ : Cj(Sd−1) → C(Sd−1) by

R(j)
ϑ f(ξ) :=

∫︂

ξ⊤ω=0

(︃
∂

∂ϑ

)︃j
f(ξ sinϑ+ ω cosϑ) dω, ξ ∈ Sd,

which was introduced in [MMÓ00]. The operator R(0)
ϑ has been investigated in [Sch69].

For j > 0, we �rst take the j-th derivative of f perpendicular to the circle of integration.
It was shown in [MMÓ01] that the nullspace of the operator R(j)

ϑ is

span

{︄
Yn,d(Sd−1) ;

(︃
d

dϑ

)︃j
Pn,d(sinϑ) = 0

}︄
.

If ϑ = 0, we write R(j) = R(j)
0 . If j ≥ 1, the null�space of R(j) : Cj(Sd−1) → C(Sd−1)

equals for j odd (even) the set {f ∈ Cm(Sd) ; f is even (f is the sum of an odd function
and a constant)}.
Theorem 3.31. We have S(0) = R(0) and S(1) = −R(1).

Proof. For j = 0, we see that S(0) = R(0) is the Funk�Radon transform. By [MMÓ01],
the operator R(j) has as eigenfunctions the spherical harmonics Y k

n,d and the eigenvalues

R̂(j)
(n) =

⃓⃓
Sd−2

⃓⃓ d

dϑ
Pn,d(sinϑ)

⃓⃓
⃓⃓
ϑ=0

.

Theorem 3.24 shows that S(j) has the same eigenfunctions. Hence, the two operators
coincide if their respective eigenvalues do. We have for j = 1 on the one hand

R̂(1)
(n) =

⃓⃓
Sd−2

⃓⃓
P ′
n,d(sinϑ) cosϑ

⃓⃓
ϑ=0

=
⃓⃓
Sd−2

⃓⃓
P ′
n,d(0)

and on the other hand

Ŝ(1)
(n) = −

⃓⃓
Sd−2

⃓⃓ d

dt
Pn,d(t) (1− t2)

d−3
2

⃓⃓
⃓⃓
t=0

= −
⃓⃓
Sd−2

⃓⃓
P ′
n,d(0).

Remark 3.32. Theorem 3.31 does not hold for all j ∈ N0. If d = 3 and j = 2, we have
for n ∈ N0

R̂(2)
(n) = 2π

(︁
P ′′
n (sinϑ) cos

2 ϑ− P ′
n(sinϑ) sinϑ

)︁⃓⃓
⃓
ϑ=0

= 2π P ′′
n (0) = Ŝ(2)

(n).

However, for d = 3 and j = 3

R̂(3)
(n) = 2π

(︁
P ′′′
n (sinϑ) cos3 ϑ− 3P ′′

n (sinϑ) cosϑ sinϑ− P ′
n(sinϑ) cosϑ

)︁⃓⃓
⃓
ϑ=0

= 2π (P ′′′
n (0)− P ′

n(0))

does not coincide with −Ŝ(3)
(n) = 2π P ′′′

n (0).
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3 Circular means on the sphere

The alpha-cosine transform. A recent topic of research is the alpha-cosine transform
or Blaschke�Levy representation [Kol97, Rub99] for α ∈ Z,

H(α)f(ξ) =

∫︂

Sd−1

⃓⃓
ξ⊤η

⃓⃓α
f(η) dη ξ ∈ Sd−1, (3.47)

with the singular values

Ĥ(α)
(n) =

⎧
⎪⎨
⎪⎩
(−1)n/2

Γ
(︁
n−α
2

)︁

Γ
(︁
n+d+α

2

)︁ , n even

0, n odd.

Hence, for j even and α = −j − 1, the α-cosine transform H(−j−1) is, up to a constant
factor, equal to the generalized Funk�Radon transform S(j).

Furthermore, the alpha-cosine transform with odd kernel is given by

H(α)
oddf(ξ) =

∫︂

Sd−1

⃓⃓
ξ⊤η

⃓⃓α
sgn(ξ⊤η) f(η) dη, ξ ∈ Sd−1,

which di�ers from (3.47) only in the factor sgn(ξ⊤η). For j odd and α = −j − 1, it
was shown in [Kaz18] that H(−j−1)

odd is, up to a constant factor, equal to the generalized
Funk�Radon transform S(j).

3.5 Sections with a �xed set of centers

In this section, we come to an important class of restrictions of the mean operator M.
We take a look at the manifold that consists of all subspheres of Sd−1 whose poles are
located on some set S ⊂ Sd−1. More precisely, we consider the restriction of the mean
operator M to manifolds of the form

TS := S × [−1, 1] = {(ξ, t) ; ξ ∈ S, t ∈ [−1, 1]}.
In other words, we take the sections of the sphere with hyperplanes whose normal vectors
are contained in the set S.

We are going to start with general sets S ⊂ Sd−1 and come to the cases where S is
a subsphere or, more speci�cally, the equator of Sd−1 in the Sections 3.5.2 and 3.5.3,
respectively.

3.5.1 Centers in arbitrary curves

We call a set S ⊂ Sd−1 an injectivity set of the mean operator if the restriction M|TS is
injective. Quinto and Zalcman noted the following result characterizing the injectivity
sets of the mean operator restricted to TS in the 1980s. However, it remained unpublished
for some time and was published in [AQ96, Theorem 7.1] with only a sketch of the proof
in 1996. A full proof was later given in [AVZ99]. In the following, we present a simpli�ed
proof that makes use of the zonal harmonics Zn,d given in (2.24).
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3.5 Sections with a �xed set of centers

Proposition 3.33. Let S ⊂ Sd−1. The spherical mean operator M|TS restricted to the
manifold TS is injective if and only if the set S is not a subset of the zero set of any
nontrivial spherical harmonic Yn,d ∈ Yn,d(Sd−1) for any n ∈ N.

Proof. We �rst show the su�ciency. Let Yn,d ∈ Yn,d(Sd−1) be a spherical harmonic of
degree n ∈ N with Yn,d(ξ) = 0 for all ξ ∈ S. Then, we have by Theorem 3.4 for all
(ξ, t) ∈ TS

MYn,d(ξ, t) = Pn,d(t)Yn,d(ξ) = 0.

For the necessity, we assume that the operator M|TS is not injective, i. e., there exists
a nontrivial function f ̸= 0 with Mf(ξ, t) = 0 for all ξ ∈ S. Let Zn,d denote the zonal
harmonic of degree n as de�ned in (2.24). Since f is not the zero function, there exists
an n ∈ N0 such that Zn,d ⋆ f is a nontrivial spherical harmonic of degree n, where the
spherical convolution ⋆ was de�ned in (2.29). On the other hand, we have by (3.4) for
any ξ ∈ S

Zn,d ⋆ f(ξ) =

∫︂

Sd−1

f(η)Zn,d(ξ
⊤η) dη

=

⃓⃓
Sd−2

⃓⃓

|Sd−1|

∫︂ 1

−1

(1− t2)
d−3
2 Zn,d(t)Mf(ξ, t) dt = 0,

since Mf(ξ, t) vanishes for all ξ ∈ S and t ∈ [−1, 1]. Hence, S is a subset of the zero
set of the nontrivial spherical harmonic Zn,d ⋆ f ∈ Yn,d(Sd−1).

One should note that, in the last proposition, we consider the zero sets of all spherical
harmonics Yn,d ∈ Yn,d(Sd−1), see (2.11), not only those from a speci�c basis Y k

n,d.

Remark 3.34. In the case of the one-dimensional sphere S1, the zero sets of spherical
harmonics have a rather simple form. Any spherical harmonic Yn,2 ∈ Yn,2(S1) of de-
gree n ∈ N can be written as the linear combination Yn,2(cosφ, sinφ) = aeinφ + be−inφ,
where φ ∈ [0, 2π), with some coe�cients a, b ∈ C, see (2.31). From Yn,2 = 0, we obtain
that e2inφ = − b

a
. We choose γ ∈ R such that e2inγ = − b

a
. Then we have e2inφ = e2inγ

and hence we see that φ = γ + k
n
π for some k ∈ Z. Consequently, the zero set of a

spherical harmonic Yn,2 is the set {(cosφ, sinφ) ∈ S1 ; φ = k
n
π + γ, k ∈ Z} for some

γ ∈ R. Geometrically, the zero set of a spherical harmonic Yn,2 is characterized as a set
of 2n equidistant points on the circle S1.

Complete systems of radial functions

A closely related question to the injectivity sets of the mean operator is the completeness
of systems of radial functions. For a function f : [−1, 1] → C on the unit interval and a
center point a ∈ Sd−1, we de�ne the corresponding radial function fa : Sd−1 → C on the
sphere by

fa(ξ) := f(a⊤ξ), ξ ∈ Sd−1.
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3 Circular means on the sphere

We note that f ∈ L2([−1, 1];wd) if and only if fa ∈ L2(Sd−1). This can be seen with the
help of (3.4), which implies that

∫︂

Sd−1

fa(ξ) dξ =
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

Mfa(a, t) (1− t2)
d−3
2 dt =

⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

f(t) (1− t2)
d−3
2 dt.

In the following theorem, we show that the problem of completeness of systems of
radial functions is the same as the injectivity of restrictions of the mean operator. This
is the analogue of a result from [AQ96] about radial functions on the Euclidean space Rd.

Theorem 3.35. Let S ⊂ Sd−1. We denote by

L (S) := {fa ; f ∈ L2([−1, 1];wd),a ∈ S} ⊂ L2(Sd−1)

the closure of all radial functions with center in S. Then the mean operator M|TS is
injective for the set S if and only if the set L (S) of radial functions centered on S is
dense in L2(Sd−1).

Proof. We note that L (S) is dense in the Hilbert space L2(Sd−1) if and only if its
orthogonal complement

L (S)⊥ = {g ∈ L2(Sd−1) ; ⟨f, g⟩L2(Sd−1) = 0 for all f ∈ L (S)}

consists of only the zero function. Let g ∈ L2(Sd−1). Then g ∈ L (S)⊥ if and only if

∫︂

Sd−1

g(ξ) f(a⊤ξ) dξ = 0

for all f ∈ L2([−1, 1];wd) and a ∈ S. By (3.4), we obtain

∫︂

Sd−1

Mg(a, t) f(t) (1− t2)
d−3
2 dt = 0

for all f ∈ L2([−1, 1];wd) and a ∈ S. Setting f(t) = Mg(a, t), we see that

∫︂

Sd−1

|Mg(a, t)|2 (1− t2)
d−3
2 dt = 0

and hence

Mg(a, ·) = 0

for all a ∈ S. The inverse implication also holds. Hence, we have shown that g ∈ L (S)⊥

if and only if M|TSg = 0. Consequently, L (S)⊥ contains only the zero function if and
only if the restricted mean operator MTS is injective.
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3.5 Sections with a �xed set of centers

Figure 3.4: The union of the Coxeter system Σ4 with a �nite set.

A related problem in the Euclidean space

The mean operator M
⃓⃓
TS

is closely related with its analogue on the Euclidean space Rd,
which is known as the circular Radon transform or the spherical-mean Radon transform.
We de�ne the circular Radon transform C for f : Rd → C

Cf(x, r) := 1

|Sd−1|

∫︂

Sd−1

f(x+ rξ) dξ, x ∈ S ⊂ Rd, r > 0, (3.48)

which is the mean value of the function f along the sphere with midpoint x ∈ Rd and
radius r > 0.

In 1988, Andersson [And88] considered the inversion of the circular Radon transform C
for the case that the midpoints x are in the hyperplane S = {x ∈ Rd ; xd = 0}. Inversion
formulas where the set of midpoints S is a sphere were shown by Finch et al. [FPR04]
for odd dimension d and Kunyansky [Kun07] for general d ≥ 2. The case that S is an
ellipsoid was covered by Haltmeier [Hal14].

Let us denote by Cc(Rd) the set of continuous functions Rd → C with compact support.
The injectivity problem of C for general sets S in R2 and compactly supported functions
was solved in 1996 by Agranovsky and Quinto [AQ96] as follows.

Proposition 3.36. Let n ∈ N. We denote by

Σn := {teπik/n ; t ∈ R, k = 1, . . . , n},
the Coxeter system of n lines in R2. The circular Radon transform C restricted to the
set S is injective on Cc(R2) if and only if S is not contained in any set of the form

ω(ΣN) ∪ F,
where ω is a rigid motion in R2 and F is a �nite set, see Figure 3.4.

It is conjectured that an generalized version of Proposition 3.36 holds in the d-
dimensional space Rd. However, only one direction of the equivalence has been proven.
We state this result as follows, see the review article [AK05] and the references therein.

Proposition 3.37. Let S ⊂ Rd be not contained in any set of the form

ω(Σn) ∪ F,
where ω is a rigid motion in Rd, Σn is the zero set of a homogeneous, harmonic polynomial
of degree n ∈ N and F is an algebraic subset in Rd of codimension at least 2. Then
the circular Radon transform C of the set S is injective on Cc(Rd). In particular, it is
injective if S is the boundary of a bounded open set with nonempty interior.
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3 Circular means on the sphere

The sets Σn ⊂ Rd are the zero sets of the spherical harmonics of degree n. Restricted
to the unit sphere Sd−1, the sets Σn

⃓⃓
Sd−1 , n ∈ N, are exactly the sets for which the mean

operator M
⃓⃓
TS

is not injective, as we have seen in Proposition 3.33.

3.5.2 Centers on a hyperplane section

After the theory about the general situation, we now come to restrictions of the mean
operatorM to the manifolds S×[−1, 1], where the set of centers S is a (d−2)-dimensional
subsphere of Sd−1. In this case, we are able to obtain a more concrete criterion about
the injectivity. For simplicity of calculations, we assume without loss of generality by
rotational symmetry that this subsphere S is the intersection of the sphere Sd−1 with a
hyperplane parallel to the equator, i. e., we set

Sz := {ξ ∈ Sd−1 ; ξd = z}
for some z ∈ (−1, 1). As in (2.7), we can write any point ξ ∈ Sz in the form

ξ =
√
1− z2 σ + zϵd

for some σ ∈ Sd−2×{0}. Here and in the following, we occasionally identify Sd−2×{0} ⊂
Rd with Sd−2. For f ∈ C(Sd−1) and z ∈ (−1, 1), we set

Vzf(σ, t) := Mf
(︂√

1− z2 σ + zϵd, t
)︂
, σ ∈ Sd−2 × {0}, t ∈ [−1, 1].

We denote by
L2(Sd−2 × (−1, 1);wd)

the Lebesgue space of square-integrable functions on Sd−2 × (−1, 1) with the weight

wd(σ, t) = (1− t2)
d−3
2 , σ ∈ Sd−2, t ∈ (−1, 1),

cf. (2.17).

Theorem 3.38. For m ∈ N0, let {Y k
m,d−1 ; k = 1, . . . , Nm,d−1} be an orthonormal basis

of Ym,d−1(Sd−2) and the spherical harmonic Y m,k
n,d−1 be de�ned as in (2.35). The operator

Vz admits the singular value decomposition

VzY m,k
n,d (σ, t) = λmn,d(z)B

m,k
n,d (σ, t) (3.49)

for n ∈ N0, m = 0, . . . , n and k = 1, . . . , Nm,d−1, with the singular values

λmn,d(z) :=

√︄
|Sd−1|

Nn,d |Sd−2|
˜︁Pm
n,d(z) (3.50)

and the basis functions

Bm,k
n,d (σ, t) := Y k

m,d−1(σ) ˜︁Pn,d(t), (σ, t) ∈ Sd−2 × [−1, 1]. (3.51)

The functions {Bm,k
n,d ; n,m ∈ N0, k = 1, . . . , Nm,d} form an orthonormal basis of the

Hilbert space L2(Sd−2 × (−1, 1);wd).
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3.5 Sections with a �xed set of centers

Proof. Let n ∈ N0 and Yn,d ∈ Yn,d(Sd−1). Then we have for σ ∈ Sd−2 and t ∈ [−1, 1] by
Theorem 3.4

VzYn,d (σ, t) = Pn,d(t)Yn,d

(︂√
1− z2 σ + zϵd

)︂
.

Plugging in the spherical harmonics of (2.35), we obtain

VzY m,k
n,d (σ, t) = Pn,d(t) ˜︁Pm

n,d(z)Y
k
m,d−1(σ)

for m = 0, . . . , n and k = 1, . . . , Nm,d−1, which shows (3.49).

The orthonormality of the functions Bm,k
n,d follows from the orthonormality of the

spherical harmonics Y k
m,d−1 and the orthogonality (2.17) of the Legendre polynomials Pn,d

together with (2.18).

Hence, we obtain the following �Freak Theorem� that resembles Proposition 3.19,
which covered the spherical section transform Tz, for Vz.
Theorem 3.39. The operator Vz : L2(Sd−1) → L2(Sd−2 × (−1, 1);wd) is injective if and
only if

Pm
n,d(z) ̸= 0 ∀n ∈ N0, m = 0, . . . , n.

In particular, the set of values z ∈ (−1, 1) where Vz is not injective is countable and
dense in (−1, 1).

Theorem 3.39 looks almost like Proposition 3.19 for the spherical section transform
Tz, except that the Legendre polynomials Pn,d are replaced by the associated Legendre
functions Pm

n,d. So if Vz is injective for some z ∈ (−1, 1) then Pm
n,d(z) ̸= 0 for all n,m and

hence also the spherical section transform Tz is injective because Pn,d(z) = P 0
n,d(z) ̸= 0

for all n. However, the converse does not hold. This makes an analysis whether Vz is
injective for a given z more di�cult than for Tz.
Furthermore, we obtain the following continuity result of the operator Vz. We recall

the Sobolev spaces on Sd−2 × (−1, 1) that were introduced in (3.8).

Theorem 3.40. Let s ∈ R and z ∈ (−1, 1). The transform Vz is a continuous operator

Vz : Hs(Sd−1) → H
d−3
2
,s

mix (Sd−2 × (−1, 1);wd).

In particular, for s = 0, we have that

Vz : L2(Sd−1) → L2(Sd−2 × (−1, 1);wd)

is continuous.

Proof. Let n ∈ N0, m ∈ {0, . . . , n}, and k ∈ {1, . . . , Nm,d−1}. At �rst, we show a bound
on the absolute value

⃓⃓
λmn,d(z)

⃓⃓
of the singular values (3.50). For t ∈ [−1, 1] and σ ∈ Sd−2,

we apply the addition formula (2.25) to the spherical harmonic Y m,j
n,d (

√
1− t2 σ+ tϵd) =

˜︁Pm
n,d(t)Y

k
m,d−1(σ) on Sd−1 from (2.35). Then we have

n∑︂

m=0

( ˜︁Pm
n,d(t))

2

Nm,d−1∑︂

k=1

⃓⃓
Y k
m,d−1(σ)

⃓⃓2
=

Nn,d

|Sd−1| .
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Using again the addition formula for the inner sum of
⃓⃓
Y k
m,d−1(σ)

⃓⃓2
, we have

n∑︂

m=0

˜︁Pm
n,d(t)

2 Nm,d−1

|Sd−2| =
Nn,d

|Sd−1| .

Since all the summands are non-negative, we obtain

˜︁Pm
n,d(t)

2 Nm,d−1

|Sd−2| ≤ Nn,d

|Sd−1| .

Hence, we have for the singular values (3.50)

⃓⃓
λmn,d(z)

⃓⃓
=

√︄
|Sd−1|

Nn,d |Sd−2|
⃓⃓
⃓ ˜︁Pm

n,d(z)
⃓⃓
⃓ ≤ 1√︁

Nm,d−1

. (3.52)

We proceed in a similar manner to the proof of Theorem 3.5. By the de�nition of the
Sobolev norm (3.8) and the singular value decomposition (3.49) of Vz, we have

∥Vzf∥2
H

d−3
2 ,s

mix (Sd−2×(−1,1);wd)

=
∞∑︂

n=0

n∑︂

m=0

Nm,d−1∑︂

k=0

⃓⃓
⃓λmn,d(z) f̂

m,k

n,d

⃓⃓
⃓
2
(︃
m+

d− 2

2

)︃d−3(︃
n+

d− 2

2

)︃2s

.

By (3.52), we obtain the bound

∥Vzf∥2
H

d−3
2 ,s

mix (Sd−2×(−1,1);wd)

≤
∞∑︂

n=0

n∑︂

m=0

Nm,d−1∑︂

k=0

1

Nm,d−1

⃓⃓
⃓f̂m,kn,d

⃓⃓
⃓
2
(︃
m+

d− 2

2

)︃d−3(︃
n+

d− 2

2

)︃2s

.

The last sum converges by the assumption f ∈ Hs(Sd−1) and the asymptotic expansion
(3.11), which states that Nm,d−1 ≃ 2

(d−3)!
md−3 for m→ ∞.

Remark 3.41. In 2014, Volchkov and Volchkov [VV14] considered a so-called local
two-radii problem, which yields another variation of the �Freak Theorem� 3.39. Let

BR = {ξ ∈ Sd−1 ; ξd > cosR}

denote the open spherical cap of radius R ∈ (0, π) around the north pole ϵd. Further-
more, let r1, r2 < R ≤ π. We consider all subspheres whose spherical centers have
latitude ξd ∈ {cos r1, cos r2} and that are contained in BR. Then the mean operator
M
⃓⃓
T (r1,r2)

restricted to the set

T (r1, r2) =
⋃︂

j∈{1,2}

{︁
(ξ, t) ∈ Sd−1 × (−1, 1) ; ξd = cos rj, cos(R− rj) < t < 1

}︁
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3.5 Sections with a �xed set of centers

Figure 3.5: A vector σ ∈ S1×{0} on the equator of the two-sphere S2 and corresponding
circles of the vertical slice transform Vf(σ, t) for several values of t

is injective for the class L1
loc(BR) of locally integrable functions on BR if and only if

R ≥ r1 + r2 and
∞⋃︂

k=0

(Vk(r1) ∩ Vk(r2)) = ∅,

where
Vk(rj) =

{︂
ν ∈ (k,∞) ; P

−k− d−3
2

ν+ d−3
2

(cos rj) = 0
}︂
, j = 1, 2,

and P µ
ν denotes the associated Legendre function of orders ν, µ ∈ R, which is an extension

of the associated Legendre function P µ
ν,3 from (2.32) to non-integers ν, µ ∈ R, see [GR07,

Section 8.7].

3.5.3 Centers on the equator: the vertical slice transform

In this section, we consider the special case that S is the equator of the sphere, i. e., we
consider the operator Vz for z = 0. We call V := V0 the vertical slice transform

Vf(σ, t) =

⎧
⎪⎨
⎪⎩

1

|Sd−2| (1− t2)
d−2
2

∫︂

η⊤σ=t

f(η) dη, σ ∈ Sd−2 × {0}, t ∈ (−1, 1)

f(±σ), σ ∈ Sd−2 × {0}, t = ±1.

(3.53)
The vertical slice transform V computes the mean values of a function f along every

85



3 Circular means on the sphere

section of the sphere Sd−1 with a hyperplane that is parallel to the ξd�axis. An illustration
can be found in Figure 3.5. Since all these subspheres are symmetric with respect to
the re�ection through the equatorial hyperplane {x ∈ Rd ; xd = 0}, the vertical slice
transform Vf vanishes for functions f that are odd in the d-th coordinate, i. e., Vf = 0
if

f(ξ1, . . . , ξd−1, ξd) = −f(ξ1, . . . , ξd−1,−ξd), ξ = (ξ1, . . . , ξd)
⊤ ∈ Sd−1. (3.54)

Thus, by knowing Vf , only the even part of f could possibly be reconstructed. We
de�ne the space of symmetric functions

L2
sym(Sd−1) :=

{︁
f ∈ L2(Sd−1) ; f(ξ1, . . . , ξd−1, ξd) = f(ξ1, . . . , ξd−1,−ξd), ξ ∈ Sd−1

}︁
.

Another symmetry property of the vertical slice transform is that Vf is even in the
sense that

Vf(σ, t) = Vf(−σ,−t), σ ∈ Sd−2, t ∈ [−1, 1],

which is a special case of (3.3) and follows from the fact that the domain of integration,
{η ∈ Sd−1 ; σ⊤η = t}, is the same for both Vf(σ, t) and Vf(−σ,−t). Hence, we can
de�ne an equivalence relation ∼ on Sd−2×[−1, 1] by saying (σ, t) ∼ (−σ,−t). For d = 3,
the quotient space with respect to this equivalence relation is isomorphic to the Möbius
strip, see [HQ16].

Remark 3.42. The vertical slice transform on the two-dimensional sphere S2 was dis-
cussed in an article by Gindikin et al. [GRS94] from 1994. That article includes an
inversion formula of V , which was achieved by projecting the vertical circles to line
segments in the equatorial plane as we will see in Theorem 3.46.

In 2010, Zangerl and Scherzer [ZS10] considered the reconstruction of an image by
photoacoustic tomography with detectors that resemble the vertical slices of the sphere.
One step of this reconstruction approach consists of the inversion of the vertical slice
transform V , which they called the circular mean transform. Their inversion scheme of
V is based on the stereographic projection from the point ϵ1 = (1, 0, 0)⊤, which lies on
the equator of the sphere, onto the ξ2�ξ3 plane. Then the vertical slices of the sphere
are mapped to circles in the plane with centers on a line. The inversion of this circular
Radon transform (3.48), which takes the integrals of a function in the plane along all
circles with centers on a line, was previously considered by Andersson [And88].

In the following theorem, we show the singular value decomposition of the vertical slice
transform V on the sphere Sd−1 as a special case of Theorem 3.38, which considered Vz.
However, compared to the transform Vz, we obtain an explicit expression of the singular
values of the vertical slice transform V = V0.

Theorem 3.43. For m ∈ N0, let {Y k
m,d−1 ; k = 1, . . . , Nm,d−1} be an orthonormal basis

of Ym,d−1(Sd−2) and let the spherical harmonic Y m,k
n,d−1 be as de�ned in (2.35). The vertical

slice transform
V : L2(Sd−1) → L2(Sd−2 × (−1, 1);wd) (3.55)
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admits the singular value decomposition

VY m,k
n,d (ξ, t) = V̂mn,d Y k

m,d−1(ξ) ˜︁Pn,d(t), ξ ∈ Sd−2 × {0}, t ∈ [−1, 1], (3.56)

for n ∈ N0, m = 0, . . . , n with n − m even and k = 1, . . . , Nm,d−1, where the singular
values are given by

V̂mn,d := (−1)
n−m

2

√︄
(n+m+ d− 3)!n!

(n−m)! (n+ d− 3)!

(n−m− 1)!! (d− 3)!!

(n+m+ d− 3)!!
. (3.57)

The vertical slice transform V is injective for functions in L2
sym(Sd−1), and its nullspace

consists of the functions that are odd with respect to the last coordinate ξd.

Proof. Let n ∈ N0, m = 0, . . . , n and k = 1, . . . , Nm,d−1. By Theorem 3.38 for z = 0, we
have

VY m,k
n,d (σ, t) = ˜︁Pm

n,d(0)Y
k
m,d−1(σ)Pn,d(t). (3.58)

Hence, we obtain (3.56) with

V̂mn,d = ˜︁Pm
n,d(0)

Pn,d
˜︁Pn,d

= ˜︁Pm
n,d(0)

2(d−2)/2 Γ(d−1
2
)
√
n!√︁

(2n+ d− 2) (n+ d− 3)!
, (3.59)

where we have used the de�nition (2.18) of the normalized Legendre functions ˜︁Pn,d.
Next, we are going to calculate an explicit expression of ˜︁Pm

n,d(0) in order to show (3.57).
By the de�nition (2.33) and (2.32) of the normalized associated Legendre polynomial,
we have

˜︁Pm
n,d(t) =

√︁
(2n+ d− 2) (n−m)! (n+ d+m− 3)!

2
d−2
2 n! Γ(d−1

2
)

· n! Γ(d−1
2
)

2m (n−m)! Γ(m+ d−1
2
)
(1− t2)m/2Pn−m,d+2m(t)

=

√︁
(2n+ d− 2) (n+ d+m− 3)!

2m+ d−2
2

√︁
(n−m)! Γ(m+ d−1

2
)

(1− t2)m/2Pn−m,d+2m(t).

By (3.20), we have for d ≥ 3

Pn,d(0) =

{︄
(−1)n/2 (n−1)!! (d−3)!!

(n+d−3)!!
, n even

0, n odd.

Thus, if n−m is odd, we have ˜︁Pm
n,d(0) = 0. If n−m is even, we have

˜︁Pm
n,d(0) =

√︁
(2n+ d− 2) (n+ d+m− 3)!

2m+ d−2
2

√︁
(n−m)! Γ(m+ d−1

2
)
Pn−m,d+2m(0)

= (−1)
n−m

2

√︁
(2n+ d− 2) (n+ d+m− 3)!

2m+ d−2
2

√︁
(n−m)! Γ(m+ d−1

2
)

(n−m− 1)!! (d+ 2m− 3)!!

(n+m+ d− 3)!!
.

(3.60)

87



3 Circular means on the sphere

Combining (3.59) and (3.60), we obtain

V̂mn,d = (−1)
n−m

2

√︁
(2n+ d− 2) (n+ d+m− 3)!

2m+ d−2
2

√︁
(n−m)! Γ(m+ d−1

2
)

(n−m− 1)!! (d+ 2m− 3)!!

(n+m+ d− 3)!!

· 2(d−2)/2Γ(d−1
2
)
√
n!√︁

(2n+ d− 2)(n+ d− 3)!

= (−1)
n−m

2

√︁
(n+m+ d− 3)!

2m
√︁

(n−m)! Γ(m+ d−1
2
)

(n−m− 1)!! (d+ 2m− 3)!!

(n+ d+m− 3)!!

√
n! Γ(d−1

2
)√︁

(n+ d− 3)!
.

By (2.68), we have

V̂mn,d =
(−1)

n−m
2 (d− 3)!!

(2m+ d− 3)!!

√︄
(n+m+ d− 3)!n!

(n−m)! (n+ d− 3)!

(n−m− 1)!! (2m+ d− 3)!!

(n+m+ d− 3)!!
. (3.61)

By the recurrence relation (2.14), we see that the Legendre polynomial Pn,d is even if
and only if n is even. Hence, the spherical harmonic Y m,k

n,d (ξ) is even with respect to ξd
if and only if n−m is even by (2.35). So we see that

L2
sym(Sd−1) = span

{︂
Y m,k
n,d ; n,m ∈ N0, n−m even, k = 1, . . . , Nm,d−1

}︂
.

Since the values V̂mn,d are nonzero if and only if n −m is even, we see that the vertical
slice transform V is injective for all functions in L2

sym(Sd−1).

The singular value decomposition of the vertical slice transform V was shown for the
case d = 3 on S2 by the author in [HQ16]. In this case, we obtain the singular values

V̂mn,3 =
(−1)

n−m
2 Γ(1)

2mΓ(m+ 1)

√︄
(n+m)!n!

(n−m)!n!

(n−m− 1)!! (2m)!!

(n+m)!!

= (−1)
n−m

2

√︄
(n+m)!

(n−m)!

(n−m− 1)!!

(n+m)!!

if n ∈ N0, m = 0, . . . , n with n−m even and V̂mn,3 = 0 otherwise.

Asymptotics of the singular values

As we did for the Funk�Radon transform in Section 3.2.1, we take a closer look at the
asymptotic behavior of the singular values V̂mn,d of the vertical slice transform V .
Theorem 3.44. There exist constants c1, c2 > 0 such that for all n ∈ N0 and m =
0, . . . , n with n−m even, we have

c1 n
− d−2

2 ≤
⃓⃓
⃓V̂mn,d

⃓⃓
⃓ ≤ c2 n

− d−2
2

+ 1
4 . (3.62)
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These bounds are tight in the sense that for n→ ∞, we have

⃓⃓
⃓V̂0

2n,d

⃓⃓
⃓ ≃ Γ

(︃
d− 1

2

)︃
π− 1

2 n− d−2
2 (3.63)

and
⃓⃓
⃓V̂nn,d

⃓⃓
⃓ ≃ Γ

(︃
d− 1

2

)︃
2

d−3
2 π− 1

4 n− d−2
2

+ 1
4 . (3.64)

Proof. This proof is divided into three parts. We �rst show the asymptotic approxima-

tions (3.63) and (3.64) of
⃓⃓
⃓V̂0

n,d

⃓⃓
⃓ and

⃓⃓
⃓V̂nn,d

⃓⃓
⃓, respectively. Then we show the inequalities

⃓⃓
⃓V̂mn,d

⃓⃓
⃓ ≥

⎧
⎨
⎩

⃓⃓
⃓V̂0

n,d

⃓⃓
⃓ , n even

⃓⃓
⃓V̂0

n+1,d

⃓⃓
⃓ , n odd

(3.65)

as well as ⃓⃓
⃓V̂nn,d

⃓⃓
⃓ ≥

⃓⃓
⃓V̂mn,d

⃓⃓
⃓ (3.66)

for n ∈ N0 and m ∈ {0, . . . , n} with n−m even, which imply the assertion (3.62).

We compute for even n ∈ N0

⃓⃓
⃓V̂0

n,d

⃓⃓
⃓ = (n− 1)!! (d− 3)!!

(n+ d− 3)!!
.

These are exactly the eigenvalues (3.20) of the Funk�Radon transform, which decay by
(3.21) with the rate

⃓⃓
⃓V̂0

2n,d

⃓⃓
⃓ ≃ Γ(d−1

2
)π− 1

2 n
2−d
2

for n→ ∞. This shows (3.63).

We have by (2.68)

⃓⃓
⃓V̂nn,d

⃓⃓
⃓ =

√︄
(2n+ d− 3)!n!

(n+ d− 3)!

(d− 3)!!

(2n+ d− 3)!!

=

√︄
(2n+ d− 3)!n!

(n+ d− 3)!

Γ(d−1
2
)

2n Γ(n+ d−1
2
)
.
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Applying the asymptotic approximations (2.71) and (2.72) of the factorial and the
Gamma function, respectively, we obtain for n→ ∞

⃓⃓
⃓V̂nn,d

⃓⃓
⃓
2

≃ Γ(d−1
2
)2

22n
√
2π

(2n+ d− 3)2n+d−5/2 nn+1/2

(n+ d− 3)n+d−5/2 (n+ d−1
2
)2n+d−2

e−2n−d+3−n+n+d−3+2n+d−1

=
Γ(d−1

2
)2 22n+d−2

22n
√
2π

(2n+ d− 3)2n+d−5/2 nn+1/2

(n+ d− 3)n+d−5/2 (2n+ d− 1)2n+d−2
ed−1

=
Γ
(︁
d−1
2

)︁2
2d−2

√
2π

(︃
2n+ d− 3

2n+ d− 1

)︃2n+d−2

(2n+ d− 3)−1/2

(︃
n

n+ d− 3

)︃n+1/2

(n+ d− 3)−d+3 ed−1

=
Γ
(︁
d−1
2

)︁2
2d−2

√
2π

(︃
1 +

−2

2n+ d− 1

)︃2n+d−2

(2n+ d− 3)−1/2

(︃
1 +

−d+ 3

n+ d− 3

)︃n+1/2

(n+ d− 3)−d+3 ed−1.

With the series of the exponential function, we obtain

⃓⃓
⃓V̂nn,d

⃓⃓
⃓
2

≃ Γ

(︃
d− 1

2

)︃2

2d−2 (2π)−1/2 e−2 (2n)−1/2 e−d+3 n−d+3 ed−1

= Γ

(︃
d− 1

2

)︃2
2d−3

√
π
n−d+5/2,

which shows (3.64).

In the last part of this proof, we show the monotonicity of
⃓⃓
⃓V̂mn,d

⃓⃓
⃓ with respect to m.

We have for n ≥ 1 and m = 0, . . . , n− 2 with n−m even

⃓⃓
⃓⃓
⃓
V̂m+2

n,d

V̂mn,d

⃓⃓
⃓⃓
⃓

2

=
(n+m+ d− 1)! (n−m)! (n−m− 3)!!2 (n+m+ d− 3)!!2

(n+m+ d− 3)! (n−m− 2)! (n−m− 1)!!2 (n+m+ d− 1)!!2

=
(n+m+ d− 1) (n+m+ d− 2) (n−m) (n−m− 1)

(n−m− 1)2 (n+m+ d− 1)2

=
(n+m+ d− 2) (n−m)

(n−m− 1) (n+m+ d− 1)
.

Expanding and collecting terms, we obtain

⃓⃓
⃓⃓
⃓
V̂m+2

n,d

V̂mn,d

⃓⃓
⃓⃓
⃓

2

=
(n+m+ d− 1) (n−m− 1) + 2m+ d− 1

(n−m− 1) (n+m+ d− 1)

= 1 +
2m+ d− 1

(n−m− 1) (n+m+ d− 1)
.
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3.5 Sections with a �xed set of centers

Because numerator and denominator of the last fraction are non-negative and positive,

respectively, by the assumptions on n and m, we see that
⃓⃓
⃓V̂m+2

n,d

⃓⃓
⃓ ≥

⃓⃓
⃓V̂mn,d

⃓⃓
⃓. Hence, we

obtain that ⃓⃓
⃓V̂mn,d

⃓⃓
⃓ ≤

⃓⃓
⃓V̂nn,d

⃓⃓
⃓ ,

which shows the inequality (3.66). Furthermore, we see that if n is even
⃓⃓
⃓V̂mn,d

⃓⃓
⃓ ≥

⃓⃓
⃓V̂0

n,d

⃓⃓
⃓ ,

which shows the �rst line of the inequality (3.65). We have for n ≥ 1

⃓⃓
⃓⃓
⃓
V̂1

n−1,d

V̂0

n,d

⃓⃓
⃓⃓
⃓

2

=
(n− 1)!n! (n+ d− 3)! (n− 3)!!2

n! (n− 2)! (n+ d− 4)! (n− 1)!!2

=
(n− 1) (n+ d− 3)

(n− 1)2

=
n+ d− 3

n− 1
≥ 1.

Hence, we obtain for odd n
⃓⃓
⃓V̂mn,d

⃓⃓
⃓ ≥

⃓⃓
⃓V̂1

n,d

⃓⃓
⃓ ≥

⃓⃓
⃓V̂0

n+1,d

⃓⃓
⃓ ,

which �nally shows the second line of the inequality (3.65).

Unlike for the Funk�Radon transform F , the asymptotic behavior of the singular
values V̂mn,d of the vertical slice transform V depends not only on the degree n but also

on the order m of the spherical harmonics Y m,k
n,d . The spherical harmonics Y 0,k

n,d , for which

the corresponding singular values V̂0

n,d decay faster than V̂nn,d for n → ∞, depend only

on the d-th coordinate, i. e., Y 0,k
n,d (ξ) = Y 0,k

n,d (ξd), see (2.35). Conversely, the spherical

harmonics Y n,k
n,d , for which the corresponding singular values V̂nn,d decay slower than V̂0

n,d

for n→ ∞, have the highest oscillation in the equatorial hyperplane {ξ ∈ Sd−1 ; ξd = 0}.
This might be explained by the fact that the subspheres along which V integrates are
smaller near the equator and thus the �resolution� seems to be higher near the equator.
So, roughly speaking, the inversion of the vertical slice transform becomes a little less
ill-posed if the function oscillates more near the equator.

Nevertheless, we still obtain the following continuity result of the vertical slice trans-
form V , which follows from the upper bound of the singular values V̂mn,d we calculated in
Theorem 3.44.

Theorem 3.45. Let s ∈ R. The vertical slice transform V is a continuous operator

V : Hs(Sd−1) → H
0,s+ d−2

2
− 1

4
mix (Sd−2 × (−1, 1);wd).
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3 Circular means on the sphere

Proof. We proceed in a similar manner to the proof of Theorem 3.40. By the de�nition
of the Sobolev norm (3.8) and the singular value decomposition (3.56) of V , we have

∥Vf∥2
H

0,s+ d−2
2 − 1

4
mix (Sd−2×(−1,1);wd)

=
∞∑︂

n=0

n∑︂

m=0

Nm,d−1∑︂

k=0

⃓⃓
⃓V̂mn,d f̂

m,k

n,d

⃓⃓
⃓
2
(︃
n+

d− 2

2

)︃2s+d−2− 1
2

.

With the upper bound (3.62) of
⃓⃓
⃓V̂mn,d

⃓⃓
⃓, we obtain

∥Vf∥2
H

0,s+ d−2
2 − 1

4
mix (Sd−2×(−1,1);wd)

≤
∞∑︂

n=0

n∑︂

m=0

Nm,d−1∑︂

k=0

⃓⃓
⃓⃓
⃓c2 n

− d−2
2

+ 1
4 f̂

m,k

n,d

(︃
n+

d− 2

2

)︃s+ d−2
2

− 1
4

⃓⃓
⃓⃓
⃓

2

.

The last sum converges by the assumption that f ∈ Hs(Sd−1).

Connection with the Radon transform

The following theorem gives a connection between the vertical slice transform V on the
unit sphere Sd−1 and the Radon transform R on the unit ball

Bd−1 = {x ∈ Rd−1 ; ∥x∥ < 1},

which is de�ned for a continuous function f : Bd−1 → C by

Rf(ω, s) =
∫︂

x⊤ω=s

f(x) dx, ω ∈ Sd−2, s ∈ R, (3.67)

see also (1.2). The idea is to project the sphere Sd−1 orthogonally to the equatorial
hyperplane {x ∈ Rd ; xd = 0}. Then the vertical sections of the sphere Sd−1 are
transformed to hyperplanes in Rd−1, which is illustrated for d = 3 in Figure 3.6.

For a function f : Sd−1 → C, we de�ne its weighted projection ˜︁f(d−1) : Bd−1 → C to
the unit ball Bd−1 by

˜︁f(d−1)(x) :=
1√︁

1− ∥x∥2

(︃
f

(︃
x√︁

1− ∥x∥2
)︃
+ f

(︃
x

−
√︁

1− ∥x∥2
)︃)︃

, x ∈ Bd−1.

(3.68)

Theorem 3.46. Let f : Sd−1 → C for d ≥ 3. Then, we have

Vf(σ, t) = (1− t2)
3−d
2

|Sd−2| R ˜︁f(d−1)(σ, t), σ ∈ Sd−2, t ∈ (−1, 1). (3.69)

Proof. We are going to denote the sphere with radius r > 0 centered in the origin by

Sd−1(r) = r Sd−1 = {ξ ∈ Rd ; ∥ξ∥ = r}.
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3.5 Sections with a �xed set of centers

Figure 3.6: The circles (red) from the vertical slice transform on the two-sphere S2 are
projected to line segments (purple) in the unit disk in the equatorial plane.

Since the claimed formula (3.69) is invariant with respect to any rotation in σ, we state
the proof without loss of generality for σ = ϵ1. Let t ∈ (−1, 1). By the de�nition (3.55)
of the vertical slice transform, we have

Vf(ϵ1, t) = 1

|Sd−2| (1− t2)
d−2
2

∫︂

η∈Sd−1;η1=t

f(η) dη.

We write the vector η in the form η =

(︃
t
η′

)︃
∈ Sd−1. Since 1 = ∥η∥2 = t2 + ∥η′∥2, we

see that η′ ∈ Sd−2(
√
1− t2). We obtain

Vf(ϵ1, t) = 1

|Sd−2| (1− t2)
d−2
2

∫︂

η′∈Sd−2(
√
1−t2)

f

(︃
t
η′

)︃
dη′,

where dη′ denotes the standard surface measure on Sd−2(
√
1− t2). We perform the

substitution η′ ↦→ ξ ∈ Sd−2 with η′ =
√
1− t2 ξ. Then dη′ = (1− t2)

d−2
2 dξ and we have

Vf(ϵ1, t) = 1

|Sd−2|

∫︂

ξ∈Sd−2

f

(︃
t√

1− t2 ξ

)︃
dξ.

We split the domain of integration into the upper Sd−2
+ = {ξ ∈ Sd−2 ; ξd−1 > 0} and

lower half Sd−2
− = {ξ ∈ Sd−2 ; ξd−1 < 0} of the sphere and obtain

Vf(ϵ1, t) = 1

|Sd−2|

(︄∫︂

ξ+∈Sd−2
+

f

(︃
t√

1− t2 ξ+

)︃
dξ+ +

∫︂

ξ−∈Sd−2
−

f

(︃
t√

1− t2 ξ−

)︃
dξ−

)︄
.
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3 Circular means on the sphere

Now we transform the integral to the ball Bd−2. To this end, we consider the bijections
φ± : Bd−2 → Sd−2

± from (2.5) given by

ξ± = φ±(y) =

(︃
y

±
√︁

1− ∥y∥2
)︃
, y ∈ Bd−2.

Hence, we obtain by (2.6)

Vf(ϵ1, t) = 1

|Sd−2|

∫︂

Bd−2

f

⎛
⎝

t√
1− t2 y√

1− t2
√︁

1− ∥y∥2

⎞
⎠ 1√︁

1− ∥y∥2
dy

+
1

|Sd−2|

∫︂

Bd−2

f

⎛
⎝

t√
1− t2 y

−
√
1− t2

√︁
1− ∥y∥2

⎞
⎠ 1√︁

1− ∥y∥2
dy.

We write this in one integral

Vf(ϵ1, t) = 1

|Sd−2|

∫︂

Bd−2

⎛
⎝f

⎛
⎝

t√
1− t2 y√

1− t2
√︁

1− ∥y∥2

⎞
⎠+ f

⎛
⎝

t√
1− t2 y

−
√
1− t2

√︁
1− ∥y∥2

⎞
⎠
⎞
⎠

· 1√︁
1− ∥y∥2

dy.

Now we perform the substitution y ↦→ x ∈ Bd−2(
√
1− t2) with x =

√
1− t2 y and

dx = (1− t2)
d−2
2 dy and obtain

Vf(ϵ1, t) = (1− t2)
3−d
2

|Sd−2|

∫︂

Bd−2(
√
1−t2)

1√︁
1− t2 − ∥x∥2

·

⎛
⎝f

⎛
⎝

t
x√︁

1− t2 − ∥x∥2

⎞
⎠+ f

⎛
⎝

t
x

−
√︁
1− t2 − ∥x∥2

⎞
⎠
⎞
⎠ dx.

By the de�nition of ˜︁f(d−1), we have

Vf(ϵ1, t) = (1− t2)
3−d
2

|Sd−2|

∫︂

Bd−2(
√
1−t2)

˜︁f(d−1)

(︃
t
x

)︃
dx

=
(1− t2)

3−d
2

|Sd−2| R ˜︁f(ϵ1, t).

Theorem 3.46 in the case d = 3 was shown by the author in [HQ16].

We obtain the following result about the inversion of the vertical slice transform via
the inverse Radon transform R−1.
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3.5 Sections with a �xed set of centers

Theorem 3.47. Let d ≥ 3, and let the function f : Sd−1 → C be even in the last coor-
dinate ξd as in (3.54). Then f can be reconstructed given its vertical slice transform Vf
with the help of the inverse Radon transform R−1 for ξ ∈ Sd−1 via

f(ξ) =

{︄
ξdR−1g(ξ1, . . . , ξd), ξd ̸= 0,

Vf((ξ1, . . . , ξd−1), 1), ξd = 0,
(3.70)

where
g(σ, t) = (1− t2)

d−3
2

⃓⃓
Sd−2

⃓⃓
Vf(σ, t), σ ∈ Sd−2, t ∈ [−1, 1].

Proof. If the function f is even in the last coordinate ξd as in (3.54), then there is a
one-to-one relation between the function f and its weighted projection ˜︁f(d−1) de�ned in
(3.68). More precisely, f can be uniquely determined from ˜︁f(d−1) via

f(ξ) = ξd ˜︁f(d−1)(ξ1, . . . , ξd−1), ξ ∈ Sd−1, ξd ̸= 0. (3.71)

By (3.69), we have
g(σ, t) = R ˜︁f(d−1)(σ, t).

Applying the inverse Radon transform R−1 on the unit ball Bd−1, we obtain

˜︁f(d−1)(x) = R−1g(x), x ∈ Bd−1,

from which we can calculate f by (3.71). This shows (3.70).

There are many known inversion methods of the Radon transform R, not necessarily
restricted to the unit ball Bd−1. An overview about such inversion methods is provided
in the book of Natterer and Wübbeling [NW00].

The following singular value decomposition of the Radon transform R was shown by
Davison [Dav81] and Louis [Lou84].

Proposition 3.48. Let ν > d−2
2
, m ∈ N0, and l = 0, . . . ,m with m + l even, and let

k = 1, . . . , Nl,d−1. We set for s ∈ [0, 1] and ω ∈ Sd−1

V d,ν
m,l,k(sω) := c(d,m, l, ν) (1− s2)ν−

d
2 slP

(ν− d
2
,l+ d−2

2 )
m−l
2

(2s2 − 1)Y k
l,d(ω), (3.72)

where

c(d,m, l, ν) := 21−2ν π1− d
2

Γ(m+ 2ν) Γ(m−l+2
2

)

Γ(m+ 1)Γ(ν) Γ(m−l+2+2ν−n
2

)
,

and P
(α,β)
n denotes the Jacobi polynomial of degree n and orders α, β > −1, see (2.22).

Then, the Radon transform

R : L2
(︂
Bd; (1− ∥x∥2) d

2
−ν
)︂
→ L2

(︂
Sd−1 × [−1, 1]; (1− s2)

1
2
−ν
)︂

has the singular value decomposition

RV d,ν
m,l,k(ω, s) = (1− s2)ν−

1
2 C(ν)

m (s)Y k
l,d(ω). (3.73)
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3 Circular means on the sphere

Remark 3.49. The orthogonal polynomials V d,ν
m,l,k on the unit ball Bd with respect to

the weight function (1−∥x∥2) d
2
−ν from (3.72) are well-known, cf. [DX14, Section 5.2]. In

the case d = 2 and ν = 1, they are also called disk polynomials or Zernike polynomials,
see [Wün05].

The singular value decomposition has proven to be a powerful tool for the inversion
of the Radon transform on the unit ball Bd−1, see e. g. [Xu07]. Using Theorem 3.46, we
are going to apply this singular value decomposition for the vertical slice transform V
in the following. We will see that this yields the singular value decomposition of the
vertical slice transform we have already obtained in Theorem 3.43.

Remark 3.50. We apply Theorem 3.46 by plugging in the singular functions (3.72) of
the Radon transform for ν = d−2

2
as follows. Let m ∈ N0, l = 0, . . . ,m with m+ l even,

and k = 1, . . . , Nl,d−1. We set

˜︁f(d−1)(x) = V
d−1, d−2

2
m,l,k (x), x ∈ Bd−1.

Then we have by (3.71)

f(ξ) = ξd V
d−1, d−2

2
m,l,k (ξ1, . . . , ξd−1), ξ ∈ Sd−1, ξd ̸= 0.

Let σ ∈ Sd−1 and t ∈ (−1, 1). By (3.69) and the singular value decomposition (3.73) of
the Radon transform for dimension d− 1 and with ν = d−2

2
, we obtain

Vf(σ, t) = (1− t2)
3−d
2

|Sd−2| R ˜︁f(d−1)(σ, t)

=
1

|Sd−2| C
( d−2

2
)

m (σ)Y k
l,d−1(t).

By the relation (2.19) between the Legendre and Gegenbauer polynomials, we see that

Vf(σ, t) = 1

|Sd−2|

(︃
n+ d− 3

n

)︃
Pm,d(t)Y

k
l,d−1(σ). (3.74)

On the other hand, the vertical slice transform applied to the spherical harmonic Y l,k
m,d

is by (3.58)
VY l,k

m,d =
˜︁P l
m,d(0)Pm,d(t)Y

k
l,d−1(σ). (3.75)

We see that the right hand side of (3.74) is a nonzero multiple of the right hand side
of (3.75). Considering the injectivity of the vertical slice transform V , we obtain that f
must be a nonzero multiple of the spherical harmonic Y l,k

m,d. Hence, we have shown that
inserting the singular value decomposition to Theorem 3.46 yields the singular value
decomposition of the vertical slice transform that was already shown in a di�erent way
in Theorem 3.43.

In 2018, Rubin [Rub18] used the just-mentioned approach to calculate a singular value
decomposition of the vertical slice transform V . This result coincides with Theorem 3.43
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3.6 Hyperplane sections through a common point

for L2(Sd−1). Furthermore, Rubin's paper also contains the singular value decomposition
of V for the weighted space L2(Sd−1;W ) with the weight function W (ξ) = ξd−2ν−2

d ,
ξ ∈ Sd−1, for ν > d−3

2
.

Remark 3.51. In the article [HQ16], we have compared three approaches for the nu-
merical reconstruction of a function f on the two-sphere S2 given its vertical slice trans-
form Vf . Firstly, the singular value decomposition (3.56) was implemented with the
help of the fast spherical Fourier transform, see also Remark 3.15. Secondly, we used
Theorem 3.47, where we inserted the algorithm [XT07] for the inverse Radon transform
on the unit disk B2 via orthogonal polynomials. Thirdly, we used Theorem 3.47 again,
but this time with the standard �ltered back-projection for the inverse Radon transform.

The numerical tests showed that the �ltered back-projection performed worst among
these algorithms. It shows especially high errors if the test function f does not van-
ish near the equator, which corresponds to the fact that the projection ˜︁f(2), which was
de�ned in (3.68), does not vanish near the boundary of the unit disk B2. The recon-
struction errors of the other two algorithms are closer together, with the singular value
decomposition (3.56) still performing a little ahead.

3.6 Hyperplane sections through a common point

While the previous section considered the restriction of the mean operator M to the
family of subspheres with centers on a great circle, in this section, we are going to take
a look at subspheres obtained by the intersection of the sphere Sd−1 with hyperplanes
that meet in a �xed point ζ ∈ Rd. By rotational symmetry, we can assume that this
common point ζ lies on the ξd axis, i. e.

ζ = zϵd = (0, . . . , 0, z)⊤

with some z ∈ R. We are going to call the mean operator restricted to these subspheres
the spherical transform

Uzf(ξ) := Mf(ξ, zξd), ξ ∈ Sd−1. (3.76)

The domains of integration of the spherical transform Uz are the subspheres

C ξ
z := {η ∈ Sd−1 ; η⊤ξ = zξd}, ξ ∈ Sd−1, z ∈ R.

A visualization of circles C ξ
z on the two-sphere S2 is found in Figure 3.7. We de�ne an

orientation on C ξ
z by saying that a basis e1, . . . , ed−2 of the tangent space TηC ξ

z at a
point η ∈ Cξ

z is oriented positively if

det
[︁
η, ξ, e1, . . . , ed−2

]︁
> 0.

We have

Uzf(ξ) =
1⃓⃓
⃓C ξ

z

⃓⃓
⃓

∫︂

C ξ
z

f(η) dC ξ
z (η), ξ ∈ Sd−1,
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3 Circular means on the sphere

Figure 3.7: Visualization of the plane sections C ϵ3

z (green) and C ξ
z for some vector ξ

(red) on the two-sphere S2.

where ⃓⃓
C ξ
z

⃓⃓
= (1− z2ξ2d)

d−2
2

⃓⃓
Sd−2

⃓⃓

denotes the (d− 2)-dimensional volume of the subsphere C ξ
z .

We notice the following special cases of the spherical transform Uz. For z = 0, we see
that ζ is the center of the sphere and thus we have that U0 = F is the Funk�Radon
transform F from Section 3.2. In the case z = 1, we see that ζ = ϵd is the north pole of
the sphere and, hence, the spherical transform U1 takes the integrals along all subspheres
of Sd−1 that contain the north pole ϵd. This case of U1 is known as the spherical slice
transform, which will be the subject of Section 3.6.5. Furthermore, for z → ∞, we
remark that Uz approaches the vertical slice transform V , see Section 3.5.3.

In this section, we consider the case that z ∈ (−1, 1), i. e., that the point ζ = zϵd is
in the unit ball Bd. Most of the material in this section is submitted for publication, see
the preprint [Que18].

The subspheres C ξ
z , along which we integrate for the spherical transform Uz, can also

be imagined in the following way.

Lemma 3.52. Let z ∈ (−1, 1) and ξ ∈ Sd−1. Then the center of the subsphere C ξ
z is

located on the sphere with center z
2
ϵd and radius z

2
, see Figure 3.8. Equivalently, this is

exactly the sphere that contains the origin and zϵd and that is rotationally symmetric
about the North�South axis.
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3.6 Hyperplane sections through a common point

Figure 3.8: Two plane sections C ξ
z (red and green) of the unit sphere S2 and their re-

spective centers, which are located on the blue sphere with center z
2
ϵd+1 and

radius z
2
.

Proof. The center of the subsphere C ξ
z is given by zξdξ. Then the squared distance

between the point zξdξ and the center z
2
ϵd is

⃦⃦
⃦zξdξ − z

2
ϵd
⃦⃦
⃦
2

=
d∑︂

i=1

ξ2i z
2ξ2d +

(︂
zξ2d −

z

2

)︂2

= (1− ξ2d)z
2ξ2d +

(︂
zξ2d −

z

2

)︂2

=
z2

4
.

This implies that zξdξ is located on the sphere with center z
2
ϵd and radius z

2
.

The spherical transform Uz was �rst investigated in 2016 by Salman [Sal16], who
showed an inversion formula. In 2017, this result was extended to general dimension
d ≥ 3 and also the smoothness requirement was lowered to functions in C1(Sd−1) instead
of C∞(S2), see [Sal17]. Following Salman's notation, we call Uz the spherical transform.

We present here the inversion formula of Uz obtained in [Sal17], which relies on the
stereographic projection

π : Sd−1 \ {ϵd} → Rd−1, ξ ↦→
d−1∑︂

i=1

ξi
1− ξd

ϵi. (3.77)
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3 Circular means on the sphere

from the sphere to the equatorial hyperplane. The inverse stereographic projection is
given by

π−1 : Rd−1 → Sd−1 \ {ϵd}, x ↦→ 2x+ (∥x∥2 − 1) ϵd

1 + ∥x∥2
. (3.78)

Proposition 3.53 ([Sal17]). Let 0 ≤ z < 1, σ :=
√︂

1+z
1−z , and let f ∈ C1(Sd−1) have a

compact support strictly inside the spherical cap {ξ ∈ Sd−1 ; −1 ≤ ξd ≤ z}. We write a
vector ξ ∈ Sd−1 as

ξ(ϕ, θ) = (cos θ)ϕ+ (sin θ) ϵd, ϕ ∈ Sd−2, θ ∈ [0, π
2
).

Then, for d ≥ 3 odd and x ∈ Rd−1, we have

(︁
f ◦ π−1

)︁
(︄

2σx

1 +
√︁

1 + 4|x|2

)︄

=
(−1)

d−3
2 (1− z)

√︁
1 + 4|x|2

23d−5 πd−1 σd−3

⎛
⎜⎝

(︂
1 +

√︁
1 + 4|x|2

)︂2
+ 4σ2|x|2

1 +
√︁

1 + 4|x|2

⎞
⎟⎠

d−2

⃓⃓
Sd−2

⃓⃓

∆
d−1
2

x

∫︂

Sd−2

∫︂ π
2

0

Uzf(ξ(ϕ, θ)) log
⃓⃓
⃓⃓x⊤ϕ−

√
1− z2

2
tan θ

⃓⃓
⃓⃓ (1− z2 sin2 θ)

d−3
2

cos θ
dθ dϕ,

and, for d ≥ 4 even and x ∈ Rd−1, we have

(︁
f ◦ π−1

)︁
(︄

2σx

1 +
√︁

1 + 4|x|2

)︄

=
(−1)

d−2
2 (1− z)

√︁
1 + 4|x|2

23d−4 πd−2 σd−3

⎛
⎜⎝

(︂
1 +

√︁
1 + 4|x|2

)︂2
+ 4σ2|x|2

1 +
√︁
1 + 4|x|2

⎞
⎟⎠

d−2

⃓⃓
Sd−2

⃓⃓

∆
d
2
x

∫︂

Sd−2

∫︂ π
2

0

Uzf(ξ(ϕ, θ))
⃓⃓
⃓⃓x⊤ϕ−

√
1− z2

2
tan θ

⃓⃓
⃓⃓ (1− z2 sin2 θ)

d−3
2
dθ dϕ

cos θ
,

where ∆x denotes the Laplacian with respect to x ∈ Rd−1.

The main tool to obtain these inversion formulas in Proposition 3.53 is the stereo-
graphic projection, which turns the subspheres of the sphere Sd−1 into spheres in the
equatorial hyperplane Rd−1. Then the problem of inverting Uz is converted to the inver-
sion of the spherical-mean Radon transform in Rd−1 on a certain family of spheres.

3.6.1 Connection with the Funk�Radon transform

In this section, we will derive a connection of the spherical transform Uz with the Funk�
Radon transform F . In particular, we will �nd that the factorization

Uz = NzFMz
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3.6 Hyperplane sections through a common point

holds, where Mz and Nz are operators from L2(Sd−1) to itself that obey a simple struc-
ture. The main advantage of this approach is that we can transfer many of the well-
known results about the Funk�Radon transform to the spherical transform Uz. In order
to obtain this factorization, we start with investigating two transformations that map
the sphere Sd−1 to itself.

Two mappings on the sphere

Let z ∈ (−1, 1). We de�ne the transformations hz, gz : Sd−1 → Sd−1 by

hz(η) :=
d−1∑︂

i=1

√
1− z2

1 + zηd
ηiϵ

i +
z + ηd
1 + zηd

ϵd (3.79)

and

gz(ξ) :=
1√︁

1− z2ξ2d

(︄
d−1∑︂

i=1

ξiϵ
i +

√
1− z2ξdϵ

d

)︄
. (3.80)

We note that gz can also be de�ned for the complex numbers z = ix, where x ∈ R.

Corollary 3.54. The de�nitions of both hz and gz rely only on the d-th coordinate.
The values in the other coordinates are just multiplied with the same factor in order to
make the vectors stay on the sphere. Let z, w ∈ (−1, 1). We have

hz(hw(ξ)) = h z+w
1+zw

(ξ), ξ ∈ Sd−1 (3.81)

and
gz(gw(ξ)) = g√

z2+w2−z2w2(ξ), ξ ∈ Sd−1. (3.82)

Furthermore, the transformations hz and gz are bijective with their respective inverses
given by

h−1
z (ω) = h−z(ω) =

d−1∑︂

i=1

√
1− z2

1− zωd
ωiϵ

i +
ωd − z

1− zωd
ϵd (3.83)

and

g−1
z (ω) = g iz√

1−z2
(ω) =

1√︁
1− z2 + z2ω2

d

(︄
d−1∑︂

i=1

√
1− z2 ωiϵ

i + ωdϵ
d

)︄
. (3.84)

In particular, both the set {hz ; z ∈ (−1, 1)} and {gz ; z ∈ (−1, 1) ∪ iR} are groups
together with the composition as group operation.

Proof. Let z, w ∈ (−1, 1), and let η ∈ Sd−1. We set

hz(t) :=
z + t

1 + zt
, t ∈ (−1, 1).
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3 Circular means on the sphere

as the d-th component of the function hz. As in (2.7), we write

η =
√
1− t2 η(d−1) + t ϵd, η(d−1) ∈ Sd−2, t ∈ [−1, 1].

Then we see that
hz(η) =

√︁
1− hz(t)2 η(d−1) + hz(t) ϵ

d.

We have for t ∈ (−1, 1)

hw(hz(t)) =
hz(t) + w

1 + whz(t)

=
z+t
1+zt

+ w

1 + w z+ηd
1+zt

=
z + ηd + w(1 + zt)

1 + zt+ w(z + t)

=
z + w + (1 + wz)ηd
1 + zw + (z + w)t

=
z+w
1+zw

+ t

1 + z+w
1+zw

t
= h z+w

1+zw
(t).

Since hz is already determined by its d-th coordinate, this implies (3.81). We see that
also hz(h−z(t)) = h−z(hz(t)) = h0(t) = t, which implies (3.83). Hence, {hz ; z ∈ (−1, 1)}
is a group since for every element there exists an inverse, where the neutral element h0

is the identical map and the composition ◦ is associative.

Analogously to the �rst part of the proof, we de�ne

gz(t) :=

√︃
1− z

1− zt2
t, t ∈ (−1, 1),

which is the d-th component of gz. We have for t ∈ (−1, 1)

gw(gz(t)) =

√︄
1− w2

1− w2gz(t)2
gz(t)

=

√︄
1− w2

1− w2 1−z2
1−z2t2 t

√︃
1− z2

1− z2t2
t

=

√︄
(1− w2)(1− z2)

1− z2t2 − w2(1− z2) t2
t

=

√︄
1− (z2 + w2 − z2w2)

1− z2t2 − w2(1− z2) t2
t

= g√z2+w2−z2w2(t),
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which implies (3.82). Furthermore, we obtain that

g iz√
1−z2

(gz(t)) = g√︃
z2− z2

1−z2
− z4

1−z2

(t) = g0(t) = 1, t ∈ (−1, 1),

which implies (3.84).

We see that if z ∈ (−1, 1), then we have iz√
1−z2 ∈ iR. Conversely, if z ∈ iR, i. e.,

z = ix for some x ∈ R, then we have iz√
1−z2 = −x√

1+x2
∈ (−1, 1). Hence, every element of

the set {gz ; z ∈ (−1, 1) ∪ iR} has an inverse with respect to composition, so this set is
a group.

The following lemma is the key observation that connects the domains of integration
of the spherical transform Uz and the Funk�Radon transform F . It shows that the
inverse of hz applied to the subsphere C ξ

z yields a maximal subsphere of Sd−1 with the
normal vector gz(ξ).

Lemma 3.55. Let z ∈ (−1, 1) and ξ ∈ Sd−1. Then

h−1
z (C ξ

z ) = C
gz(ξ)
0 . (3.85)

Proof. Let η ∈ Sd−1. Then η lies in h−1
z (C ξ

z ) if and only if hz(η) ∈ C ξ
z , i. e.,

⟨hz(η), ξ⟩ = zξd.

By the de�nition of hz in (3.79), this is equivalent to

⟨hz(η), ξ⟩ =
d−1∑︂

i=1

√
1− z2

1 + zηd
ηiξi +

z + ηd
1 + zηd

ξd = zξd.

After subtracting the right-hand side from the last equation, we have

d−1∑︂

i=1

√
1− z2

1 + zηd
ηiξi +

1− z2

1 + zηd
ηdξd = 0.

Multiplication with (1 + zηd)(1− z2)−1/2(1− z2ξ2d)
−1/2 yields

d−1∑︂

i=1

1√︁
1− z2ξ2d

ηiξi +

√
1− z2√︁
1− z2ξ2d

ηdξd = 0,

which is equivalent to ⟨η, gz(ξ)⟩ = 0, so we obtain that η ∈ C
gz(ξ)
0 .

The second ingredient of the connection with the Funk�Radon transform is the fol-
lowing lemma. It says how the application of hz transfers the volume measure.
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3 Circular means on the sphere

Lemma 3.56. Let z ∈ (−1, 1) and ξ ∈ Sd−1. Denote by dC ξ
z and dC

gz(ξ)
0 the volume

forms on the manifolds C ξ
z and C

gz(ξ)
0 , respectively. Then the following relation between

the pullback of the volume form dC ξ
z over hz and dC

gz(ξ)
0 holds. For η ∈ C

gz(ξ)
0 , we

have

[h∗
z(dC ξ

z )](η) =

(︃√
1− z2

1 + zηd

)︃d−2

dC gz(ξ)
0 (η). (3.86)

For the volume form dSd−1 on the sphere and η ∈ Sd−1, we have

[h∗
z(dSd−1)](η) =

(︃√
1− z2

1 + zηd

)︃d−1

dSd−1(η). (3.87)

Furthermore, the map hz : Sd−1 → Sd−1 is conformal.

Proof. Let η ∈ C
gz(ξ)
0 . We compute the Jacobian Jhz = Jhz(η) of hz at η, which

comprises the partial derivatives of hz. For all l,m ∈ {1, . . . , d− 1}, we have

∂[hz]l
∂ηm

=

√
1− z2

1 + zηd
δl,m,

∂[hz]l
∂ηd

= −ηl
z
√
1− z2

(1 + zηd)2
,

∂[hz]d
∂ηm

= 0,
∂[hz]d
∂ηd

=
1− z2

(1 + zηd)2
.

(3.88)

Let [ei]d−2
i=1 be an orthonormal basis of the tangent space TηC

gz(ξ)
0 . Then Jhze

i ∈ Thz(η)C
ξ
z

for i = 1, . . . , d− 1 is given by

Jhze
i =

d−1∑︂

l=1

(︃√
1− z2

1 + zηd
eil − ηl

z
√
1− z2

(1 + zηd)2
eid

)︃
ϵl +

1− z2

(1 + zηd)2
eidϵ

d.

Hence, we have for all i, j ∈ {1, . . . , d− 2}

⟨︁
Jhze

i, Jhze
j
⟩︁
=

d−1∑︂

l=1

(︃
1− z2

(1 + zηd)2
eile

j
l −

z(1− z2)

(1 + zηd)3
ηl
(︁
eile

j
d + ejl e

i
d

)︁

+
z2(1− z2)

(1 + zηd)4
η2l e

i
de
j
d

)︃
+

(1− z2)2

(1 + zηd)4
eide

j
d.

Expanding the sum, we obtain

⟨︁
Jhze

i, Jhze
j
⟩︁
=

1− z2

(1 + zηd)2

d−1∑︂

l=1

eile
j
l −

z(1− z2)

(1 + zηd)3

(︄
ejd

d−1∑︂

l=1

ηle
i
l + eid

d−1∑︂

l=1

ηle
j
l

)︄

+
z2(1− z2)

(1 + zηd)4
eide

j
d

d−1∑︂

l=1

η2l +
(1− z2)2

(1 + zηd)4
eide

j
d.
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Since the vectors ei and ej are elements of an orthonormal basis, we have ⟨ei, ej⟩ =∑︁d
l=1 e

i
le
j
l = δi,j. Furthermore, we know that ⟨ei,η⟩ = ⟨ej,η⟩ = 0 because ei and ej are

in the tangent space TηC
g(ξ)
0 ⊂ TηSd−1, and also ∥η∥2 = 1. Hence, we have

⟨︁
Jhze

i, Jhze
j
⟩︁

=
1− z2

(1 + zηd)2
(δi,j − eide

j
d) + 2

z(1− z2)

(1 + zηd)3
ηde

i
de
j
d

+
z2(1− z2)

(1 + zηd)4
eide

j
d(1− η2d) +

(1− z2)2

(1 + zηd)4
eide

j
d

=
1− z2

(1 + zηd)4
eide

j
d

(︁
−(1 + zηd)

2 + 2zηd(1 + zηd) + z2(1− η2d) + 1− z2
)︁

+
1− z2

(1 + zηd)2
δi,j

=
1− z2

(1 + zηd)2
δi,j.

The above computation shows that the vectors {Jhze
i}di=1 are orthogonal with length

⃦⃦
Jhze

i
⃦⃦
=

√
1− z2

1 + zηd
.

Because of the orthogonality of the vectors Jhze
i, the map hz is conformal. By the de�-

nition of the pullback h∗
z in (2.1) and the fact that the volume form dC ξ

z is a multilinear
(d− 2)-form, we obtain

[h∗
z(dC ξ

z )](η)([e
i]d−2
i=1 ) = [dC ξ

z ](hz(η))([Jhze
i]d−2
i=1 ) =

(︃√
1− z2

1 + zηd

)︃d−2

. (3.89)

If we set [ei]d−1
i=1 as a basis of the tangent space Tη(Sd−1) in order to obtain (3.87), the

previous calculations still hold except that the exponent d − 2 is replaced by d − 1 in
equation (3.89).

Finally, we prove that the basis
[︁
Jhze

1, . . . , Jhze
d
]︁
of the tangent space Thz(η)C

ξ
z is

oriented positively, i. e., that

d(z) := det
(︁
hz(η), ξ, Jhze

1, . . . , Jhze
d
)︁
> 0, z ∈ (−1, 1).

By the formula (3.88) of Jhz , the function d : [0, 1) → R is continuous, and it satis�es

d(0) = det
(︁
h0(η), ξ, Jh0e

1, . . . , Jh0e
d−2
)︁
= det

(︁
η, g0(ξ), e

1, . . . , ed−2
)︁
> 0

since both h0 and g0 are equal to the identity map and we assumed the orthonormal
basis

[︁
e1, . . . , ed−2

]︁
be oriented positively. By the orthogonality of the vectors ξ, hz(η)

and Jhze
i, we see that d(z) vanishes nowhere and, hence, we obtain that d(z) > 0 for all

z ∈ [0, 1). The assertion follows by the uniqueness of the volume form dC
gz(ξ)
0 (η).
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Factorization

Let z ∈ (−1, 1) and f ∈ C(Sd−1). We de�ne the two transformations

Mz, Nz : C(Sd−1) → C(Sd−1)

by

Mzf(ξ) :=

(︃√
1− z2

1 + zξd

)︃d−2

f ◦ hz(ξ), ξ ∈ Sd−1, (3.90)

and
Nzf(ξ) := (1− z2ξ2d)

− d−2
2 f ◦ gz(ξ), ξ ∈ Sd−1. (3.91)

Corollary 3.57. Let z ∈ (−1, 1). The transformation Mz is inverted by

f(η) = M−zMzf(η), η ∈ Sd−1, (3.92)

which expands to

f(η) =

(︃√
1− z2

1− zηd

)︃d−2

Mzf(h
−1
z (η)), η ∈ Sd−1. (3.93)

Furthermore, the inverse of Nz is given by

f(η) =

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

Nzf(g
−1
z (η)), η ∈ Sd−1. (3.94)

Proof. Let f ∈ C(Sd−1) and η ∈ Sd−1. We have

M−zMzf(η) =

(︃√
1− z2

1− zηd

)︃d−2

Mzf(h−z(η))

=

(︃√
1− z2

1− zηd

)︃d−2(︃ √
1− z2

1 + z[h−z(η)]d

)︃d−2

f(hz(h−z(η))).

By the de�nition of hz in (3.79) and the relation (3.83) for h−1
z , we obtain

M−zMzf(η) =

(︃
1− z2

1− zηd

)︃d−2
(︄

1

1 + z−z+ηd
1−zηd

)︄d−2

f(η)

=

(︃
1− z2

1− zηd

)︃d−2(︃
1− zηd

1− zηd − z2 + zηd

)︃d−2

f(η) = f(η).

We come to the inverse of Nz. Inserting the de�nition (3.91) of Nz, we have

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

Nzf(g
−1
z (η))

=

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

(1− z2[g−1
z (η)]2d)

− d−2
2 f(gz(g

−1
z (η))).
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We insert equation (3.84) for g−1
z and obtain

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

Nzf(g
−1
z (η)) =

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

⎛
⎝ 1

1− z2η2d
1−z2+z2η2d

⎞
⎠

d−2
2

f(η)

=

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2
(︃
1− z2 + z2η2d

1− z2

)︃ d−2
2

f(η)

= f(η),

which shows (3.94).

Now we are able to prove the Factorization Theorem about the spherical transform Uz
as follows.

Theorem 3.58. Let z ∈ [0, 1). Then the factorization of the spherical transform

Uz = NzFMz (3.95)

holds, where F is the Funk�Radon transform (3.18).

Proof. Let f ∈ C(S2) and ξ ∈ Sd−1. By the de�nition of Uz in (3.76), we have

⃓⃓
Sd−2

⃓⃓
(1− z2ξ2d)

d−2
2 Uzf(ξ) =

∫︂

C ξ
z

f dC ξ
z . (3.96)

Then we have by the substitution rule (2.2)
∫︂

C ξ
z

f dC ξ
z =

∫︂

h−1
z (C ξ

z )

(f ◦ hz)h∗
z(dC ξ

z ).

By (3.86) and (3.85), we obtain

∫︂

C ξ
z

f dC ξ
z =

∫︂

C
gz(ξ)
0

f(hz(η))

(︃√
1− z2

1 + zηd

)︃d−2

dC
gz(ξ)
0 (η).

By the de�nition of Mz in (3.90), we see that
∫︂

C ξ
z

f dC ξ
z =

∫︂

C
gz(ξ)
0

Mzf dC
gz(ξ)
0 .

The de�nition of the Funk�Radon transform (3.18) shows that
∫︂

C ξ
z

f dC ξ
z = FMzf(gz(ξ)),

which implies (3.95).
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Theorem 3.58 was proven by the author in [Que17] for dimension d = 3 and in [Que18]
for general d ≥ 3. Shortly after the preprint [Que18] was published in October 2018,
Rubin released the preprint of [Rub19], in which Theorem 3.58 was also proven, but
with a method di�erent from ours.

The Factorization Theorem 3.58 enables us to investigate the properties of the spher-
ical transform Uz. Because the operators Mz and Nz are relatively simple, we can
transfer many properties from the Funk�Radon transform, see Section 3.2, to the spher-
ical transform Uz.

A geometric interpretation of the factorization

We give geometric interpretations of the two mappings gz and hz : Sd−1 → Sd−1, which
were de�ned in (3.80) and (3.79), respectively. The mapping gz consists of two parts:
The �rst is a scaling with the factor

√
1− z2 along the d-th coordinate, namely

sz(ξ) :=
d−1∑︂

i=1

ξiϵ
i +

√
1− z2 ξdϵ

d, ξ ∈ Sd−1,

which maps the sphere to an ellipsoid that is symmetric with respect to rotations
about ϵd. Then the central projection

p(x) :=
1

∥x∥ x, x ∈ Rd \ {0},

maps this ellipsoid onto the sphere Sd−1 again. Recapitulating, we can write gz as the
composition

gz(ξ) = p(sz(ξ)), ξ ∈ Sd−1.

Moreover, we obtain a geometric description of the mapping hz as follows. We recall
the stereographic projection π and its inverse π−1 from (3.77) and (3.78), respectively.

Corollary 3.59. Let ξ ∈ Sd−1 and z ∈ (0, 1). Then we have

hz(ξ) = π−1

(︄√︃
1 + z

1− z
π(ξ)

)︄
.

Proof. Let ξ ∈ Sd−1 and z ∈ (0, 1). We are going to show that

π(hz(ξ)) =

√︃
1 + z

1− z
π(ξ).

We have on the one hand
√︃

1 + z

1− z
π(ξ) =

√︃
1 + z

1− z

d−1∑︂

i=1

ξi
1− ξd

ϵi
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and the other hand

π(hz(ξ)) =
d−1∑︂

i=1

√
1−z2 ξi
1+zξd

1− z+ξd
1+zξd

ϵi =
d−1∑︂

i=1

√
1− z2 ξi

1 + zξd − (z + ξd)
ϵi

=
d−1∑︂

i=1

√
1− z2 ξi

(1− z) (1− ξd)
ϵi.

The assertion follows by canceling
√
1− z in the last fraction.

The last corollary states that, under the stereographic projection π, the mapping hz
on the sphere Sd−1 corresponds to a uniform scaling in the equatorial hyperplane Rd−1

with the scaling factor
√︂

1+z
1−z . Since the stereographic projection and the uniform scaling

are conformal, the corollary gives an alternative proof that hz is conformal, which we
already showed in Lemma 3.56.

3.6.2 Nullspace

With the help of the factorization (3.95) obtained in the previous section, we can show
the following characterization of the nullspace of the spherical transform Uz.
Theorem 3.60. Let z ∈ (−1, 1) and f ∈ C(Sd−1). Then Uzf = 0 if and only if

f(ω) = −
(︃

1− z2

1− 2zωd + z2

)︃d−2

f ◦ rz(ω), ω ∈ Sd−1, (3.97)

where rz : Sd−1 → Sd−1 is given by

rz(ω) :=
d−1∑︂

i=1

z2 − 1

1 + z2 − 2zωd
ωiϵ

i +
2z − z2ωd − ωd
1 + z2 − 2zωd

ϵd, ω ∈ Sd−1. (3.98)

Proof. Let f ∈ C(Sd−1). Since the operator Nz is bijecive by Corollary 3.54, we see
that Uzf = NzFMzf = 0 if and only if FMzf = 0. The nullspace of the Funk�Radon
transform F consists of the odd functions, see Section 3.2, so we obtain that

Uf = 0 ⇔ Mzf(η) = −Mzf(−η), η ∈ Sd−1.

By the de�nition of Mz in (3.90), this is equivalent to

(︃√
1− z2

1 + zηd

)︃d−2

f ◦ hz(η) = −
(︃√

1− z2

1− zηd

)︃d−2

f ◦ hz(−η).
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3 Circular means on the sphere

Figure 3.9: The point re�ection rz about the point zϵd acting on two vectors ξ, η ∈ S2.

We substitute ω = hz(η) and obtain the equivalent formulation

f(ω) = −
(︄
1 + z ωd−z

1−zωd

1− z ωd−z
1−zωd

)︄d−2

f ◦ hz(−h−1
z (ω))

= −
(︃
1− zωd + z(ωd − z)

1− zωd − z(ωd − z)

)︃d−2

f ◦ hz(−h−1
z (ω))

= −
(︃

1− z2

1− 2zωd + z2

)︃d−2

f ◦ hz(−h−1
z (ω)).

In order to show that rz = hz(−h−1
z ), we compute the d-th component

[hz(−h−1
z (ω))]d =

z + z−ωd

1−zωd

1 + z z−ωd

1−zωd

=
z − z2ωd + z − ωd
1− zωd + z2 − zωd

=
2z − z2ωd − ωd
1− 2zωd + z2

.

For the i-th component, i ∈ {1, . . . , d− 1}, we have

[hz(−h−1
z (ω))]i =

√
1− z2

1− z ωd−z
1−zωd

−
√
1− z2

1− zωd
ωi =

z2 − 1

1− 2zωd + z2
ωi.

Remark 3.61. The map rz from (3.98) is the point re�ection of the sphere Sd−1 about
the point zϵd, see Figure 3.9. This can be seen as follows. Let ω ∈ Sd−1. The vectors
ω − zϵd and rz(ω)− zϵd are parallel if we have for all i ∈ {1, . . . , d− 1}

[rz(ω)]i
ωi

=
[rz(ω)]d − z

ωd − z
.
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3.6 Hyperplane sections through a common point

We have

ωi
[rz(ω)]i

[rz(ω)]d − z

ωd − z
=

2z − z2ωd − ωd − z(1 + z2 − 2zωd)

(z2 − 1)(ωd − z)

=
z + z2ωd − ωd − z3

(z2 − 1)(ωd − z)
= 1,

provided all denominators are nonzero.

Theorem 3.60 shows that the spherical transform Uz vanishes for all functions that
are odd with respect to a �weighted� point re�ection in z ϵd. This can be explained by
the fact that if a point ω ∈ Sd−1 is contained in a hyperplane passing through z ϵd, then
so is its point re�ection rz(ω).

Remark 3.62. Since the spherical transform Uz is not injective as we have seen in The-
orem 3.60, Agranovsky and Rubin [AR19] recently suggested to use two instead of only
one center zϵd and found that any continuous function f can be uniquely reconstructed
given Uzf and Uwf , where z ̸= w.

3.6.3 The range in terms of Sobolev spaces

In this section, we show that for s ≥ 0, the spherical transform

Uz : Hs(Sd−1) → Hs+ d−2
2 (Sd−1)

is continuous. To this end, we separately investigate the three parts of the decomposition
obtained in Theorem 3.58,

Uz = NzFMz.

We have already shown in Theorem 3.13 that the Funk�Radon transform

F : Hs
even(Sd−1) → H

s+ d−2
2

even (Sd−1)

is continuous and bijective.

For the remaining operators Mz and Nz, we have the following lemma, which relies
on the theorems about bounded operators in Sobolev spaces from Section 2.1.5.

Lemma 3.63. Let z ∈ [0, 1) and s ∈ R with s ≥ 0. The operators

Mz : H
s(Sd−1) → Hs(Sd−1)

and

Nz : H
s(Sd−1) → Hs(Sd−1),

as de�ned in (3.90) and (3.91), are continuous and open.
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3 Circular means on the sphere

Proof. We �rst perform the proof for Mz. Initially, we consider only the situation
s ∈ N0. Let f ∈ Hs(Sd−1) and z ∈ (−1, 1). We write

Mzf(ξ) = uz(ξ) [f ◦ hz](ξ), ξ ∈ Sd−1,

where

uz : Sd−1 → R, uz(ξ) :=

(︃√
1− z2

1 + zξd

)︃d−2

and hz is given in (3.79). As we did in (2.40), we extend the function uz to the sur-
rounding space by

u•z(x) = uz

(︃
x

∥x∥

)︃
=

(︃√
1− z2

∥x∥
∥x∥+ zxd

)︃d−2

, x ∈ Rd \ {0},

We see that the extension u•z is smooth except in the origin, i. e., u•z ∈ C∞(Rd \ {0}).
Hence, uz ∈ C∞(Sd−1). Then Theorem 2.6 implies that

∥uz (f ◦ hz)∥Hs(Sd−1) ≤ (2d+ 2)s/2 ∥uz∥Cs(Sd−1) ∥f ◦ hz∥Hs(Sd−1) . (3.99)

Moreover, the extension of hz,

h•
z : Rd \ {0} → Rd, h•

z(x) =
d−1∑︂

i=1

√
1− z2

∥x∥+ zxd
xiϵ

i +
z ∥x∥+ xd
∥x∥+ zxd

ϵd,

is also smooth, so hz ∈ C∞(Sd−1 → Sd−1). This implies that also the inverse h−1
z = h−z,

see (3.83), is smooth. So hz is a di�eomorphism and Theorem 2.7 together with (3.99)
implies that

∥Mzf∥Hs(Sd−1) ≤ (2d+ 2)s/2 ∥uz∥Cs(Sd−1) ∥f ◦ hz∥Hs(Sd−1)

≤ (2d+ 2)s/2 ∥uz∥Cs(Sd−1) bd,s(hz) ∥f∥Hs(Sd−1) .

Thus, the operator Mz : H
s(Sd−1) → Hs(Sd−1) is continuous.

Now let s ∈ R with s ≥ 0. The above proof shows that both the restrictions of Mz to
H⌊s⌋ and to H⌊s⌋+1 are continuous, where ⌊s⌋ denotes the largest integer that is smaller
than or equal to s. The continuity of Mz on Hs(Sd−1) follows by the interpolation result
Proposition 2.5.

In order to prove the openness of Mz, we show that the inverse M−1
z restricted to

Hs(Sd−1) is continuous. However, we have already done this because M−1
z = M−z by

(3.93).

The same argumentation as above also works for the operator Nz as follows. Let
z ∈ [0, 1) and s ∈ N0. We write

Nzf(ξ) = vz(ξ) [f ◦ gz](ξ), ξ ∈ Sd−1,
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3.6 Hyperplane sections through a common point

where
vz(ξ) := (1− z2ξ2d)

− d−2
2 , ξ ∈ Sd−1.

As in (2.40), we extend the function vz to the surrounding space Rd \ {0} by

v•z(x) =

(︄
∥x∥2

∥x∥2 − z2x2d

)︄ d−2
2

, x ∈ Rd \ {0},

We see that the extension v•z is smooth and hence vz ∈ Cs(Sd). Theorem 2.6 yields

∥vz (f ◦ gz)∥Hs(Sd−1) ≤ (2d+ 2)s/2 ∥vz∥Cs(Sd−1) ∥f ◦ gz∥Hs(Sd−1) .

Since the extensions of both

g•
z(x) = gz

(︃
x

∥x∥

)︃
=

1√︂
∥x∥2 − z2x2d

(︄
d−1∑︂

i=1

xiϵ
i +

√
1− z2 xdϵ

d

)︄
, x ∈ Rd \ {0},

and its inverse (3.84)

[(g−1
z )•](x) =

1√︂
∥x∥2 − z2 + z2x2d

(︄
√
1− z2

d−1∑︂

i=1

ωiϵ
i + xdϵ

d

)︄
, x ∈ Rd \ {0},

are smooth functions on Rd\{0}, we see that gz is a smooth di�eomorphism in Cs(Sd−1).
By Theorem 2.7, there exists a constant bd,s(gz) independent of f such that

∥f ◦ gz∥Hs(Sd−1) ≤ bd,s(gz) ∥f∥Hs(Sd−1) .

Hence, Nz is a bounded operator on Hs(Sd−1). An analogue computation shows that
the inverse operator (3.94)

N−1
z f(η) =

f(g−1
z (η))

vz(g−1
z (η))

=

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

(f ◦ g−1
z )(η), η ∈ Sd−1

is also bounded on Hs(Sd−1). The assertion for general s follows by the same interpola-
tion argument as for Mz.

Finally, we have collected all ingredients in order to prove the continuity of the spher-
ical transform Uz in Sobolev spaces.

Theorem 3.64. Let z ∈ (0, 1) and s ∈ R with s ≥ 0. We set Hs
even,z(Sd−1) as the

subspace of all functions f ∈ Hs(Sd−1) that satisfy

f(ω) =

(︃
1− z2

1− 2zωd + z2

)︃d−2

f ◦ rz(ω), ω ∈ Sd−1, (3.100)

almost everywhere, where the point re�ection rz about the point zϵ
d is given in (3.98).

Then the spherical transform

Uz : Hs
even,z(Sd−1) → H

s+ d−2
2

even (Sd−1)

is continuous and bijective and its inverse operator is also continuous.
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3 Circular means on the sphere

Proof. In Theorem 3.58, we obtained the decomposition

Uz = NzFMz.

We are going to look at the parts of this decomposition separately. By Lemma 3.63, we
obtain that

Mz : H
s(Sd−1) → Hs(Sd−1)

is continuous and bijective. The same holds for the restriction

Mz : H
s
even,z(Sd−1) → Hs

even(Sd−1),

which follows from the characterization of the nullspace in Theorem 3.60. By Theorem
3.13, the Funk�Radon transform

F : Hs
even(Sd−1) → H

s+ d−2
2

even (Sd−1)

is continuous and bijective. Finally, Lemma 3.63 and the observation that any function
f : Sd−1 → C is even if and only if Nzf is even show that

Nz : H
s+ d−2

2
even (Sd−1) → H

s+ d−2
2

even (Sd−1)

is continuous and bijective. The continuity of the inverse operator of Uz follows from
the open mapping theorem.

Theorem 3.64 is a generalization of Theorem 3.13 for the Funk�Radon transform F ;
the main di�erence is that the space Hs

even(Sd−1) is replaced by Hs
even,z(Sd−1), which con-

tains functions that satisfy the symmetry condition (3.100) with respect to the point
re�ection in z ϵd. Furthermore, the spherical transform Uz is smoothing of degree d−2

2
,

which comes from the fact that Uz takes the integrals along (d − 2)-dimensional sub-
manifolds.

3.6.4 An inversion formula

In this section, we are going to show an explicit inversion formula of the spherical trans-
form Uz. The idea is to use the Factorization Theorem 3.58 of the spherical transform
and apply it to Helgason's inversion formula (3.23) of the Funk�Radon transform F .

Theorem 3.65. Let z ∈ (−1, 1), and let the function f : Sd−1 → C ful�ll the symmetry
condition (3.100). Then f can be reconstructed from its spherical transform Uzf for any
ξ ∈ Sd−1 by

f(ξ) =

(︃
1− z2

1− zξd

)︃d−2
2d−2

(d− 3)! |Sd−2|

[︄(︃
d

d(u2)

)︃d−2 ∫︂ u

0

(1− v2)
2−d
2

·
∫︂

⟨h−1
z (ξ),η⟩=v

(︁
1− z2 + z2η2d

)︁ 2−d
2 Uzf(g−1

z (η)) dη vd−2 (u2 − v2)
d−4
2 dv

]︃

u=1

.
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3.6 Hyperplane sections through a common point

Proof. By the factorization (3.95) of the spherical transform Uz, we have
f = U−1

z Uzf = M−1
z F−1N−1

z Uzf.
Let ξ ∈ Sd−1. With (3.93) for M−1

z , we obtain

f(ξ) =

(︃√
1− z2

1− zξd

)︃d−2

F−1N−1
z Uzf(h−1

z (ξ)).

Since Uzf is always even and hence alsoNzUzf is even, we can apply Helgason's inversion
formula (3.23). Then we have

f(ξ) =

(︃√
1− z2

1− zξd

)︃d−2
2d−2

(d− 3)!

·
[︄(︃

d

d(u2)

)︃d−2 ∫︂ u

0

M[N−1
z Uzf ](h−1

z (ξ), v) vd−2 (u2 − v2)
d−4
2 dv

]︄

u=1

.

Inserting the de�nition (3.2) of the mean operator M, we have

f(ξ) =

(︃√
1− z2

1− zξd

)︃d−2
2d−2

(d− 3)!

·
[︄(︃

d

d(u2)

)︃d−2 ∫︂ u

0

(1− v2)
2−d
2

|Sd−2|

∫︂

⟨h−1
z (ξ),η⟩=v

N−1
z Uzf(η) dη vd−2 (u2 − v2)

d−4
2 dv

]︄

u=1

.

With (3.94), we obtain

f(ξ) =

(︃√
1− z2

1− zξd

)︃d−2
2d−2

(d− 3)!

[︄(︃
d

d(u2)

)︃d−2 ∫︂ u

0

(1− v2)
2−d
2

|Sd−2|

·
∫︂

⟨h−1
z (ξ),η⟩=v

(︃
1− z2

1− z2 + z2η2d

)︃ d−2
2

Uzf(g−1
z (η)) dη vd−2 (u2 − v2)

d−4
2 dv

]︄

u=1

.

Remark 3.66. In dimension d = 3, the inversion formula of the spherical transform Uz
from Theorem 3.65 can be simpli�ed for ξ ∈ S2 to

f(ξ) =
1

2π

1− z2

1− zξ3

[︃
d

du

∫︂ u

0

v√
1− v2

·
∫︂

h−1
z (ξ)⊤η=v

1√︁
1− (1− z2)η23

Uzf(g−1
z (η)) dη

1√
u2 − v2

dv

]︄

u=1

,

where we have made use of the simpli�cation d
d(u2)

= 1
2u

d
du
. For z = 0, the inversion

formula from Theorem 3.65 becomes Helgason's inversion formula (3.23) of the Funk�
Radon transform F = U0. Furthermore, we note that the inversion formula of Uz in
Theorem 3.65 has the same form for both even and odd dimensions d, unlike the one in
Proposition 3.53.
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3 Circular means on the sphere

Figure 3.10: Circles through the north pole ϵ3 of the two-sphere S2 from the spherical
slice transform U1.

3.6.5 The Spherical slice transform

The spherical transform U1, in the case z = 1, integrates a function along all subspheres
that pass through the north pole ϵd = (0, . . . , 0, 1)⊤ of Sd−1, see Figure 3.10. However,
the approach from Section 3.6.1 cannot be applied in this case, because the mapping hz
for z → 1 then contracts the sphere to the north pole ϵd.

In 1993, Abouelaz and Daher [AD93] considered the transform U1 calling it the Radon
transformation on the sphere (literally � la transformation de Radon sur la sphère�). They
found an inversion formula for this transform on the two-dimensional sphere S2 for radial
functions f(ξ) = f̃(ξ3). Gindikin et al. [GRS94] constructed an inversion formula on S2

utilizing the kappa operator.

The name spherical slice transform for U1 is due to Helgason [Hel99, Section II.1.C].
In 1999, he proved that every function f ∈ C1(S2) that vanishes at the north pole
ϵd can be reconstructed from its spherical slice transform. This result was obtained by
stereographic projection from the north pole onto the equatorial hyperplane Rd−1×{0} ⊂
Rd. Then all (d − 2)-dimensional subspheres passing through the north pole, which
can be described as the intersection of the sphere with a hyperplane containing the
north pole, become (d − 2)-dimensional hyperplanes in the Euclidean space Rd−1. In
2001, Daher [Dah01] showed the injectivity of the spherical slice transform for functions
f ∈ L2(Sd−1) that vanish in a neighborhood of the north pole. A similar result that shows
the injectivity for Lipschitz-continuous functions vanishing at the equator was obtained
by the author [Que17, Section 7] via a connection with the spherical transform Uz for
z → 1 with z < 1. In 2017, Rubin [Rub17b] showed the injectivity of the operator U1

for functions f ∈ L∞(Sd−1), which was obtained via stereographic projection.
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3.6 Hyperplane sections through a common point

3.6.6 Nongeodesic hyperplane sections

The following inversion formula for the spherical transform Uz is due to Palamodov
[Pal16, Section 5.2] in 2016, see also [Pal17]. It covers some nongeodesic hyperplane
sections of the sphere Sd−1. We consider hyperplanes that have a �xed distance r ≥ 0 to
the �xed point zϵd inside the sphere, where we assume that r+z < 1. Such hyperplanes
are the tangent planes to the sphere with center zϵd and radius r, which lies inside Sd−1.
The mean values of a function f ∈ C(Sd−1) along these hyperplane sections with the
sphere Sd−1 are parameterized as a restriction of the mean operator M by

Mf(ξ, z ξd + r), ξ ∈ Sd−1.

As a particular case for r = 0 and z ∈ [0, 1), we have the spherical transform Uz from
Section 3.6. In the case z = 0 and r ∈ [0, 1), we have the spherical section transform Tr
from Section 3.3.

Proposition 3.67 ([Pal16, Theorem 5.4]). Let τ ∈ Sd−1, and let z, r ∈ [0, 1) such that
r + z < 1. We de�ne the spherical cap

X := {η ∈ Sd−1 ;
⟨︁
η − zϵd, τ

⟩︁
> r}

and the function

Dd(η) :=

(︂⃦⃦
η − zϵd

⃦⃦2 − r2
)︂ d−3

2

∥η − zϵd∥d−2
, η ∈ Sd−1.

If d is even, any function f ∈ Cd−2
0 (X) can be reconstructed via

f(η) =
1

2(2πi)d−2Dd(η)

∫︂

Sd−1

δ(d−2)(⟨η, ξ⟩ − zξd − r)Mf(ξ, zξd + r) dξ, η ∈ X.

If d is odd, any function f ∈ Cd−1
0 (X) can be reconstructed via

f(η) =
(d− 2)!

(2πi)d−1Dd(η)

∫︂

Sd−1

Mf(ξ, zξd + r)

(⟨η, ξ⟩ − zξd − r)d−1
dξ, η ∈ X.
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4
Applications

In this chapter, we consider two particular applications of the spherical transforms that
we have investigated in Chapter 3.

At �rst, in Section 4.1, we are going to take a look at the cone-beam transform, which
integrates a function that is de�ned on the Euclidean space Rd along all rays that start in
a certain set. The cone-beam transform on R3 provides the mathematical background of
the three-dimensional X-ray computed tomography. Grangeat's formula gives a connec-
tion of the cone-beam transform with the generalized Funk�Radon transform S(j) and
the Radon transform R. Hence, the inversion of the cone-beam transform is splitted up
into the inverse Radon transform R−1 and the inverse generalized Funk�Radon trans-
form (S(j))−1. We utilize the results obtained in Section 3.4 about the transform S(j) in
order to show the singular value decomposition of the cone-beam transform.

In the second section, 4.2, we consider the integrals along incomplete great circles
of the two-sphere S2. Interestingly, this problem mainly appeared in the geophysical
publications with only a limited coverage in the mathematical literature, which is due
to the fact that these integrals play an important role in the modeling of the spherical
surface wave tomography. We are going to call the transform that maps to a function
on S2 these integrals along incomplete great circles the arc transform on the sphere.
After �nding a suitable parameterization of the circle arcs, we show the singular value
decomposition of the arc transform in Theorem 4.19.

The task of recovering a function f from its arc transform is overdetermined. In
Section 4.2.4, we focus on the special case that only the integrals along certain great
circle arcs are known, namely those arcs having a �xed length. Even from this limited
data, it is still possible to recover the original function on the sphere. Furthermore,
we obtain a singular value decomposition for the arc transform with �xed length in
Theorem 4.22, where we also describe the asymptotic behavior of the singular values
depending on the length of the circle arcs.
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Figure 4.1: Illustration of the cone-beam transform in 3D of a function f , whose support
is marked in green. The rays (blue) start in the point a ∈ Γ (red).

4.1 Cone-beam transform

In this section, we are going to derive a singular value decomposition of the cone-beam
transform. Most of the material that is presented in this section is contained in the
second part of our article [QHL18]. We start with the de�nition of the relevant integral
transforms.

The cone-beam transform integrates a function f : Rd → R along every ray that starts
in some scanning set Γ ⊂ Rd. We de�ne the cone-beam transform D, which is also
known as the divergent beam X-ray transform, by

Df(a,ω) :=

∫︂ ∞

0

f(a+ tω) dt, ω ∈ Sd−1, a ∈ Γ.

An illustration of the rays of integration is provided in Figure 4.1.

The cone-beam transform in 3D is widely used in medical imaging and nondestructive
testing of three-dimensional objects, cf. [Smi90]. The injectivity of the cone-beam trans-
form was shown under rather weak assumptions, namely that Γ is an in�nite set with
positive distance to the convex hull of the support of f [HSSW80]. An explicit inversion
formula [Tuy83] is known for the case that the Tuy�Kirillov completeness condition is
satis�ed, which states that the scanning set Γ intersects every hyperplane hitting supp f
transversally, see [NW00, Chapter 2]. In 3D, if the Tuy�Kirillov condition is not satis-
�ed, one can stably detect singularities of f only along planes that meet the scanning
curve Γ, see [Qui93].

In the following, we consider the setting that the function f is supported on the unit
ball Bd and the scanning set Γ is the whole unit sphere Sd−1. However, in many practical
applications in 3D, the scanning set Γ is a circle [Fin85].
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4.1 Cone-beam transform

4.1.1 Connection of Radon and cone-beam transform

Radon transform. The Radon transform R on the d-dimensional unit ball Bd = {x ∈
Rd ; ∥x∥ ≤ 1} is de�ned by [Nat86, Section II.1]

R : L2(Bd) → L2
(︁
Sd−1 × [−1, 1]; (1− s2)

1−d
2

)︁
,

Rf(ω, s) =
∫︂

x⊤ω=s

f(x) dx,
(4.1)

which is a restriction of the the Radon transform (3.67) on Rd. The Radon transform R
on the unit ball Bd has the following singular value decomposition, which we obtain from
Proposition 3.48 by inserting ν = d

2
. For m ∈ N0, l = 0, . . . ,m with m + l even and

k = 1, . . . , Nl,d, we have

R˜︁Vm,l,k(ω, s) =
√
2m+ dΓ(d

2
)m!

21−d π1− d
2 (m+ d− 1)!

(1− s2)
d−1
2 C

( d
2
)

m (s)Y k
l,d(ω), (4.2)

where

˜︁Vm,l,k(sω) :=
√
2m+ d slP

(0,l+ d−2
2 )

m−l
2

(2s2 − 1)Y k
l,d(ω), s ∈ [0, 1], ω ∈ Sd−1, (4.3)

and P (α,β)
n denotes the Jacobi polynomial of degree n and orders α, β > −1, see (2.22).

The set {︂
˜︁Vm,l,k ; l ∈ N0, m ∈ {l, l + 2, l + 4, . . . }, k ∈ {1, . . . , Nl,d}

}︂

is an orthonormal basis of L2(Bd) consisting of polynomials of degree m ∈ N0.

Remark 4.1. We quickly show the orthonormality of the functions ˜︁Vm,l,k in L2(Bd).
Let m,m′ ∈ N0, l = 0, . . . ,m, l′ = 0, . . . ,m′, k = 1, . . . , Nl,d, k′ = 1, . . . , Nl′,d such that
m+ l and m′ + l′ are even. We have

⟨︂
˜︁Vm,l,k, ˜︁Vm′,l′,k′

⟩︂2
L2(Bd)

=
√
2m+ d

√
2m+ d

∫︂ 1

0

sl+l
′
P
(0,l+ d−2

2 )
m−l
2

(2s2 − 1)P
(0,l′+ d−2

2 )
m′−l′

2

(2s2 − 1)sd−1 ds

·
∫︂

Sd−1

Y k
l,d(ω)Y k′

l′,d(ω) dω.

By the orthonormality of the spherical harmonics Y k
l,d and the substitution t = 2s2 − 1

with dt = 4s ds, we obtain

⟨︂
˜︁Vm,l,k, ˜︁Vm′,l′,k′

⟩︂2
L2(Bd)

=

√
2m+ d

√
2m+ d

4
δl,l′δk,k′

∫︂ 1

−1

(︃
t+ 1

2

)︃l+ d−2
2

P
(0,l+ d−2

2 )
m−l
2

(t)P
(0,l+ d−2

2 )
m′−l

2

(t) dt.
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By the orthogonality (2.23) of the Jacobi polynomials, we have

⟨︂
˜︁Vm,l,k, ˜︁Vm′,l′,k′

⟩︂2
L2(Bd)

= δm,m′δl,l′δk,k′
2m+ d

4
2−l−

d−2
2

2l+
d
2

m+ d
2

Γ(m−l
2

+ 1)Γ(m+l+d
2

)

(m−l
2
)! Γ(m+l+d

2
)

= 1.

Grangeat's formula. There is a relation between the cone-beam transform D, the
Radon transform R and the generalized Funk�Radon transform S(j) from Section 3.4.
Let h : R → R be a function that is homogeneous of degree 1 − d. It was essentially
shown by Hamaker et al. [HSSW80] in 1980 (see also [NW00, Section 2.3] and [Pal16,
Section 2.2.1]) that for f : Rd → C

∫︂ ∞

−∞
Rf(ω, s)h(s− a⊤ω) ds =

∫︂

Sd−1

Df(a, ξ)h(ω⊤ξ) dξ. (4.4)

Inserting h = δ(d−2), we obtain Grangeat's formula, which was originally proved for d = 3
by Grangeat [Gra91] in 1991. It states that

(−1)d
(︃
∂

∂s

)︃d−2

Rf(ω,a⊤ω) = S(d−2)Df(a,ω), (4.5)

where the di�erentiation is performed with respect to the second argument Rf and the
generalized Funk�Radon transform S(d−2), which was de�ned in Section 3.4, is applied
with respect to ω.

In the planar case d = 2, Grangeat's formula (4.5) does not contain any derivatives.
The Radon transform R in 2D takes the integral along all lines, which can be expressed
as the sum of two ray integrals of the cone-beam transform as follows. For a vector
ω = (ω1, ω2) ∈ S1, we denote by ω⊥ = (ω2,−ω1) its orthogonal complement. Then we
have

Rf(ω,a⊤ω) = Df(a,ω⊥) +Df(a,−ω⊥), a,ω ∈ S1. (4.6)

The following theorem gives an alternative version of Grangeat's formula for d = 3.
However, it is not a special case of (4.4), because the function h is not homogeneous of
degree −2.

Theorem 4.2. Let d = 3, ω ∈ S2 and a ∈ R3. We have

−S(−1) ∂

∂s
Rf(ω,a⊤ω) =

∫︂

S2
h(ξ⊤ω)Df(a, ξ) dξ, (4.7)

where

h(t) :=
2t√
1− t2

, t ∈ (−1, 1).

and S(−1) is the modi�ed hemispherical transform (3.45) applied with respect to ω.
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4.1 Cone-beam transform

Proof. Grangeat's formula (4.5) with d = 3 reads

− ∂

∂s
Rf(ω,a⊤ω) = S(1)Df(a,ω).

We apply the generalized Funk�Radon transform S(−1) with respect to ω on both sides
and obtain

−S(−1) ∂

∂s
Rf(ω,a⊤ω) = S(−1)S(1)Df(a,ω).

Hence, the assertion (4.7) is equivalent to

S(−1)S(1)Df(a,ω) =

∫︂

S2
h(ξ⊤ω)Df(a, ξ) dξ. (4.8)

Let n ∈ N0 and k ∈ {−n, . . . , n}. We also �x a ∈ S2. We are going to plug in the
spherical harmonic Df(a,ω) = Y k

n (ω) into (4.8). On the left-hand side of (4.8), we
obtain by the singular value decomposition of S(j) from Theorem 3.24

S(−1) S(1) Y k
n = Ŝ(−1)

(n) Ŝ(1)
(n)Y k

n =

{︄
4π2 (n−2)!!n!!

(n−1)!! (n+1)!!
Y k
n , n odd,

0, n even.
(4.9)

Now, we come to the right-hand side of (4.8). We make use of the identity [GR07,
8.922.4]

h(t) =
2t√
1− t2

= π
∞∑︂

n=1
n odd

(2n+ 1)
(n− 2)!!n!!

(n− 1)!! (n+ 1)!!
Pn(t), t ∈ (−1, 1).

We have by the Funk�Hecke formula (2.30)

∫︂

S2
h(ξ⊤ω)Y k

n (ξ) dξ = 2π

∫︂ 1

−1

h(t)Pn(t) dt Y
k
n (ω).

With (4.1.1) and the help of the orthogonality (2.17) of the Legendre polynomials Pn,
we see that

∫︂

S2
h(ξ⊤ω)Y k

n (ξ) dξ =

{︄
4π2 (n−2)!!n!!

(n−1)!! (n+1)!!
Y k
n (ω), n odd

0, n even.
(4.10)

Combining (4.9) and (4.10), we obtain

S(−1) S(1) Y k
n =

∫︂

S2
h(ξ⊤ω)Y k

n (ξ) dξ,

which holds for all n ∈ N0 and k ∈ {−n, . . . , n}. Then (4.8) follows by the density of
the spherical harmonics Y k

n in the space L2(Sd−1).
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4 Applications

4.1.2 Singular value decomposition

In the following, we consider the cone-beam transform D with the scanning set Γ = Sd−1

and we assume that the function f is supported in the unit ball Bd. We see that
Df(a,ω) = 0 for all ω ∈ Sd−1 with a⊤ω ≥ 0 since the ray of integration is outside Bd.
We denote the odd part of the cone-beam transform D(a, ·) by

D(odd)f(a,ω) :=
Df(a,ω)−Df(a,−ω)

2
.

Then
Df(a,ω) = 2D(odd)f(a,ω)

for all ω ∈ Sd−1 with a⊤ω < 0 and Df(a,ω) = 0 otherwise.

Lemma 4.3. Let m ∈ N0 and d ≥ 3 be odd. Then the following di�erentiation identity

for the Gegenbauer polynomial C
( d
2
)

m from (2.21) holds. We have for s ∈ R

(−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(︃
∂

∂s

)︃d−2

(1− s2)
d−1
2 C

( d
2
)

m (s) = C
( d−2

2
)

m+1 (s). (4.11)

Proof. We denote the right-hand side of (4.11) by B
( d−2

2
)

m+1 (s), i. e., we set

B
( d−2

2
)

m+1 (s) = (−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(︃
∂

∂s

)︃d−2

(1− s2)
d−1
2 C

( d
2
)

m (s).

We obtain with Rodrigues' formula (2.21) for the Gegenbauer polynomials

B
( d−2

2
)

m+1 (s) = (−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(−1)m (d−1
2
)! (m+ d− 1)!

2mm! (d− 1)! (m+ d−1
2
)!

(︃
∂

∂s

)︃m+d−2

(1− s2)m+ d−1
2

=
(−1)m+ d−1

2 (d− 2) (d−1
2
)!

2m (d− 1)! (m+ d−1
2
)!

(︃
∂

∂s

)︃m+d−2

(1− s2)m+ d−1
2 .

We compute with the binomial theorem (3.38)

B
( d−2

2
)

m+1 (s) =
(−1)m+ d−1

2 (d− 2) (d−1
2
)!

2m (d− 1)! (m+ d−1
2
)!

m+ d−1
2∑︂

i=0

(−1)i
(︃
m+ d−1

2

i

)︃(︃
∂

∂s

)︃m+d−2

s2i.

Considering (︃
∂

∂s

)︃k
s2i =

(2i)!

(2i− k)!
s2i−k,

we have

B
( d−2

2
)

m+1 (s)

=
(−1)m+ d−1

2 (d− 2) (d−1
2
)!

2m (d− 1)! (m+ d−1
2
)!

m+ d−1
2∑︂

i=⌈m+d−2
2 ⌉

(︃
m+ d−1

2

i

)︃
(−1)i (2i)!

(2i−m− d+ 2)!
s2i−m−d+2.
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4.1 Cone-beam transform

Shifting the index i ↦→ l with i = m− l + d−1
2
, we obtain

B
( d−2

2
)

m+1 (s)

=
(−1)m+ d−1

2 (d− 2) (d−1
2
)!

2m (d− 1)! (m+ d−1
2
)!

⌊m+1
2 ⌋∑︂

l=0

(−1)m−l+ d−1
2 (m+ d−1

2
)!

(m− l + d−1
2
)! l!

(2m− 2l + d− 1)!

(m+ 1− 2l)!
sm+1−2l

=
(d− 2) (d−1

2
)!

2m (d− 1)!

⌊m+1
2 ⌋∑︂

l=0

(−1)l

(m− l + d−1
2
)! l!

(2m− 2l + d− 1)!

(m+ 1− 2l)!
sm+1−2l.

Because
(2m)!

m!
=

2m (2m)!

(2m)!!
= 2m (2n− 1)!!,

we have

B
( d−2

2
)

m+1 (s) =
(d− 2)

2m (d− 2)!! 2
d−1
2

⌊m+1
2 ⌋∑︂

l=0

(−1)l 2m−l+ d−1
2 (2m− 2l + d− 2)!!

l! (m+ 1− 2l)!
sm+1−2l

=
1

(d− 4)!!

⌊m+1
2 ⌋∑︂

l=0

(−1)l 2−l (2m− 2l + d− 2)!!

l! (m+ 1− 2l)!
sm+1−2l.

We rewrite the quotient of double factorials with the Gamma function

(m+ 2k)!!

m!!
= 2k

(︃
m+ 2k

2

)︃(︃
m+ 2k − 2

2

)︃
· · ·
(︃
m+ 2

2

)︃
= 2k

Γ
(︁
m+2k+2

2

)︁

Γ
(︁
2k+2
2

)︁

and obtain

B
( d−2

2
)

m+1 (s) =

⌊m+1
2 ⌋∑︂

l=0

(−1)l Γ(m− l + d
2
)

Γ(d−2
2
) l! (m+ 1− 2l)!

(2s)m+1−2l,

which is exactly the formula (2.20) for the Gegenbauer polynomial C
( d−2

2
)

m+1 (s).

Theorem 4.4. Let m ∈ N0, l = 0, . . . ,m with l + m even, k ∈ {1, . . . , Nl,d} and
d ≥ 3 odd. The odd cone-beam transform D(odd) : C(Bd) → C(Sd−1 × Sd−1) satis�es for
a,ω ∈ Sd−1

D(odd)˜︁Vm,l,k(a,ω) = µm,d

Nm+1,d∑︂

j=1

Y j
m+1,d(a)

l+m+1∑︂′

n=m+1−l

νn,d

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω),

where
∑︁′ denotes the summation over odd indices, ˜︁Vm,l,k is given in (4.3) and

µm,d :=

√︃
2d+1 πd−1

2m+ d
, (4.12)

νn,d :=
(−1)

n+1
2 (n− 1)!!

(n+ d− 3)!!
. (4.13)
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Proof. Let m ∈ N0, l ∈ {0, . . . ,m} with m+ l even, k ∈ {1, . . . , Nl,d} and d be odd. We
have by the singular value decomposition (4.2) of the Radon transform and Lemma 4.3

(︃
∂

∂s

)︃d−2

R˜︁Vm,l,k(ω, s)

=
2d−1 π

d
2
−1

√
2m+ dΓ(d

2
)m!

(m+ d− 1)!

(︃
∂

∂s

)︃d−2

(1− s2)
d−1
2 C

( d
2
)

m (s)Y k
l,d(ω)

=
2d−1 π

d
2
−1

√
2m+ dΓ(d

2
)m!

(m+ d− 1)!
(−1)

d−1
2

(m+ d− 1)!

(d− 2)m!
C

( d−2
2

)

m+1 (s)Y k
l,d(ω)

=
2d−1 π

d
2
−1

√
2m+ dΓ(d

2
)

d− 2
(−1)

d−1
2 C

( d−2
2

)

m+1 (s)Y k
l,d(ω).

By Grangeat's formula (4.5) and the relation (2.19) between the Gegenbauer and the
Legendre polynomials, we obtain

S(d−2)D˜︁Vm,l,k(a,ω)

= (−1)
d+1
2
2d−1 π

d
2
−1

√
2m+ dΓ(d

2
) (m+ d− 2)!

(m+ 1)! (d− 2)!
Pm+1,d(a

⊤ω)Y k
l,d(ω).

By the addition formula (2.25) for spherical harmonics, we have

S(d−2)D˜︁Vm,l,k(a,ω) = (−1)
d+1
2

⃓⃓
Sd−1

⃓⃓ 2d−1 π
d
2
−1 Γ(d

2
)√

2m+ d

Nm+1,d∑︂

j=1

Y j
m+1,d(a)Y

j
m+1,d(ω)Y k

l,d(ω).

By the linearization formula (2.58) for spherical harmonics, we see that

S(d−2)D˜︁Vm,l,k(a,ω)

= (−1)
d−1
2

⃓⃓
Sd−1

⃓⃓ 2d+1 π
d
2
−1 Γ(d

2
)√

2m+ d

Nm+1,d∑︂

j=1

Y j
m+1,d(a)

m+1+l∑︂′

n=m+1−l

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Since d is assumed to be odd and the generalized Funk�Radon transform S(d−2) acts only
on odd functions, we have S(d−2)D = S(d−2)D(odd). Then the eigenvalue decomposition
(3.34) of S(d−2) yields

D(odd)˜︁Vm,l,k(a,ω) = (−1)
d+1
2

⃓⃓
Sd−1

⃓⃓

|Sd−2|
2d−1 π

d
2
−1 Γ(d

2
)√

2m+ d

Nm+1,d∑︂

j=1

Y j
m+1,d(a)

l+m+1∑︂′

n=m+1−l

(−1)
n+d−2

2
(n− 1)!!

(n+ d− 3)!! (d− 3)!!

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Since, by (2.10),
⃓⃓
Sd−1

⃓⃓

|Sd−2| =
√
π Γ(d−1

2
)

Γ(d
2
)

=

√
π (d−3

2
)!

Γ(d
2
)

=

√
π 2−

d−3
2 (d− 3)!!

Γ(d
2
)

,
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4.1 Cone-beam transform

we obtain

D(odd)˜︁Vm,l,k(a,ω)

=
2

d+1
2 π

d−1
2√

2m+ d

Nm+1,d∑︂

j=1

Y j
m+1,d(a)

l+m+1∑︂′

n=m+1−l

(−1)
n+1
2

(n− 1)!!

(n+ d− 3)!!

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Theorem 4.4 shows how the cone-beam transform D(odd) acts on the orthogonal poly-
nomials ˜︁Vm,l,d on the ball Bd. In order to show that this is indeed a singular value
decomposition, we still have to show that the functions D(odd)˜︁Vm,l,d are orthogonal.
Theorem 4.5. The functions

D(odd)˜︁Vm,l,k, m ∈ N0, l = 0, . . . ,m, k = 1, . . . , Nl,d, l +m even

are orthogonal in the space L2(Sd−1 × Sd−1). They have the norm

D̂m,l,d :=
⃦⃦
⃦D(odd)˜︁Vm,l,k

⃦⃦
⃦
L2(Sd−1×Sd−1)

=

⌜⃓
⎷⃓Nm+1,d µ2

m,d |Sd−2|
|Sd−1|2

m+1+l∑︂′

n=m+1−l

ν2n,dNn,d ⟨Pm+1,d Pl,d, Pn,d⟩wd
,

(4.14)

where

⟨Pm+1,d Pl,d, Pn,d⟩wd
=

∫︂ 1

−1

Pm+1,d(t)Pl,d(t)Pn,d(t) (1− t2)
d−3
2 dt.

Proof. Let m,m′ ∈ N0, l = 0, . . . ,m, l′ = 0, . . . ,m′, k = 1, . . . , Nl,d, k′ = 1, . . . , Nl′,d

such that m+ l and m′ + l′ are even. We have
⟨︂
D(odd)˜︁Vm,l,k,D(odd)˜︁Vm′,l′,k′

⟩︂
L2(Sd−1×Sd−1)

= µm,d µm′,d

Nm+1,d∑︂

j=1

Nm′+1,d∑︂

j′=1

∫︂

Sd−1

Y j
m+1,d(a)Y

j′

m′+1,d(a) da

m+1+l∑︂′

n=m+1−l

m′+1+l′∑︂′

n′=m′+1−l′
νn,d νn′,d

Nn,d∑︂

i=1

Nn′,d∑︂

i′=1

Gn,i,d
m+1,j,l,kG

n′,i′,d
m′+1,j′,l′,k′

∫︂

Sd−1

Y i
n,d(ω)Y i′

n′,d(ω) dω.

By the orthonormality of the spherical harmonics, we obtain

⟨︂
D(odd)˜︁Vm,l,k,D(odd)˜︁Vm′,l′,k′

⟩︂
L2(Sd−1×Sd−1)

= δm,m′ µ2
m,d

Nm+1,d∑︂

j=1

m+1+l∑︂′

n=m+1−l

ν2n,d

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′ .
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4 Applications

We have by the de�nition of the Gaunt coe�cients in (2.57)

Nm+1,d∑︂

j=1

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′

=

Nm+1,d∑︂

j=1

Nn,d∑︂

i=1

∫︂

Sd−1

Y j
m+1,d(ξ)Y

k
l,d(ξ)Y

i
n,d(ξ) dξ

∫︂

Sd−1

Y j
m+1,d(η)Y

k′
l′,d(η)Y

i
n,d(η) dη

=
Nm+1,dNn,d

|Sd−1|2
∫︂

Sd−1

∫︂

Sd−1

Pm+1,d(ξ
⊤η)Pn,d(ξ

⊤η)Y k
l,d(ξ) dξ Y

k′
l′,d(η) dη,

where the last equality follows from the addition formula (2.25) for spherical harmonics.
Applying the Funk�Hecke formula (2.30) to the inner integral, we obtain

Nm+1,d∑︂

j=1

Nn,d∑︂

i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′

=
Nm+1,dNn,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
∫︂ 1

−1

Pm+1,d(t)Pn,d(t) Pl,d(t) (1− t2)
d−3
2 dt

∫︂

Sd−1

Y k
l,d(η)Y

k
l′,d(η) dη

= δl,l′ δk,k′
Nm+1,dNn,d

|Sd−1|2
⃓⃓
Sd−2

⃓⃓ ∫︂ 1

−1

Pm+1,d(t)Pn,d(t) Pl,d(t) (1− t2)
d−3
2 dt,

where we used again the orthonormality of the spherical harmonics. By [CK10], the
value of the integral ⟨Pm+1,d Pn,d, Pl,d⟩wd

is nonzero if and only if

n ∈ {|m+ 1− l| , |m+ 1− l|+ 2, . . . , m+ 1 + l}.

Hence, we have

⟨︂
D(odd)˜︁Vm,l,k,D(odd)˜︁Vm′,l′,k′

⟩︂
L2(Sd−1×Sd−1)

= δm,m′ δl,l′ δk,k′
Nm+1,d µ

2
m,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
m+1+l∑︂′

n=m+1−l

ν2n,dNn,d ⟨Pm+1,d Pn,d, Pl,d⟩wd
.

In the notation of (3.12), Theorem 4.5 implies that the cone-beam transform D(odd)

has the singular value decomposition
{︃(︃

˜︁Vm,l,k, D̂m,l,d,
1

D̂m,l,d

D(odd)˜︁Vm,l,k
)︃

; m ∈ N0, l = 0, . . . ,m, k = 1, . . . , Nl,d,

l +m even

}︃

with the singular values D̂m,l,d given in (4.14).
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4.1 Cone-beam transform

Remark 4.6. In Theorem 4.4, we have shown the singular value decomposition of the
cone-beam transform D(odd) for the case that the dimension d ≥ 3 is odd. If d is even,
Lemma 4.3 does not hold any more, which follows from the fact that the left-hand side
of (4.11) is not a polynomial for d even, but the right-hand side is a polynomial.

4.1.3 Bounds on the singular values

Upper bound

In this section, we show that the singular values D̂m,l,d of the cone-beam transform
D(odd), which are given in (4.14), are bounded independently of m and l, which implies
that the cone-beam transform as operator D(odd) : L2(Bd) → L2(Sd−1×Sd−1) is bounded.

Lemma 4.7. Let n ≥ 1 and d ≥ 3 be odd integers. Then the coe�cients νn,d given in
(4.13) are bounded by

ν2n,dNn,d ≤
{︄
π, d = 3

d
((d−2)!!)2

, d ≥ 5.

Furthermore, we have

lim
n→∞
n odd

ν2n,dNn,d =
π

(d− 2)!
. (4.15)

Proof. We have by (4.13) and (2.12)

ν2n,dNn,d =
(n− 1)!!2

(n+ d− 3)!!2
(2n+ d− 2) (n+ d− 3)!

n! (d− 2)!

=
(n− 1)!!

n!!

(n+ d− 4)!!

(n+ d− 3)!!

2n+ d− 2

(d− 2)!
.

We have

ν2n+2,dNn+2,d

ν2n,dNn,d

=
n+ 1

n+ 2

n+ d− 2

n+ d− 1

2n+ d+ 2

2n+ d− 2

=
2n3 + 3dn2 + (d2 + 3d− 6)n+ d2 − 4

2n3 + 3dn2 + (d2 + 3d− 6)n+ 2d2 − 6d+ 4
. (4.16)

Comparing the numerator with the denominator of (4.16), we see that the sequence
n ↦→ ν2n,dNn,d is increasing for d = 3 and decreasing for d ≥ 5. The fact that

ν21,dN1,d =
d

((d− 2)!!)2

shows the upper bound for d ≥ 5.

We note that, by (2.73), we have for n→ ∞ with n odd

(2n− 1)!! ≃ (2n)!!√︂
π(n+ 1

2
)
.
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Hence, we obtain

ν2n,dNn,d ≃
√︁
π(n

2
+ 1)

n+ 1

√︂
π(n+d−1

2
)

n+ d− 4

2n+ d− 2

(d− 2)!
≃ π

(d− 2)!
,

which implies (4.15). Since, for d = 3, the sequence n ↦→ ν2n,3Nn,3 for n → ∞ is
increasing, its limit

lim
n→∞
n odd

ν2n,3Nn,3 = π

is an upper bound.

Theorem 4.8. Let d ≥ 3 be an odd integer and m, l ∈ N0 such that l ≤ m and m + l
is even. Then the singular values D̂m,l,d of the cone-beam transform D satisfy

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓ ≤ 2

d+1
4 π

d−1
4

√︁
Cd (d− 2)!!

√︃
l + 1

2m+ d

≤ (2π)
d−1
4

√︁
Cd (d− 2)!!,

where

Cd :=

{︄
π, d = 3

d
((d−2)!!)2

, d ≥ 5.

In particular, we have limm→∞ D̂m,l,d = 0 for all l ∈ N0.

Proof. Because of the orthogonality (2.17) of the Legendre polynomials, we have for
n, l ∈ N0

Pl,d Pn,d =
l+n−1∑︂

m=|l−n|−1

Nm+1,d

⃓⃓
Sd−2

⃓⃓

|Sd−1| ⟨Pm+1,dPl,d, Pn,d⟩wd
Pm+1,d.

Utilizing the fact that Pi,d(1) = 1 for all i ∈ N0, we obtain

1 =
l+n−1∑︂

m=|l−n|−1

Nm+1,d

⃓⃓
Sd−2

⃓⃓

|Sd−1| ⟨Pm+1,dPl,d, Pn,d⟩wd
. (4.17)

Since all summands in the above sum (4.17) are non-negative, they are bounded by

Nm+1,d

⃓⃓
Sd−2

⃓⃓

|Sd−1| ⟨Pm+1Pl, Pn⟩wd
≤ 1. (4.18)

Inserting the bound from Lemma 4.7 into the de�nition of the singular values (4.14), we
have

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

=
Nm+1,d µ

2
m,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
m+1+l∑︂′

n=m+1−l

ν2n,dNn,d ⟨Pm+1,d Pl,d, Pn,d⟩wd

≤
Nm+1,d µ

2
m,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
Cd

m+1+l∑︂′

n=m+1−l

⟨Pm+1,d Pl,d, Pn,d⟩wd
.

130



4.1 Cone-beam transform

With (4.18), we obtain

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

≤ Cd
µ2
m,d

|Sd−1|

m+1+l∑︂′

n=m+1−l

1

= Cd
µ2
m,d

|Sd−1| (l + 1)

= Cd 2
d+1
2 π

d−1
2 (d− 2)!!

l + 1

2m+ d
,

where we inserted the formulas of µm,d from (4.12) and
⃓⃓
Sd−1

⃓⃓
from (2.10).

With the help of the singular value decomposition in Theorem 4.5 and the bound of
the singular values in Theorem 4.8, we obtain the continuity of the cone-beam trans-
form D(odd) in the space l2(Bd) as follows.
Corollary 4.9. The cone-beam transform D(odd) is a continuous operator

D(odd) : L2(Bd) → L2(Sd−1 × Sd−1).

Lower bound

As we just did for the upper bound in Theorem 4.8, we also �nd a lower bound of the

singular values
⃓⃓
⃓D̂m,l,d

⃓⃓
⃓ of the cone-beam transform D. However, this lower bound is

tight.

Theorem 4.10. Let d ≥ 3 be an odd integer. There exists a constant cd > 0, which
depends only on the dimension d, such that for all m ∈ N0 and l ∈ {0, . . . ,m} with m+ l
even, the singular values D̂m,l,d of the cone-beam transform D admit the lower bound

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓ ≥ cdm

−1/2. (4.19)

This bound is asymptotically tight, in the sense that the exponent −1/2 in (4.19) cannot
be replaced by a greater one.

Proof. We extract the smallest value of ν2n,d in the following sum

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

=
Nm+1,d µ

2
m,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
m+1+l∑︂′

n=m+1−l

ν2n,dNn,d ⟨Pm+1,d Pl,d, Pn,d⟩wd

≥
Nm+1,d µ

2
m,d

|Sd−1|

(︃
m+1+l

min
n=m+1−l

ν2n,d

)︃ m+1+l∑︂′

n=m+1−l

Nn,d

⃓⃓
Sd−2

⃓⃓

|Sd−1| ⟨Pm+1,d Pl,d, Pn,d⟩wd
.

Utilizing (4.17) with the roles of m+ 1 and n interchanged, we obtain

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

≥
Nm+1,d µ

2
m,d

|Sd−1|
m+1+l

min
n=m+1−l

ν2n,d.
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Since the map

n ↦→ ν2n,d =
(n− 1)!!2

(n+ d− 3)!!2

is decreasing, we have
m+1+l

min
n=m+1−l

ν2n,d = ν2m+1+l,d.

Because 0 ≤ l ≤ m and again ν2m+1+l,d decreases with respect to l, we further see that

m+1+l

min
n=m+1−l

ν2n,d ≥ ν22m+1,d =
(2m)!!2

(2m+ d− 2)!!2
.

Hence, we have

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

≥
Nm+1,d µ

2
m,d

|Sd−1|
(2m)!!2

(2m+ d− 2)!!2

=
2d+1 πd−1

(2m+ d)

(d− 2)!!

2
d+1
2 π

d−1
2

(2m+ d) (m+ d− 2)!

(m+ 1)! (d− 2)!

(2m)!!2

(2m+ d− 2)!!2

=
2

d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2
,

where we inserted (2.12), (4.12) and (2.10). We are going to apply Stirling's approx-
imation of the factorial (2.71) and the double factorials (2.74), (2.75). We obtain for
m→ ∞
⃓⃓
⃓D̂m,l,d

⃓⃓
⃓
2

≥ 2
d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2

≃ 2
d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)m+d−3/2 e−m−d+2

(m+ 1)m+3/2 e−m−1

(2m)2m+1 e−2mπ

2(2m+ d− 1)2m+d−1 e−2m−d−1

≃ 2
3−d
2 π

d+1
2

(d− 3)!!
e4
(m+ d− 2)m+d−3/2

(m+ 1)m+3/2

m2m+1

(m+ d−1
2
)2m+d−1

.

Hence, there exists a constant cd > 0 such that

⃓⃓
⃓D̂m,l,d

⃓⃓
⃓ ≥

√︄
2

d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2
≥ cdm

−1/2.

In order to show that this bound is tight, we consider the case m even and l = 0. We
have by (2.17)

⃓⃓
⃓D̂m,0,d

⃓⃓
⃓
2

=
Nm+1,d µ

2
m,d

⃓⃓
Sd−2

⃓⃓

|Sd−1|2
ν2m+1,dNm+1,d ⟨Pm+1,d, Pm+1,d⟩wd

=
Nm+1,d µ

2
m,d

|Sd−1| ν2m+1,d.
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4.1 Cone-beam transform

By (4.15), we have for m→ ∞
⃓⃓
⃓D̂m,0,d

⃓⃓
⃓
2

≃ π

(d− 2)!

µ2
m,d

|Sd−1| .

Remark 4.11. While we have seen in Theorem 4.10 that the lower bound O(m−1/2) on
the singular values D̂m,l,d is asymptotically sharp, we have only shown that the singular
values can be bounded from above by a constant in Theorem 4.8. However, the degree
of ill-posedness of the reconstruction problem depends on the behavior of the smallest
singular values, which is here O(m−1/2) and so the same as for the Radon transform in
2D and the Funk�Radon transform on S2.

4.1.4 Cone-beam transform in R3

In this subsection, we state the singular value decomposition of the cone-beam trans-
form D(odd) from Section 4.1.2 for the dimension d = 3, which is the most useful for
practical applications. The singular value decomposition in this case was already shown
by Kazantsev [Kaz15] using a di�erent approach. Compared with the general result in
Theorem 4.4, we obtain a better upper bound on the singular values in this case. The
spherical harmonics Y k

n for n ∈ N0 and k = −n, . . . , n on S2 are given in (2.39).

Before we state the result, we prove the following small lemma that gives bounds on
the quotient of certain double factorials.

Lemma 4.12. Let m ∈ N. Then we have
√︄

2

π(2m+ 1)
<

(2m− 1)!!

(2m)!!
≤ 1√

2m+ 1
. (4.20)

Proof. We follow the proof of [HPQ18, Lemma 3.2]. With the de�nition

u(m) =

(︃
(2m)!!

(2m− 1)!!

)︃2
1

2m+ 1
, m ∈ N0,

we see that u(0) = 1 and u is increasing because of m ≥ 1 and

u(m)

u(m− 1)
=

(2m)2

(2m− 1)2
2m− 1

2m+ 1
=

(2m)2

(2m)2 − 1
> 1.

Hence, we have u(m) ≥ 1 for all m ∈ N0, which implies the right inequality of (4.20).
Furthermore, Wallis' product states the convergence

u(m) =
2

1

2

3

4

3

4

5

6

5

6

7
· · · 2m

2m− 1

2m

2m+ 1
−→ π

2
(4.21)

for m → ∞, see also [Bau07]. This and the monotonicity of u show the left inequality
of (4.20).
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Theorem 4.13. Let d = 3. The odd cone-beam transform D(odd) : L2(B3) → L2(S2×S2)
has the singular value decomposition

D(odd)˜︁Vm,l,k = D̂m,lWm,l,k, m ∈ N0, 0 ≤ l ≤ m, m+ l even, k ∈ {−l, . . . , l}.

The polynomials

˜︁Vm,l,k(sω) =
√
2m+ 3 slP

(0,l+ 1
2)

m−l
2

(2s2 − 1)Y k
l (ω), s ∈ [0, 1], ω ∈ S2,

form an orthonormal basis of L2(B3). The singular values are given by

D̂m,l :=

⌜⃓
⎷⃓2π

m+1+l∑︂′

n=m+1−l

(2n+ 1)(n− 1)!!2

n!!2
⟨Pm+1 Pn, Pl⟩,

where
∑︁′ denotes the summation over odd indices n and

⟨Pm+1 Pn, Pl⟩ =
2(l +m− n)!! (l −m+ n− 2)!! (−l +m+ n)!! (l +m+ n+ 1)!!

(l +m− n+ 1)!! (l −m+ n− 1)!! (−l +m+ n+ 1)!! (l +m+ n+ 2)!!
(4.22)

for n ∈ {|m+ 1− l| , |m+ 1− l| + 2, . . . , m + 1 + l} and zero otherwise. The singular
values D̂m,l satisfy

c1m
−1/2 ≤

⃓⃓
⃓D̂m,l

⃓⃓
⃓ ≤ c2m

−1/8 (4.23)

for some constants c1, c2 > 0 that are independent of m and l. Furthermore, the
functions

Wm,l,k(a,ω)

:=
4π

D̂m,l

√
2m+ 3

m+1∑︂

j=−m−1

Y j
m+1(a)

m+1+l∑︂′

n=m+1−l

(−1)
n+1
2 (n− 1)!!

n!!
Gn,j+k
m+1,j,l,kY

j+k
n (ω)

for a,ω ∈ S2 are orthonormal in L2(S2 × S2).

Proof. The singular value decomposition is a special case of the Theorems 4.4 and 4.5.
The formula (4.22) of the triple product ⟨Pm+1 Pn, Pl⟩ is computed in [Neu78], see also
[AS56]. The lower bound of the singular values D̂m,l in (4.23) is due to Theorem 4.10.
It is left to show the upper bound in (4.23), which we do as in [Kaz15]. Changing the
roles of m and n in (4.17), we have

1 =
m+1+l∑︂

n=m+1−l

2n+ 1

2
⟨Pm+1Pl, Pn⟩ . (4.24)

Furthermore, since |Pn(t)| ≤ 1 for |t| ≤ 1 by (2.15), we obtain the inequality

⟨Pm+1Pl, Pn⟩ ≤
∫︂ 1

−1

|Pm+1(t)Pn(t) Pl(t)| dt ≤
∫︂ 1

−1

|Pm+1(t)Pn(t)| dt.
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4.1 Cone-beam transform

By the Cauchy�Schwarz inequality and (2.17), we have

⟨Pm+1Pl, Pn⟩ ≤ ∥Pm+1∥L2(−1,1) ∥Pn∥L2(−1,1) =
2√︁

(2m+ 3) (2n+ 1)
. (4.25)

It follows from (4.20) that for m ∈ N0

(2m)!!2

(2m+ 1)!!2
≤ π

2(2m+ 1)
.

Hence, we have

⃓⃓
⃓D̂m,l

⃓⃓
⃓
2

= 2π

m+1+l∑︂′

n=1

(2n+ 1)(n− 1)!!2

n!!2
⟨Pm+1 Pn, Pl⟩

≤ 2π2

2m+1∑︂′

n=1

2n+ 1

2n
⟨Pm+1 Pn, Pl⟩

because 0 ≤ l ≤ m. By the Cauchy-Schwarz inequality, we have

⃓⃓
⃓D̂m,l

⃓⃓
⃓
2

≤ 2π2

⌜⃓
⎷⃓

2m+1∑︂′

n=1

2n+ 1

2
⟨Pm+1 Pn, Pl⟩

⌜⃓
⎷⃓

2m+1∑︂′

n=1

2n+ 1

2n2
⟨Pm+1 Pn, Pl⟩

Inserting (4.24) and (4.25), we obtain

⃓⃓
⃓D̂m,l

⃓⃓
⃓
2

= 2π2

⌜⃓
⎷⃓

2m+1∑︂′

n=1

2n+ 1

2n2
⟨Pm+1 Pn, Pl⟩

≤ 2π2

(2m+ 3)
1
4

⌜⃓
⎷⃓

2m+1∑︂′

n=1

√
2n+ 1

n2
.

The last sum converges for m→ ∞ and thus can be bounded from above by a constant

independent of m and l, which implies that
⃓⃓
⃓D̂m,l

⃓⃓
⃓
2

∈ O(m−1/4).

Remark 4.14. The upper bound on the singular values D̂m,l ∈ O(m−1/8) might not be
optimal. There is reason to believe that the upper bound can be improved to O(m−1/2)
even in general dimension d. This conjecture is backed by numerical computations as
well as the following observation, which is not a proof though. We consider Grangeat's
formula (4.5)

(−1)d
(︃
∂

∂s

)︃d−2

Rf(ω,a⊤ω) = S(d−2)Df(a,ω).

We know that the singular values of the Radon transform R are O(m(1−d)/2) and those
of the d−2 di�erentiations are O(md−2), so the left side should behave like O(m(d−3)/2).
On the right side, S(d−2) has the singular values O(m(d−2)/2) by Lemma 3.25, so the
singular values of the cone-beam transform D should behave like O(m−1/2).
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4.2 Incomplete great circles

So far, we have considered the integrals along di�erent subspheres or, in the case d = 3,
circles of the two-sphere S2. Now, we take a look at a particular situation that is not
covered in the previous sections. Contrary to the Funk�Radon transform F , which
takes the integrals along full great circles, we consider here the integrals along arcs of
great circles on the sphere. In this section, we restrict our considerations to the two-
dimensional sphere S2. Most of the material of this section is published in [HPQ18].

For any two points ξ ̸= ζ on the sphere S2, there exists a shortest geodesic between ξ
and ζ. This geodesic is an arc of the great circle that contains ξ and ζ. If the points ξ
and ζ are not antipodal, i. e. ξ ̸= −ζ, this geodesic is unique and we denote it by

γ(ξ, ζ) ⊂ S2.

We aim at the reconstruction of a function f : S2 → C from its arc integrals

g(ξ, ζ) :=

∫︂

γ(ξ,ζ)

f(η) dη, ξ, ζ ∈ S2, ξ ̸= −ζ. (4.26)

The manifold of all great circle arcs on S2 is four-dimensional since they are determined
by the two points ξ, ζ ∈ S2 and only coincide if ξ and ζ are interchanged. However, the
domain of the function f is only the two-dimensional sphere S2. So, as for the mean
operator M on the sphere, it will also make sense to consider the reconstruction of f
from only a limited set of data g(ξ, ζ).

Remark 4.15. The study of this problem (4.26) of circle arc integrals on the sphere S2

is motivated by the spherical surface wave tomography. There, one measures the time
a seismic wave travels along the Earth's surface from an epicenter to a receiver. Know-
ing the traveltimes of such waves between many pairs of epicenters and receivers, one
wants to recover the local phase velocity. A common approach is the great circle ray
approximation, where it is assumed that a wave travels along the arc γ(ξ, ζ) of the great
circle connecting the epicenter ξ and receiver ζ. Then the traveltime of the wave equals
the integral g(ξ, ζ) of the �slowness function� f along the great circle arc connecting the
epicenter and the receiver, where the slowness function f is de�ned as one over the local
phase velocity [WD84, TW95, Nol08]. Hence, recovering the local phase velocity 1

f
as a

real-valued spherical function from its mean values along certain arcs of great circles is
modeled by (4.26), see [AMS08].

4.2.1 The arc transform

The parameterization of a circle arc γ(ξ, ζ) by its endpoints seems convenient, but it
bears some problems for the integral operator (4.26). This is because the function
g cannot be extended continuously to S2 × S2 because of its behavior near antipodal
points. However, a great circle arc γ(ξ, ζ) can alternatively be parameterized by its
length 2ψ = arccos(ξ⊤ζ) and a rotation Q ∈ SO(3) which is de�ned as follows. Let

eφ := (cosφ, sinφ, 0)⊤ ∈ S2 (4.27)
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4.2 Incomplete great circles

Figure 4.2: Visualization of the circle arc γ(ξ, ζ) on S2 and the rotated arc γ(e−ψ, eψ)
of the same length on the equator

denote the point on the equator of S2 with latitude φ ∈ R. Then there exists a unique
rotation Q ∈ SO(3) such that Q(ξ) = e−ψ and Q(ζ) = eψ. Such an arc γ(ξ, ζ) and its
rotation are depicted in Figure 4.2. With this de�nition, the integral over the arc γ(ξ, ζ)
may be rewritten as

∫︂

γ(ξ,ζ)

f(η) dη =

∫︂

Qγ(ξ,ζ)

f(Q−1η) dη =

∫︂ ψ

−ψ
f ◦Q−1(eφ) dφ.

This motivates the following de�nition of the arc transform

A : C(S2) → C(SO(3)× [0, π]),

Af(Q,ψ) :=
∫︂ ψ

−ψ
f ◦Q−1(eφ) dφ.

(4.28)

The great circle arcs γ(ξ, ζ) and γ(ζ, ξ) are identical. This symmetry is transferred to
the operator A as follows.

Corollary 4.16. Let α, γ ∈ [0, 2π] and β ∈ [0, π] be the Euler angles (2.61) of the
rotation Q(α, β, γ) ∈ SO(3). Then, for all ψ ∈ [0, π], we have the identity

Af(Q(α, β, γ), ψ) = Af(Q(2π − α, π − β, γ + π), ψ),

where we assume the Euler angle γ as 2π-periodic.
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Proof. Let φ ∈ R. By the de�nition of the Euler angle decomposition (2.61) and the
observation that the inverse of the rotation R3(α) is the rotation R3(−α) about the same
axis with negative angle, we have on the one hand

Q(α, β, γ)−1 eφ = (R3(α)R2(β)R3(γ))
−1 eφ

= R3(−γ)R2(−β)R3(−α) eφ = R3(−γ)R2(−β) eφ−α.

Inserting (2.62) and (4.27), we obtain

Q(α, β, γ)−1 eφ = R3(−γ)

⎛
⎝
cos β 0 − sin β
0 1 0

sin β 0 cos β

⎞
⎠
⎛
⎝
cos(φ− α)
sin(φ− α)

0

⎞
⎠

=

⎛
⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞
⎠
⎛
⎝
cos(β) cos(φ− α)

sin(φ− α)
sin(β) cos(φ− α)

⎞
⎠

=

⎛
⎝

cos(γ) cos(β) cos(φ− α) + sin(γ) sin(φ− α)
− sin(γ) cos(β) cos(φ− α) + cos(γ) sin(φ− α)

sin(β) cos(φ− α)

⎞
⎠ .

On the other hand, we have

Q(2π − α, π − β, γ + π)−1 e−φ = R3(π − γ)R2(β − π) eα−φ.

Inserting (2.62) again, we obtain

Q(2π − α, π − β, γ + π)−1 e−φ = R3(−γ − π)

⎛
⎝
− cos β 0 sin β

0 1 0
− sin β 0 − cos β

⎞
⎠
⎛
⎝

cos(φ− α)
− sin(φ− α)

0

⎞
⎠

=

⎛
⎝
− cos γ − sin γ 0
sin γ − cos γ 0
0 0 1

⎞
⎠
⎛
⎝
− cos(β) cos(φ− α)

− sin(φ− α)
− sin(β) cos(φ− α)

⎞
⎠

=

⎛
⎝

cos(γ) cos(β) cos(φ− α) + sin(γ) sin(φ− α)
− sin(γ) cos(β) cos(φ− α) + cos(γ) sin(φ− α)

sin(β) cos(φ− α)

⎞
⎠ .

Hence, we have shown that

Q(α, β, γ)−1 eφ = Q(α− π, π − β, 2π − γ)−1 e−φ.

By the de�nition of A in (4.28), we have

Af(Q(α, β, γ), ψ) =
∫︂ ψ

−ψ
f(Q(α, β, γ)−1 eφ) dφ

=

∫︂ ψ

−ψ
f(Q(α− π, π − β, 2π − γ)−1 e−φ) dφ

= Af(Q(α− π, π − β, 2π − γ), ψ).
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4.2.2 Singular value decomposition of the arc transform

The next theorem shows how the arc transform A acts on spherical harmonics Y k
n . The

corresponding result for the parameterization (4.26) in terms of the endpoints of an arc
is found in [DT98, Appendix C], see also [AMS08]. We are going to make use of the
rotational harmonics Dj,k

n , which were introduced in Section 2.2.

Theorem 4.17. Let n ∈ N0 and k ∈ {−n, . . . , n}. Then we have

AY k
n (Q,ψ) =

n∑︂

j=−n

˜︁P j
n(0)D

j,k
n (Q) sj(ψ), Q ∈ SO(3), ψ ∈ [0, π], (4.29)

where

sj(ψ) :=

{︄
2ψ, j = 0
2 sin(jψ)

j
, j ̸= 0

(4.30)

and

˜︁P j
n(0) =

⎧
⎪⎨
⎪⎩
(−1)

n−j
2

√︄
2n+ 1

4π

(n− j − 1)!!(n+ j − 1)!!

(n− j)!!(n+ j)!!
, n+ j even

0, n+ j odd.

(4.31)

Proof. By the relation (2.65) between the spherical harmonics Y k
n and the rotational

harmonics Dj,k
n , we obtain

AY k
n (Q,ψ) =

∫︂ ψ

−ψ
Y k
n (Q

−1(eφ)) =
n∑︂

j=−n

Dj,k
n (Q)

∫︂ ψ

−ψ
Y j
n (eφ) dφ.

By the de�nition (2.39) of the spherical harmonics Y k
n , we see that

∫︂ ψ

−ψ
Y j
n (eφ) dφ = ˜︁P j

n(0)

∫︂ ψ

−ψ
eijφ dφ = ˜︁P j

n(0) sj(ψ).

Hence,

AY k
n (Q,ψ) =

n∑︂

j=−n

Dj,k
n (Q) ˜︁P j

n(0) sj(ψ).

Now, we obtain by (3.60)

˜︁P j
n,d(0) = (−1)

n−j
2

√︁
(2n+ 1) (n+ j)!

2j+
1
2

√︁
(n− j)! j!

(n− j − 1)!! (2j)!!

(n+ j)!!

= (−1)
n−j
2

√︄
(n+ 1

2
) (n+ j − 1)!! (n− j − 1)!!

(n− j)!! (n+ j)!!
,

which implies (4.31).
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In the following, we compute lower and upper bounds of the ˜︁P j
n(0) from (4.31).

Lemma 4.18. Let n ∈ N0 and j ∈ {−n, . . . , n}. If n + j is odd, then ˜︁P j
n(0) = 0.

Otherwise, we have

2n+ 1

2π2
√︁

(n+ 1)2 − j2
≤
⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

≤ 2n+ 1

4π
√︁
(n+ 1)2 − j2

. (4.32)

Furthermore, for j ∈ Z, we have

lim
n→∞

n+j even

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓ = 1

π
. (4.33)

Proof. By (4.31) and (4.20), we obtain the upper bound

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

=
2n+ 1

4π

(n− j − 1)!!

(n− j)!!

(n+ j − 1)!!

(n+ j)!!
≤ 2n+ 1

4π

1√
n− j + 1

1√
n+ j + 1

.

The lower bound follows analogously from (4.20), i. e., we have

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

≥ 2n+ 1

4π

√
2√

π n− j + 1

√
2√︁

π (n+ j + 1)
.

Moreover, we have for j ∈ Z and m ∈ N0

⃓⃓
⃓ ˜︁P j

j+2m(0)
⃓⃓
⃓
2

=
2(j + 2m) + 1

4π

(2m− 1)!!

(2m)!!

(2m+ 2j − 1)!!

(2m+ 2j)!!
.

Hence, Wallis product (4.21) implies that we have

lim
m→∞

⃓⃓
⃓ ˜︁P j

j+2m(0)
⃓⃓
⃓
2

= lim
m→∞

2(j + 2m) + 1

4π

2

π

1√
2m+ 1

√
2m+ 2j + 1

= lim
m→∞

2m+ j + 1
2

π2
√︁
(2m+ j + 1)2 − j2

=
1

π2
,

which proves the assertion.

Next, we derive the singular value decomposition of the arc transform A. To this end,
we de�ne for n ∈ N0 and k = −n, . . . , n the functions Ek

n ∈ L2(SO(3)× [0, π]) by

Ek
n(Q,ψ) :=

n∑︂

j=−n

Dj,k
n (Q) ˜︁P j

n(0) sj(ψ), Q ∈ SO(3), ψ ∈ [0, π]. (4.34)

Theorem 4.19. The arc transform A : L2(S2) → L2(SO(3)× [0, π]) is a compact oper-
ator with the singular value decomposition

{︂(︂
Y k
n ,
˜︁Ek
n, Ân

)︂
; n ∈ N0, k ∈ {−n, . . . , n}

}︂
,
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with the singular values

Ân :=
⃦⃦
Ek
n

⃦⃦
L2(SO(3)×[0,π])

=

√︃
32π3

2n+ 1

⌜⃓
⎷⃓π2

3

⃓⃓
⃓ ˜︁P 0

n(0)
⃓⃓
⃓
2

+
n∑︂

j=1

1

j2

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

(4.35)

satisfying

√︃
16

3
π3 ≤ Ân

√
n+ 1 ≤

√︃
8

3
π4 + 4π2, n even, (4.36)

4
√
π ≤ Ân

√
n+ 1 ≤ 2π

√︄
4√
3
+ 1, n odd, (4.37)

and the orthonormal function system

˜︁En
k :=

1

Ân

Ek
n, n ∈ N0, k ∈ {−n, . . . , n}

in L2(SO(3)× [0, π]).

Proof. By the orthogonality (2.63) of the rotational harmonics Dj,k
n , we have

⟨︂
Ek
n, E

k′

n′

⟩︂
L2(SO(3)×[0,π])

=
n∑︂

j=−n

n′∑︂

j′=−n′

˜︁P j
n(0) ˜︁P j′

n′ (0)

∫︂

SO(3)

Dj,k
n (Q)Dj′,k′

n′ (Q) dQ

∫︂ π

0

sj(ψ) sj′(ψ) dψ

=
n∑︂

j=−n

n′∑︂

j′=−n′

8π2

2n+ 1
δnn′ δkk′ δjj′ ˜︁P j

n(0) ˜︁P j′

n′ (0)

∫︂ π

0

sj(ψ) sj′(ψ) dψ

= δnn′ δkk′
n∑︂

j=−n

8π2

2n+ 1

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2
∫︂ π

0

sj(ψ)
2 dψ

= δnn′ δkk′
8π2

2n+ 1

n∑︂

j=−n

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

·
{︄

4π3

3
, j = 0

2π
j2
, j ̸= 0.

This shows that the functions Ek
n = AY k

n are orthogonal in the space L2(SO(3)× [0, π])
and have the norm

⃦⃦
Ek
n

⃦⃦2
L2(SO(3)×[0,π])

=
8π2

2n+ 1

n∑︂

j=−n

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

·
{︄

4π3

3
, j = 0

2π
j2
, j ̸= 0.

=
16π3

2n+ 1

(︄
2π2

3

⃓⃓
⃓ ˜︁P 0

n(0)
⃓⃓
⃓
2

+ 2
n∑︂

j=1

1

j2

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2
)︄
,
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where we used that
⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓ =

⃓⃓
⃓ ˜︁P−j

n (0)
⃓⃓
⃓. In order to prove that A is compact, we show

that the singular values Ân decay for n→ ∞. We have by Lemma 4.18 for n = 2m even

(Â2m)
2 ≤ 4π2

(︄
2π2

3

1

2m+ 1
+ 2

m∑︂

j=1

1

(2j)2
1√︁

(2m+ 1)2 − (2j)2

)︄
.

For n even, we replace the sum by an integral, where we use the convexity of the
integrand, and obtain the estimate

2
m∑︂

j=1

1

(2j)2
1√︁

(2m+ 1)2 − (2j)2
≤ 2

∫︂ m+1/2

1/2

1

(2j)2
1√︁

(2m+ 1)2 − (2j)2
dj

= 2

[︄
−
√︁

(2m+ 1)2 − (2j)2

2j(2m+ 1)2

]︄m+1/2

1/2

= 2

√
m2 +m

(2m+ 1)2
≤ 1

2m+ 1
,

Hence, we have

(Â2m)
2 ≤ 4π2

(︃
2π2

3

1

2m+ 1
+

1

2m+ 1

)︃
= 4π2

(︃
2π2

3
+ 1

)︃
1

2m+ 1
.

For odd n = 2m− 1, we proceed analogously. We have

(Â2m−1)
2 ≤ 8π2

m∑︂

j=1

1

(2j − 1)2
1√︁

(2m)2 − (2j − 1)2
.

Note that, for the estimation of the sum by an integral, we extract the summand for
j = 1

(Â2m−1)
2 ≤ 8π2

(︄
1√︁

(2m)2 − 1
+

∫︂ m+1/2

1

1

(2j − 1)2
1√︁

(2m)2 − (2j − 1)2
dj

)︄

= 8π2

(︄
1√︁

(2m)2 − 1
+

√︁
(2m)2 − 1

2(2m)2

)︄

≤ 8π2

(︃
2√
3 2m

+
1

2(2m)

)︃
= 4π2

(︃
4√
3
+ 1

)︃
1

2m
.

For the lower bound of the singular values, we also use Lemma 4.18. For even n, we
extract the summand j = 0 and obtain

(Ân)
2 =

16π3

2n+ 1

(︄
2π2

3

⃓⃓
⃓ ˜︁P 0

n(0)
⃓⃓
⃓
2

+ 2
n∑︂

j=1

1

j2

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2
)︄

≥ 32π5

3(2n+ 1)

⃓⃓
⃓ ˜︁P 0

n(0)
⃓⃓
⃓
2

≥ 16π3

3(n+ 1)
.
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For odd n, we extract the summand j = 1 and obtain

(Ân)
2 ≥ 32π3

2n+ 1

⃓⃓
⃓ ˜︁P 1

n(0)
⃓⃓
⃓
2

≥ 16π√︁
(n+ 1)2 − 1

≥ 16π

n+ 1
.

The singular values Ân of the arc transform A decay with the rate n−1/2 for n →
∞. This is the same asymptotic decay rate as of the eigenvalues of the Funk�Radon
transform on the two-sphere S2, cf. Theorem 3.13.

4.2.3 Restrictions of the arc transform

The recovery of a function f from the arc integrals Af is overdetermined considered
that we have full data Af(Q,ψ) for all Q ∈ SO(3) and ψ ∈ [0, π]. In the following
two paragraphs, we are going to examine simple special cases of restrictions of the arc
transform A, where we are able to reconstruct the function f from its integrals only
along certain great circle arcs.

Arcs starting in a �xed point

As a simple example, we �x one endpoint of the arcs. Without loss of generality, we
assume that this endpoint is the north pole ϵ3. We write a vector ξ(φ, ϑ) ∈ S2 in
spherical coordinates φ ∈ [0, 2π), ϑ ∈ [0, π], see (2.36). The arc connecting the north
pole ϵ3 and an arbitrary other point ξ(φ, ϑ) ∈ S2 is given by

γ(ϵ3, ξ(φ, ϑ)) = {η(φ, ϱ) ∈ S2 ; ϱ ∈ [0, ϑ]}.
Since, with Q = Q

(︁
ϑ
2
, π
2
, 3π

2
− φ

)︁
∈ SO(3), we have Qϵ3 = eϑ

2
and Qξ(φ, ϑ) = e−ϑ

2
. The

restriction B : C(S2) → C(S2) of the operator A to these arcs satis�es

Bf(ξ(φ, ϑ)) := Af
(︁
Q
(︁
ϑ
2
, π
2
, 3π

2
− φ

)︁
, ϑ
2

)︁
=

∫︂ ϑ

0

f(η(φ, ϱ)) dϱ.

Di�erentiating the last equation with respect to ϑ, we see that the function f can be
recovered from Bf by

f(ξ(φ, ϑ)) =
d

dϑ
Bf(ξ(φ, ϑ)).

The following more general result for the injectivity is due to Amirbekyan [Ami07,
Theorem 4.4.1]. Its proof uses a similar idea combined with an extension by density.

Proposition 4.20. Let S be an open subset of S2 and A,B ⊂ S nonempty sets with
A ∪B = S. If f ∈ C(S2) and

∫︂

γ(ξ,ζ)

f(η) dη = 0 for all ξ ∈ A, ζ ∈ B,

then f ≡ 0 on S.

For A = {ϵ3} and B = S2, we have the arcs starting in the north pole ϵ3.
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Recovery of local functions

We call a subset Ω ⊂ S2 convex if for any two points ξ,η ∈ Ω every shortest geodesic
that connects ξ and η is contained in Ω. If the two points are antipodal, i. e., ξ = −η,
then all great semicircles that connect ξ and η are shortest geodesics. Otherwise, the
shortest geodesic arc γ(ξ,η) is unique. Furthermore, we denote by ∂Ω the boundary of
Ω ⊂ S2 with respect to S2.

Theorem 4.21. Let f ∈ C(S2) and Ω be a convex subset of S2 whose closure Ω is
strictly contained in a hemisphere, i. e., there exists a ζ ∈ S2 such that ⟨ξ, ζ⟩ > 0 for all
ξ ∈ Ω. If ∫︂

γ(ξ,η)

f(η) dη = 0 for all ξ,η ∈ ∂Ω, (4.38)

then f = 0 on Ω.

Proof. Without loss of generality, we assume that Ω is strictly contained in the northern
hemisphere, i. e., we have ξ3 > 0 for all ξ ∈ Ω. We de�ne the restriction of f to Ω by

fΩ(ξ) =

{︄
f(ξ), ξ ∈ Ω

0, ξ ∈ S2 \ Ω.

Since γ(ξ,η) ⊂ Ω for all ξ,η ∈ ∂Ω, the function fΩ also satis�es (4.38).

For ξ ∈ S2, we denote by ξ⊥ = {η ∈ S2 ; ⟨ξ,η⟩ = 0} the great circle that is
perpendicular to ξ. We show that the Funk�Radon transform

FfΩ(ξ) =
∫︂

ξ⊥∩Ω
fΩ(η) dη +

∫︂

ξ⊥\Ω
fΩ(η) dη (4.39)

vanishes everywhere. The second summand of (4.39) vanishes because fΩ is zero outside
Ω by de�nition. If ξ⊥ ∩ Ω is not empty, there exist two points η1,η2 ∈ ∂Ω such that
γ(η1,η2) = ξ⊥ ∩Ω, which shows that also the �rst summand of (4.39) vanishes. Hence,
FfΩ = 0 on S2. Since the Funk�Radon transform F is injective for even functions, we
see that fΩ must be odd. Since fΩ is supported strictly inside the northern hemisphere,
so fΩ must be the zero function. By the construction, we see that f(ξ) vanishes for all
ξ ∈ Ω.

An analogue to Theorem 4.21 for Ω being the northern hemisphere and the arcs being
semicircles is shown in [Rub17a].

4.2.4 Arc transform with �xed length

In the following, we consider the integrals along great circle arcs that have the �xed
length ψ ∈ [0, π]. To this end, we de�ne the restriction of the arc transform

Aψ(Q) := A(Q,ψ), Q ∈ SO(3).
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In the limiting case ψ = π, the arc transform Aπ takes the great circle arcs with
length 2π, which are the full great circles. Hence, Aπ corresponds to the Funk�Radon
transform F , which is injective only for even functions and vanishes on odd functions,
see Section 3.2.

In the case ψ = π/2, the arc transform Aπ/2 takes the integrals along great semicircles.
Groemer [Gro98] showed in 1998 that Aπ/2 is injective for all functions f ∈ C(Sd−1).

In the following theorem, we show that the arc transform Aψ with any �xed length
ψ ∈ (0, π) is injective for all functions f ∈ L2(Sd−1). This is achieved via a singular
value decomposition.

Theorem 4.22. Let ψ ∈ [0, π] be �xed. The operator Aψ : L
2(S2) → L2(SO(3)) has the

singular value decomposition
{︄(︄

Y k
n ,

1

Ân,ψ

AψY
k
n , Ân,ψ

)︄
; n ∈ N0, k ∈ {−n, . . . , n}

}︄
, (4.40)

with the singular values

Ân,ψ :=

⌜⃓
⎷⃓

n∑︂

j=−n

8π2

2n+ 1

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

sj(ψ)2, n ∈ N0, (4.41)

and the singular functions

1

Ân,ψ

AψY
k
n (Q) =

1

Ân,ψ

n∑︂

j=−n

˜︁P j
n(0) sj(ψ)D

j,k
n (Q), Q ∈ SO(3), (4.42)

where sj(ψ) is given in (4.30). In particular, if ψ ∈ (0, π), then Aψ is injective.

The singular values Ân,ψ satisfy for odd n = 2m− 1

lim
m→∞

4m− 1

4

(︁
Â2m−1,ψ

)︁2
=

{︄
4πψ, ψ ∈ [0, π

2
]

4π2 − 4πψ, ψ ∈ [π
2
, π],

(4.43)

and for even n = 2m

lim
m→∞

4m+ 1

4

(︁
Â2m,ψ

)︁2
=

{︄
4πψ, ψ ∈ [0, π

2
]

12πψ − 4π2, ψ ∈ [π
2
, π].

(4.44)

Proof. Let ψ ∈ [0, π] be �xed. The exact formula (4.42) of the singular functions AψY
k
n

follows directly from the general case (4.29). Now we compute the orthogonality and
norm of the functions AψY

k
n ∈ L2(SO(3)). Let n, n′ ∈ N0, k ∈ {−n, . . . , n} and k′ ∈

{−n′, . . . , n′}. We have by (4.29)
⟨︂
AψY

k
n ,AψY

k′

n′

⟩︂
L2(SO(3))

=
n∑︂

j=−n

n′∑︂

j′=−n′

∫︂

SO(3)

Dj,k
n (Q)Dj′,k′

n′ (Q) ˜︁P j
n(0) ˜︁P j′

n′ (0) sj(ψ) sj′(ψ) dQ.
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By the orthonormality (2.63) and (2.17) of the rotational harmonics Dj,k
n and the nor-

malized associated Legendre functions ˜︁P j
n, respectively, we obtain

⟨︂
AψY

k
n ,AψY

k′

n′

⟩︂
L2(SO(3))

=
n∑︂

j=−n

n′∑︂

j′=−n′

8π2

2n+ 1
δnn′ δkk′ δjj′ ˜︁P j

n(0) ˜︁P j′

n′ (0) sj(ψ) sj′(ψ)

= δnn′δkk′
n∑︂

j=−n

8π2

2n+ 1

⃓⃓
⃓ ˜︁P j

n(0)
⃓⃓
⃓
2

sj(ψ)
2.

This shows (4.41). Since the span of spherical harmonics is dense in L2(Sd−1), we see
that (4.40) is indeed a singular value decomposition.

Now let ψ ∈ (0, π). For the injectivity of Aψ, we check that the singular values Ân,ψ do
not vanish for each n ∈ N0. We have ˜︁P j

n(0) = 0 if and only if n− j is odd. Furthermore,
the de�nition of sj in (4.30) shows that s0(ψ) = 2ψ vanishes if and only if ψ = 0, and
s1(ψ) = 2 sin(ψ) vanishes if and only if ψ is an integer multiple of π. Hence, the functions
AψY

k
n are also orthogonal in the space L2(SO(3)).

In the next step, we come to the asymptotic behavior of the singular values Ân,ψ. We
�rst show (4.43). Let m ∈ N. We have by (4.41)

4m− 1

4

(︁
Â2m−1,ψ

)︁2
= 16π2

m∑︂

j=1

⃓⃓
⃓ ˜︁P 2j−1

2m−1(0)
⃓⃓
⃓
2 sin2((2j − 1)ψ)

(2j − 1)2
. (4.45)

We denote by ν(ψ) := 4π
(︁
π
2
−
⃓⃓
ψ − π

2

⃓⃓)︁
the right-hand side of (4.43). The Fourier cosine

series of ν reads by [GR07, 1.444]

16
∞∑︂

k=1

sin((2k − 1)ψ)2

(2k − 1)2
= 16

∞∑︂

k=1

1− cos((2k − 1)2ψ)

2(2k − 1)2
= ν(ψ), ψ ∈ [0, π].

We have

⃦⃦
⃦⃦4m− 1

4

(︁
Â2m−1,ψ

)︁2 − ν(ψ)

⃦⃦
⃦⃦
C([0,π])

=

⃦⃦
⃦⃦
⃦⃦
⃦
16

∞∑︂

j=1

π2
⃓⃓
⃓ ˜︁P 2j−1

2m−1(0)
⃓⃓
⃓
2

− 1

(2j − 1)2
sin2((2j − 1)ψ)

⃦⃦
⃦⃦
⃦⃦
⃦
C([0,π])

≤
∞∑︂

j=1

16

⃓⃓
⃓⃓π2
⃓⃓
⃓ ˜︁P 2j−1

2m−1(0)
⃓⃓
⃓
2

− 1

⃓⃓
⃓⃓

(2j − 1)2
. (4.46)

We show that (4.46) goes to zero for m→ ∞, which then implies (4.43). By (4.33), we
see that π2 | ˜︁P 2j−1

2m−1(0)|2 converges to 1 form→ ∞. Using the singular values Â2m+1 from
(4.35) together with their bound (4.37), we obtain the following summable majorant of
(4.46):

∞∑︂

j=1

16π2
⃓⃓
⃓ ˜︁P 2j−1

2m−1(0)
⃓⃓
⃓
2

(2j − 1)2
≤ 4m− 1

2π

(︂
Â2m−1

)︂2
≤ 2π

4m− 1

m

(︃
4√
3
+ 1

)︃
.
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4.2 Incomplete great circles

Hence, the sum (4.46) converges to 0 for m→ ∞ by the dominated convergence theorem
of Lebesgue.

In the last part of the proof, we show the estimate (4.44) for the singular values Â2m,ψ

of even degree. Let m ∈ N. We have

4m+ 1

4

(︁
Â2m,ψ

)︁2
= 8π2

⃓⃓
⃓ ˜︁P 0

2m(0)
⃓⃓
⃓
2

ψ2 + 4π2

m∑︂

k=1

⃓⃓
⃓ ˜︁P 2k

2m(0)
⃓⃓
⃓
2 sin2(2kψ)

k2
. (4.47)

We examine both summands on the right side of (4.47). The �rst summand converges
due to (4.33):

lim
m→∞

8π2
⃓⃓
⃓ ˜︁P 0

2m(0)
⃓⃓
⃓
2

ψ2 = 8ψ2.

We denote the second summand of (4.47) by

λm(ψ) := 4π2

m∑︂

k=1

⃓⃓
⃓ ˜︁P 2k

2m(0)
⃓⃓
⃓
2 sin2(2kψ)

k2

and de�ne the function λ : [0, π) → R by the following Fourier cosine series, see [GR07,
1.443],

λ(ψ) := 4
∞∑︂

k=1

sin2(2kψ)

k2
= 4

∞∑︂

k=1

1− cos(4kψ)

2k2
=

{︄
−8ψ2 + 4πψ, ψ ∈ [0, π

2
)

−8ψ2 + 12πψ − 4π2, ψ ∈ [π
2
, π).

Then we have

∥λm − λ∥C([0,π]) =

⃦⃦
⃦⃦
⃦⃦
⃦

∞∑︂

k=1

4π2
⃓⃓
⃓ ˜︁P 2k

2m(0)
⃓⃓
⃓
2

− 4

k2
sin2(2kψ)

⃦⃦
⃦⃦
⃦⃦
⃦
C([0,π])

≤ 4
∞∑︂

k=1

⃓⃓
⃓⃓π2
⃓⃓
⃓ ˜︁P 2k

2m(0)
⃓⃓
⃓
2

− 1

⃓⃓
⃓⃓

(2j − 1)2
.

As in the above proof of (4.43), we see with (4.36) that the last sum goes to 0 form→ ∞.
Hence, we have limm→∞ λm(ψ) = λ(ψ) for all ψ ∈ (0, π), which proves (4.44).

Remark 4.23. Theorem 4.22 shows that, for all ψ ∈ (0, π), the singular values Ân,ψ of
Aψ decay with the asymptotic rate of n−1/2 for n→ ∞. This is the same asymptotic rate
as for the singular values Ân of the arc transform A with full data from Theorem 4.19.

The asymptotic behavior of the singular values Ân,ψ is illustrated more speci�cally
in Figure 4.3. The upper plot shows the dependence of the singular values Ân,ψ on
the polynomial degree n for di�erent choices of the arc-length ψ. The lower plot shows
the dependency on the arc-length ψ, which illustrates (4.43) and (4.44). If ψ ≤ π

2
,

the arcs are smaller than semicircles. Then, the �normalized� squared singular values
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Figure 4.3: The (normalized) squared singular values
(︁
n+ 1
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)︁ (︁
Ân,ψ

)︁2
.

Top: Dependency on the degree n. Note the oscillation for ψ > π
2
.

Bottom: Dependency on the arc-length ψ (dashed lines correspond to even
degrees n).
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4.2 Incomplete great circles

(n + 1
2
) |Ân,ψ|2 converge for n → ∞ to a constant, which depends linearly on ψ. This

is consistent with our theoretical �ndings. Both (4.43) and (4.44) converge to the same
limit if ψ ∈ [0, π

2
].

However, the situation becomes a little more di�cult in the case ψ > π
2
, which means

that the arcs with length 2ψ are longer than semicircles. Then, the �normalized� singular
values (n+ 1

2
) |Ân,ψ|2 are larger for even n than for odd n. This might be explained by the

fact that for odd n, the spherical harmonics Y k
n are odd functions and integrating them

along such a circle arc, which is longer than a semicircle, yields some cancellation. In the
limiting case ψ = π, we have full circles corresponding to the Funk�Radon transform.
There, the singular values Ân,π vanish for odd n.

Example 4.24. In the case ψ = π/2, the arc transform Aπ/2 takes the integrals along
great semicircles. Groemer [Gro98] showed in 1998 thatAπ/2 is injective for f ∈ C(Sd−1).

In this situation, the singular values Ân,π/2 admit the following simpli�ed expression.
By (4.47) and the fact that the singular values are positive, we see that for even n = 2m
with m ∈ N

Â2m,π/2 =

√
8π2

√
4m+ 1

⃓⃓
⃓ ˜︁P 0

2m(0)
⃓⃓
⃓ .

By (4.45), we have for odd n = 2m− 1

Â2m−1,π/2 =
8π√

4m− 1

⌜⃓
⎷⃓

m∑︂

j=1

⃓⃓
⃓ ˜︁P 2j−1

2m−1(0)
⃓⃓
⃓
2 1

(2j − 1)2
.

Since it can be parameterized by SO(3), the manifold of all great semicircles on S2

is three-dimensional. In 2017, Rubin [Rub17a] considered only the great semicircles
that are subsets of either the upper or the lower hemisphere. It is easy to see that this
restriction of Aπ/2 is still injective since every function that is supported in the upper
(lower) hemisphere can be uniquely reconstructed by its Funk�Radon transform, which
then integrates only over all semicircles in the upper (lower) hemisphere.

Example 4.25. If the arc-length ψ gets closer to zero, then the respective great circle
arcs of the arc transform Aψ become shorter. Hence, the integral along such arcs also
becomes smaller, e. g., the constant function f ≡ 1 is mapped to the constant function
Aψf ≡ 2ψ. In the extremal case ψ = 0, the arc integral along a single point is zero, so
we have A0f ≡ 0 for all f : S2 → R. As ψ approaches zero, the singular values Ân,ψ also
become smaller. However, the singular values still decay asymptotically with the rate
n−1/2 for n→ ∞.

Since we have found the asymptotic expressions (4.43) and (4.44) of the singular
values Ân,ψ, we obtain the following result about the arc transform Aψ in Sobolev
spaces, which follows analogously to Theorem 3.13 for the Funk�Radon transform F .
We recall the de�nition of Sobolev spaces Hs(SO(3)) on the rotation group in (2.66).
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Corollary 4.26. Let ψ ∈ (0, π) and s ∈ R. Then the arc transform Aψ with �xed
length is a continuous linear operator

Aψ : H
s(S2) → Hs+ 1

2 (SO(3)).

Reconstruction

The singular value decomposition of Aψ from Theorem 4.22 allows us to reconstruct a
function f ∈ L2(S2) given g = Aψf for some ψ ∈ (0, π) as follows.

Theorem 4.27. Let f ∈ L2(S2), ψ ∈ (0, π), and let g = Aψf ∈ L2(SO(3)). Then f can
be reconstructed from the rotational Fourier coe�cients ĝj,kn of g given in (2.64) by

f =
∞∑︂

n=0

n∑︂

k=−n

∑︁n
j=−n

˜︁P j
n(0) sj(ψ) ĝ

j,k
n∑︁n

j=−n
˜︁P j
n(0)2 sj(ψ)

2
Y k
n . (4.48)

Proof. Let n ∈ N0 and k ∈ {−n, . . . , n}. By the singular value decomposition in Theo-
rem 4.22, we obtain the spherical Fourier coe�cients of f ,

f̂
k

n =
1

(︁
Ân,ψ

)︁2
⟨︁
g,AψY

k
n

⟩︁
L2(SO(3))

.

Inserting the singular functions AψY
k
n from (4.42), we obtain

f̂
k

n =
1

(︁
Ân,ψ

)︁2
n∑︂

j=−n

˜︁P j
n(0) sj(ψ)

⟨︁
g,Dj,k

n

⟩︁
L2(SO(3))

.

By (2.64) and (4.41) for the rotational Fourier coe�cients ĝj,kn and the singular values
Ân,ψ, respectively, we have

f̂
k

n =
1

∑︁n
j=−n

˜︁P j
n(0)2sj(ψ)2

n∑︂

j=−n

˜︁P j
n(0) sj(ψ) ĝ

j,k
n ,

which shows the assertion.

It seems worth mentioning that the reconstruction of a function f from Aψf is still
an overdetermined problem. Whereas the function f is de�ned on the two-dimensional
sphere S2, its arc transform Aψf is de�ned on the rotation group SO(3), which is a
three-dimensional manifold. However, since the singular values of Aψ decay with the
asymptotic rate n−1/2, the reconstruction problem is ill-posed.

An advantage of using the singular value decomposition in Theorem 4.27 for the in-
version of the arc transform Aψ is that it is straightforward to apply Tikhonov-type
regularization or the molli�er method [LM90], which both correspond to a multiplica-
tion of the summands in the inversion formula (4.48) with some �lter coe�cients, cf.
Remark 3.16 for the Funk�Radon transform.
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4.2 Incomplete great circles

Remark 4.28. We have implemented the inversion formula (4.48) of Aψ numerically,
as described in our paper [HPQ18]. The only part of this formula that depends upon
the given data g consists of the rotational Fourier coe�cients ĝj,kn . The computation of
the coe�cients ĝj,kn is done numerically with the fast SO(3) Fourier transform [PPV09],
where we apply a quadrature formula to the integral (2.64). Then the inversion formula
(4.48) is evaluated with the fast spherical Fourier transform [PPST18, Chapter 9.6] if
the outer sum is truncated to n ≤ N ∈ N0.

151





5
Conclusion

5.1 Overview

In this thesis, we have considered the mean operator M on the sphere Sd−1 and its
restrictions to various families of hyperplane sections of Sd−1. We have managed to
extend large parts of the classical theory about the Funk�Radon transform F , which
takes the integrals along great circles, to these general classes of hyperplane sections.

For several of these restrictions, we have proven injectivity theorems and range char-
acterizations as well as inversion formulas. If we had to choose one method that was the
most important to reach these results, this choice would most certainly fall on the sin-
gular value decomposition. For most of the restrictions of the mean operator, we were
able to show its singular value decomposition. To the best knowledge of the author,
these are new results for the generalized Funk�Radon transform S(j), the vertical slice
transform Vz and the circular arc transform Aψ. Another technique is the application
of geometric tools in order to establish connections between the di�erent integral opera-
tors. By applying the composition of twice the stereographic projection and a properly
chosen, uniform scaling, we transferred the results from the Funk�Radon transform F
to the spherical transform Uz, characterizing its nullspace and range. Furthermore,
we have seen that Grangeat's formula can be interpreted as a connection between the
cone-beam transform D, the Radon transform R and the new generalized Funk�Radon
transform S(d−2). This observation paved the way to prove the singular value decompo-
sition of the cone-beam transform with sources on the sphere.

An overview about the di�erent restrictions of the mean operator M we have con-
sidered is provided in the following Table 5.1. We explain the meaning of its entries
beforehand:

• We start with the name and the de�nition as a restriction of the mean operatorM.
If not noted otherwise, we generally assume that ξ ∈ Sd−1 and t ∈ [−1, 1].

• The third column states whether this operator is injective, if not stated otherwise
for f ∈ L2(Sd−1). We note that some of the operators depend on an additional
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parameter. In case it is not injective, we state a condition on the function f that
makes this operator injective.

• We state the range for f ∈ L2(Sd−1) in the forth column. An exact description of
the range is denoted by �=�. In some cases, we do not know the range exactly, but
we can specify a superset of the range.

• We indicate whether there is a singular value decomposition (SVD) for this trans-
form in the �fth column.

• We refer to the section of this thesis about the respective restriction of the mean
operator in the last column.

Name De�nition Injectivity Range SVD Sec.

mean
operator

Mf(ξ, t) ✓ ⊂H
d/2−1,0
mix ✓ 3.1

Funk�Radon
transform

Ff(ξ) = Mf(ξ, 0) f(ξ) = f(−ξ) =H
d−2
2

even ✓ 3.2

spherical
section
transform

Tzf(ξ) = Mf(ξ, z),
z ∈ [−1, 1] �xed

✓ if Pn,d(z) ̸= 0
∀n ∈ N0

⊂H
d−2
2 ✓ 3.3

�xed set of
centers

Mf(ξ, t), ξ ∈ S
for S ⊂ Sd−1

✓ if Yn(S) ̸= {0}
∀Yn ∈ Yn,d, n ∈
N0

✓ 3.5.1

centers on a
circle

Vzf(σ, t) = Mf((σz), t),
σ ∈ Sd−2, z ∈ (−1, 1)
�xed

✓ if P k
n,d(z) ̸= 0

∀n ∈ N0, k = 0..n
⊂H

d−3
2
,0

mix ✓ 3.5.2

vertical slice
transform

Vf(σ, t) = Mf((σ0), t),
σ ∈ Sd−2

f(ξ′, ξd) =
f(ξ′,−ξd)

⊂H
0, d−2

2
− 1

4
mix ✓ 3.5.3

sections
through
�xed point

Uzf(ξ) = Mf(ξ, zξd),
z ∈ (−1, 1) �xed

f even w.r.t. some
re�ection in zϵd

= ˜︁H
d−2
2

z ✗ 3.6

spherical slice
transform

U1f(ξ) = Mf(ξ, ξd) ✓ for
f ∈ L∞(Sd−1)

✗ 3.6.5

generalized
FRT

S(j)f(ξ) =
(− ∂

∂t
)jMf(ξ, 0)

f even / odd ⊂H
d−2
2

−j ✓ 3.4

Table 5.1: Overview about the restrictions of the mean operator M
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5.2 Theses

As tradition dictates, we shall present the key results of this dissertation in the form of
the following eight short theses.

(1) In the theory of many imaging modalities, the key mathematical task is the recon-
struction of a function f that is de�ned on a subset of Rd from its mean values
along a certain family of submanifolds. In case of a function f : Sd−1 → R, its mean
values along hyperplane sections of the unit sphere Sd−1 ⊂ Rd are useful in models of
the cone-beam tomography, Compton camera imaging, magnetic resonance imaging,
photoacoustic tomography, Radar imaging and seismic imaging. They are described
by the mean operator

Mf(ξ, t) =

∫︂

ξ⊤η=t

f(η) dµ(η), ξ ∈ Sd−1, t ∈ [−1, 1],

where dµ denotes the surface measure on C(ξ, t) that is normalized to one.

(2) The inversion of the mean operator M is an overdetermined, ill-posed problem. In
particular, any function f on Sd−1 can be uniquely reconstructed from the data
Mf(ξ, t) on only some subset of Sd−1× [−1, 1]. Such a subset is called an injectivity
set of M.

Then, a set D ⊂ Sd−1 × [−1, 1] is an injectivity set of the mean operator M if and
only if the partial di�erential equation

∆•
ξg(ξ, t) = (1− t2)

3−d
2

∂

∂t

(︃
(1− t2)

d−1
2
∂

∂t
g(ξ, t)

)︃

with boundary values on D always has a unique solution g on Sd−1 × [−1, 1].

(3) The vertical slice transform V is the restriction of the mean operator M to the sec-
tions of the sphere with vertical hyperplanes, i. e., the sections are perpendicular to
the equatorial hyperplane. It is injective only for functions that are even with respect
to the re�ection in the equatorial hyperplane. A singular value decomposition of the
vertical slice transform V may be obtained as VY m,k

n,d (σ, t) = V̂mn,d Y k
m,d−1(σ)

˜︁Pn,d(t)
with the spherical harmonics Y m,k

n,d and the normalized Legendre polynomials ˜︁Pn,d as
singular functions. The singular values V̂kn,d admit the asymptotically sharp bounds

c1 n
d−2
2 ≤

⃓⃓
⃓V̂kn,d

⃓⃓
⃓ ≤ c2 n

d−2
2

+ 1
4 ,

for some constants c1, c2 > 0. In particular, they decay a little slower than those of
the Funk�Radon transform.

(4) The situation becomes more di�cult for hyperplane sections of Sd−1 where the nor-
mal vectors ξ ∈ Sd−1 are on the circle of latitude ξd = z of the sphere for some
z ∈ (−1, 1). This transform is injective for all except countably many values of z.
In particular, it is non-injective on all zeros z of the associated Legendre func-
tions P k

n,d(z) of dimension d. For a speci�c value of z, however, it is usually not easy
to decide whether this problem is injective.
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(5) For the sections of the sphere with hyperplanes containing a common point inside the
sphere, there is no singular value decomposition known. However, a more successful
approach lies in a connection with the Funk�Radon transform: The composition
of twice the stereographic projection with a properly chosen, uniform scaling turns
these hyperplane sections into maximal subspheres of Sd−1. The nullspace consists
of those functions f on Sd−1 that are odd with respect to the point re�ection in the
common point ζ and the multiplication of some weight. Furthermore, the range is
the same Sobolev space Hd/2−1

even (Sd−1) as for the Funk�Radon transform.

(6) In spherical surface wave tomography, one measures the time a seismic wave travels
along the Earth's surface from an epicenter to a receiver. Knowing the traveltimes
of such waves between many pairs of epicenters and receivers, one wants to recover
the local phase velocity. The simplest but widely used mathematical model asks for
the reconstruction of a function de�ned on the sphere S2 from its integrals along
arcs of great circles. Parameterizing the circle arcs by their length and the rotation
that maps them to a reference arc combined with harmonic analysis on the rotation
group are the key ingredients of the proof of a singular value decomposition for this
arc transform A. Even for the limited data of mean values along great circle arcs
with �xed arc-length, the singular value decomposition ensures the injectivity.

(7) The generalized Funk�Radon transform S(j) takes the j-th order directional deriva-
tive of the function f perpendicular to the great circle along which f is integrated.
The spherical harmonics are the eigenfunctions of this operator S(j). The generalized
Funk�Radon transform S(j) is injective for a subset of either the odd or the even
functions, depending on the order j. It is a continuous and open operator from the
Sobolev space Hs(Sd−1) to Hs−j+ d−2

2 (Sd−1). Furthermore, S(−1) is the hemispherical
transform.

(8) The cone-beam transform D integrates a function de�ned on the Euclidean space Rd

along all rays that start in a certain scanning set. It provides the mathematical
background of the three-dimensional X-ray tomography on R3. Grangeat's formula
can be written as a connection of the cone-beam transform D with the generalized
Funk�Radon transform S(d−2) on the sphere Sd−1 and the Radon transformR on Rd.
Hence, the inversion of the cone-beam transform splits up into the inverse Radon
transform and the inverse generalized Funk�Radon transform. The singular value
decomposition of the transform S(j) allows to derive a singular value decomposition
of the cone-beam transform D with sources on the sphere.
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