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We present a novel algorithm for the inversion of the vertical slice transform, i.e. the
transform that associates to a function on the two-dimensional unit sphere all integrals
along circles that are parallel to one fixed direction. Our approach makes use of the sin-
gular value decomposition and resembles the mollifier approach by applying numerical
integration with a reconstruction kernel via a quadrature rule. Considering the inver-
sion problem as a statistical inverse problem, we find a family of asymptotically optimal
mollifiers that minimize the maximum risk of the mean integrated error for functions
within a Sobolev ball. By using fast spherical Fourier transforms and the fast Legendre
transform, our algorithm can be implemented with almost linear complexity. In numer-
ical experiments, we compare our algorithm with other approaches and illustrate our
theoretical findings.
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1. Introduction

The problem of reconstructing a function from its integrals along certain lower-dimensional sub-
manifolds has been studied since the early twentieth century. It is associated with the terms
reconstructive integral geometry [28] and geometric tomography [11]. In 1913, Funk [9] described
the problem of reconstructing a function on the two-sphere knowing its mean values along all great
circles of the sphere. The computation of these mean values is known as the Funk–Radon transform
or simply the Funk transform or spherical Radon transform.

What Funk did for great circles can be generalized to other classes of circles on the unit sphere S2.
One can consider the integration along all circles with a fixed radius, which is known as the
translation operator or the spherical section transform, cf. [34, 33, 7]. Another example is the
spherical slice transform (see [1], [17, II.1.C]), which computes the means along all circles that
contain a fixed point of the sphere.

In this paper, we look at vertical slices of the sphere, i.e., circles that are the intersections of the
sphere with planes parallel to the ξ3–axis. Let us denote with eσ = (cosσ, sinσ, 0)>, σ ∈ T = [0, 2π),
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the point on the equator of the sphere with the latitude σ. For a continuous function f : S2 → C,
we define

T f(σ, t) =
1

2π
√

1− t2

∫
ξ·eσ=t

f(ξ) dξ, (σ, t) ∈ X = T× (−1, 1),

where the integration is carried out with respect to the arc length. For t = ±1, we set T f (σ,±1) =
f (±eσ). We will call T the vertical slice transform on the sphere.

The vertical slice transform first arose in an article by Gindikin et al. [14] from 1994 that included
an explicit inversion formula of T , which is numerically instable. It reappeared in 2010 as the
circular mean transform in a problem related to photoacoustic tomography, when Zangerl and
Scherzer [44] described an algorithm for inverting the vertical slice transform using a connection to
the circular Radon transform in the plane.

In this paper, we consider the reconstruction of f from the point of view of statistical inverse
problems, cf. [5]. More precisely, we consider discrete data

g(xm) = T f(xm) + ε(xm), m = 1, . . . , M,

at sampling points xm ∈ X, m = 1, . . . , M , which is perturbed by an uncorrelated white noise
random field ε; and aim at optimal linear estimators Ef of f given the data g(xm). As measure of
optimality, we use the mean integrated squared error (MISE)

MISE(E , f) = E ‖f − Ef‖2L2(S2) .

Assuming that the function f is in the Sobolev ball

F (s, S) =
{
f ∈ Hs

e (S2) | ‖f‖Hs(S2) ≤ S
}
,

where s, S > 0 and Hs
e (S2) is the Sobolev space of degree s restricted to functions that are even in

the third component (cf. Section 2), we look at the minimax risk, cf. [41, 5],

inf
E

sup
f∈F (s,S)

E ‖f − Ef‖2L2(S2) . (1.1)

The minimax risk of spherical deconvolution has been examined in [22, 20]. In this paper, we
follow the ideas of [20] and restrict ourselves to a specific class of estimators that resemble the
mollifier approach [24] in inverse problems, which has been successfully adopted for inverting the
Funk–Radon transform in [25]. A Tikhonov-type regularization on Riemannian manifolds was
examined in [39] and applied to the Funk–Radon transform using spherical harmonics.

Let ωm ∈ R, m = 1, . . . ,M be some quadrature weights for the sampling points xm ∈ X and

LNg =
N∑
n=0

n∑
k=−n

(
M∑
m=1

wmg(xm)Bk
n(xm)

)
Bk
n, g ∈ C(X),

be the corresponding hyperinterpolation operator [36] of degree N for the orthonormal basis system

Bk
n(σ, t) =

√
2n+1
4π eikσPn(t), (σ, t) ∈ X, where Pn is the Legendre polynomial. Then we define for a

mollifier ψ : [−1, 1]→ R the estimator

EN,ψg = ψ ?
(
T †LNg

)
,

where ? denotes the spherical convolution and T † is the generalized inverse of T : L2(S2)→ L2(X).
Our aim is to find optimal mollifiers ψ∗ for which the infimum in (1.1), restricted to the class of
estimators EN,ψ, is attained asymptotically, as the number of sampling points goes to infinity.
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Outline. This paper is structured as follows. After collecting some basic facts about spherical
harmonics in Section 2, we introduce in Section 3 the vertical slice transform T and give in Theo-
rem 3.3 its singular value decomposition as well as the asymptotic behavior of the singular values.
Section 4 introduces the hyperinterpolation operator and discusses the relationship to the underly-
ing quadrature rule. The main result of the paper is formulated in Section 5 in Theorem 5.4, which
gives an asymptotically optimal mollifier for the vertical slice transform T in dependency of the
number of sampling points, the noise level and the Sobolev ball F (s, S). The proof of Theorem 5.4
has been postponed to Section 6, where we derive lower and upper bounds for the bias as well as for
the variance part of the MISE. Section 7 is devoted to numerical tests illustrating our theoretical
findings. First of all we give a fast algorithm for our optimal estimator. This algorithm is based on
the fast spherical Fourier transform [23] in conjunction with a fast Legendre transform and has the
numerical complexity O(M log2M). In the subsequent section, we compare our algorithms with
two algorithms for the inversion of the Radon transform in the plane. This is possible since, by
orthogonal projection, the vertical slice transform of a function f can be expressed as the Radon
transform of the projected function multiplied with the weight (1− |ξ|2)−1/2, ξ ∈ R2. The main
drawback of this approach is that the weight increases to infinity at the boundary of the disc. This
becomes clearly visible when inverting the Radon transform with a backprojection-type algorithm
[21] and a little less visible when an algorithm based on orthogonal polynomial expansion on the
unit disc, cf. [42], is used. The reason for this improvement is that the latter algorithm uses,
similarly as our algorithm, a sampling grid that becomes more dense close to the boundary.

2. Preliminaries and notation

In this section we are going to summarize some basic facts on harmonic analysis on the sphere as
it can be found, e.g., in [7]. We denote with Z the set of integers and with N0 the nonnegative
integers. We define the two-dimensional sphere S2 = {ξ ∈ R3 | |ξ| = 1} as the set of unit vectors
ξ = (ξ1, ξ2, ξ3)

> in the three-dimensional Euclidean space and make use of its parametrization in
terms of the polar angles

ξ(θ, ρ) = (cos ρ sin θ, sin ρ sin θ, cos θ)>, θ ∈ [0, π], ρ ∈ [0, 2π).

Let f : S2 → C be some measurable function. With respect to polar angles, the surface measure
dξ on the sphere reads ∫

S2
f(ξ) dξ =

∫ π

0

∫ 2π

0
f(ξ(θ, ρ)) dρ sin θ dθ,

The Hilbert space L2(S2) is the space of all measurable functions f : S2 → C, whose norm ‖f‖L2 =√
〈f, f〉 is finite, where 〈f, g〉 =

∫
S2 f(ξ)g(ξ) dξ denotes the usual L2–inner product.

Spherical harmonics. We define the associated Legendre polynomials

P kn (t) =
(−1)k

2kk!

(
1− t2

)k/2 dn+k

dtn+k
(
t2 − 1

)k
, t ∈ [−1, 1],

for all
(n, k) ∈ I := {(n, k) ∈ N0 × Z | |k| ≤ n} .

They satisfy the three-term recurrence relation [15, 8.735.2]√
1− t2P k+1

n (t) = (n− k) tP kn (t)− (n+ k)P kn−1 (t) , t ∈ [−1, 1]. (2.1)
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The Legendre polynomials Pn = P 0
n of degree n ∈ N0 form a system of orthogonal polynomials in

L2 ([−1, 1]) and satisfy the three-term recurrence relation

Pn(t) =
2n− 1

n
tPn−1(t)−

n− 1

n
Pn−2(t), t ∈ [−1, 1], (2.2)

for n ≥ 1 with the initialization P0(t) ≡ 1 and P−1(t) ≡ 0.
An orthonormal basis in the Hilbert space L2(S2) of square integrable functions on the sphere is

formed by the spherical harmonics

Y k
n (ξ(θ, ρ)) =

√
2n+ 1

4π

(n− k)!

(n+ k)!
P kn (cos θ)eikρ, (n, k) ∈ I. (2.3)

Accordingly, any function f ∈ L2(S2) can be expressed by its Fourier series

f =
∑

(n,k)∈I

f̂(n, k)Y k
n

with the Fourier coefficients

f̂(n, k) =

∫
S2
f(ξ)Y k

n (ξ) dξ, (n, k) ∈ I,

and it satisfies Parseval’s equality

‖f‖2L2(S2) =
∑

(n,k)∈I

∣∣∣f̂(n, k)
∣∣∣2 . (2.4)

Sobolev spaces. A function p : S2 → C that has a finite representation

p =
∑

(n,k)∈IN

p̂(n, k)Y k
n , IN = {(n, k) ∈ I | n ≤ N}

with respect to spherical harmonics is called a spherical polynomial of degree N ∈ N0 if p̂(N, k) 6= 0
for some k. For such a spherical polynomial p of degree up to N and some s ∈ R, we introduce the
Sobolev norm

‖p‖2Hs(S2) =
∑

(n,k)∈IN

(n+ 1
2)2s |p̂(n, k)|2 . (2.5)

As usual, the Sobolev spaces Hs(S2) are defined as the completion of the space of all spherical
polynomials with respect to the Sobolev norm ‖·‖Hs(S2), cf. [8]. If s > 1, the Sobolev space Hs(S2)
is embedded in the space of continuous functions C(S2). We define Hs

e (S2) as the subspace of
Hs(S2) that contains only functions that are even in the third coordinate. This definition is equal
to saying that Hs

e (S2) is the subspace of functions whose Fourier coefficients vanish outside the set
Ie = {(n, k) ∈ I | n+ k even}.

Asymptotic analysis. We define some symbols comparing the asymptotic growth. Let (an)n∈N0

and (bn)n∈N0 be two sequences of real numbers. We say an ∼ bn for n→∞ if there exist constants
c1, c2 ∈ (0,∞) and n0 ∈ N0 such that c1bn ≤ an ≤ c2bn for any n ≥ n0. We say an ' bn if
limn→∞ an/bn = 1. Furthermore, we write an > bn if lim supn→∞ an/bn ≤ 1 and analogously
an ? bn if lim infn→∞ an/bn ≥ 1.
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3. The vertical slice transform on the sphere

In the following definition, we denote by T = [0, 2π) the 2π-periodic torus.

Definition 3.1. For f ∈ C(S2), we define the vertical slice transform

T f(σ, t) =


1

2π
√

1− t2

∫
ξ(π

2
,σ)·η=t

f(η) dη, σ ∈ T, t ∈ (−1, 1)

f
(
±ξ
(
π
2 , σ

))
, σ ∈ T, t = ±1,

(3.1)

where · denotes the scalar product. For simplicity, we write x = (σ, t) ∈ X = T× [−1, 1].

The vector ξ (π/2, σ) = (cosσ, sinσ, 0)> is located at the equator of the sphere and has latitude σ.
The vertical slice transform T computes the average values along all circles that are parallel to the
ξ3–axis. Since all these circles are symmetric with respect to the ξ1–ξ2–plane, T f vanishes for
functions f that are odd in the third coordinate, i.e.

f(ξ1, ξ2, ξ3) = −f(ξ1, ξ2,−ξ3), ξ = (ξ1, ξ2, ξ3) ∈ S2.

Another symmetry property of the vertical slice transform is given by

T f(σ, t) = T f(σ + π,−t), (σ, t) ∈ X,

where equality is to be understood modulo 2π in the σ variable. Hence, we can define an equivalence
relation ∼ on X by saying (σ, t) ∼ (σ + π,−t). Then the quotient space of X by this equivalence
relation is isomorphic to the Möbius strip.

An explicit inversion formula for operator T was shown in [14]. It is based on the inversion
formula [17] of the Radon transform in the plane applied to the function

f̃ : R2 → R, f̃(ξ1, ξ2) =


f
(
ξ1,ξ2,
√

1−ξ21−ξ22
)

√
1−ξ21−ξ22 ,

, for ξ21 + ξ22 < 1

0, otherwise.

Theorem 3.2 (Gindikin et al. [14]). Let f : S2 → C be even in the third coordinate. Then

f(ξ) =
−
√

1− ξ21 − ξ22
4π

∫ ∞
−∞

1

q

∫ 2π

0

∂

∂q
T f(σ, ξ1 cosσ + ξ2 sinσ + q) dσ dq, ξ ∈ S2, (3.2)

where the integral with respect to q has to be understood in the sense of Cauchy principal value
and where T f(σ, t) = 0 for |t| > 1.

The inversion formula (3.2) is unfavorable for numeric computations. The singular value decom-
position of T , which is given in the following theorem, promises more numerical stability.

Theorem 3.3 (Singular value decomposition). The vertical slice transform T , as defined in (3.1),
extends continuously to a compact linear operator T : L2(S2) → L2(X) with the singular value
decomposition

T Y k
n = λknB

k
n, (n, k) ∈ I, (3.3)

consisting of the spherical harmonics Y k
n from (2.3), the basis functions

Bk
n : X→ C, (σ, t) 7→

√
2n+ 1

4π
eikσPn(t), (3.4)
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and the singular values

λkn =

(−1)
n+k
2

(n+ k − 1)!!

(n− k)!!

√
(n− k)!

(n+ k)!
= (−1)

n+k
2

√
(n+ k)!(n− k)!

2n(n+k2 )!(n−k2 )!
, (n, k) ∈ Ie

0, (n, k) ∈ I\Ie
(3.5)

where Ie := {(n, k) ∈ I | n+k even} and n!! = n · (n−2) · (n−4) · . . . ·1 denotes the double factorial
with (−1)!! = 1. Furthermore, we have for (n, k) ∈ Ie

21/2(πn)−1/2 '
∣∣λ0dne2∣∣ ≤ ∣∣λkn∣∣ ≤ ∣∣λnn∣∣ ' (πn)−1/4, n→∞, (3.6)

where d·e2 denotes the ceiling to the next multiple of two.

Proof. Let f ∈ C(S2), (n, k) ∈ I and (σ, t) ∈ X. The following generalization of the Funk–Hecke
formula was proven in [4, Section 4.2],

1

2π
√

1− t2

∫
ξ·η=t

Y k
n (η) dη = Pn(t)Y k

n (ξ), ξ ∈ S2, t ∈ (−1, 1). (3.7)

Hence, the vertical slice transform applied to a spherical harmonic Y k
n gives

T Y k
n (σ, t) = Pn (t)Y k

n

(
ξ
(π

2
, σ
))

= Pn (t)

√
2n+ 1

4π

√
(n− k)!

(n+ k)!
eikσP kn (0) .

In the next step, we compute the associated Legendre polynomials P kn at zero. According to the
recurrence relation (2.2) for the Legendre polynomials, we have

P 0
n(0) = Pn(0) =

−(n− 1)Pn−2(0)

n
=

1 + (−1)n

2
(−1)n/2

(n− 1)!!

n!!

for n ≥ 1 as well as P0 (0) = 1. With the recurrence relation (2.1) of the associated Legendre
polynomials, we obtain for n, k ≥ 1,

P kn (0) = (−1)k
(n+ k − 1)!!

(n− k − 1)!!
P 0
n−k (0) = (−1)(n+k)/2

(n+ k − 1)!!

(n− k)!!

1 + (−1)n−k

2
.

For k < 0, we have by the symmetry relation

P kn (0) = (−1)k
(n+ k)!

(n− k)!
P−kn (0) = (−1)(n+k)/2

(n+ k − 1)!!

(n− k)!!

1 + (−1)n−k

2

Hence, we have for all (n, k) ∈ Ie

T Y k
n (σ, t) = (−1)(n+k)/2

(n+ k − 1)!!

(n− k)!!

1 + (−1)n−k

2

√
2n+ 1

4π

√
(n− k)!

(n+ k)!
Pn (t) eikσ,

which proves (3.3) and the left part of (3.5). The right side of (3.5) follows by replacing the
double factorials with factorials using the well-known equalities (2m)!! = 2mm! and (2m − 1)!! =
(2m)!/(2mm!) for m ∈ N0.

Next, we prove (3.6). Let (n, k) ∈ Ie, then λkn = (−1)nλ−kn . For 0 ≤ k ≤ n − 2, we obtain the
recurrence relation ∣∣∣λk+2

n

∣∣∣ =

(
n+ k + 1

n+ k + 2

n− k
n− k − 1

)1/2 ∣∣∣λkn∣∣∣ ≥ ∣∣∣λkn∣∣∣ .
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Hence,
∣∣λkn∣∣ ≤ |λnn|. If n and thus also k is even, we observe that

∣∣λkn∣∣ ≥ ∣∣λ0n∣∣. If n is odd, we have∣∣λkn∣∣ ≥ ∣∣λ1n∣∣. Analogously to the above recurrence, we see that∣∣λ1n∣∣ =
n+ 1√
n(n+ 1)

∣∣λ0n+1

∣∣ ≥ ∣∣λ0n+1

∣∣ .
The application of Stirling’s formula n! '

√
2πnnne−n yields for n→∞

λ0n = (−1)n/2
n!

2n
(
n
2 !
)2 ' √

2πnnne−n

2nπnnn2−ne−n
= (−1)n/2

√
2

πn

and

λnn = (−1)n
√

(2n)!

2nn!
'

4
√

4πn 2nnne−n

2n
√

2πnnne−n
= (−1)n

1
4
√
πn

.

The functions {Bk
n | n ∈ N0, k ∈ Z} from (3.4) form an orthonormal basis in L2(X). The fact

that the singular values λkn vanish for all (n, k) ∈ I\Ie shows that the nullspace of T consists of
all functions that are odd with respect to the third coordinate. Hence, the vertical slice transform
T : L2

e(S2)→ L2(X) is injective.

4. Quadrature and hyperinterpolation

For the set X = T× [−1, 1], we use a quadrature rule

Qg =

M∑
m=1

wmg (xm) , g ∈ C (X) ,

with quadrature nodes xm ∈ X and the respective weights wm, m = 1, . . . ,M . For the orthonormal
system of functions Bk

n from (3.4) in the space L2(X), we define an analogue to the trigonometric
interpolation operator, namely

LNg :=
∑

(n,k)∈IeN

(
M∑
m=1

wmg(xm)Bk
n(xm)

)
Bk
n, g ∈ C(X), (4.1)

where
IeN = Ie ∩ IN = {(n, k) ∈ N0 × Z | n ≤ N, |k| ≤ n, n+ k even}.

In [36], the operator LN is called hyperinterpolation of degree N ∈ N0. We call LN exact if
LNBk

n = Bk
n for all (n, k) ∈ IeN . In this case, LN is a projection operator.

Theorem 4.1. The hyperinterpolation LN is exact if and only if Qg =
∫
g for all g in the span of

{Bk
nB

j
l | (n, k), (l, j) ∈ IeN}.

Proof. The hyperinterpolation LN is exact if and only if LNBk
n = Bk

n for all (n, k) ∈ IeN , i.e.∑
(l,j)∈IeN

Q(Bk
nB

j
l )B

j
l = Bk

n.

Since the functions Bk
n are orthonormal, the last equality holds if and only if

Q(Bk
nB

j
l ) = δn,lδk,j =

∫
Bk
nB

j
l

for all (n, k), (l, j) ∈ IeN , where δ denotes the Kronecker delta.
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We are going to impose the following condition on the hyperinterpolation LN .

Definition 4.2. Let M(N), N ∈ N0, be a sequence of integers and LN , N ∈ N0, be a sequence
of M(N)–point hyperinterpolations on X as defined in (4.1) with positive weights wNm > 0 and
the nodes xNm ∈ X, m = 1, . . . , M(N). We call this sequence applicable if the following three
conditions hold: LN is exact for all N ∈ N0, M(N) ∈ O(N2) for N →∞ and there exist constants
γ1, γ2 ∈ (0,∞) independent of N such that for every sufficiently large N

γ1
4π

M(N)
≤

M(N)∑
m=1

∣∣∣wNmBk
n

(
xNm
)∣∣∣2 ≤ γ2 4π

M(N)
, (n, k) ∈ IN . (4.2)

It should be noted that for quadrature rules with constant weights wNm = M(N)−1 that are exact
of degree 2N , the condition (4.2) is satisfied with γ1 = γ2 = 1. Unfortunately, we could not find any
such quadrature rules with M(N) ∈ O(N2) nodes, which is due to the fact that constant-weight
quadratures on the unit interval that are exact of degree N have at least ∼ N2 nodes, cf. [13].

In the following theorem, we give an example of an applicable sequence of hyperinterpolations.
These hyperinterpolations of degree N ∈ N0 make use of the tensor product of the (2N + 1)–point
equidistant quadrature on the torus T with the (2N + 1)–point Fejér quadrature [12] on the unit
interval [−1, 1].

Theorem 4.3. We define the Fejér hyperinterpolation of degree N ∈ N0 for g ∈ C(X)

LNg :=
∑

(n,k)∈IeN

1

2N + 1

2N+1∑
`,j=1

ω2N+1
j g

(
2π`

2N + 1
, cos θ2N+1

j

)
Bk
n

(
2π`

2N + 1
, cos θ2N+1

j

)
Bk
n, (4.3)

where

ω2N+1
j =

4

2N + 2
sin
(
θ2N+1
j

) N∑
r=1

sin
(

(2r − 1) θ2N+1
j

)
2r − 1

, θ2N+1
j =

jπ

2N + 2
(4.4)

for j = 1, . . . , 2N + 1. Then the so-defined sequence of hyperinterpolations LN is applicable.

Proof. The proof is included in Section A of the appendix.

5. Reconstruction

5.1. The mollifier method

We want to reconstruct a function f given its vertical slice transform g = T f . The singular value
decomposition in Theorem 3.3 shows that the nullspace of T contains exactly the functions that are
odd in the third coordinate. Hence, only the even part of f can be reconstructed. In the following,
we assume that f is even in its third coordinate. Like it is the case for many other problems of this
type, the inversion of the vertical slice transform is an ill-posed problem. We consider the discrete
noisy data

gεm = T f(xm) + ε(xm), m = 1, . . . , M

at data points xm ∈ X, m = 1, . . . ,M . We assume that the data error ε(xm), m = 1, . . . ,M , is
a complex-valued random vector satisfying the following three conditions for all m, l = 1, . . . ,M
with m 6= l,

i) E(ε(xm)) = 0 (unbiased),
ii) E(ε(xm)ε(xl)) = 0 (uncorrelated), and
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iii) E(ε(xm)2) = δ2 (fixed variance),
where E denotes the expected value.

Remark 5.1. The consistency theorem of Daniell and Kolmogorov [3, p. 303] ensures the existence
of a probability space (Ω,Σ, P ) and a random field ε : Ω × X → C whose marginal distributions
satisfy i) – iii) on every finite subset of X. Throughout this paper, we will suppress the dependence of
ε on the sample space Ω in our notation. An example of such marginal distributions are zero-mean
Gaussian distributions, whose covariance matrix is the identity matrix multiplied with δ2 ∈ R.

To deal with the ill-posedness of the inverse problem, we use the mollifier method, cf. [24]. We
consider a polynomial ψ : [−1, 1]→ R of degree N and aim at computing the convolution

ψ ? f(ξ) =

∫
S2
f(η)ψ(η · ξ) dη, ξ ∈ S2. (5.1)

For a sufficiently good choice of the mollifier ψ, the convolution ψ ? f is an approximation of the
desired function f . The Funk–Hecke formula [10, 16] states that

ψ ? f =
∑

(n,k)∈Ie
ψ̂(n)

(∫
S2
f(ξ)Y k

n (ξ) dξ

)
Y k
n (5.2)

with the Legendre coefficients

ψ̂(n) = 2π

∫ 1

−1
ψ(t)Pn(t) dt, n ∈ N0.

For g = T f , the singular value decomposition from Theorem 3.3 yields

ψ ? f = ψ ? T †g =
∑

(n,k)∈Ie

ψ̂(n)

λkn

(∫
X
g(x)Bk

n(x) dx

)
Y k
n .

Replacing the integral in the last equation with the quadrature rule from Section 4, we define for
any g ∈ C(S2) the estimator

EN,ψg := ψ ? T †LNg =
∑

(n,k)∈Ie

ψ̂(n)

λkn

M∑
m=1

wmg(xm)Bk
n(xm)Y k

n . (5.3)

5.2. Asymptotically optimal mollifiers

As a measure for the accuracy of the estimator EN,ψ, we use the mean integrated squared error
(MISE) defined by

MISE (EN,ψ, f) := E ‖EN,ψ(T f + ε)− f‖2L2(S2) .

We want to bound the MISE over Sobolev balls

F (s, S) :=
{
f ∈ Hs

e (S2) | ‖f‖Hs(S2) ≤ S
}
,

where s > 1 and S > 0 are some constants and Hs
e (S2) is the Sobolev space of functions that are

even in the third coordinate, cf. (2.5). The condition s > 1 ensures that f and therefore T f is
continuous and hence the estimator EN,ψ(T f), which requires point evaluations, is well-defined.
We are interested in the maximum risk

sup
f∈F (s,S)

MISE (EN,ψ, f) . (5.4)

9
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Figure 1: Legendre coefficients of the different mollifiers mentioned in Remark 5.3

We call a mollifier ψ∗ optimal for degree N , if it minimizes (5.4) amongst all mollifiers ψ ∈
L2([−1, 1]). If a mollifier is optimal, it achieves the minimax error

MiniMax(N) := inf
ψ

sup
f∈F (s,S)

MISE (EN,ψ, f) .

We call a sequence of mollifiers ψ∗N , N ∈ N0, asymptotically optimal, if the maximum risk (5.4) for
the mollifier ψ∗N is asymptotically equal to the minimax rate for N →∞, i.e.

sup
f∈F (s,S)

MISE
(
EN,ψ∗N , f

)
' inf

ψ
sup

f∈F (s,S)
MISE (EN,ψ, f) .

We will show that a class of asymptotically optimal mollifiers is given in the following definition.

Definition 5.2. For positive numbers s > 0 and L > 0, we define the mollifiers ψsL : [−1, 1] → R
as polynomials of degree bLc by

ψsL =
L∑
n=0

2n+ 1

4π

(
1−

(
n+ 1

2

L+ 1
2

)s)
Pn. (5.5)

Remark 5.3. The mollifiers from Definition 5.2 can be seen as a generalization of some well-known
mollifiers, which are depicted in Figure 1. They lie between the Fejér kernel, whose Legendre
coefficients decrease linearly from 0 to L like those of ψ1

L, and the Dirichlet kernel, which is the
limit of ψsL for s → ∞. Furthermore, these mollifiers are similar to the CuP (cubic polynomial)

scaling functions, whose Legendre coefficients are given by ψ̂(n) = (1− n/L)2(1 + 2n/L) for n ≤ L
and 0 elsewhere, see [26, p. 195]. The Fourier coefficients of the CuP functions are smoother at the
upper end of the bandwidth n = L compared to the mollifier (5.5).

The following theorem shows that the family of mollifiers (5.5) is asymptotically optimal for the
class F (s, S).

Theorem 5.4. Let s > (1 +
√

10)/2, S > 0, and δ > 0. Let the sequence LN , N ∈ N0, of M(N)–
point hyperinterpolations be applicable in the sense of Definition 4.2. Furthermore, let the data
error ε satisfy the conditions from Section 5.1 and have the standard deviation δ. Then there exist
parameters L(N) such that the sequence of mollifiers ψsL(N), N ∈ N0, is asymptotically optimal for

10



the estimator EN,ψ for the inversion of the vertical slice transform T of functions f belonging to
the class F (s, S). In particular, we have for N →∞

sup
f∈F (s,S)

MISE
(
EN,ψs

L(N)
, f
)
' inf

ψ
sup

f∈F (s,S)
MISE (EN,ψ, f) . (5.6)

Furthermore, the minimax risk of the MISE is bounded asymptotically for N →∞ by(
γ1δ

2ds

(
2sS2

3δ2ds

) 3
2s+3

+ S2

(
2sS2

3δ2ds

) −2s
2s+3

)
M

−2s
2s+3 > inf

ψ
sup

f∈F (s,S)
MISE (EN,ψ, f)

>

(
γ2δ

2ds

(
2sS2

3δ2ds

) 3
2s+3

+ S2

(
2sS2

3δ2ds

) −2s
2s+3

)
M

−2s
2s+3 ,

(5.7)

where

ds =
π3s2

3 (2s+ 3) (s+ 3)
. (5.8)

Remark 5.5. The mollifier approach (5.1) can be generalized to Fourier multiplications, where
the coefficients ψ̂(n) in the Funk–Hecke formula (5.2) are replaced by coefficients that depend not
only on n but also on k. However, Theorem 5.4 would not change for this approach since the shape
of the optimal mollifier ψsN depends only on the Sobolev space Hs(S2), which we will see in Lemma
6.7.

6. Proof of Theorem 5.4

In following, we will prepare the proof of Theorem 5.4, which marks the very end of this section.

Theorem 6.1. The MISE can be decomposed into a bias and a variance term

E ‖f − EN,ψ(T f + ε)‖2L2(S2) = ‖f − EN,ψT f‖2L2(S2) + E ‖EN,ψε‖2L2(S2) . (6.1)

Proof. Since the estimator EN,ψ is linear, we have

E ‖f − EN,ψ(T f + ε)‖2L2(S2) = E ‖f − EN,ψT f‖2L2(S2) + E ‖EN,ψε‖2L2(S2) − 2E 〈f − EN,ψT f, EN,ψε〉 ,

where the last summand vanishes because E(EN,ψε) = 0.

The decomposition (6.1) is well-known, see [41, Section 1.2.1]. In the following two subsections,
we derive bounds for the variance and bias error. In Section 6.3, the proof of the optimality of the
mollifiers (5.5) follows eventually.

6.1. Variance error

Proposition 6.2. Let f ∈ Hs
e (S2) for s > 1, N ∈ N0, ψ ∈ L2 ([−1, 1]), and the hyperinterpolation

LN be applicable in the sense of Definition 4.2. If N is sufficiently large, the variance term of (6.1)
can be estimated by

γ1
4π

M
δ2 ‖ψ̂‖2λ ≤ E ‖EN,ψε‖2L2(S2) ≤ γ2

4π

M
δ2 ‖ψ̂‖2λ , (6.2)

where the constants γ1, γ2 are from Definition 4.2 and

‖ψ̂‖2λ :=
∑

(n,k)∈IeN

∣∣∣∣∣ ψ̂(n)

λkn

∣∣∣∣∣
2

.
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Proof. By Parseval’s equality (2.4) and the uncorrelatedness of the noise ε from Section 5.1,

E ‖EN,ψ(ε)‖2L2(S2) =
∑

(n,k)∈IeN

E

∣∣∣∣∣ ψ̂(n)

λkn

M∑
m=1

wmε(xm)Bk
n (xm)

∣∣∣∣∣
2

=
∑

(n,k)∈IeN

∣∣∣∣∣ ψ̂(n)

λkn

∣∣∣∣∣
2 M∑
m,l=1

wmwlBk
n (xm)Bk

n(xl)Eε(xm)ε(xl)

= δ2
∑

(n,k)∈IeN

∣∣∣∣∣ ψ̂(n)

λkn

∣∣∣∣∣
2 M∑
m=1

∣∣∣wmBk
n (xm)

∣∣∣2 . (6.3)

The applicability condition (4.2) implies (6.2).

Lemma 6.3. Let ψsL be the mollifier defined in (5.5). Then for L→∞

‖ψ̂sL‖
2
λ = ds

(
L+ 1

2

)3
+O(L2), (6.4)

where ds is given in (5.8).

Proof. Let (n, k) ∈ Ie. At first we calculate an asymptotic expression of the singular values λkn.
The following version of Stirling’s formula was proven in [32]. For n = 1, 2, . . .

n! =
√

2πnn+1/2e−ner(n),

where 0 < r(n) < 1/(12n). The application of this formula to the singular values yields

∣∣∣λkn∣∣∣2 =
2π (n+ k)n+k+1/2 e−(n+k)er(n+k) · (n− k)n−k+1/2 e−(n−k)er(n−k)

22n(2π)2
(
n+k
2

)n+k+1
e−(n+k)e2r((n+k)/2) ·

(
n−k
2

)n−k+1
e−(n−k)e2r((n−k)/2)

=
2

π
(n+ k)−1/2(n− k)−1/2eR(n,k)

(6.5)

for |k| < n with the error term

R(n, k) = r(n+ k) + r(n− k)− 2r

(
n+ k

2

)
− 2r

(
n− k

2

)
,

which is for k ≥ 0 bounded by

|R(n, k)| < 2

3(n− k)
.

In the next step, we insert the approximation (6.5) and the Taylor series of the exponential
function in order to compute the sum

n∑
k=−n
2|(n+k)

1

|λkn|
2 =

π

2

n∑
k=−n
2|(n+k)

√
n2 − k2e−R(n,k) =

π

2

n∑
k=−n
2|(n+k)

√
n2 − k2

(
1−R(n, k) + . . .

)
. (6.6)

The first summand of the right hand side of (6.6) gives

π

2

n∑
k=−n
2|(n+k)

√
n2 − k2 =

π

4

∫ n

−n

√
n2 − k2 dk +O(n) =

π2

8
n2 +O(n).
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For the second summand of the right side of (6.6), we see that

π

2

n∑
k=−n
2|(n+k)

√
n2 − k2 |R(n, k)| ≤ π

n−1∑
k=0

2|(n+k)

√
n+ k

√
n− k

n− k
+O(n)

≤ π
∫ n

0

√
n+ k

n− k
dk +O(n) =

1

2
nπ(2 + π) +O(n).

Since the other summands are even smaller than the second, these parts can also be bounded by
O(n). Now we can insert the Fourier coefficients of the mollifier (5.5) and see that for L→∞

‖ψ̂sL‖
2
λ =

L∑
n=0

∣∣∣ψ̂sL(n)
∣∣∣2 n∑

k=−n
2|(n+k)

1

|λkn|
2 =

π2

8

L∑
n=0

(
1−

(
n+ 1/2

L+ 1/2

)s)2 (
n2 +O(n)

)

=
π2

8

∫ L

0
n2
(

1−
(
n+ 1/2

L+ 1/2

)s)2

dn+O
(
L2
)

=
π2s2

12 (2s+ 3) (s+ 3)
L3 +O

(
L2
)
,

which proves (6.4).

6.2. Bias error

With the triangle inequality, we split up the bias error into a smoothing and an aliasing part,

‖f − ψ ? T †LNT f‖L2(S2) ≤ ‖f − ψ ? f‖L2(S2) + ‖ψ ? (f − T †LNT f)‖L2(S2).

6.2.1. Smoothing error

If f ∈ Hs
(
S2
)

for s ≥ 0, then Parseval’s equality (2.4) and (5.2) imply that the smoothing error is
bounded by

‖f − ψ ? f‖L2(S2) ≤ sup
n∈N0


∣∣∣1− ψ̂(n)

∣∣∣(
n+ 1

2

)s
 ‖f‖Hs(S2) .

In particular, for the mollifier ψsL from (5.5) and a function f ∈ F (s, S), we have the smoothing
error

‖f − ψsL ? f‖L2(S2) ≤
S(

L+ 1
2

)s . (6.7)

6.2.2. Aliasing error

In order to derive an upper bound for the aliasing error ‖ψ ? (f − T †LNT f)‖L2(S2), we define the

Sobolev space Hs
T (X) := T Hs(S2) with the corresponding norm for g = T f

‖g‖2Hs
T (X)

:= ‖f‖2Hs(S2) =
∑

(n,k)∈Ie

∣∣∣∣ĝ (n, k)

(
n+

1

2

)s 1

λkn

∣∣∣∣2 . (6.8)

Lemma 6.4. Let g ∈ C(X), N ∈ N0, and the hyperinterpolation LN from (4.1) be exact. Denote
with PN the orthogonal projection onto the range of LN . Then

‖LN‖C(X)→L2(X) =
√

4π. (6.9)
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The previous lemma was proven in [36]. The constant 4π equals the surface area of the manifold
X. The following lemma and the theorem thereafter are based on [18], where they were proven
similarly for the Sobolev spaces Hs(S2) on the two-sphere.

Lemma 6.5. For s > 1, the Sobolev space Hs
T (X) can be embedded continuously into the space

of continuous functions C (X). Let N ∈ N0 and denote with PN the L2-orthogonal projection onto
span{Bk

n | (n, k) ∈ IeN}. Then there exists a constant c > 0 independent of N such that for all
g ∈ Hs

T ,

‖g − PNg‖C(X) ≤ c
(
N +

1

2

)1−s
‖g − PNg‖Hs

T (X)
. (6.10)

and

‖g − PNg‖H0
T (X)

≤
(
N +

1

2

)−s
‖g − PNg‖Hs

T (X)
. (6.11)

Proof. From (3.5) and the definition of the spherical harmonics in (2.3), we observe that

n∑
k=−n
2|(n+k)

∣∣∣λkn∣∣∣2 =
n∑

k=−n
2|(n+k)

(n− k)!

(n+ k)!

∣∣∣P kn (0)
∣∣∣2 ≤ 4π

2n+ 1

n∑
k=−n

∣∣∣Y k
n

(
0,
π

2

)∣∣∣2 = 1,

where the last equality follows directly from the addition formula for spherical harmonics, cf. [7,
(1.2.8)]. We will show that the Fourier series of g − PNg converges uniformly. Let (σ, t) ∈ X. By
the definition of Bk

n, the Cauchy–Schwartz inequality and since |Pn(t)| ≤ 1 for all n ∈ N0, we have∣∣∣∣∣∣
∑

(n,k)∈Ie\IeN

ĝ (n, k)Bk
n(σ, t)

∣∣∣∣∣∣ =
∑

(n,k)∈Ie\IeN

∣∣∣∣∣ĝ (n, k)

(
n+ 1

2

)s
λkn

∣∣∣∣∣
∣∣∣∣∣
√

2n+ 1

4π
eikσPn(t)λkn

∣∣∣∣∣
(
n+

1

2

)−s

≤ ‖g − PNg‖Hs
T (X)

√√√√ ∞∑
n=N+1

(
n+

1

2

)1−2s
.

Since s > 1, the last sum converges and it is bounded by O((N + 1/2)2−2s). Hence, the Fourier
series of g − PNg converges uniformly and we conclude the existence of a constant c independent
of N and g such that

|[g − PNg](σ, t)| =

∣∣∣∣∣∣
∑

(n,k)∈Ie\IeN

ĝ (n, k)Bk
n(σ, t)

∣∣∣∣∣∣ ≤ c ‖g − PNg‖Hs
T (X)

(
N +

1

2

)1−s
,

which implies (6.10). Analogously, (6.11) follows by the calculation

‖g − PNg‖2H0
T (X)

=
∑

(n,k)∈Ie\IeN

∣∣∣∣ ĝ(n, k)

λkn

∣∣∣∣2 (n+ 1
2)2s

(n+ 1
2)2s

≤
(
N +

1

2

)−2s
‖g − PNg‖2Hs

T (X)
.

Now we are able to prove the following upper bound for the aliasing error.

Theorem 6.6. Let s > 1, f ∈ Hs
e (S2) and g = T f . Furthermore, let for every N ∈ N0 the

hyperinterpolation LN be exact. If the mollifier ψ satisfies
∣∣∣ψ̂(n)

∣∣∣ ≤ 1 for all n ∈ N0, then there

exists a constant c > 0 that is independent of f and N so that∥∥∥ψ ? T † (g − LNg)
∥∥∥
L2(S2)

≤ c
(
N +

1

2

)3/2−s
‖f‖Hs(S2) . (6.12)
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Proof. We first note that, because s > 1, g is continuous and hence LNg is well-defined. We will
show the estimate ∥∥∥T † (LNg − g)

∥∥∥
L2(S2)

≤ c
(
N +

1

2

)3/2−s
‖f‖Hs(S2) ,

from which the claimed formula (6.12) follows by the assumptions on ψ and (5.2). Let PN denote
the orthogonal projection of L2(S2) onto the range of LN . Since LN is a projector, we have
LNPN = PN and therefore∥∥∥T † (LNg − g)

∥∥∥
L2(S2)

= ‖LNg − g‖H0
T (X)

= ‖LN (g − PNg)− (g − PNg)‖H0
T (X)

≤ ‖LN (g − PNg)‖H0
T (X)

+ ‖g − PNg‖H0
T (X)

. (6.13)

Now we examine both summands of (6.13). For the second summand, we obtain by (6.11) from
the previous lemma

‖g − PNg‖H0
T (X)

≤
(
N +

1

2

)−s
‖g − PNg‖Hs

T (X)
. (6.14)

For the first summand of (6.13), we have by (6.8)

‖LN (g − PNg)‖2H0
T (X)

=
∑

(n,k)∈IeN

∣∣∣∣ [LN (g − PNg)]∧(n, k)

λkn

∣∣∣∣2 .
By (3.6), there exists a constant c1 independent of g and N such that

‖LN (g − PNg)‖H0
T (X)

≤ c1
(
N +

1

2

)1/2

‖LN (g − PNg)‖L2(X) . (6.15)

By Lemma 6.4,
‖LN (g − PNg)‖L2(X) ≤

√
4π ‖g − PNg‖C(X) . (6.16)

By (6.10), there exists a constant c2 independent of g and N such that

‖g − PNg‖C(X) ≤ c2
(
N +

1

2

)1−s
‖g − PNg‖Hs

T (X)
. (6.17)

Combining (6.13), (6.14), (6.15), (6.16), and (6.17) yields∥∥∥T † (LNg − g)
∥∥∥
L2(S2)

≤ c
(
N +

1

2

)3/2−s
‖g − PNg‖Hs

T (X)

where c is some positive constant. Since PN is a projection, ‖g − PNg‖Hs
T (X)

≤ ‖g‖Hs
T (X)

, which

finally proves the theorem.

6.3. Proof of the optimality

Lemma 6.7. Let ψ ∈ L2(S2), s > 1 and S > 0. Furthermore, let the estimator EN,ψ and the noise
ε be as in Section 5.1, and the hyperinterpolation LN be exact. Then there exists a largest number

L∗ ≥ 0 such that ψ̂sL∗(n) ≤
∣∣∣ψ̂(n)

∣∣∣ for all n ∈ N0. Moreover, for every sufficiently large N , the

maximum risk (5.4) is bounded from below by

sup
f∈F (s,S)

E ‖f − EN,ψ(T f + ε)‖2L2(S2) ≥ E ‖EN,ψs
L∗
ε‖2L2(S2) +

S2(
L∗ + 1

2

)2s . (6.18)
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Proof. We first show the existence of L∗. The set

L =
{
L ≥ 0 | ψ̂sL(n) ≤

∣∣∣ψ̂(n)
∣∣∣ for all n ∈ N0

}
is not empty because 0 ∈ L . Since ψ ∈ L2(S2), we have limn→∞ ψ̂(n) = 0. On the other hand,
limL→∞ ψ̂

s
L(n) = 1 for all n ∈ N0. Thus, the set L is bounded. Hence, there exists L∗ = sup L .

Let Lj , j ∈ N0, be a sequence of elements of L converging to L∗. Since L 7→ ψ̂sL(n) is continuous

and by definition ψ̂sLj (n) ≤ |ψ̂(n)| for all n ∈ N0, the latter must also hold for L∗ instead of Lj ,
which proves that L∗ ∈ L .

We choose an integer n∗ ∈ N0 for which ψ̂sL∗(n
∗) = |ψ̂(n∗)|. We define the polynomial

f∗ =
S

(n∗ + 1
2)s

Y n∗
n∗ .

Hence ‖f∗‖Hs(S2) = S and we have f∗ ∈ F (s, S). By (6.1),

sup
f∈F (s,S)

E ‖f − EN,ψ(T f + ε)‖2L2(S2) ≥ E ‖f∗ − EN,ψ(T f∗ + ε)‖2L2(S2)

= ‖f∗ − EN,ψT f∗‖2L2(S2) + E ‖EN,ψε‖2L2(S2) .

These two summands are the bias and variance error with respect to f∗. We choose N to be larger
than n∗. Since f∗ is a polynomial of degree n∗, we have EN,ψ(T f∗) = ψ ? f∗. Using the definition
of ψsL∗ , the bias error reads

‖f∗ − EN,ψ(T f∗)‖2L2(S2) = ‖f∗ − ψ ? f∗‖2L2(S2)

=
∑

(n,k)∈IeN

∣∣∣(1− ψ̂(n)
)
f̂∗ (n, k)

∣∣∣2 =
∣∣∣1− ψ̂(n∗)

∣∣∣2 ∣∣∣f̂∗ (n∗, n∗)
∣∣∣2

by the definition of f∗. Since |1− z|2 ≥ (1− |z|)2 for all z ∈ C, we have

‖f∗ − EN,ψ(T f∗)‖2L2(S2) ≥
(

1− ψ̂sL∗(n∗)
)2 S2(

n∗ + 1
2

)2s =
S2

(L∗ + 1
2)2s

.

By the definition of L∗, we have |ψ̂(n)| ≥ ψ̂sL∗(n) for all n ∈ N0. Therefore, we obtain by (6.3)

E ‖EN,ψε‖2L2(S2) ≥ E ‖EN,ψs
L∗
ε‖2L2(S2) .

Now we can finally prove the main theorem. The idea behind this proof is, to calculate the
parameter L such that the variance and smoothing error are about equal and to show that the
aliasing error is asymptotically smaller if the smoothness parameter s is sufficiently large.

Proof of Theorem 5.4. We note that if N →∞, also the number of points M = M(N) must go to
infinity since LN is assumed to be exact. If N and thus M is sufficiently large, then, by Lemma
6.7, there exists an L ≥ 0 such that

inf
ψ∈L2[−1,1]

sup
f∈F (s,S)

E ‖f − EN,ψ(T f + ε)‖2L2(S2) ≥ E ‖EN,ψsLε‖
2
L2(S2) +

S2(
L+ 1

2

)2s (6.19)

? γ1
δ2ds

(
L+ 1

2

)3
M

+
S2(

L+ 1
2

)2s , (6.20)
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where the last line is obtained by plugging in (6.4) and (6.2). The constant ds is given in (5.8). We
want to minimize the right-hand side of (6.19) with respect to L and denote the optimal argument
with L(M).

In order to minimize (6.20), we compute the zeros of its derivative with respect to L,

(−2s)S2

(
L+

1

2

)−2s−1
+ 3γ1

δ2ds
M

(
L+

1

2

)2

= 0 ⇐⇒ 3γ1
3δ2ds
M

(
L+

1

2

)2s+3

= 2sS2.

Hence, (6.20) is asymptotically minimized for M →∞ by the choice

L = L1(M) :=

(
2sS2

3γ1δ2ds
M

) 1
2s+3

− 1

2
. (6.21)

Plugging this value L1(M) for L into (6.20) yields the following asymptotic lower bound of the
maximum risk for M →∞,

E ‖EN,ψsLε‖
2
L2(S2) +

S2(
L+ 1

2

)2s ?

(
γ1δ

2ds

(
2sS2

3γ1δ2ds

) 3
2s+3

+ S2

(
2sS2

3γ1δ2ds

) −2s
2s+3

)
M

−2s
2s+3 ,

which gives the first inequality of (5.7). Here we also see that, for the choice L1(M), both terms

of the sum in the right side of (6.20) decrease of the order M
−2s
2s+3 .

In the second part of the proof, we derive the upper bound of the maximum risk with the mollifier
ψsL. By the decomposition (6.1) combined with the upper bound from (6.7), we have for f ∈ F (s, S)
and for any L > 0

E
∥∥∥f − EN,ψsL(T f + ε)

∥∥∥2
L2(S2)

≤

(
S(

L+ 1
2

)s +
∥∥∥ψsL ? T † (T f − LNT f)

∥∥∥
L2(S2)

)2

+E
∥∥∥EN,ψsLε∥∥∥2L2(S2)

.

(6.22)
By (6.4) and Theorem 6.6, there exists a constant c > 0 such that

E
∥∥∥f − EN,ψsL(T f + ε)

∥∥∥2
L2(S2)

>

(
S(

L+ 1
2

)s + c

(
N +

1

2

)3/2−s
S

)2

+ γ2
δ2ds

(
L+ 1

2

)3
M

.

Now we plug in L1(M) from the first part of the proof and we obtain

E
∥∥∥f − EN,ψsL(T f + ε)

∥∥∥2
L2(S2)

>

(
S

(
2sS2

3γ1δ2ds

) −s
2s+3

M
−s

2s+3 + c

(
N +

1

2

)3/2−s
S

)2

+ γ2δ
2ds

(
2sS2

3γ1δ2ds

) 3
2s+3

M
−2s
2s+3 .

(6.23)

By the applicability of the hyperinterpolations, we have M = O(N2). We have also assumed that
s > (1 +

√
10)/2, which implies 3/2− s < −s/(2s+ 3). Hence, only those terms in the sum on the

right-hand side of (6.23) that grow like M−2s/(2s+3) play a significant role as M goes to infinity.
Thus, the term c(N + 1/2)3/2−sS, which comes from the aliasing error, is asymptotically negligible
for M →∞. This yields the upper bound

sup
f∈F (s,S)

E
∥∥∥f − EN,ψs

L1(M)
(T f + ε)

∥∥∥2
L2(S2)

·M
2s

2s+3 > γ2δ
2ds

(
2sS2

3γ1δ2ds

) 3
2s+3

+ S2

(
2sS2

3γ1δ2ds

) −2s
2s+3

as N and thus M(N) approaches infinity, which proves the second inequality of (5.7).
It is left to show the asymptotic optimality (5.6) of the family of mollifiers ψsL to complete

the proof. When we insert the optimal value L(M) into both (6.19) and (6.22), those two bounds
coincide except for the aliasing term, but since L(M) grows of the same asymptotic order as L1(M),
the aliasing part is again negligible.
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7. Numerical tests

7.1. Spherical Fourier algorithm

The algorithm. The estimator EN,ψg can be computed numerically in a fast and stable way. To
this end, we decompose (5.3) into a three-step process. Suppose we have given a quadrature rule on
X with the nodes xm ∈ X and the weights wm as well as function values g(xm) for m = 1, . . . , M .

i) Compute the Fourier coefficients of g:

L̂Ng(n, k) :=
M∑
m=1

wmg(xm)Bk
n(xm), (n, k) ∈ IeN . (7.1)

If the quadrature uses the tensor product structure like the one in Theorem 4.3, this compu-
tation can be accelerated yielding to a complexity of O(N2 log2N) operations, which we will
show below.

ii) Do the inversion and regularization in the Fourier space:

ÊN,ψf(n, k) :=
ψ̂(n)

λkn
L̂Ng(n, k), (n, k) ∈ IeN ,

which needs O(N2) arithmetic operations.
iii) Compute the estimator at some nodes ξj ∈ S2 from its Fourier coefficients:

EN,ψf(ξj) :=
∑

(n,k)∈IeN

ÊN,ψf(n, k)Y k
n (ξj), j = 1, . . . , J.

This computation can also be done in O(N2 log2N) steps using the non-equispaced fast
spherical Fourier transform (NFSFT) from [23], provided that the number of evaluation points
J ∈ O(N2).

This algorithm has an overall numerical complexity of O(N2 log2N).

Efficient computation of the first step. We are using a tensor product ansatz in step i). Suppose
we have a tensor product quadrature rule on X with the nodes (σ`, tj) ∈ X and the weights w`,j as
well as function values g(σ`, tj) for ` = 0, . . . , 2N and j = 0, . . . , N + 1. We use equidistant nodes
σ` = 2π`/(2N + 1) ∈ T on the torus and weights ω`,j = ωj depending only on j. Hence equation
(7.1) becomes for n = 0, . . . , N and k = −N, . . . , N

L̂Ng(n, k) =

√
2n+ 1

4π

N∑
j=0

ωj

[
2N∑
`=0

g

(
2π`

2N + 1
, tj

)
e−ik2π`/(2N+1)

]
Pn(tj) (7.2)

=

√
2n+ 1

4π

N∑
j=0

ωjA(k′, j)Pn(tj), (7.3)

where A(k′, j) is the term in brackets from equation (7.2) and k′ := k+N ∈ {0, . . . , 2N}. We first
look at the computation of

A(k′, j) =
2N∑
`=0

g

(
2π`

2N + 1
, tj

)
e
−2πi`k′
2N+1 e

2πi`N
2N+1 = FFT

[(
g

(
2π`

2N + 1
, tj

))2N

`=0

]
(k′) · e

2πi`N
2N+1 ,

where the fast Fourier transform (FFT) [6] of a vector z = (z`)
2N
`=0 is defined by

FFT [z] (k′) =

2N∑
`=0

z`e
−2πi`k′/(2N+1), k′ = 0, . . . , 2N.
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The FFT of length 2N + 1 has a numerical complexity of O(N logN). We compute N + 1 such
FFTs, which yields a complexity of O(N2 logN).

In equation (7.3), the sum over j is a discrete Legendre transform of length N + 1, which is
done 2N + 1 times (for every k = −N, . . . , N). Discrete Legendre transforms of length N + 1
can be computed in O(N log2N) operations [30]. So the computation of (7.1) has a complexity of
O(N2 log2N).

7.2. Inversion via the Radon transform in the plane

The vertical slice transform on the sphere is closely related to the Radon transform in the plane,
which was first described in [31]. Before we show this connection, we need the following lemma,
that gives a parametric formula for computing the vertical slice transform T .

Lemma 7.1. For all (σ, t) ∈ X,

T f (σ, t) =
1

2π

∫ 2π

0
f

t
 cosσ

sinσ
0

+
√

1− t2

 − sinσ cosϕ
cosσ cosϕ

sinϕ

 dϕ.

Proof. Let t ∈ [−1, 1]. We first look at the case σ = 0. Then the integration domain of (3.1)
is a circle perpendicular to the ξ1–axis with center (t, 0, 0)> and radius

√
1− t2. Note that the

definition of T is normalized with respect to the circumference of this circle. We have

T f(0, t) =
1

2π

∫ 2π

0
f

t
 1

0
0

+
√

1− t2

 0
cosϕ
sinϕ

 dϕ.

The claimed formula follows by rotation around the ξ3–axis with the angle σ.

The Radon transform on the unit disc B2 = {ξ ∈ R2 | ξ21 + ξ22 < 1} computes the integrals of a
function f̃ : B2 → C along all line segments (cf. [31]), i.e.,

Rf̃(σ, t) =

∫ √1−t2
−
√
1−t2

f̃

(
t

(
cosσ
sinσ

)
+

(
− sinσ
cosσ

)
u

)
du, (σ, t) ∈ T× (−1, 1). (7.4)

Theorem 7.2. For a function f : S2 → C that is even in the third coordinate, denote with

f̃ : B2 → C, (ξ1, ξ2) 7→
f
(

(ξ1, ξ2,
√

1− ξ21 − ξ22)>
)

π
√

1− ξ21 − ξ22

its weighted orthogonal projection onto the ξ1–ξ2–plane. Then

T f(σ, t) = Rf̃ (σ, t) , (σ, t) ∈ T× (−1, 1) .

Remark. The function f̃ can be interpreted as follows: the function f defined on the sphere is
projected orthogonally onto the ξ1–ξ2–plane, and then divided by the weight π

√
1− ξ21 − ξ22 . This

projection is well-defined since f is even with respect to ξ3.

Proof. According to Lemma 7.1 and because f is even in the third component, T f can be expressed
in terms of f̃ by

T f (σ, t) =

∫ π

0
f̃

(
t

(
cosσ
sinσ

)
+
√

1− t2 cosϕ

(
− sinσ
cosσ

))√
1− t2

√
1− (cosϕ)2 dϕ
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for all (σ, t) ∈ T× (−1, 1) since

1−
∥∥∥∥t( cosσ

sinσ

)
+
√

1− t2 cosϕ

(
− sinσ
cosσ

)∥∥∥∥2 = 1− t2 −
(
1− t2

)
(cosϕ)2 .

Performing the substitution

u =
√

1− t2 cosϕ, du = −
√

1− t2 sinϕdϕ = −
√

1− t2
√

1− (cosϕ)2 dϕ

leads to

T f(σ, t) =

∫ √1−t2
−
√
1−t2

f̃

(
t

(
cosσ
sinσ

)
+ u

(
− sinσ
cosσ

))
du.

This theorem gives a nice way of reconstructing a function f ∈ C(S2) given its vertical slice
transform T f , namely

f(ξ) = π
√

1− ξ21 − ξ22 R
−1[T f ](ξ1, ξ2), ξ ∈ {(ξ1, ξ2, ξ3) ∈ S2 | ξ3 6= 0}, (7.5)

where we first compute the inverse Radon transform of T f and then multiply it by π
√

1− ξ21 − ξ22 .
However, if the function f does not vanish on the equator, the respective function f̃(ξ1, ξ2) grows
infinitely near the boundary of the unit disc.

The inversion of the Radon transform has been treated by many authors, see e.g. [31, 35, 21, 27,
29, 42, 37]. For our comparison we focus on two algorithms: the standard filtered back projection
(FBP) algorithm [21], and an algorithm based on orthogonal polynomial expansion on the unit disc
(OPED) [42]. One important difference between both algorithms is that in the standard filtered
back projection algorithm the Radon transform Rf̃(σ, t) is sampled uniformly in t while the OPED
algorithm requires a sampling at Chebyshev points. For the standard backprojection algorithm,
we use the iradon routine from the Matlab imaging toolbox, and for the algorithm based on
orthogonal polynomial expansion on the unit disc, we use the so-called fast OPED algorithm [43].
The numerical complexity of both algorithms is O(N3), provided we have sampled Rf̃(σ, t) at
O(N2) points and we compute f at the same number of points.

7.3. Comparison of the algorithms

In this section, we present numeric results to compare our NFSFT algorithm based on spherical
harmonics with algorithms based on the Radon transform in the plane.

Smooth test function. We chose the test function

f(ξ) = sin(9(ξ1 − ξ22)) exp(−ξ41 − ξ22) cos(5ξ2) + 1, ξ ∈ S2. (7.6)

Since f is even with respect to ξ3, it suffices to consider the projection of f onto the ξ1–ξ2–plane,
which is depicted in Figure 2. Its vertical slice transform T f is computed by quadrature applied
to (3.1). Although the above algorithms we want to compare could easily be inverted, we apply
a simple quadrature-based method for the computation of the forward transform to avoid inverse
crime.

At first, we apply the three algorithms to undisturbed data. The NFSFT and FBP algorithm
are applied to same number of M = 513 · 257 = 131 841 data points, while the OPED algorithm
uses 5132 = 263 169 points. However, while the grid for the FBP algorithm is equally spaced; the
grids for the OPED algorithm as well for our NFSFT algorithm based on spherical harmonics are
denser close to the boundary t = ±1.
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Figure 2: Test function f from (7.6) projected onto the ξ1–ξ2–plane (left) and its vertical slice
transform T f (right)

(a) NFSFT (MSE 5.48 · 10−9) (b) FBP (MSE 1.96 · 10−3) (c) OPED (MSE 5.58 · 10−5)

Figure 3: Logarithmic plot of the error of the reconstruction with exact data for the different
algorithms with the respective mean squared errors (MSE) in parentheses.

In Figure 3, the reconstruction error for the three methods is illustrated. One can clearly see
the main disadvantage of the FBP algorithm, which is due to the function f̃ being unbounded
near the boundary on the unit disc. Even though f̃ is multiplied by

√
1− ξ21 − ξ22 , the error of

the reconstruction is still considerably larger near the boundary. The smaller error of the OPED
reconstruction close to the boundary of the disc compared to the FBP algorithm is due to the
different sampling and the fact that the former is specifically designed for functions supported
on the disc. Nevertheless, the OPED reconstruction does not meet the accuracy of the NFSFT
algorithm based on spherical harmonics.

For our next test, we add some Gaussian noise with a standard deviation of 0.01 to the data. In
Figure 4, one can see the reconstruction error for the NFSFT algorithm without any regularization,
which is the same as using the Dirichlet kernel of degree N = 256 as mollifier. Figure 4b shows
the error with regularization where the regularization parameter L is chosen optimally to reduce
the L2–error. The reconstruction with the FBP algorithm shown in Figure 4c looks slightly better
than the one with the unregularized NFSFT algorithm, as long as we stay away from the boundary.
For the FBP algorithm, we used the Hann window, which already performs a regularization. The
OPED reconstruction is not shown because it does not include a regularization.

To illustrate the minimax rate of the MISE from Theorem 5.4, we did the following. We chose
the smoothness parameter s = 2 and computed the norm S = ‖f‖H2(S2) ≈ 166 numerically. Then,
for different degrees N , we calculated the parameter L as in (6.21) with γ1 = γ2 = 1, reconstructed
the function f at the Gauss–Legendre nodes using the NFSFT algorithm as we did above with the
calculated value of L, and computed the integrated squared error ‖f − EN,ψ2

N
(T f + ε)‖2L2(S2) via
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(a) NFSFT with Dirichlet kernel
(MSE 6.97 · 10−3)

(b) NFSFT with regularization
(MSE 8.28 · 10−6)

(c) FBP with Hann filter
(MSE 2.97 · 10−3)

Figure 4: Reconstruction from noisy data with standard deviation 0.01 in the top row and a loga-
rithmic plot of respective errors |f − Ef | in the bottom row

quadrature. In order to obtain an estimate of the MISE, we repeated this procedure 20 times with
a new instance of the random error ε each time, computed the mean of the integrated squared error
and compared it with the theoretical minimax rate (5.7). As one can see in Figure 5, our achieved
error almost coincides with the minimax rate. Actually, the achieved error is slightly higher than
the minimax rate, which may be explained by the two facts: that we set γ2 = 1, where this value
actually might be slightly bigger than one, and that inaccuracies caused by rounding errors occur
during the numerical computation.

Non-smooth test function. For this test, we chose a function whose vertical slice transform is
known analytically. In [40], explicit formulas for the Radon transform of some simple functions are
given. If we take such a function f̃(ξ1, ξ2) supported in the unit disc ξ21 + ξ22 < 1 in the plane, we
can use the construction from Theorem 7.2 to define a test function on the sphere by

f(ξ) = π
√

1− ξ21 − ξ22 f̃(ξ1, ξ2), ξ ∈ S2,

and Theorem 7.2 gives us T f = Rf̃ . As such a function, we define

h̃(ξ1, ξ2) =

{
1−

√
ξ21 + ξ22 , ξ21 + ξ22 < 1

0, otherwise,

whose graph is a circular cone with height 1 and radius 1, centered at the origin. Since h̃ is radially
symmetric with respect to the origin, its Radon transform Rh̃(σ, t) is independent of σ. Hence, we
can choose σ = 0 and see that Rh̃(σ, t) is the integral along the line ξ1 = t and obtain

Rh̃(σ, t) =

∫ √1−t2
−
√
1−t2

1−
√
r2 + t2 dr =

√
1− t2 − t2 Arcsch

(
x√

1− t2

)
, (σ, t) ∈ X,
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Figure 5: Log–log plot of the MISE of the Fourier reconstruction compared with the minimax rate

where Arcsch denotes the inverse hyperbolic cosecant function, see [2, Section 4.6]. To define the
function f̃ , we first scale h with the factors a, b > 0 in direction of ξ1 and ξ2, then rotate it through
the angle α about the origin and shift it to (ζ1, ζ2) ∈ R2. We set the function

f̃(ξ1, ξ2) := h̃

(
(ξ1 − ζ1) cos(α) + (ξ2 − ζ2) sin(α)

a
,
−(ξ1 − ζ1) sin(α) + (ξ2 − ζ2) cos(α)

b

)
(7.7)

for (ξ1, ξ2) ∈ B2. Then, by [40, Appendix B], its Radon transform is given by

Rf̃(σ, t) = abRh̃
(

arctan

(
b

a tanσ

)
, (t− ζ1 cosσ − ζ2 sinσ)

√
a2 cos(σ − α)2 + b2 sin(σ − α)2

)
for (σ, t) ∈ X.

We made a particular choice of f̃0 as the linear combination of functions of the form (7.7), which
is illustrated in Figure 6. Since the Radon transform is linear, we also have an explicit formula
for its vertical slice transform T f = Rf̃ . The reconstructions of f with the three algorithms for
exact data are plotted in Figure 7. The FBP algorithm yields much better results than before. The
overshoot of the FBP reconstruction around the boundary of the disc does not occur here because
the test function f vanishes around the equator (or equivalently f̃ vanishes at the boundary of the
unit disc). However, it still does not achieve the accuracy of the NFSFT method. Moreover, the
error of the FBP reconstruction is concentrated where f is not smooth, while this concentration is
not as strong in the NFSFT reconstruction. The accuracy of the OPED algorithm is comparable
to the FBP algorithm.

A. Proof of the applicability of the Fejér quadrature

This section is about the proof of Theorem 4.3. Due to the exactness of the Fejér quadrature and
the equidistant quadrature on the torus and the unit interval, respectively, the hyperinterpolation
LN from (4.3) is also exact. Furthermore, we have M(N) = (2N + 1)2 ∈ O(N2). So the first
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Figure 6: Non-smooth test function f0 (left) and its vertical slice transform T f0 (right)

(a) NFSFT reconstruction (b) FBP reconstruction (c) OPED reconstruction

(d) Error of NFSFT reconstruction
(MSE 3.93 · 10−6)

(e) Error of FBP reconstruction
(MSE 2.29 · 10−5)

(f) Error of OPED reconstruction
(MSE 1.17 · 10−5)

Figure 7: Reconstruction of the non-smooth test function from exact data

two conditions of Definition 4.2 are satisfied. Proving the last condition requires more work. Since∣∣Bk
n(σ, t)

∣∣2 = 2n+1
4π |Pn(t)|2, we observe that

2N+1∑
`,j=1

∣∣∣∣ 2π

2N + 1
ω2N+1
j Bk

n

(
2π`

2N + 1
, cos θ2N+1

j

)∣∣∣∣2 =
2π
(
n+ 1

2

)
2N + 1

2N+1∑
j=1

∣∣∣ω2N+1
j Pn(cos θ2N+1

j )
∣∣∣2 (A.1)

In order to prove (4.2), we have to show that (A.1) is equal to 4π/(2N + 1)2 up to some constants.
We are going to do this with the help of the following two lemmas.
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Lemma A.1. For N ∈ N0 and n ≤ N we have

2N+1∑
j=1

∣∣∣ω2N+1
j Pn

(
cos θ2N+1

j

)∣∣∣2 = γ2N
π

2N + 1

∫ 1

−1

√
1− t2 |Pn (t)|2 dt,

where for all N ∈ N0

0.9028233 =: γ1 < γN < γ2 := 1.1789797. (A.2)

Proof. We want to derive an approximation of the quadrature weights ω2N+1
j from (4.4). To this

end, we define for N ∈ N the function

SN (θ) =

N∑
r=1

sin ((2r − 1) θ)

2r − 1
, θ ∈ (−π, π) , (A.3)

which is equal to the sum in (4.4) if θ = θ2N+1
j . The function SN is the N–th partial sum of the

Fourier series of the Heaviside step function θ 7→ π/4 · sgn(θ), θ ∈ (−π, π), where sgn denotes the
sign function, see [15, 1.442]. So SN (θ) converges for N →∞ to the constant π/4 for all θ ∈ (0, π),
but this convergence is not uniform in θ. In fact, SN (θ) oscillates heavily around 0 and π, which
is known as the Gibbs phenomenon. In [19], it was shown that SN (θ2N+1

j ) = γN,j · π/4 with some
constants γN,j satisfying γ1 < γN,j < γ2 for all j = 1, . . . , 2N + 1, and N ∈ N0. Hence, we have

ω2N+1
j =

π

2N + 2
γN,j sin θ2N+1

j . (A.4)

The Gauss–Chebyshev quadrature of the second kind (see [2]) uses the same nodes cos θ2N+1
j as the

Fejér quadrature and the weights π
2N+2(sin θ2N+1

j )2. Because the (2N+1)–point Gauss–Chebyshev
quadrature of the second kind is exact of degree 4N + 1 for the integration with respect to the
measure

√
1− t2 dt, we have for n ≤ N∫ 1

−1
|Pn (t)|2

√
1− t2 dt =

π

2N + 2

2N+1∑
j=1

(
sin θ2N+1

j

)2 ∣∣∣Pn (cos θ2N+1
j

)∣∣∣2 ,
where Pn is the Legendre polynomial of degree n. Considering this and (A.4) leads to

2N+1∑
j=1

∣∣∣ω2N+1
j Pn

(
cos θ2N+1

j

)∣∣∣2 =

(
π

2N + 2

)2 2N+1∑
j=1

(
sin θ2N+1

j

)2
γ2N,j

∣∣∣Pn (cos θ2N+1
j

)∣∣∣2
= γ2N

π

2N + 2

2N+1∑
j=1

π

2N + 2

(
sin θ2N+1

j

)2 ∣∣∣Pn (cos θ2N+1
j

)∣∣∣2
= γ2N

π

2N + 2

∫ 1

−1

√
1− t2 |Pn (t)|2 dt,

where γN satisfies the inequality (A.2).

Lemma A.2. For n→∞, the Legendre polynomials Pn satisfy the equation(
n+

1

2

)∫ 1

−1
|Pn (t)|2

√
1− t2 dt =

2

π
+O

(
n−1/2

)
. (A.5)
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Proof. This proof is based on the asymptotic approximation of the Legendre polynomials by Stielt-
jes’ generalization of the Laplace–Heine formula, cf. [38, 8.21], which states that for n→∞

Pn (cos θ) =

√
2

πn

cos
((
n+ 1

2

)
θ − π

4

)
√

sin θ
+O

(
(n sin θ)−3/2

)
, 0 < θ < π.

Thus, we have∫ 1

−1
|Pn (t)|2

√
1− t2 dt =

∫ π

0
(Pn (cos θ))2 (sin θ)2 dθ

=

∫ π

0

(
2

πn

(
cos
((
n+ 1

2

)
θ − π

4

))2
sin θ

+O
(

(n sin θ)−3/2
))

(sin θ)2 dθ

=
2

πn

∫ π

0

(
cos

((
n+

1

2

)
θ − π

4

))2

sin θ dθ +O
(
n−3/2

)
.

With the formula (cosx)2 = (cos 2x+ 1) /2, we observe that(
cos

((
n+

1

2

)
θ − π

4

))2

=
cos
(
(2n+ 1) θ − π

2

)
+ 1

2
=

sin ((2n+ 1) θ) + 1

2
.

Using this equation and the integral formula [15, 2.532.1], we obtain for n ≥ 1∫ π

0

(
cos

((
n+

1

2

)
θ − π

4

))2

sin θ dθ =
1

2

∫ π

0
(sin ((2n+ 1) θ) sin θ + sin θ) dθ

=
1

2

[
cos (2nθ)

4n
− sin ((2n+ 2) θ)

2 (2n+ 2)
− cos θ

]π
0

= 1,

from which the claimed formula (A.5) follows.

Acknowledgments
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[16] E. Hecke. Über orthogonal-invariante Integralgleichungen. Math. Ann., 78(1):398–404, 1917.

[17] S. Helgason. The Radon Transform. Birkhäuser, 2nd edition, 1999.
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[38] G. Szegő. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, USA, 4th edition, 1975.

[39] N. Thorstensen and O. Scherzer. Convergence of variational regularization methods for imaging
on Riemannian manifolds. Inverse Problems, 28(1):015007, 2012.

[40] P. Toft. The Radon Transform - Theory and Implementation. PhD thesis, Technical University
of Denmark, 1996.

[41] A. Tsybakov. Introduction to Nonparametric Estimation. Springer Verlag, Berlin, 2009.

[42] Y. Xu. A new approach to the reconstruction of images from Radon projections. Adv. in Appl.
Math., 36(4):388–420, 2006.

[43] Y. Xu and O. Tischenko. Fast OPED algorithm for reconstruction of images from Radon data.
East. J. Approx., 13(4):427–444, 2007.

[44] G. Zangerl and O. Scherzer. Exact reconstruction in photoacoustic tomography with circular
integrating detectors II: Spherical geometry. Math. Methods Appl. Sci., 33(15):1771–1782,
2010.

28


	1 Introduction
	2 Preliminaries and notation
	3 The vertical slice transform on the sphere
	4 Quadrature and hyperinterpolation
	5 Reconstruction
	5.1 The mollifier method
	5.2 Asymptotically optimal mollifiers

	6 Proof of Theorem 5.4
	6.1 Variance error
	6.2 Bias error
	6.2.1 Smoothing error
	6.2.2 Aliasing error

	6.3 Proof of the optimality

	7 Numerical tests
	7.1 Spherical Fourier algorithm
	7.2 Inversion via the Radon transform in the plane
	7.3 Comparison of the algorithms

	A Proof of the applicability of the Fejér quadrature

