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The cone-beam transform consists of integrating a function defined on
the three-dimensional space along every ray that starts on a certain scan-
ning set. Based on Grangeat’s formula, Louis [2016, Inverse Problems 32
115005] states reconstruction formulas based on a new generalized Funk–
Radon transform on the sphere.

In this article, we give a singular value decomposition of this generalized
Funk–Radon transform. We use this result to derive a singular value decom-
position of the cone-beam transform with sources on the sphere thus general-
izing a result of Kazantsev [2015, J. Inverse Ill-Posed Probl. 23(2):173–185].

Keywords and Phrases. Cone-beam transform, singular value decomposi-
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1 Introduction

The cone-beam transform integrates a function f : Rd → R along every ray that starts in
a certain scanning set Γ ⊂ Rd. We define the cone-beam transform, or divergent beam
X-ray transform, by

Df(a,ω) =

∫ ∞
0

f(a+ tω) dt, ω ∈ Sd−1, a ∈ Γ.

The cone-beam transform is widely used in medical imaging and nondestructive testing
of three-dimensional objects. Uniqueness of the reconstruction was shown under rather
weak assumptions, namely that Γ is an infinite set with positive distance to the convex
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hull of the support of f , see [13]. An explicit inversion formula [35] is known in case
the Tuy–Kirillov completeness condition is satisfied, which states that the scanning set
Γ intersects every hyperplane hitting supp f transversally, see [26, Chap. 2]. In 3D, if
the Tuy–Kirillov condition is not satisfied, one can stably detect singularities of f only
along planes that meet the scanning curve Γ, see [29].

The present article’s main focus is the setting where the scanning set Γ covers the
whole sphere, where, however, in most practical application, consider Γ to be only a
curve, cf. [8, 33]. In 2015, Kazantsev [16] showed the singular value decomposition of
the cone-beam transform D where the function f is supported inside the unit ball B3

and the scanning set Γ is the sphere S2. The singular value decomposition of the parallel
beam X-ray transform is due to Maaß [20]. In 2016, Louis [19] gave new inversion
formulas for the cone-beam transform for dimension d = 3. The proof of these formulas
utilized Grangeat’s formula and a generalized Funk–Radon transform S(j) on the sphere,
which is defined for a function f : Sd−1 → C by

S(j)
d f(ξ) =

∫
Sd−1

δ(j)(ξ>η) f(η) dη, ξ ∈ Sd−1,

where δ(j) denotes the j-th derivative of the Dirac delta function and j ∈ N0. This
definition can be imagined by first taking the j-th derivative of f in direction of ξ and
then computing the integral along the subsphere perpendicular to ξ, which is a great
circle for d = 3. For j = 0, we obtain the Funk or Funk–Radon transform S(0)

d , which
assigns to f its integrals along all great circles. The generalized Funk–Radon transform
S(j)
d belongs to the class of convolution operators on the sphere, cf. [15].
The aim of the present paper is twofold. Firstly, we perform a comprehensive analysis

on the properties of the generalized Funk–Radon transform S(j)
d . Secondly, we utilize

Grangeat’s formula and our previous findings in order to obtain the singular value de-
composition of the cone-beam transform D.

In Theorem 3.2, we derive the singular value decomposition of the generalized Funk–
Radon transform S(j)

d . This allows us to provide a characterization of its nullspace and

range in Section 3.2. In particular, we show that S(j)
d is a continuous and open operator

between the Sobolev spaces Hs(Sd−1) → Hs−j+ d−2
2 (Sd−1) for s ∈ R. This behavior is

explained by the fact that S(j)
d consists of j derivatives and an integration along a d− 2

dimensional manifold. In Section 3.3, we consider special cases of S(j), which equals
the hemispherical transform for j = −1 and the spherical cosine transform for j = −2.
The similarly defined integro-differential Radon transform from Makai et al. [21] and the

Blaschke–Levy representation coincide with S(j)
d for certain but not all parameters, see

Section 3.4.
Grangeat’s formula states a connection between the cone-beam transform D, the gen-

eralized Funk–Radon transform S(d−2)
d and the Radon transform, which computes the

integrals along hyperplanes in Rd. Based on Grangeat’s formula and our results on S(j)
d ,

we derive a singular value decomposition of the cone-beam transform D in Section 4.2,
where we assume that the function f is supported on the unit ball Bd, the spatial di-
mension d is odd and the scanning set is Γ = Sd−1. This contains an alternative proof

2



of the result of Kazantsev [16] for d = 3. We analyze the asymptotic behavior of the
singular values of the cone-beam transform in Section 4.3. The smallest singular values
grow of the order O(m−1/2) independently of the spatial dimension d, which means that
the inversion is ill-posed of degree 1/2, which is the same as for the Radon transform in
2D. We also obtain a constant upper bound on the singular values. However, it is open
whether this bound is strict.

The outline of this paper is as follows. In Section 2, we summarize some basic facts
about spherical harmonics. In Section 3, we show the singular value decomposition of
the generalized Funk–Radon transform S(j)

d and its bijectivity in certain Sobolev spaces.
In Section 4, we prove the singular value decomposition of the cone-beam transform D
and compute bounds on the singular values. Finally, we state our previous results for
the practically most relevant case B3 in Section 5.

2 Harmonic analysis on the sphere

In this section, we are going to summarize some basic facts about harmonic analysis on
the (d− 1)-dimensional unit sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1} as it can be found in [3].
We denote the volume of Sd−1 by

∣∣Sd−1∣∣ =

∫
Sd−1

dSd−1 =
2πd/2

Γ(d/2)
=


2πd/2

( d
2
−1)! , d even

2
d+1
2 π

d−1
2

(d−2)!! , d odd.
(2.1)

In the following, we give an orthonormal basis of the Lebesgue space L2(Sd−1), which is
the space of square-integrable functions f : Sd−1 → C with the inner product

〈f, g〉L2(Sd−1) =

∫
Sd−1

f(ξ) g(ξ) dξ.

The Legendre polynomial Pn,d of degree n ∈ N0 in dimension d ≥ 3 is given by the
Rodrigues formula [3, (2.70)]

Pn,d(t) = (−1)n
(d− 3)!!

(2n+ d− 3)!!
(1− t2)

3−d
2

(
d

dt

)n
(1− t2)n+

d−3
2 , t ∈ [−1, 1]. (2.2)

The classical Legendre polynomials are Pn = Pn,3. Here, we use this name also in
the general situation d > 3 as in [24, 3]. The Legendre polynomials are orthogonal

with respect to the weight function wd(t) = (1− t2) d−3
2 . They satisfy the orthogonality

relation

〈Pn,d, Pm,d〉wd
=

∫ 1

−1
Pn,d(t)Pm,d(t) (1− t2)

d−3
2 dt = δn,m

∣∣Sd−1∣∣
Nn,d |Sd−2|

, (2.3)

where

Nn,d =
(2n+ d− 2) (n+ d− 3)!

n! (d− 2)!
. (2.4)
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Up to normalization, the Legendre polynomial Pn,d is equal to the Gegenbauer or ultra-
spherical polynomial [3, (2.145)]

C
( d−2

2
)

n =

(
n+ d− 3

n

)
Pn,d. (2.5)

The Gegenbauer polynomial C
(α)
n for α > −1/2 satisfies the explicit expression [1, 22.3]

C(α)
n (t) =

1

Γ(α)

bn2 c∑
m=0

(−1)m Γ(n−m+ α)

m! (n− 2m)!
(2t)n−2m. (2.6)

and the Rodrigues formula

C(α)
n (t) =

(−1)n Γ(α + 1
2
) Γ(n+ 2α)

2n n! Γ(2α) Γ(α + n+ 1
2
)

(1− t2)
1
2
−α
(

d

dt

)n
(1− t2)n+α−

1
2 . (2.7)

We define the space Yn,d(Sd−1) as the range of the unnormalized projection operator

L2(Sd−1)→ L2(Sd−1), f 7→
∫
Sd−1

f(ξ)Pn,d(ξ
>(·)) dξ.

The space Yn,d(Sd−1) consists of harmonic polynomials that are homogeneous of degree
n, restricted to the sphere Sd−1. Let Y k

n,d for k = 1, . . . , Nn,d, be an orthonormal basis of

Yn,d(Sd−1) in L2(Sd−1). The addition theorem [3, (2.24)] states that for n ∈ N0

Nn,d∑
k=1

Y k
n,d(ξ)Y k

n,d(η) =
Nn,d

|Sd−1|
Pn,d(ξ

>η), ξ,η ∈ Sd−1. (2.8)

We define the Gaunt coefficients

Gn,k,d
n1,k1,n2,k2

=

∫
Sd−1

Y k1
n1,d

(ξ)Y k2
n2,d

(ξ)Y k
n,d(ξ) dξ.

Then the product of two spherical harmonics can be written as the sum

Y k1
n1,d

(ξ)Y k2
n2,d

(ξ) =

n1+n2∑
n=|n1−n2|

n−n1−n2 even

Nn,d∑
k=1

Gn,k1+k2,d
n1,k1,n2,k2

Y k
n,d(ξ), ξ ∈ Sd−1. (2.9)

3 Spherical convolution

The spherical convolution of a function ψ : [−1, 1]→ C with a function f : Sd−1 → C is
defined by

[ψ ? f ](ξ) =

∫
Sd−1

f(η)ψ(ξ>η) dη, ξ ∈ Sd−1.

The Funk–Hecke formula [3, Thm. 2.22] states that for a spherical harmonic Yn,d ∈
Yn,d(Sd−1) and ψ ∈ L1[−1, 1] where

∫ 1

−1 |ψ(t)| (1− t2) d−3
2 dt is finite, we have

[ψ ? Yn,d](ξ) = Yn,d(ξ)
∣∣Sd−2∣∣ ∫ 1

−1
ψ(t)Pn,d(t) (1− t2)

d−3
2 dt. (3.1)
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3.1 Generalized Funk–Radon transform

For j ∈ N0, we define the generalized Funk–Radon transform S(j) for f ∈ C∞(Sd−1) by
[19]

S(j)
d f(ξ) =

∫
Sd−1

δ(j)(ξ>η) f(η) dη, ξ ∈ Sd−1.

Here, δ(j) denotes the j-th derivative of the Dirac delta distribution, which is defined by
its application to a test function ψ ∈ C∞[−1, 1]∫ 1

−1
δ(j)(t)ψ(t) dt = (−1)j

∫ 1

−1
δ(t)ψ(j)(t) dt = (−1)jψ(j)(0).

For j = 0, the operator S(0) is the Funk–Radon transform, cf. [30, L. 2.2]. As for now,

we define S(j)
d only for smooth functions. However, we will later extend it by density to

appropriate Sobolev spaces in Section 3.2.

Remark 3.1. We explain the above definition of S(j)
d and justify why we can apply the

Funk–Hecke formula (3.1) for ψ = δ(j). Let f ∈ C∞(Sd−1). We observe that for any
ξ ∈ Sd−1 ∫

Sd−1

f(η) dη =

∫ 1

−1

1√
1− t2

∫
ξ>η=t

f(η) dλ(η) dt,

where dλ is the standard surface measure on the sub-sphere {η ∈ Sd−1 : ξ>η = t}.
Then we have

S(j)
d f(ξ) =

∫
Sd−1

δ(j)(ξ>η) f(η) dη

=

∫ 1

−1
δ(j)(t) (1− t2)−

1
2

∫
ξ>η=t

f(η) dλ(η) dt

= (−1)j
(

d

dt

)j
(1− t2)−

1
2

∫
ξ>η=t

f(η) dλ(η)

∣∣∣∣∣
t=0

.

We use the following generalized Funk–Hecke formula [5, (4.2.10)]∫
ξ>η=t

Y k
n,d(η) dλ(η) =

∣∣Sd−2∣∣ (1− t2)
d−2
2 Pn,d(t)Y

k
n,d(ξ), ξ ∈ Sd−1, t ∈ (−1, 1).

Hence,

S(j)
d Y k

n,d(ξ) =
∣∣Sd−2∣∣ (−1)j

(
d

dt

)j
(1− t2)

d−3
2 Pn,d(t)

∣∣∣∣∣
t=0

Y k
n,d(ξ). (3.2)

(3.2) can also be obtained by applying the Funk–Hecke formula (3.1) for ψ = δ(j).

In the following, we use double factorials defined by n!! = n(n− 2) · · · 2 for n even or
n!! = n(n− 2) · · · 1 for n odd and 0!! = 1. The Gamma function is defined for x > 0 by
Γ(x) =

∫∞
0
yx−1 e−y dy and satisfies Γ(x + 1) = xΓ(x) as well as Γ(n) = (n− 1)! if n is

a positive integer.

5



Theorem 3.2. Let j ∈ N0. The generalized Funk–Radon transform S(j)
d : C(Sd−1) →

C(Sd−1) satisfies the eigenvalue decomposition

S(j)
d Y k

n,d = Ŝ(j)
d (n)Y k

n,d, n ∈ N0, k = 1, . . . , Nn,d,

with the eigenvalues for n+ j even and (n ≥ j − d+ 3 or d even)

Ŝ(j)
d (n) =

∣∣Sd−2∣∣ (−1)
n+j
2

(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!
(3.3)

= π
d−2
2 (−1)

n+j
2 2j+1 Γ

(
n+j+1

2

)
Γ
(
n−j+d−1

2

) (3.4)

and otherwise
Ŝ(j)
d (n) = 0.

Proof. Let n ∈ N0 and k ∈ {1, . . . , Nn,d}. By (3.2), we have

S(j)
d Yn,d(ξ) =

∣∣Sd−2∣∣ (−1)j Y k
n,d(ξ)

(
d

dt

)j
Pn,d(t) (1− t2)

d−3
2

∣∣∣∣∣
t=0

. (3.5)

By Rodrigues’ formula (2.2), we have(
d

dt

)j
Pn,d(t) (1− t2)

d−3
2

∣∣∣∣∣
t=0

= (−1)n
(d− 3)!!

(2n+ d− 3)!!

(
d

dt

)n+j
(1− t2)n+

d−3
2

∣∣∣∣∣
t=0

. (3.6)

We want to apply the generalized binomial theorem, which states for a, b, z ∈ C

(a+ b)z =
∞∑
k=0

(
z

k

)
az−k bk, (3.7)

where the binomial coefficient of z ∈ C and k ∈ N0 is defined by(
z

k

)
=
z (z − 1) · · · (z − k + 1)

k!
. (3.8)

The binomial theorem implies

(1− t2)n+
d−3
2 =

∞∑
k=0

(
n+ d−3

2

k

)
(−1)k t2k. (3.9)

Evaluating the (n + j)-th derivative of (3.9) at t = 0 and taking into account that(
d
dt

)`
t2k
∣∣∣
t=0

= (2k)! δ`,2k, we obtain if n+ j is even(
d

dt

)n+j
(1− t2)n+

d−3
2

∣∣∣∣∣
t=0

=
∞∑
k=0

(
n+ d−3

2

k

)
(−1)k

(
d

dt

)n+j
t2k

∣∣∣∣∣
t=0

=

(
n+ d−3

2
n+j
2

)
(−1)

n+j
2 (n+ j)!

(3.10)
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and zero otherwise. By its definition in (3.8), the binomial coefficient
(
z
k

)
is zero if

and only if both z is a nonnegative integer and z < k. Hence, the binomial coefficient(n+ d−3
2

n+j
2

)
from (3.10) is nonzero if and only if d−3

2
is not an integer or n+ d−3

2
≥ n+j

2
. This

condition can be simplified to that d is even or n ≥ j − d+ 3. Then we have(
n+ d−3

2
n+j
2

)
=

(
2n+d−3

2

) (
2n+d−3

2
− 1
)
· · ·
(
2n+d−3

2
− n+j

2
+ 1
)(

n+j
2

)
!

=
(2n+ d− 3)!!

(n− j + d− 3)!! (n+ j)!!
.

(3.11)

Combining (3.6), (3.10) and (3.11), we obtain(
d

dt

)j
Pn,d(t) (1− t2)

d−3
2

∣∣∣∣∣
t=0

= (−1)n
(d− 3)!!

(2n+ d− 3)!!

(2n+ d− 3)!!

(n+ j)!!(n− j + d− 3)!!
(−1)

n+j
2 (n+ j)!

= (−1)
n−j
2

(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!

if n + j is even and (n ≥ j − d + 3 or d even), and zero otherwise. Plugging into (3.5)
shows (3.3). Inserting the volume (2.1) of Sd−2 into (3.3), we have for n + j even and
(n ≥ j − d+ 3 or d even)

Ŝ(j)
d (n) =

∣∣Sd−2∣∣ (−1)
n−j
2

(n+ j − 1)!! (d− 3)!!

(n− j + d− 3)!!

=
2π

d−1
2

Γ
(
d−1
2

) (−1)
n−j
2

(n+ j − 1)(n+ j − 3) · · · 1
(n− j + d− 3)(n− j + d− 5) · · · (d− 1)

=
2π

d−1
2

Γ
(
d−1
2

) (−1)
n−j
2

2
n+j
2

(
n+j−1

2

) (
n+j−1

2
− 1
)
· · ·
(
1
2

)
2

n−j
2

(
n−j+d−1

2
− 1
) (

n−j+d−1
2

− 2
)
· · ·
(
d−1
2

)
=

2π
d−1
2

Γ
(
d−1
2

) (−1)
n−j
2 2j

Γ
(
n+j+1

2

)
Γ
(
1
2

) Γ
(
d−1
2

)
Γ
(
n−j+d−1

2

)
= π

d−2
2 (−1)

n−j
2 2j+1 Γ

(
n+j+1

2

)
Γ
(
n−j+d−1

2

) ,
which shows (3.4).

Theorem 3.2 traces back to [23] for j = 0 on S2. The case j = 0 and d arbitrary was
shown in [5].

3.2 S(j) in Sobolev spaces

In this section, we extend S(j) to a continuous operator between Sobolev spaces. The
spherical Sobolev space Hs(Sd−1) of order s ∈ R is defined as completion of C∞(Sd−1)
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with respect to the Sobolev norm

‖f‖2Hs(Sd−1) =
∞∑
n=0

Nn,d∑
k=1

(
n+ d−2

2

)2s ∣∣∣〈f, Y k
n,d

〉
L2(Sd−1)

∣∣∣2 , (3.12)

cf. [3, (3.98)]. The spherical harmonics Y k
n,d are dense in Hs(Sd−1). The Sobolev spaces

are nested: we have Hs(Sd−1) ↪→ H t(Sd−1) whenever s > t. The space H0(Sd−1) can
be identified with L2(Sd−1). If s is a positive integer, Hs(Sd−1) can be imagined as the
space of functions defined on Sd−1 whose (distributional) derivatives up to order s are
in L2(Sd−1).

In the following lemma, we derive an asymptotic approximation of the eigenvalues
Ŝ(j)
d (n) from Theorem 3.2. We use the notation of asymptotic equivalence a(n) ' b(n)

for n→∞ if limn→∞ a(n)/b(n) = 1.

Lemma 3.3. Let j ∈ N0. We have for n→∞ with n+ j even and n ≥ j∣∣∣Ŝ(j)
d (n)

∣∣∣ ' nj−
d−2
2 π

d−1
2 2

d
2 ,

Proof. Let n + j be even and n ≥ j. We apply Stirling’s approximation of the Gamma
function

Γ(x) '
√

2π xx−
1
2 e−x, x→∞

to the eigenvalues (3.4) and obtain for n→∞∣∣∣Ŝ(j)
d (n)

∣∣∣ = π
d−2
2 2j+1 Γ

(
n+j+1

2

)
Γ
(
n−j+d−1

2

)
' π

d−2
2 2j+1

(
n+j+1

2

)n+j
2 e−

n+j+1
2(

n−j+d−1
2

)n−j+d−2
2 e−

n−j+d−1
2

= π
d−2
2 2

d
2 e

d−2
2
−j (n+ j + 1)

n+j
2

(n− j + d− 1)
n−j+d−2

2

= 2
d
2 π

d−2
2 e

d−2
2
−j
(

1 +
2j − d+ 2

n− j + d− 1

)n
2

(n+ j + 1)
j
2 (n− j + d− 1)

j+2−d
2 .

Considering that ex = limn→∞
(
1 + x

n

)n
, we obtain∣∣∣Ŝ(j)

d (n)
∣∣∣ ' 2

d
2 π

d−2
2 e

d−2
2
−j e

2j−d+2
2 nj+

2−d
2 = 2

d
2 π

d−2
2 nj−

d−2
2 .

The following mapping property of S(j)
d between Sobolev spaces was shown for j = 0

in [34, § 4].

Theorem 3.4. Let s ∈ R and j ∈ N0. The generalized Funk–Radon transform S(j)
d

extends to a continuous operator

S(j)
d : Hs(Sd−1)→ Hs−j+ d−2

2 (Sd−1). (3.13)
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If j > d−2
2

, then S(j)
d : L2(Sd−1) → L2(Sd−1) is compact. The nullspace of S(j)

d is the
closed linear span

span
{
Yn,d(Sd−1) : n+ j odd or (n ≤ j − d+ 1 and d odd)

}
.

If d is odd and j ≥ d− 1, the nullspace of S(j)
d comprises the sum of all polynomials of

degree up to j−d+ 1 and all odd (even) functions whenever j is even (odd). Otherwise,

the null-space of S(j)
d comprises all odd (even) functions whenever j is even (odd).

Proof. By the definition (3.12) of the Sobolev space, S(j)
d is continuous if and only if the

sequence

n 7→
∣∣∣Ŝ(j)

d (n)
∣∣∣ (n+

d− 2

2

)−j+ d−2
2

has an upper bound, which follows from Lemma 3.3. The compactness for j > d−2
2

follows because then the eigenvalues Ŝ(j)
d (n) converge to 0 for n → ∞. The nullspace

of S(j)
d consists of the closed span of all spherical harmonics Y k

n,d where n ∈ N0 satisfies

Ŝ(j)
d (n) = 0.

The order of smoothness s− j+ d−2
2

of the Sobolev space in (3.13) is not unexpected,

because S(j)
d consists of j differentiations, which lower the order of smoothness by j,

and the integration along a (d − 2)-dimensional submanifold, which raises the order of
smoothness by d−2

2
.

3.3 Special cases of j

In this section, we take a look at S(j)
d for certain special choices of j, some of which

are already well-known operators from literature. Even though S(j)
d was initially defined

only for j ∈ N0, we can extend it to negative j by the singular value decomposition
(3.3). Inserting j = −1 in equation (3.4) of the eigenvalues yields for odd n

Ŝ(−1)
d (n) =

∣∣Sd−2∣∣ (−1)
n−1
2

(n− 2)!! (d− 3)!!

(n+ d− 2)!!
= 2 (−1)

n−1
2

2π
d−1
2

Γ
(
1
2

) Γ
(
n
2

)
Γ
(
n+d
2

) .
Hence, S(−1)

d is the modified hemispherical transform [31]

S(−1)
d f(ξ) =

1

2

∫
Sd−1

sgn(ξ>η) f(η) dη. (3.14)

Inserting j = −2 gives the eigenvalues

Ŝ(−2)
d (n) =

{
2
∣∣Sd−2∣∣ (−1)

n−2
2

(n−3)!! (d−2)!!
(n+d−1)!! , n even

0, n odd

9



of the spherical cosine transform, cf. [12, L. 3.4.5],

S(−2)
d f(ξ) =

1

2

∫
Sd−1

∣∣ξ>η∣∣ f(η) dη.

In the case d = 2j+2, which in particular implies that d is even, we have the eigenvalues

Ŝ(j)
2j+2(n) =

{
|S2j| (−1)

n+j
2 (2j − 1)!! = 2 (2π)j (−1)

n+j
2 , n+ j even

0, n+ j odd,

which are, except for their sign, independent of n. Hence, if j is even (odd), the operator

S(j)
2j+2 : L2(S2j+1)→ L2(S2j+1) restricted to the even (odd) functions is an isometry.
The following theorem shows an inversion formula for the Funk–Radon transform in

even dimensions.

Theorem 3.5. Let d ≥ 2 be even. Then any even function f : Sd−1 → C can be
reconstructed from its Funk–Radon transform g = S(0)

d f by

f =
1

|Sd−2|2 ((d− 3)!!)2
S(d−2)
d g.

Proof. Let n ∈ N0 be even. On the one hand, we have the eigenvalues

Ŝ(d−2)
d (n) =

∣∣Sd−2∣∣ (−1)
n+d−2

2
(n+ d− 3)!! (d− 3)!!

(n− 1)!!
.

On the other hand, the Funk–Radon transform S(0)
d has the eigenvalues

Ŝ(0)
d (n) =

∣∣Sd−2∣∣ (−1)
n
2

(n− 1)!! (d− 3)!!

(n+ d− 3)!!
.

Hence, the product of the two operators has the constant eigenvalues

̂S(d−2)
d S(0)

d (n) =
∣∣Sd−2∣∣2 (−1)

d−2
2 (d− 3)!!2.

3.4 Similar transforms

In this section, we consider two integral transforms, which are equal to S(j)
d for certain

but not all parameters j.

Integro-differential transform For j ∈ N0 and ϑ ∈
[
−π

2
, π
2

]
, we define the integro-

differential transform R(j)
d,ϑ : Cj(Sd−1)→ C(Sd−1) by

R(j)
d,ϑf(ξ) =

∫
ξ>ω=0

(
∂

∂ϑ

)j
f(ξ sinϑ+ ω cosϑ) dω, ξ ∈ Sd,

10



which was introduced in [21]. The operator R(0)
d,ϑ has been investigated in [32]. For j > 0,

we first take the j-th derivative of f perpendicular to the circle of integration. It was
shown in [22] that the nullspace of the operator R(j)

d,ϑ is

span

{
Yn,d(Sd−1) :

(
d

dϑ

)j
Pn,d(sinϑ) = 0

}
.

If ϑ = 0, we write R(j)
d = R(j)

d,0. If j ≥ 1, the null–space of R(j)
d : Cj(Sd−1) → C(Sd−1)

equals for j odd (even) the set {f ∈ Cm(Sd) : f is even (f is the sum of an odd function
and a constant)}.

Theorem 3.6. We have S(0)
d = R(0)

d and S(1)
d = −R(1)

d .

Proof. For j = 0, we see that S(0)
d = R(0)

d is the Funk–Radon transform. By [22], the

operator R(j)
d has as eigenfunctions the spherical harmonics Y k

n,d and the eigenvalues

R̂(j)
d (n) =

∣∣Sd−2∣∣ d

dϑ
Pn,d(sinϑ)

∣∣∣∣
ϑ=0

.

Theorem 3.2 shows that S(j)
d has the same eigenfunctions. Hence, the two operators

coincide if their respective eigenvalues do. We have for j = 1 on the one hand

R̂(1)
d (n) =

∣∣Sd−2∣∣ P ′n,d(sinϑ) cosϑ
∣∣
ϑ=0

=
∣∣Sd−2∣∣P ′n,d(0)

and on the other hand

Ŝ(1)
d (n) = −

∣∣Sd−2∣∣ d

dt
Pn,d(t) (1− t2)

d−3
2

∣∣∣∣
t=0

= −
∣∣Sd−2∣∣P ′n,d(0).

Remark 3.7. Theorem 3.6 does not hold for all j. We have for d = 3 and j = 2

R̂(2)
3 (n) = 2π

(
P ′′n (sinϑ) cos2 ϑ− P ′n(sinϑ) sinϑ

)∣∣∣
ϑ=0

= 2π P ′′n (0) = Ŝ(2)
3 (n).

However, for j = 3

R̂(3)
3 (n) = 2π

(
P ′′′n (sinϑ) cos3 ϑ− 3P ′′n (sinϑ) cosϑ sinϑ− P ′n(sinϑ) cosϑ

)∣∣∣
ϑ=0

= 2π (P ′′′n (0)− P ′n(0))

does not coincide with −Ŝ(3)
3 (n) = 2π P ′′′n (0).

Blaschke–Levy reprsentation Another related transform is the α-cosine transform or
Blaschke–Levy representation [17, 31]

H(α)f(ξ) =

∫
Sd−1

∣∣ξ>η∣∣α f(η) dη

11



with singular values

Ĥ(α)(n) =

(−1)n/2
Γ
(
n−α
2

)
Γ
(
n+d+α

2

) , n even

0, n odd.

Hence, for j even and α = −j−1, the α-cosine transform Hα is, up to a constant factor,
equal to the generalized Funk–Radon transform S(j)

d .

4 Cone-beam transform

4.1 Connection of Radon and cone-beam transform

Radon transform We define the Radon transform R on the d-dimensional unit ball
Bd = {x ∈ Rd : ‖x‖ ≤ 1} by [25, Sec. II.1]

R : L2(Bd)→ L2(Sd−1 × [−1, 1], w−1d/2)

Rf(ω, s) =

∫
x>ω=s

f(x) dx
(4.1)

with the weight function

wν(s) = (1− s2)ν−1/2, s ∈ [−1, 1].

The Radon transform on the unit ball has the following singular value decomposition [18].
For m ∈ N0, l = 0, . . . ,m with m+ l even and k = 1, . . . , Nl,d, we have

RṼm,l,k(ω, s) =

√
2m+ dΓ(d

2
)m!

21−d π1− d
2 (m+ d− 1)!

(1− s2)
d−1
2 C

( d
2
)

m (s)Y k
l,d(ω), (4.2)

where

Ṽm,l,k(sω) =
√

2m+ d slP
(0,l+ d−2

2 )
m−l
2

(2s2 − 1)Y k
l,d(ω), s ∈ [0, 1], ω ∈ Sd−1 (4.3)

and P
(α,β)
n denotes the Jacobi polynomial of degree n and orders α, β > −1. The set{

Ṽm,l,k : l ∈ N0, m ∈ {l, l + 2, l + 4, . . . }, k ∈ {1, . . . , Nl,d}
}

is an orthonormal basis of L2(Bd) consisting of polynomials of degree m ∈ N0.

Remark 4.1. We compute the norm of Ṽm,l,k in L2(Bd). The Jacobi polynomials satisfy∫ 1

−1
(1− x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx =

2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ α + β + 1)n!
.

12



We have

‖Ṽm,l,k‖2L2(Bd) = (2m+ d)

∫ 1

0

s2l
∣∣∣∣P (0,l+ d−2

2 )
m−l
2

(2s2 − 1)

∣∣∣∣2 sd−1 ds

∫
Sd−1

∣∣Y k
l,d(ω)

∣∣2 dω.

By the normalization of the spherical harmonics and the substitution t = 2s2 − 1 with
dt = 4s ds, we obtain

‖Ṽm,l,k‖2L2(Bd) =
2m+ d

4

∫ 1

−1

(
t+ 1

2

)l+ d−2
2
∣∣∣∣P (0,l+ d−2

2 )
m−l
2

(t)

∣∣∣∣2 dt

=
2m+ d

4
2−l−

d−2
2

2l+
d
2

m+ d
2

Γ(m−l
2

+ 1) Γ(m+l+d
2

)

(m−l
2

)! Γ(m+l+d
2

)
= 1.

Cone-beam transform The cone-beam transform, which is also known as divergent
beam X-ray transform, with scanning set Γ ⊂ Rd is defined by

Df(a,ω) =

∫ ∞
0

f(a+ tω) dt, ω ∈ Sd−1, a ∈ Γ.

Grangeat’s formula There is a relation between the Radon transform and the cone-
beam transform. Let h : R → R be a function that is homogeneous of degree 1 − d. It
was essentially shown in [13] (see also [26, Sec. 2.3] and [28, Sec. 2.2.1]) that∫ ∞

−∞
Rf(ω, s)h(s− a>ω) ds =

∫
Sd−1

Df(a, ξ)h(ω>ξ) dξ. (4.4)

Inserting h = δ(d−2), we obtain Grangeat’s formula, which was originally proved for
d = 3 in [11], stating that

(−1)d
(
∂

∂s

)d−2
Rf(ω,a>ω) = S(d−2)

d Df(a,ω), (4.5)

where S(d−2)
d is applied with respect to ω.

The following theorem gives an alternative version of Grangeat’s formula for d = 3.
However, it is not a special case of (4.4), because the function h is not homogeneous of
degree −2.

Theorem 4.2. Let ω ∈ S2 and a ∈ R3. We have

−S(−1)
3

∂

∂s
Rf(ω,a>ω) =

∫
S2
h(ξ>ω)Df(a, ξ) dξ, (4.6)

where

h(x) =
2x√

1− x2
, x ∈ (−1, 1).

and S(−1)
d is the modified hemispherical transform (3.14) applied with respect to ω.
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Proof. Multiplying Grangeat’s formula (4.5) for d = 3 with S(−1), we obtain

−S(−1)
3

∂

∂s
Rf(ω,a>ω) = S(−1)

3 S(1)
3 Df(a,ω). (4.7)

The left-hand side of the previous equation (4.7) is the same as that of equation (4.6).
We are going to show the equality of the right-hand side of (4.6) and (4.7) by evaluation
for all spherical harmonics Df = Y k

n , the assertion for general function Df follows by
the density of the spherical harmonics Y k

n . By [10, 8.922.4], we have

h(x) =
2x√

1− x2
= π

∞∑
n=1
n odd

(2n+ 1)
(n− 2)!!n!!

(n− 1)!! (n+ 1)!!
Pn(x), x ∈ (−1, 1).

Then we have by the Funk–Hecke formula (3.1) for all n ∈ N0, |k| ≤ n and ξ ∈ S2∫
S2
h(ξ>ω)Y k

n (ξ) dξ = 2π

∫ 1

−1
h(t)Pn(t) dt Y k

n (ω)

=

{
4π2 (n−2)!!n!!

(n−1)!! (n+1)!!
Y k
n (ω), n odd

0, n even.

On the other hand, the right-hand side of (4.7) evaluates for odd n by (3.3)

S(−1)
3 S(1)

3 Y k
n = Ŝ(−1)

3 (n) Ŝ(1)
3 (n)Y k

n = 4π2 (n− 2)!!n!!

(n− 1)!! (n+ 1)!!
Y k
n ,

which shows the assertion.

4.2 Singular value decomposition

In the following, we consider the cone-beam transform D with scanning set Γ = Sd−1 and
we assume that the function f is supported in the unit ball Bd. We see that Df(a,ω) = 0
for all ω ∈ Sd−1 with a>ω ≥ 0 since the ray of integration is outside Bd. We denote the
odd part of the cone-beam transform D(a, ·) by

D(odd)f(a,ω) =
Df(a,ω)−Df(a,−ω)

2
.

Then
Df(a,ω) = 2D(odd)f(a,ω)

for all ω ∈ S2 with a>ω < 0 and Df(a,ω) = 0 otherwise.

Lemma 4.3. Let m ∈ N0 and d ≥ 3 be odd. Then

C
( d−2

2
)

m+1 (s) = (−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(
∂

∂s

)d−2
(1− s2)

d−1
2 C

( d
2
)

m (s). (4.8)
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Proof. We denote the right-hand side of (4.8) by B
( d−2

2
)

m+1 (s), i.e., we set

B
( d−2

2
)

m+1 (s) = (−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(
∂

∂s

)d−2
(1− s2)

d−1
2 C

( d
2
)

m (s).

We obtain with Rodrigues’ formula (2.7) for the Gegenbauer polynomials

B
( d−2

2
)

m+1 (s) = (−1)
d−1
2

(d− 2)m!

(m+ d− 1)!

(−1)m (d−1
2

)! (m+ d− 1)!

2mm! (d− 1)! (m+ d−1
2

)!

(
∂

∂s

)m+d−2

(1− s2)m+ d−1
2

=
(−1)m+ d−1

2 (d− 2) (d−1
2

)!

2m (d− 1)! (m+ d−1
2

)!

(
∂

∂s

)m+d−2

(1− s2)m+ d−1
2 .

We compute with the binomial theorem (3.7)

B
( d−2

2
)

m+1 (s) =
(−1)m+ d−1

2 (d− 2) (d−1
2

)!

2m (d− 1)! (m+ d−1
2

)!

m+ d−1
2∑

i=0

(−1)i
(
m+ d−1

2

i

)(
∂

∂s

)m+d−2

s2i

Considering (
∂

∂s

)k
s2i =

(2i)!

(2i− k)!
s2i−k,

we have

B
( d−2

2
)

m+1 (s)

=
(−1)m+ d−1

2 (d− 2) (d−1
2

)!

2m (d− 1)! (m+ d−1
2

)!

m+ d−1
2∑

i=dm+d−2
2 e

(
m+ d−1

2

i

)
(−1)i (2i)!

(2i−m− d+ 2)!
s2i−m−d+2.

Shifting the index i 7→ l with i = m− l + d−1
2

, we obtain

B
( d−2

2
)

m+1 (s)

=
(−1)m+ d−1

2 (d− 2) (d−1
2

)!

2m (d− 1)! (m+ d−1
2

)!

bm+1
2 c∑
l=0

(−1)m−l+
d−1
2 (m+ d−1

2
)!

(m− l + d−1
2

)! l!

(2m− 2l + d− 1)!

(m+ 1− 2l)!
sm+1−2l

=
(d− 2) (d−1

2
)!

2m (d− 1)!

bm+1
2 c∑
l=0

(−1)l

(m− l + d−1
2

)! l!

(2m− 2l + d− 1)!

(m+ 1− 2l)!
sm+1−2l.

Because
(2m)!

m!
=

2m (2m)!

(2m)!!
= 2m (2n− 1)!!,
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we have

B
( d−2

2
)

m+1 (s) =
(d− 2)

2m (d− 2)!! 2
d−1
2

bm+1
2 c∑
l=0

(−1)l 2m−l+
d−1
2 (2m− 2l + d− 2)!!

l! (m+ 1− 2l)!
sm+1−2l

=
1

(d− 4)!!

bm+1
2 c∑
l=0

(−1)l 2−l (2m− 2l + d− 2)!!

l! (m+ 1− 2l)!
sm+1−2l.

We rewrite the quotient of double factorials with the Gamma function

(m+ 2k)!!

m!!
= 2k

(
m+ 2k

2

)(
m+ 2k − 2

2

)
· · ·
(
m+ 2

2

)
= 2k

Γ
(
m+2k+2

2

)
Γ
(
2k+2
2

)
and obtain

B
( d−2

2
)

m+1 (s) =

bm+1
2 c∑
l=0

(−1)l Γ(m− l + d
2
)

Γ(d−2
2

) l! (m+ 1− 2l)!
(2s)m+1−2l,

which is exactly the formula (2.6) for the Gegenbauer polynomial C
( d−2

2
)

m+1 (s).

Theorem 4.4. Let m ∈ N0, l = 0, . . . ,m with l + m even, k ∈ {1, . . . , Nl,d} and d ≥ 3
odd. The odd cone-beam transform D(odd) : Bd → Sd−1 × Sd−1 satisfies for a,ω ∈ Sd−1

D(odd)Ṽm,l,k(a,ω) = µm,d

Nm+1,d∑
j=1

Y j
m+1,d(a)

l+m+1∑′

n=m+1−l

νn,d

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω),

where
∑′ denotes the summation over odd indices, Ṽm,l,k is given in (4.3) and

µm,d =

√
2d+1 πd−1

2m+ d
, (4.9)

νn,d =
(−1)

n+1
2 (n− 1)!!

(n+ d− 3)!!
. (4.10)

Proof. Let m ∈ N0, l ∈ {0, . . . ,m} with m+ l even, k ∈ {1, . . . , Nl,d} and d be odd. We
have by the singular value decomposition (4.2) of the Radon transform and Lemma 4.3(

∂

∂s

)d−2
RṼm,l,k(ω, s)

=
2d−1 π

d
2
−1√2m+ dΓ(d

2
)m!

(m+ d− 1)!

(
∂

∂s

)d−2
(1− s2)

d−1
2 C

( d
2
)

m (s)Y k
l,d(ω)

=
2d−1 π

d
2
−1√2m+ dΓ(d

2
)m!

(m+ d− 1)!
(−1)

d−1
2

(m+ d− 1)!

(d− 2)m!
C

( d−2
2

)

m+1 (s)Y k
l,d(ω)

=
2d−1 π

d
2
−1√2m+ dΓ(d

2
)

d− 2
(−1)

d−1
2 C

( d−2
2

)

m+1 (s)Y k
l,d(ω).
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By Grangeat’s formula (4.5) and the relation (2.5) between the Gegenbauer and the
Legendre polynomials, we obtain

S(d−2)
d DṼm,l,k(a,ω)

= (−1)
d+1
2

2d−1 π
d
2
−1√2m+ dΓ(d

2
) (m+ d− 2)!

(m+ 1)! (d− 2)!
Pm+1,d(a

>ω)Y k
l,d(ω).

By the addition formula (2.8) for spherical harmonics, we have

S(d−2)
d DṼm,l,k(a,ω) = (−1)

d+1
2

∣∣Sd−1∣∣ 2d−1 π
d
2
−1 Γ(d

2
)

√
2m+ d

Nm+1,d∑
j=1

Y j
m+1,d(a)Y j

m+1,d(ω)Y k
l,d(ω).

By the multiplication formula (2.9) for spherical harmonics, we see that

S(d−2)
d DṼm,l,k(a,ω)

= (−1)
d−1
2

∣∣Sd−1∣∣ 2d+1 π
d
2
−1 Γ(d

2
)

√
2m+ d

Nm+1,d∑
j=1

Y j
m+1,d(a)

m+1+l∑′

n=m+1−l

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Since the generalized Funk–Radon transform S(d−2) acts only on odd functions, we have
S(d−2)
d D = S(d−2)

d D(odd). Then the eigenvalue decomposition (3.3) of S(d−2)
d yields

D(odd)Ṽm,l,k(a,ω) = (−1)
d+1
2

∣∣Sd−1∣∣
|Sd−2|

2d−1 π
d
2
−1 Γ(d

2
)

√
2m+ d

Nm+1,d∑
j=1

Y j
m+1,d(a)

l+m+1∑′

n=m+1−l

(−1)
n+d−2

2
(n− 1)!!

(n+ d− 3)!! (d− 3)!!

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Since, by (2.1), ∣∣Sd−1∣∣
|Sd−2|

=

√
π Γ(d−1

2
)

Γ(d
2
)

=

√
π (d−3

2
)!

Γ(d
2
)

=

√
π 2−

d−3
2 (d− 3)!!

Γ(d
2
)

,

we obtain

D(odd)Ṽm,l,k(a,ω)

=
2

d+1
2 π

d−1
2

√
2m+ d

Nm+1,d∑
j=1

Y j
m+1,d(a)

l+m+1∑′

n=m+1−l

(−1)
n+1
2

(n− 1)!!

(n+ d− 3)!!

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kY

i
n,d(ω).

Theorem 4.5. The functions

1

λm,l,d
D(odd)Ṽm,l,k, m ∈ N0, l = 0, . . . ,m, k = 1, . . . , Nl,d, l +m even
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are orthonormal in L2(Sd−1 × Sd−1), where

λm,l,d =

√√√√Nm+1,d µ2
m,d |Sd−2|

|Sd−1|2
m+1+l∑′

n=m+1−l

ν2n,dNn,d 〈Pm+1,d Pl,d, Pn,d〉wd
(4.11)

and

〈Pm+1,d Pl,d, Pn,d〉wd
=

∫ 1

−1
Pm+1,d(t)Pl,d(t)Pn,d(t) (1− t2)

d−3
2 dt.

Proof. Let m,m′ ∈ N0, l = 0, . . . ,m, l′ = 0, . . . ,m′, k = 1, . . . , Nl,d, k
′ = 1, . . . , Nl′,d

such that m+ l and m′ + l′ are even. We have〈
D(odd)Ṽm,l,k,D(odd)Ṽm′,l′,k′

〉
L2(Sd−1×Sd−1)

= µm,d µm′,d

Nm+1,d∑
j=1

Nm′+1,d∑
j′=1

∫
Sd−1

Y j
m+1,d(a)Y j′

m′+1,d(a) da

m+1+l∑′

n=m+1−l

m′+1+l′∑′

n′=m′+1−l′
νn,d νn′,d

Nn,d∑
i=1

Nn′,d∑
i′=1

Gn,i,d
m+1,j,l,kG

n′,i′,d
m′+1,j′,l′,k′

∫
Sd−1

Y i
n,d(ω)Y i′

n′,d(ω) dω.

By the orthonormality of the spherical harmonics, we obtain〈
D(odd)Ṽm,l,k,D(odd)Ṽm′,l′,k′

〉
L2(Sd−1×Sd−1)

= δm,m′ µ
2
m,d

Nm+1,d∑
j=1

m+1+l∑′

n=m+1−l

ν2n,d

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′ .

We have by the definition of the Gaunt coefficients in (5.1)

Nm+1,d∑
j=1

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′

=

Nm+1,d∑
j=1

Nn,d∑
i=1

∫
Sd−1

Y j
m+1,d(ξ)Y k

l,d(ξ)Y i
n,d(ξ) dξ

∫
Sd−1

Y j
m+1,d(η)Y k′

l′,d(η)Y i
n,d(η) dη

=
Nm+1,dNn,d

|Sd−1|2
∫
Sd−1

∫
Sd−1

Pm+1,d(ξ
>η)Pn,d(ξ

>η)Y k
l,d(ξ) dξ Y k′

l′,d(η) dη,

where the last equality follows from the addition formula (2.8) for spherical harmonics.
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Applying the Funk–Hecke formula (3.1) to the inner integral, we obtain

Nm+1,d∑
j=1

Nn,d∑
i=1

Gn,i,d
m+1,j,l,kG

n,i,d
m+1,j,l′,k′

=
Nm+1,dNn,d

∣∣Sd−2∣∣
|Sd−1|2

∫ 1

−1
Pm+1,d(t)Pn,d(t) Pl,d(t) (1− t2)

d−3
2 dt

∫
Sd−1

Y k
l,d(η)Y k

l′,d(η) dη

= δl,l′ δk,k′
Nm+1,dNn,d

|Sd−1|2
∣∣Sd−2∣∣ ∫ 1

−1
Pm+1,d(t)Pn,d(t) Pl,d(t) (1− t2)

d−3
2 dt,

where we used again the orthonormality of the spherical harmonics. By [6], the value of
the integral 〈Pm+1,d Pn,d, Pl,d〉wd

is nonzero if and only if

n ∈ {|m+ 1− l| , |m+ 1− l|+ 2, . . . , m+ 1 + l}.

Hence, we have〈
D(odd)Ṽm,l,k,D(odd)Ṽm′,l′,k′

〉
L2(Sd−1×Sd−1)

= δm,m′ δl,l′ δk,k′
Nm+1,d µ

2
m,d

∣∣Sd−2∣∣
|Sd−1|2

m+1+l∑′

n=m+1−l

ν2n,dNn,d 〈Pm+1,d Pn,d, Pl,d〉wd
.

4.3 Bounds on the singular values

4.3.1 Upper bound

In this section, we show that the singular values λm,l,d of the cone-beam transform D(odd),
which are given in (4.11), are bounded independently of m and l, which implies that the
cone-beam transform as operator D(odd) : L2(Bd)→ L2(Sd−1 × Sd−1) is bounded.

Lemma 4.6. Let n ≥ 1 and d ≥ 3 be odd integers. Then

ν2n,dNn,d ≤

{
π, d = 3

d
((d−2)!!)2 , d ≥ 5.

Proof. We have by (4.10) and (2.4)

ν2n,dNn,d =
(n− 1)!!2

(n+ d− 3)!!2
(2n+ d− 2) (n+ d− 3)!

n! (d− 2)!

=
(n− 1)!!

n!!

(n+ d− 4)!!

(n+ d− 3)!!

2n+ d− 2

(d− 2)!
.
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We note that, by [4], for n→∞

(2n− 1)!! ' (2n)!!√
π(n+ 1

2
)
.

Hence, we obtain

ν2n,dNn,d '
√
π(n

2
+ 1)

n+ 1

√
π(n+d−1

2
)

n+ d− 4

2n+ d− 2

(d− 2)!
' π

(d− 2)!
. (4.12)

Because

ν2n+2,dNn+2,d

ν2n,dNn,d

=
n+ 1

n+ 2

n+ d− 2

n+ d− 1

2n+ d+ 2

2n+ d− 2

=
2n3 + 3dn2 + (d2 + 3d− 6)n+ d2 − 4

2n3 + 3dn2 + (d2 + 3d− 6)n+ 2d2 − 6d+ 4
,

the sequence n 7→ ν2n,dNn,d is increasing for d = 3 and decreasing for d ≥ 5. The fact
that

ν21,dN1,d =
d

((d− 2)!!)2

completes the proof.

Theorem 4.7. Let d ≥ 3 be an odd integer and m, l ∈ N0 such that l ≤ m and m + l
is even. Then the singular values λm,l,d satisfy

λm,l,d ≤ 2
d+1
4 π

d−1
4

√
Cd (d− 2)!!

√
l + 1

2m+ d
≤ (2π)

d−1
4

√
Cd (d− 2)!!,

where

Cd =

{
π, d = 3

d
((d−2)!!)2 , d ≥ 5.

In particular, we have limm→∞ λm,l,d = 0 for all l ∈ N0.

Proof. Because of the orthogonality (2.3) of the Legendre polynomials, we have

Pl,d Pn,d =
l+n−1∑

m=|l−n|−1

Nm+1,d

∣∣Sd−2∣∣
|Sd−1|

〈Pm+1,dPl,d, Pn,d〉wd
Pm+1,d.

Utilizing the fact that Pi,d(1) = 1 for all i ∈ N0, we obtain

1 =
l+n−1∑

m=|l−n|−1

Nm+1,d

∣∣Sd−2∣∣
|Sd−1|

〈Pm+1,dPl,d, Pn,d〉wd
. (4.13)
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Since all summands in the above sum (4.13) are non-negative, they are bounded by

Nm+1,d

∣∣Sd−2∣∣
|Sd−1|

〈Pm+1Pl, Pn〉wd
≤ 1. (4.14)

Inserting the bound from Lemma 4.6 into the definition of the singular values (4.11), we
have

λ2m,l,d =
Nm+1,d µ

2
m,d

∣∣Sd−2∣∣
|Sd−1|2

m+1+l∑′

n=m+1−l

ν2n,dNn,d 〈Pm+1,d Pl,d, Pn,d〉wd

≤
Nm+1,d µ

2
m,d

∣∣Sd−2∣∣
|Sd−1|2

Cd

m+1+l∑′

n=m+1−l

〈Pm+1,d Pl,d, Pn,d〉wd
.

With (4.14), we obtain

λ2m,l,d ≤ Cd
µ2
m,d

|Sd−1|

m+1+l∑′

n=m+1−l

1

= Cd
µ2
m,d

|Sd−1|
(l + 1)

= Cd 2
d+1
2 π

d−1
2 (d− 2)!!

l + 1

2m+ d
,

where we inserted the formulas of µm,d from (4.9) and
∣∣Sd−1∣∣ from (2.1).

4.3.2 Lower bound

Theorem 4.8. Let d ≥ 3 be an odd integer. There exists a constant cd > 0, which
depends only on the dimension d, such that for all m ∈ N0 and l ∈ {0, . . . ,m} with m+ l
even, the singular values admit the lower bound

|λm,l,d| ≥ cdm
−1/2. (4.15)

This bound is asymptotically tight, in the sense that the exponent −1/2 in (4.15) cannot
be replaced by a greater one.

Proof. We extract the smallest value of ν2n,d in the following sum

λ2m,l,d =
Nm+1,d µ

2
m,d

∣∣Sd−2∣∣
|Sd−1|2

m+1+l∑′

n=m+1−l

ν2n,dNn,d 〈Pm+1,d Pl,d, Pn,d〉wd

≥
Nm+1,d µ

2
m,d

|Sd−1|

(
m+1+l

min
n=m+1−l

ν2n,d

) m+1+l∑′

n=m+1−l

Nn,d

∣∣Sd−2∣∣
|Sd−1|

〈Pm+1,d Pl,d, Pn,d〉wd
.
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Utilizing (4.13) with the roles of m+ 1 and n interchanged, we obtain

λ2m,l,d ≥
Nm+1,d µ

2
m,d

|Sd−1|
m+1+l

min
n=m+1−l

ν2n,d.

Since the map

n 7→ ν2n,d =
(n− 1)!!2

(n+ d− 3)!!2

is decreasing, we have
m+1+l

min
n=m+1−l

ν2n,d = ν2m+1+l,d.

Because 0 ≤ l ≤ m and again ν2m+1+l,d decreases with respect to l, we further see that

m+1+l

min
n=m+1−l

ν2n,d ≥ ν22m+1,d =
(2m)!!2

(2m+ d− 2)!!2
.

Hence, we have

λ2m,l,d ≥
Nm+1,d µ

2
m,d

|Sd−1|
(2m)!!2

(2m+ d− 2)!!2

=
2d+1 πd−1

(2m+ d)

(d− 2)!!

2
d+1
2 π

d−1
2

(2m+ d) (m+ d− 2)!

(m+ 1)! (d− 2)!

(2m)!!2

(2m+ d− 2)!!2

=
2

d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2
,

where we inserted (2.4), (4.9) and (2.1). We are going to apply Stirling’s approximation
of the factorial

n! '
√

2π nn+1/2 e−n

and the double factorials, cf. [4],

(2n)!! '
√
π (2n)n+1/2 e−n, (2n− 1)!! '

√
2 (2n)n e−n.

We obtain for m→∞

λ2m,l,d ≥
2

d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2

' 2
d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)m+d−3/2 e−m−d+2

(m+ 1)m+3/2 e−m−1
(2m)2m+1 e−2mπ

2(2m+ d− 1)2m+d−1 e−2m−d−1

' 2
3−d
2 π

d+1
2

(d− 3)!!
e4

(m+ d− 2)m+d−3/2

(m+ 1)m+3/2

m2m+1

(m+ d−1
2

)2m+d−1
.

Hence, there exists a constant cd > 0 such that

λm,l,d ≥

√
2

d+1
2 π

d−1
2

(d− 3)!!

(m+ d− 2)!

(m+ 1)!

(2m)!!2

(2m+ d− 2)!!2
≥ cdm

−1/2.
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In order to show that this bound is tight, we consider the case m even and l = 0. We
have by (2.3)

λ2m,0,d =
Nm+1,d µ

2
m,d

∣∣Sd−2∣∣
|Sd−1|2

ν2m+1,dNm+1,d 〈Pm+1,d, Pm+1,d〉wd

=
Nm+1,d µ

2
m,d

|Sd−1|
ν2m+1,d.

By (4.12), we have for m→∞

λ2m,0,d '
π

(d− 2)!

µ2
m,d

|Sd−1|
.

Remark 4.9. While the lower bound O(m−1/2) on the singular values λm,l,d is asymp-
totically strict, we have only shown that they can be bounded from above by a constant
in Theorem 4.7. However, the degree of ill-posedness of the reconstruction problem de-
pends on the behavior of the smallest singular values, which is here O(m−1/2) and so
the same as for the Radon transform in 2D.

5 Cone-beam transform in R3

In this section, we state the singular value decomposition of the cone-beam transform
D(odd) from Section 4 for the dimension d = 3. This case was already shown in [16].
Before we state the result, we give some formulas of spherical harmonics and Gaunt
coefficients in this case. We write a point ξ ∈ S2 in cylindrical coordinates

ξ(ϕ, t) = (cosϕ
√

1− t2, sinϕ
√

1− t2, t)>, ϕ ∈ [0, 2π), t ∈ [−1, 1].

We define the normalized associated Legendre functions of degree n ∈ N0 and order
k = −n, . . . , n by

P̃ k
n =

√
2n+ 1

4π

(n− k)!

(n+ k)!

(−1)k

2nn!

(
1− t2

)k/2 dn+k

dtn+k
(
t2 − 1

)n
.

The spherical harmonics

Y k
n (ξ(ϕ, t)) = P̃ k

n (t) eikϕ, ξ(ϕ, t) ∈ S2,

of degree n ∈ N0 and order k ∈ {−n, . . . , n} form an orthonormal basis of L2(S2), see
[36, Chapter 5] and also [7]. The Gaunt coefficients

Gn,k
n1,k1,n2,k2

=

∫
S2
Y k1
n1

(ξ)Y k2
n2

(ξ)Y k
n (ξ) dξ (5.1)

are zero unless all the conditions

k = k1 + k2, |k1| ≤ n1, |k2| ≤ n2, |k| ≤ n
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and
n = |n1 − n2| , |n1 − n2|+ 2, . . . , n1 + n2

hold. An explicit representation of Gaunt coefficients can be found in [9]. The Gaunt
coefficients are closely related to the Clebsch–Gordan coefficients, cf. [36].

Theorem 5.1. The odd cone-beam transform D(odd) : L2(B3) → L2(S2 × S2) has the
singular value decomposition

D(odd)Ṽm,l,k = λm,lWm,l,k, m ∈ N0, 0 ≤ l ≤ m, m+ l even, k ∈ {−l, . . . , l}.

The polynomials

Ṽm,l,k(sω) =
√

2m+ 3 slP
(0,l+ 1

2)
m−l
2

(2s2 − 1)Y k
l (ω), s ∈ [0, 1], ω ∈ S2,

form an orthonormal basis of L2(B3). The singular values are given by

λm,l =

√√√√2π

m+1+l∑′

n=m+1−l

(2n+ 1)(n− 1)!!2

n!!2
〈Pm+1 Pn, Pl〉,

where
∑′ denotes the summation over odd indices and

〈Pm+1 Pn, Pl〉 =
2(l +m− n)!! (l −m+ n− 2)!! (−l +m+ n)!! (l +m+ n+ 1)!!

(l +m− n+ 1)!! (l −m+ n− 1)!! (−l +m+ n+ 1)!! (l +m+ n+ 2)!!

for n ∈ {|m+ 1− l| , |m+ 1− l| + 2, . . . , m + 1 + l} and zero otherwise. The singular
values satisfy

c1m
−1/2 ≤ λm,l ≤ c2m

−1/8 (5.2)

for some constants c1, c2 independent of m and l. Furthermore, the functions

Wm,l,k(a,ω)

=
4π

λm,l
√

2m+ 3

m+1∑
j=−m−1

Y j
m+1(a)

m+1+l∑′

n=m+1−l

(−1)
n+1
2 (n− 1)!!

n!!
Gn,j+k
m+1,j,l,kY

j+k
n (ω)

for a,ω ∈ S2 are orthonormal in L2(S2 × S2).

Proof. The singular value decomposition is a special case of Theorems 4.4 and 4.5. The
triple product 〈Pm+1 Pn, Pl〉 is computed in [27] (see also [2]). The lower bound of the
singular values λm,l in (5.2) is due to Theorem 4.8. It is left to show the upper bound
in (5.2), which we do as in [16]. Changing roles of m and n in (4.13), we have

1 =
m+1+l∑

n=m+1−l

2n+ 1

2
〈Pm+1Pl, Pn〉 . (5.3)
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Furthermore, since |Pn(t)| ≤ 1 for |t| ≤ 1, we obtain the inequality

〈Pm+1Pl, Pn〉 ≤
∫ 1

−1
|Pm+1,d(t)Pn,d(t) Pl,d(t)| dt ≤

∫ 1

−1
|Pm+1,d(t)Pn,d(t)| dt.

By the Cauchy-Schwarz inequality,

〈Pm+1Pl, Pn〉 ≤ ‖Pm+1‖L2(−1,1) ‖Pn‖L2(−1,1) =
2√

(2m+ 3) (2n+ 1)
. (5.4)

Based on Wallis’ product, it was shown in [14] that for m ∈ N0

(2m)!!2

(2m+ 1)!!2
≤ π

2(2m+ 1)
.

Hence, we have

λ2m,l = 2π

m+1+l∑′

n=1

(2n+ 1)(n− 1)!!2

n!!2
〈Pm+1 Pn, Pl〉

≤ 2π2

2m+1∑′

n=1

2n+ 1

2n
〈Pm+1 Pn, Pl〉

because 0 ≤ l ≤ m. By the Cauchy-Schwarz inequality, we have

λ2m,l ≤ 2π2

√√√√2m+1∑′

n=1

2n+ 1

2
〈Pm+1 Pn, Pl〉

√√√√2m+1∑′

n=1

2n+ 1

2n2
〈Pm+1 Pn, Pl〉

Inserting (5.3) and (5.4), we obtain

λ2m,l = 2π2

√√√√2m+1∑′

n=1

2n+ 1

2n2
〈Pm+1 Pn, Pl〉

≤ 2π2

(2m+ 3)
1
4

√√√√2m+1∑′

n=1

√
2n+ 1

n2
.

The last sum converges for m→∞ and thus can be bounded from above by a constant
intependent of m, which implies that λ2m,l ∈ O(m−1/4).

Remark 5.2. The upper bound on the singular values λm,l ∈ O(m−1/8) may not be
optimal. The authors think that the upper bound can be improved to O(m−1/2) even
in general dimension d. This conjecture is backed by numerical computations as well as
the following observation, which is not a proof though. We consider Grangeat’s formula
(4.5)

(−1)d
(
∂

∂s

)d−2
Rf(ω,a>ω) = S(d−2)

d Df(a,ω).
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We know that the singular values of the Radon transform R are O(m(1−d)/2) and those
of the d−2 differentiations are O(md−2), so the left side should behave like O(m(d−3)/2).

On the right side, S(d−2)
d has the singular values O(m(d−2)/2) by Lemma 3.3, so the

singular values of the cone-beam transform D should behave like O(m−1/2).
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