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Abstract

The reconstruction of a function defined on the two-sphere from its mean values along
all circles of the sphere is an overdetermined problem. Every circle of the sphere is the
intersection of the sphere with a plane. We say that two circles are perpendicular if the
respective planes are. This thesis revolves around the circular average transform T , which
computes the mean values along all those circles that are perpendicular the equator of the
sphere. We describe a singular value decomposition of the circular average transform based
on the Funk-Hecke formula for spherical harmonics.
Any function f that is symmetrical with respect to the equator can be reconstructed from
its circular average transform T f , but the reconstruction is an ill-posed problem. We
describe a fast algorithm for the reconstruction based on the discrete spherical Fourier
transform. Therefore, we sample the function T f at discrete data points and assume that
the sampled values are disturbed by white noise. As a regularization scheme we use the
mollifier method, which essentially means that the smoothing in the reconstruction process
is done by a convolution with the mollifier. Finally, we construct a family of mollifiers that
minimizes the maximum risk of the reconstruction error assuming that the original function
f has a certain degree of smoothness with respect to Sobolev spaces on the sphere.
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1
Introduction

The problem of reconstructing a function from its integrals along certain lower-dimensional
submanifolds has been studied since the early twentieth century. It is associated with the
terms reconstructive integral geometry [42] and geometric tomography [17]. In a paper from
1917, Radon [44] introduced what later became known as the Radon transform, which maps
a function defined on the plane to its mean values along all lines lying in the plane. The
Radon transform provides the mathematical background of the computerized tomography,
whose development started in the 1960s and which has become a crucial part of medical
diagnostics since, cf. [49]. An even earlier work was published in 1913 by Funk [16]. He
described the problem of reconstructing a function on the two-sphere knowing its mean
values along all great circles of the sphere. The computation of these mean values is known
as the Funk transform or spherical Radon transform. This is not to be confused with the
similarly named spherical mean Radon transform, which computes the mean values over
spheres of functions defined on the three-dimensional space, cf. [22, 36].
What Funk did for great circles can be generalized to other classes of circles on the unit
sphere S2. One can consider the integration along all circles with a fixed radius. This
is known as the translation operator, cf. [48, 7, 24]. Another example, introduced by
Helgason [24, II.1.C], is the spherical slice transform, which computes the means along all
circles that contain a fixed point of the sphere.
Any circle of the sphere is the intersection of the sphere with a plane. We call two circles
perpendicular if the respective planes are. In this thesis, we consider the circular average
transform which computes the averages of a function along all circles perpendicular to the
equator of the sphere. Let us denote with eσ = (cosσ, sin σ, 0)>, σ ∈ T = [0, 2π), the
point on the equator of the sphere with the latitude σ. The circular average transform of
a continuous function f : S2 → C is defined by

T f (σ, t) = 1
2π
√

1− t2

ˆ
〈y,eσ〉=t

f (y) dy, (σ, t) ∈ T× (−1, 1) ,

where the integration is carried out with respect to the arc length on the circle. For t = ±1,
we set T f (σ,±1) = f (±eσ).
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1 Introduction

The circular average transform first arose in 2010 in a problem related to photoacoustic
tomography. Zangerl and Scherzer [59] described an algorithm for inverting the circular
average transform using a connection to the circular Radon transform. We will describe
this method in Subsection 3.3.1.
The circular average transform is a compact operator on L2 (S2), thus it has a singular
value decomposition. In Theorem 3.9, we describe a singular system (Yn,k, Bn,k, λ (n, k))n,k
such that T Yn,k = λ (n, k)Bn,k for all n ∈ N0 and k = −n, . . . , n. The spherical harmonics
Yn,k are the basis functions of the singular value decomposition on the sphere. The basis
functions Bn,k (σ, t) in the range of T are the products of the exponential functions σ 7→ eikσ

in the σ variable and the Legendre polynomials Pn in the t variable, normalized with respect
to the L2-norm, see (2.29). The singular values λ (n, k) ∈ C are known explicitly, see (3.15).

Reconstruction. We want to reconstruct a function f given its circular average transform
g = T f . Like it is the case for many other problems of this type, the inversion of the circular
average transform is an ill-posed problem. This means that the reconstruction of f is very
sensitive to small errors in the data g. Any practical observation incorporates some noise.
So, instead of g, we only have the noisy data g + ε.
There are two main kinds of error assumptions in inverse problems. In the deterministic
framework, the noise is assumed to be bounded in some norm, i.e. ‖ε‖ ≤ r, cf. [29]. On
the other hand, there is the statistical framework we chose in this thesis, where the noise
is described by a random process, cf. [5]. Here, the number of observations of g goes to
infinity, while the norm ‖ε‖ converges to zero in the deterministic setting.
In most practical applications, the number of observations is finite, so it makes sense to
sample the function g on discrete data points (σl, tm) ∈ T× [−1, 1] for l = 1, . . . , L, m =
1, . . . ,M . We consider the discrete noisy data

gε (σl, tm) = g (σl, tm) + ε (l,m) , l = 1, . . . , L, m = 1, . . . ,M,

where [ε (l,m)]l,m is an uncorrelated, zero-mean random variable, see Definition 4.1.
To overcome the ill-posedness of the reconstruction problem, we use the mollifier method
(cf. [38]), i.e. we aim at recovering a smoothened version of f , namely

ψ ? f (x) =
ˆ
S2
ψ (〈x,y〉) f (y) dy, x ∈ S2,

where ψ : [−1, 1]→ R is some mollifier, see Section 4.1. We are going to use the estimator

f εψ = ψ ?
(
T †LNgε

)
where T † denotes the pseudo-inverse of T and LN is a (hyper-)interpolation of degree N
of the sampled data. The L×M -point hyperinterpolation

LNg =
N∑
n=0

n∑
k=−n

(
L∑
l=1

M∑
m=1

wl,mg (σl, tm)Bn,k (σl, tm)
)
Bn,k.
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is a Fourier series with respect to the basis functions Bn,k, truncated at degree N , where
the Fourier coefficients of g are computed using a quadrature rule. One should be aware
that LN is not necessarily an interpolation. We say that LN is exact for a function g ∈
C (T× [−1, 1]) if LNg = g.
We assume that the function f belongs to the class of Sobolev-smooth functions

F (s, S) =
{
f ∈ Hs

(
S2
)
∩ N (T )⊥ : ‖f‖Hs(S2) ≤ S

}
where s, S > 0 and N (T ) denotes the nullspace of the operator T . The Sobolev space
Hs (S2) is equal to the set of functions whose weak derivatives up to the order s exist and
are square-integrable, provided s is an integer, cf. Subsection 2.2.3.
The minimax risk of the estimator f εψ is defined as

inf
ψ

sup
f∈F (s,S)

E
∥∥∥f εψ − f∥∥∥2

L2(S2)
,

cf. [53, 5]. Our aim is to find optimal mollifiers ψ∗ for which the above infimum is attained,
i.e.

sup
f∈F (s,S)

E
∥∥∥f εψ∗ − f∥∥∥2

L2(S2)
= inf

ψ
sup

f∈F (s,S)
E
∥∥∥f εψ − f∥∥∥2

L2(S2)
.

Since this is a rather tough problem, we look for asymptotically optimal mollifiers instead,
as the number of sampling points goes to infinity.
In the first stage, we prove an asymptotic upper bound for the minimax risk in (4.36).
Therefore, we need to make two assumptions on the L ×M -point hyperinterpolation LN
that we apply to the sampled data on the set T× [−1, 1], cf. Definition 4.7. The first one
is pretty natural, it says that LN should be exact for the basis functions Bn,k if n ≤ N .
Secondly, we assume that there exist some constants γ, γ > 0 such that

γ
4π
LM

≤
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 ≤ γ

4π
LM

, n = 0, . . . , N, k = −n, . . . , n,

if L and M are sufficiently large. This condition is satisfied with γ = γ = 1 if the weights
wl,m are constant, i.e. independent of l and m. Since constant-weight quadrature rules
with a certain exactness on the unit interval and thus on T× [−1, 1] are difficult to achieve,
we also prove that the above condition holds for the hyperinterpolation based on the Fejér
quadrature on the unit interval, cf. Corollary 4.11.
In the second stage, in Lemma 4.15, we prove that the mollifier can be chosen out of a
class of mollifiers, namely

ψÑ =
Ñ∑
n=0

2n+ 1
4π

(
1−

(
n+ 1

2
Ñ + 1

2

)s)
Pn, Ñ ≥ 0,

then the error is still below the upper bound we derived for the minimax risk. This also
gives us an asymptotic lower bound for the minimax risk.
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1 Introduction

Theorem 4.17 serves as the main result of this thesis. It shows the asymptotic optimality of
the so-defined family of mollifiers ψÑ for the class F (s, S) provided s is sufficiently large.
In particular, we prove that there exists a sequence Ñ (L,M) such that the minimax risk
is asymptotically achieved by using the mollifier ψÑ(L,M) where the number of sampling
points LM goes to infinity, i.e.

sup
f∈F (s,S)

E
∥∥∥∥f − f εψÑ(L,M)

∥∥∥∥2

L2(S2)
' inf

ψ∈L2([−1,1])
sup

f∈F (s,S)
E
∥∥∥f − f εψ∥∥∥2

L2(S2)
.

Furthermore, the minimax risk decreases of the order (LM)−
2s

2s+3 .
In [5], the Dirichlet kernel ψDir

Ñ
= ∑Ñ

n=1 (2n+ 1) / (4π)Pn was considered as mollifier in a
more general setting. It was shown that the error decreases of the same asymptotic rate
as for the optimal mollifiers. However, they assumed that the Fourier coefficients of g were
given, compared to the sampled values of g in our setting.

Structure of this thesis. The rest of this thesis consists of three chapters. The next
chapter describes some basics that will be useful later on. In Section 2.1, we will present
some facts about quadrature and approximation on the relevant manifolds for the circular
average transform, particularly the unit sphere S2 and the side of the cylinder T× [−1, 1].
We generalize a result from Sloan [50] for the interpolation error in Theorem 2.2. An intro-
duction to the theory of spherical harmonics, which form a complete system of orthogonal
polynomials on the sphere, follows in Section 2.2.
Chapter 3 is about the definition and properties of the circular average transform. At
first, we define the circular average transform in terms of the mean operator on the sphere,
which maps a function defined on the sphere to its mean values along all circles. Then we
construct some maps that connect the circular average transform with the circular Radon
transform and the Radon transform whose inversions have already been subject to research,
see e.g. [58, 46, 2, 41, 44, 24] and [44, 24], respectively. Using stereographic projection,
we can relate the circular average transform to the circular Radon transform in the plane,
which calculates the mean values of a function defined on the plane along all circles centered
on a line, see Theorem 3.7. Furthermore, we can use orthogonal projection to establish a
connection with the Radon transform, see Theorem 3.8. In Section 3.4, we compute the
singular value decomposition of the circular average transform. Based on this and the fast
spherical Fourier transform [31], we present a fast algorithm for the computation of the
circular average transform in Section 3.5.
Chapter 4 is about the inversion of the circular average transform. At first, we present
the setting we use for the regularization of the problem. Then, in Section 4.2, we show
that the expected reconstruction error can be decomposed in two parts and examine those
parts separately yielding to upper bounds of the error. In Section 4.3, we compute lower
bounds of the error and show that the family of mollifiers (4.37) is asymptotically optimal.
In Section 4.4, we describe an application of the inverse circular average transform in
the context of photoacoustic tomography. An algorithm that computes the estimator f εψ
numerically is presented in Section 4.5. A final conclusion follows in Chapter 5.
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2
Preliminaries

We introduce some common symbols describing the asymptotic growth of sequences. For
simplicity, let (αj)j and (βj)j be two non-zero sequences of real numbers. The sign
“>” means “asymptotically less than or equal to”. We say that αj > βj for j → ∞ if
lim supj→∞ αj/βj ≤ 1. The symbol “?” stands for “asymptotically less than or equal to”
and is defined analogously. Furthermore, αj ' βj if αj > βj and αj ? βj. For the well-
known Big Oh notation, only the order of growth matters. We say that αj ∈ O (βj) if
there exists a c ∈ R such that αj > cβj. Moreover, we introduce the Big Theta notation,
αj ∈ Θ (βj) if αj ∈ O (βj) and b (j) ∈ O (αj).

2.1 Quadrature
In this section, we present some basic facts about quadrature, a.k.a. numerical integration.
We first describe the general case and we will come to quadrature on specific manifolds
later. The first part of our considerations is based on [50].
Let Ω ⊂ Rd be either the closure of an open, connected set or a closed smooth manifold of
lower dimension. Let µ be a finite measure on Ω. We usually write dx instead of dµ(x) if
it is clear which measure is meant. We denote by |Ω| =

´
Ω 1 dµ(x) the volume of Ω. The

space C (Ω) is the vector space of all continuous functions defined on Ω with values in the
complex numbers C. Equipped with the supremum norm ‖f‖C(Ω) = ‖f‖∞ = supx∈Ω |f(x)|,
the space of continuous functions is a Banach space. The Lebesgue space L2(Ω) consists
of all measurable functions f : Ω→ C that satisfy

´
Ω |f(x)|2 dµ (x) <∞. It is well-known

that L2(Ω) is a separable Hilbert space with the inner product

〈f, g〉 :=
ˆ

Ω
f(x)g(x) dx, f, g ∈ L2 (Ω) (2.1)

and the norm
‖f‖L2(Ω) =

√ˆ
Ω
|f (x)|2 dx, f ∈ L2 (Ω) .
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2 Preliminaries

Let en, n ∈ N, be an orthonormal basis of L2 (Ω), that is:
• 〈en, em〉 = δnm, where δ denotes the Kronecker delta, and
• every function f ∈ L2(Ω) can be written as Fourier series

f =
∞∑
n=1

f̂ (n) en

with the Fourier coefficients

f̂(n) =
ˆ

Ω
f(x)en(x) dx, n ∈ N.

In L2 (Ω), like in every other Hilbert space, Parseval’s identity

‖f‖2
L2(Ω) =

∞∑
n=1

∣∣∣f̂ (n)
∣∣∣2 , f ∈ L2 (Ω) , (2.2)

holds, cf. [57, V.4.9,(b),(vi)]. Let

PNf =
N∑
n=1
〈f, en〉 en. (2.3)

denote the orthogonal projection of the function f ∈ L2(Ω) onto

ΠN (Ω) = span {en : n = 1, . . . , N} ,

where span denotes the set of all finite linear combinations. Let a quadrature formula Q
on Ω be given by

Qf =
J∑
j=1

wjf (xj) , f ∈ C (Ω) (2.4)

with the quadrature nodes xj ∈ Ω and the corresponding weights wj ∈ R, j = 1, . . . , J .
The quadrature formula Q is called exact for a set A ⊂ L2 (Ω) ∩ C (Ω) if

Qf =
ˆ

Ω
f (x) dx for all f ∈ A.

In case that Q is exact for A = ΠN (Ω), we say that Q has the order of exactness N .
Applying the quadrature rule Q to the computation of the inner product (2.1) leads to the
discretized inner product

〈f, g〉Q =
J∑
j=1

f (xj) g (xj)wj, f, g ∈ C (Ω) .

It is easy to check that 〈·, ·〉Q is a non-negative sesquilinear form. But, in general, 〈·, ·〉Q
is not an inner product because it lacks the positive definiteness. If the quadrature Q is
exact for {enem : n,m = 1, . . . , N}, then the discrete orthogonality relation

〈en, em〉Q = δnm, n,m = 1, . . . , N, (2.5)
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2.1 Quadrature

holds. Now we can define a discretized version of the orthogonal projection PN from (2.3),

LNf =
N∑
n=1
〈f, en〉Q en. (2.6)

The operator LN is referred to as hyperinterpolation. If the equations

LNf (xj) = f (xj) , j = 1, . . . , J, (2.7)

hold for all continuous functions f , then LN is called interpolatory. The following two
lemmas with properties of the discretized inner product and the hyperinterpolation have
been shown in [50, Lemma 5]. There, it was assumed that the functions en are polynomials,
but the proof is basically the same.

Lemma 2.1. Let f ∈ C(Ω), N ∈ N, and the quadrature Q be exact for the set

span {enem : n,m = 1, . . . , N} .

Then the following statements hold:
1. 〈f − LNf, g〉Q = 0 for all g ∈ ΠN (Ω)
2. 〈LNf,LNf〉Q ≤ 〈f, f〉Q

Proof. Let g ∈ ΠN , then, by the assumed exactness of Q and the discrete orthogonality
relation (2.5),

〈f − LNf, g〉Q =
〈
f −

N∑
n=1
〈f, en〉Q en, g

〉
Q

=
〈
f −

N∑
n=1
〈f, en〉Q en,

N∑
n′=1
〈g, en′〉Q en′

〉
Q

=
〈
f,

N∑
n=1
〈g, en〉Q en

〉
Q

−
N∑
n=1
〈f, en〉Q 〈g, en〉Q

= 0

which shows the first equation. This also implies that

〈LNf,LNf〉Q = 〈f,LNf〉Q
= 〈f, f〉Q − 〈f, f − LNf〉Q
= 〈f, f〉Q − 〈f − LNf, f − LNf〉Q

The second equation follows because 〈g, g〉Q ≥ 0 for all continuous functions g.
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2 Preliminaries

Theorem 2.2. Let f ∈ C(Ω), N ∈ N, and the quadrature Q be exact for

span {enem : n,m = 0, . . . , N}

and for constant functions. Then

‖LNf − f‖L2(Ω) ≤ 2
√
|Ω| inf

g∈ΠN
‖f − g‖C(Ω) . (2.8)

Proof. From Lemma 2.1, we obtain the estimate

‖LNf‖2
L2(Ω) = 〈LNf,LNf〉Q

≤ 〈f, f〉Q

=
J∑
j=1

wj |f(xj)|2

≤
J∑
j=1

wj ‖f‖2
C(Ω)

= |Ω| ‖f‖2
C(Ω) .

In the last line, we have used the exactness ofQ for constant functions. For any p ∈ ΠN (Ω) ,
we have LNp = p and, by the above,

‖LNf − f‖L2(Ω) ≤ ‖LN (f − p)‖L2(Ω) + ‖f − p‖L2(Ω)

≤
√
|Ω| ‖f − p‖C(Ω) +

√
|Ω| ‖f − p‖C(Ω) .

Since this estimate holds for all p ∈ ΠN (Ω), it implies (2.8).

2.1.1 The unit interval

Let Ω = [−1, 1] and let µ be the Lebesgue measure on the interval [−1, 1]. We denote
with Πn (R) the set of polynomials in one variable that have a degree not greater than
n. The orthogonal polynomials in this space are the well-known Legendre polynomials Pn,
n ∈ N0. The following formulas can be found in [1, Section 22]. An explicit expression is
given through Rodrigues’ formula

Pn (t) = 1
2nn! ·

dn
dtn

((
t2 − 1

)n)
, t ∈ [−1, 1] . (2.9)

The Legendre polynomials Pn are polynomials of degree n with Pn(1) = 1. They satisfy
the three-term recurrence relation

Pn (t) = 2n− 1
n

tPn−1 (t)− n− 1
n

Pn−2 (t) , n ≥ 1, (2.10)
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2.1 Quadrature

which is initialized by the equations

P0 (t) ≡ 1, P−1 (t) ≡ 0.

The orthogonal relation for the Legendre polynomials is

1ˆ

−1

Pn (t)Pm (t) dt = 2
2n+ 1δnm, n,m ∈ N0, (2.11)

where δ denotes the Kronecker delta.
Any function f ∈ L2([−1, 1]) can be expanded into a Legendre series

f =
∞∑
n=0

2n+ 1
4π f̂(n)Pn (2.12)

with the Legendre coefficients

f̂(n) = 2π
1ˆ

−1

f(t)Pn(t) dt, n ∈ N0. (2.13)

The following inequality holds for the Legendre polynomials, cf. [1, 22.14.9]

|Pn (cos θ)| ≤ min
√ 2

πn

1√
sin θ

, 1
 , 0 < θ < π, n ∈ N0. (2.14)

An asymptotic approximation of the Legendre polynomials is given by Stieltjes’ general-
ization of the Laplace-Heine formula, cf. [51, 8.21], for n→∞

Pn (cos θ) =
√

2
πn

cos
((
n+ 1

2

)
θ − π

4

)
√

sin θ
+O

(
(n sin θ)−3/2

)
, 0 < θ < π. (2.15)

2.1.1.1 Quadrature on the unit interval

There are several different choices of quadrature formulas

QMf =
M∑
m=1

ωmf (tm) =
1ˆ

−1

f (t) dµ (t) +RMf (2.16)

for some measure µ on the unit interval [−1, 1]. We call QM exact of degree n ∈ N0 if
RMf = 0 for all polynomials f having degree up to n. Them-th Lagrange basis polynomial
lm is a polynomial of degree M − 1 which is uniquely determined by lm(tk) = δmk, m, k =

19



2 Preliminaries

1, . . . ,M . For any pairwise disjoint set of nodes {tm : m = 1, . . . ,M}, we can use the
weights

ωm =
1ˆ

−1

lm(t)w (t) dµ (t) , m = 1, . . . ,M, (2.17)

which are also known as the Cotes or Christoffel numbers. Using the so-defined weights,
the quadrature QM is exact of degree M − 1.
The Gaussian quadrature uses as nodes tm the zeros of the orthogonal polynomials with
respect to µ. The Gaussian quadrature is exact of degree 2M − 1, see [52, Section 19].
When µ is the Lebesgue measure, i.e. dµ (t) = dt, the orthogonal polynomials are the Leg-
endre polynomials (2.9) and the corresponding Gaussian rule is called the Gauss-Legendre
quadrature.
The Gauss-Chebyshev quadrature of the first kind [13] is the Gaussian quadrature for the
Chebyshev weight of the first kind dµ (t) = 1√

1−t2 dt. This quadrature uses the Chebyshev
nodes of the first kind

tC1
m = cos

(
θC1
m

)
, θC1

m = (2m− 1) π
2M , m = 1, . . . ,M. (2.18)

The Gauss-Chebyshev quadrature of the first kind is denoted by

QGC1
M f = π

M

M∑
m=1

f
(
cos

(
θC1
m

))
, f ∈ C ([−1, 1]) . (2.19)

The Gauss-Chebyshev quadrature of the second kind [11] is the Gaussian quadrature for
the Chebyshev weight of the second kind dµ (t) =

√
1− t2 dt. This quadrature uses the

Chebyshev nodes of the second kind

tC2
m = cos

(
θC2
m

)
, θC2

m = mπ

M + 1 , m = 1, . . . ,M. (2.20)

The Gauss-Chebyshev quadrature of the second kind is denoted by

QGC2
M f = π

M + 1

M∑
m=1

(
sin

(
θC2
m

))2
f
(
cos

(
θC2
m

))
, f ∈ C ([−1, 1]) . (2.21)

Using the Chebyshev nodes of the second kind for a quadrature rule for the Lebesque
measure leads to the Fejér quadrature [18, 55]. The weights (2.17) of the Fejér quadrature
can be expressed through the explicit formula

ωF
m = 4

M + 1 sin
(
θC2
m

) bM/2c∑
j=1

sin
(
(2j − 1) θC2

m

)
2j − 1 , m = 1, . . . ,M. (2.22)

The Fejér quadrature is exact for polynomials of degreeM−1 with respect to the Lebesgue
measure dµ (t) = dt. The Clenshaw-Curtis quadrature is very similar to the Fejér quadra-
ture: in (2.20), m = 1, . . . ,M is replaced by m = 0, . . . ,M + 1 and the weights are chosen
like in (2.17), cf. [52]. There are also explicit formulas for the Clenshaw-Curtis weights.
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2.1 Quadrature

The asymptotic behavior of the nodes and weights of the quadrature formulas are of inter-
est. The asymptotic distribution of the nodes is the same for Legendre, Clenshaw-Curtis
and Fejér, so the nodes θm are almost uniformly distributed on [0, π] for M large, cf.
[33, 12]. Equivalently, the asymptotic distribution of tm is given by (1− t2)−1/2.
For the Cotes numbers ωm, the circle theorem of Davis and Rabinowitz [9] states that

M

π
ω(M)
m '

√
1−

(
t
(M)
m

)2
(2.23)

as M → ∞ for the nodes and weights of the Gauss-Legendre quadrature. This theorem
was extended to the Clenshaw-Curtis and Fejér quadrature in [37]. Figure 2.1 on page
21 gives a visualization of the circle theorem. A further estimate presented in [14] states
that for every quadrature with non-negative weights wm, m = 1, . . . ,M, which is exact for
polynomials with degree ≤ 2k + 1, its weights satisfy

ωm <
π

k

(√
1− x2

m + π

k
|tm|

)
. (2.24)
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tm

N π
w
m

Gauss-Legendre quadrature
Clenshaw-Curtis quadrature√

1− t2

Figure 2.1: Plot ofMωm/π forM = 10, . . . , 100 where ωm are the weights for theM -point
Gauss-Legendre and Clenshaw-Curtis quadrature. The red curve is the graph
of the function

√
1− t2 to illustrate the equation (2.23) from the circle theorem.

Up to this point, we chose the nodes and computed the corresponding weights to achieve
exactness of the quadrature. Alternatively, we can fix the quadrature weights to be constant
and try to choose appropriate nodes tm. This is called Chebyshev-type quadrature. When
the quadrature is exact for constant functions, we have ∑M

m=1 ωm =
´ 1
−1 1 dt = 2 which

shows that ωm must be 2/M . So we define the Chebyshev-type quadrature rule by

QC
Mf = 2

M

M∑
m=1

f (tm) . (2.25)
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Chebyshev-type quadrature rules with degree of exactness M are known to exist, but,
unfortunately, for M > 10 the nodes tm are not all in the unit interval, instead tm ∈
C\ [−1, 1] for at least one m ∈ {1, . . . ,M}, cf. [19]. When we require that tm ∈ [−1, 1] for
all m, such quadratures having degree of exactness n exist with the number of nodes Mn

satisfying
0.269n2 < M2n−1 < 5.657n2,

which was shown in [32]. One should note that the estimate M2n−1 = O (n2) for the
Chebyshev-type quadrature is very bad compared to M2n−1 = O (n) for the quadra-
ture formulas from above like Gaussian and Clenshaw-Curtis. This is the reason why
Chebyshev-type rules are rarely used in practice for N > 10.

2.1.2 The one-dimensional torus
Another well-described case is Ω = T where T is the one-dimensional torus which is the
same as the one-dimensional sphere. Then, the orthonormal polynomials can be written
as

[0, 2π]→ C, σ 7→ 1√
2π

eikσ, k ∈ Z,

where Z denotes the set of all integers. The degree of these polynomials is defined by
deg eik(·) = |k|. The Fourier expansion of a function f ∈ L2 (T) is given by

f(σ) = 1√
2π

∞∑
k=−∞

f̂ (k) eikσ, σ ∈ T,

with the Fourier coefficients

f̂(k) = 1√
2π

2πˆ

0

f(σ)e−ikσ dσ, k ∈ Z. (2.26)

On the torus, quadrature rules with equidistant nodes 2πl/L, l = 0, . . . , L − 1, and equal
weights 2π/L are a convenient choice. The quadrature is exact of degree L and the hy-
perinterpolation of degree L − 1 with this quadrature is interpolatory. Applying such
quadrature to the computation of the Fourier coefficients in (2.26) yields to the discrete
Fourier transform. The discrete Fourier transform DFT (f) of a vector f ∈ CL is defined
by

[DFT (f)] (k) =
L−1∑
l=0

f(l)e−2πikl/L, k = 0, . . . , L− 1. (2.27)

The discrete Fourier transform can be computed efficiently in O (L logL) steps using the
famous Fast Fourier Transform (FFT) which was introduced in [6]. The inverse discrete
Fourier transform (IDFT) is defined by

f(l) = 1
L

L−1∑
k=0

f̂(k)e2πikl/L. (2.28)
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2.1 Quadrature

2.1.3 Tensor product of Lebesgue spaces
We consider the space L2 (T× [−1, 1]) with the Lebesgue measure. This is the tensor
product space of L2 (T) and L2 ([−1, 1]). The set T × [−1, 1] can be imagined as the side
of a cylinder. We define the functions

Bn,k : T× [−1, 1]→ C, (σ, t) 7→
√

2n+ 1√
4π

eikσPn(t), n ∈ N0, k ∈ Z, (2.29)

which are just the products of the Legendre polynomials Pn and the exponential function
eik(·) normalized with respect to the L2 norm. The set {Bn,k : n ∈ N0, k ∈ Z} forms an
orthonormal basis of polynomials in L2 (T× [−1, 1]).
For quadrature rules on T× [−1, 1], we also use the ansatz of a tensor product. Let

QS
Lg =

L∑
l=1

ωS
l g (σl) , g ∈ C (T)

and
QI
Mh =

M∑
m=1

ωI
mh (tm) , h ∈ C ([−1, 1])

be quadrature rules on the torus and the unit interval, respectively. Then, we define the
quadrature

Qf =
M∑
m=1

L∑
l=1

wl,mf (σl, tm) , f ∈ C (T× [−1, 1])

where wl,m = ωS
l ω

I
m.

Proposition 2.3. Let N ∈ N and Q be the quadrature on T × [−1, 1] as above, where
QS
L is exact of degree L = 2N , QI

M is exact of degree M − 1 = 2N , and the respective
hyperinterpolations are interpolatory. Then the hyperinterpolation

LN,Qf (σl, tm) =
N∑
n=0

N∑
k=−N

〈f,Bn,k〉QBn,k (σl, tm)

is an interpolation.

Proof. Let N ∈ N. We have

LN,Qf (σl, tm) =
N∑
n=0

N∑
k=−N

〈f,Bn,k〉QBn,k (σl, tm)

=
N∑
n=0

N∑
k=−N

M∑
m′=1

L∑
l′=1

wl′,m′f (σl′ , tm′)Bn,k (σl, tm′)Bn,k (σl, tm)

=
N∑
n=0

2n+ 1
4π

N∑
k=−N

M∑
m′=1

L∑
l′=1

ωS
l′ω

I
m′f (σl′ , tm′) eikσl′Pn (tm′) eikσlPn (tm)

=
N∑
n=0

2n+ 1
4π

M∑
m′=1

ωI
m′Pn (tm′)Pn (tm)

 N∑
k=−N

L∑
l′=1

ωS
l′f (σl′ , tm′) eikσl′eikσl

 .
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From the assumed exactness, we observe that

LN,Qf (σl, tm) =
N∑
n=0

2n+ 1
2

M∑
m′=1

ωI
m′Pn (tm′)Pn (tm) f (σl, tm′)

= f (σl, tm) ,

which shows that LN,Q is an interpolation.

2.2 Approximation theory on the sphere
In this section, we present some basic results of the approximation theory on the two-
dimensional sphere S2 = {x ∈ R3 : |x| = 1} which we are going to use later. Here, |x|
denotes the Euclidean norm of the vector x. Further information about these topics can
be found in books such as [15] or [7].
A vector x ∈ S2 can be written in the spherical coordinates ϕ and ϑ as

x (ϕ, ϑ) =

 cos (ϕ) sin (ϑ)
sin (ϕ) sin (ϑ)

cos (ϑ)

 ,
where ϕ ∈ [0, 2π) is the azimuth and ϑ ∈ [0, π] is the polar angle. We denote with ei the
i-th unit vector and write x = x1e1 + x2e2 + x3e3. In the spherical coordinate system, the
integral of a function f : S2 → C on the sphere is parametrized by

ˆ
S2
f (x) dx =

πˆ

0

2πˆ

0

f (cosϕ sinϑ, sinϕ sinϑ, cosϑ) dϕ sinϑdϑ. (2.30)

The measure of the whole surface of the sphere is 4π.
A function f : S2 → C is called a radial function with respect to some vector y ∈ S2 if
there exists a function g : [−1, 1]→ C such that f (x) = g (〈x,y〉) for all x ∈ S2. Since the
surface measure is invariant under rotations, we are free in the choice a coordinate system
and we choose one where y is the north pole (0, 0, 1) of the sphere. Then the integral over
f equals ˆ

S2
f (x) dx =

πˆ

0

2πˆ

0

g (cosϑ) dϕ sinϑ dϑ =
1ˆ

−1

g(t) dt. (2.31)

2.2.1 Harmonic polynomials on the sphere

In order to define an orthonormal basis of polynomials in the space L2 (S2), we follow the
approach from [7, Charpter 1] throughout this section.

24



2.2 Approximation theory on the sphere

We denote the set of all polynomials in three variables having degree up to n with Πn (R3).
A polynomial p : R3 → R is called homogeneous of degree n if p is a linear combination
of monomials of degree n. For a multi-index α ∈ N3

0, a monomial is x 7→ xα = xα1
1 x

α2
2 x

α3
3

and has degree |α| = α1 + α2 + α3. An equivalent definition is the following: we call a
polynomial p homogeneous of degree n if p(rx) = rnp(x) for all x ∈ R3 and r ∈ R. Let
Pn (R3) denote all polynomials homogeneous of degree n. A polynomial p ∈ Pn (R3) is
called harmonic if ∆p = 0 where ∆ denotes the Laplacian

∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
.

The Laplacian restricted to the two-sphere is often called the Laplace-Beltrami operator.
Let Hn (S2) denote the set of all harmonic polynomials, homogenous of degree n on R3,
restricted to the sphere. A function Yn ∈Hn (S2) is called a spherical harmonic.

Proposition 2.4. The harmonic spaces Hn (S2) are orthogonal with respect to n, i.e. if
Yn ∈Hn (S2) and Ym ∈Hm (S2) with m 6= n, then 〈Yn, Ym〉 = 0 where 〈·, ·〉 denotes the L2

inner product.

Proof. Since Yn is homogeneous, Yn(rx) = rn−1Yn(x) for x ∈ S2 and consequently

∂Yn
∂r

(rx) = nrn−1Yn(x),

where ∂ denotes the partial derivative. Using Green’s second identity, we can conclude

(m− n) 〈Yn, Ym〉 = (m− n)
ˆ
S2
YnYm dx

=
ˆ
S2

(
Yn
∂Ym
∂r
− Ym

∂Yn
∂r

)
dx

=
ˆ
B1(0)

(Yn∆Ym − Ym∆Yn) dx = 0.

Proposition 2.5. The homogeneous polynomials can be decomposed into harmonic poly-
nomials through

Pn

(
S2
)

=
n/2⊕
j=0
‖x‖2j Hn−2j

(
S2
)
.

Proof. We show the result using induction over n ∈ N0. The basis is clear since H0 = P0
and H1 = P1. For n ≥ 2 we note that ∆Pn ⊂Pn−2 and thus

dim Pn ≤ dim Hn + dim Pn−2.
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From the induction hypothesis, it follows that

‖x‖2 Pn−2
(
S2
)

=
n/2⊕
j=0
‖x‖2j+2 Hn−2j−2

(
S2
)
.

Because of the orthogonality of the harmonic polynomials shown in Proposition 2.4,

dim Pn ≥ dim Hn + dim Pn−2.

Hence, we have
Pn = Hn ⊕ ‖x‖2 Pn−2.

With the help of Proposition 2.5, we can calculate the dimension of the harmonic polyno-
mial spaces Hn: The dimension of the space of homogeneous polynomials Pn is

dim Pn =
(
n+ 2
n

)
= (n+ 2)(n+ 1)

2 ,

which can be seen by counting the number of three-dimensional multi-indices α with |α| =
n. Then

dim Hn = dim Pn − dim Pn−2 = (n+ 2)(n+ 1)− n(n− 1)
2 = 2n+ 1.

Let Yn,k, k = −n, . . . , n be an orthonormal basis of Hn. Proposition 2.5 implies that every
polynomial on the sphere can be written as a linear combination of spherical harmonics Yn,k.
Since the sphere is compact, the Stone-Weierstrass theorem states that every continuous
function can be approximated uniformly by spherical harmonics.

Zonal harmonics. For n ∈ N0, the reproducing kernel Zn : S2 × S2 → C of Hn is solely
defined by the reproducing property

Yn(x) =
ˆ

S2

Yn(y)Zn(x,y) dy for all Yn ∈Hn, x ∈ S2. (2.32)

The existence and uniqueness of the reproducing kernel follows from Riesz’s representation
theorem applied to the linear functional Hn → C, Yn 7→ Yn(y) for every y ∈ S2. Let Yn,k,
k = −n, . . . , n be an orthonormal basis of Hn, then it can be easily verified by inserting
into (2.32) that

Zn(x,y) =
n∑

k=−n
Yn,k(x)Yn,k(y), x,y ∈ S2. (2.33)

This shows that the zonal harmonics Zn are polynomials of degree n in both arguments.
Note that (2.33) is independent from the particular choice of the basis Yn,k since the
reproducing kernel is unique.

26



2.2 Approximation theory on the sphere

Proposition 2.6. For n ∈ N0 and x,y ∈ S2, the reproducing kernel Zn (x,y) depends
only on the geodesic distance of the arguments x and y. It can be written as a multiple of
the Legendre polynomials by

Zn (x,y) = 2n+ 1
4π Pn (〈x,y〉) , x,y ∈ S2. (2.34)

Proof. At first, we show that Zn (x,y) depends only on the geodesic distance of x and y.
We observe that the space Hn is invariant under rotations, because the Laplacian ∆ is
invariant under rotations. Let SO (3) denote the three-dimensional rotation group which
is the set of all 3× 3-dimensional orthogonal matrices with determinant 1. For a rotation
matrix Q ∈ SO(3), the functions Yn,k(Q◦), k = −n, . . . , n form an orthonormal basis of
Hn, so we have Zn (Q◦, Q◦) = Zn. For any x,y ∈ S2 there exists a rotation matrix Q such
that

Qx = (0, 0, 1) and Qy =
(
0,
√

1− t2, t
)

for some t ∈ [−1, 1]. Because the reproducing kernel Zn is unique, this shows that Zn only
depends on t = 〈x,y〉 and we write

Fn (〈x,y〉) = Zn (x,y) .
The zonal harmonic Zn is a polynomial of degree n in both arguments. So the function

Zn (x, e3) = Fn (〈x, e3〉) = Fn (x3)
is a polynomial of degree n in x and since it only depends on x3, we obtain that Fn is a
polynomial of degree n.
Now we show the orthogonality of Fn on the interval [−1, 1]. For n, n′ ∈ N0 with n 6= n′,
we have for some y ∈ S2 by (2.31) and (2.33)

1ˆ

−1

Fn(t)Fn′(t) dt =
ˆ
S2
Zn (x,y)Zn′ (x,y) dx

=
n∑

k=−n

n′∑
k′=−n′

Yn,k (y)Yn′,k′ (y)
ˆ
S2
Yn,k (x)Yn′,k′ (x) dx

= 0
where we have used the orthogonality property of the spherical harmonics Yn,k from Propo-
sition 2.4.
Next, we show the normalization of Fn. For any y ∈ S2, we have

1ˆ

−1

|Fn (t)|2 dt =
n∑

k,k′=−n
Yn,k (y)Yn,k′ (y)

ˆ
S2
Yn,k (x)Yn,k′ (x) dx

=
n∑

k=−n
Yn,k (y)Yn,k (y)

=
n∑

k=−n
|Yn,k (y)|2 = Zn (y,y) = Fn(1).
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Thus, the function ∑n
k=−n |Yn,k|

2 must be constant. Again by of the assumed orthonormal-
ity of the spherical harmonics Yn,k, we have

n∑
k=−n

|Yn,k (y)|2 =
n∑

k=−n

1
4π

ˆ
S2
|Yn,k (x)|2 dx

= 2n+ 1
4π .

Putting the things together, this shows that the polynomials Fn are orthogonal on the
interval [−1, 1] with respect to the Lebesgue measure. Because the orthogonal polynomials
are unique, the functions Fn must be equal to the Legendre polynomials Pn multiplied by
a constant factor depending only on n. The factor can be determined by using Fn(1) =
(2n+ 1) / (4π) and Pn(1) = 1.

Combining formulas (2.33) and (2.34), we obtain the so-called addition theorem for spher-
ical harmonics:

n∑
k=−n

Yn,k (x)Yn,k (y) = 2n+ 1
4π Pn (〈x,y〉) , x,y ∈ S2, n ∈ N0. (2.35)

2.2.2 Spherical harmonics in spherical coordinates
In the following, we give an explicit representation of the spherical harmonics in spherical
coordinates shown in [40]. Therefore, we use the associated Legendre polynomials

Pn,k : [−1, 1]→ R, n ∈ N0, k = −n, . . . , n,

which are given in terms of the Legendre polynomials for k ≥ 0 by

Pn,k (t) = (−1)k
(
1− t2

)k/2 dk
dtkPn (t) , t ∈ [−1, 1], (2.36)

and
Pn,−k(t) = (−1)k (n− k)!

(n+ k)!Pn,k(t), t ∈ [−1, 1]. (2.37)

They satisfy the three-term recurrence relation (see [20, 8.735.2])
√

1− t2Pn,k+1 (t) = (n− k) tPn,k (t)− (n+ k)Pn−1,k (t) , (2.38)

which is initialized for k = 0 by the Legendre polynomials Pn = Pn,0. The spherical
harmonics Yn,k ∈Hn (S2) are defined in spherical coordinates by

Yn,k (x (ϕ, ϑ)) =
√

2n+ 1
4π

√√√√(n− k)!
(n+ k)!Pn,k (cosϑ) eikϕ, n ∈ N0, k = −n, . . . , n. (2.39)

The so-defined spherical harmonics Yn,k, k = −n, . . . , n form an orthonormal basis of
Hn (S2). Therefore, every function f ∈ L2 (S2) can be represented by a Fourier series with
respect to the spherical harmonics as it was discussed in Subsection 2.2.1 for the general
case.
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2.2 Approximation theory on the sphere

2.2.3 Sobolev spaces on the sphere

We introduce function spaces containing functions of a certain smoothness, so-called Sobolev
spaces. More background information about Sobolev spaces on the sphere can be found in
[15, section 5.1].

Definition 2.7. For s ≥ 0, the Sobolev space Hs (S2) is defined by

Hs
(
S2
)

:=

f ∈ L2
(
S2
)

:
∞∑
n=0

n∑
k=−n

(
n+ 1

2

)2s ∣∣∣f̂ (n, k)
∣∣∣2 <∞

 . (2.40)

The Sobolev space is equipped with the inner product

〈f, g〉s :=
∞∑
n=0

n∑
k=−n

(
n+ 1

2

)2s
f̂ (n, k) ĝ (n, k)

and the induced norm ‖f‖Hs(S2) =
√
〈f, f〉s.

The Sobolev space (Hs (S2) , 〈·, ·〉s) is a Hilbert space. The Sobolev spaces are nested,
Hs (S2) ⊂ H t (S2) for s > t. The equality H0 (S2) = L2 (S2) follows directly from the
definition. If s is an integer, then Hs (S2) can be thought of as the space containing all
functions that are square-integrable together with their weak derivatives of the order s.

Proposition 2.8 (Sobolev embedding theorem, cf. [25]). If s > 1, the Sobolev space
Hs (S2) can be embedded continuously into the space of continuous functions C (S2). Fur-
thermore, there exists a constant c > 0 independent of f such that

‖f‖C(S2) ≤ c ‖f‖Hs(S2) , f ∈ C
(
S2
)
.

Proof. Let f ∈ Hs (S2) with s > 1 and x ∈ S2. Then, by the Cauchy-Schwartz inequality
and the addition theorem (2.35), we have for N ∈ N0∣∣∣∣∣∣

N∑
n=0

n∑
k=−n

f̂ (n, k)Yn,k (x)

∣∣∣∣∣∣ ≤
N∑
n=0

n∑
k=−n

∣∣∣∣f̂ (n, k)
(
n+ 1

2

)s∣∣∣∣ |Yn,k (x)|
(
n+ 1

2

)−s

≤ ‖f‖Hs(S2)

√√√√ N∑
n=0

n∑
k=−n

|Yn,k (x)|2
(
n+ 1

2

)−2s

≤ ‖f‖Hs(S2)

√√√√ N∑
n=0

2n+ 1
4π

(
n+ 1

2

)−2s

= ‖f‖Hs(S2)

√√√√ N∑
n=0

1
2π

(
n+ 1

2

)1−2s
.
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The sum converges for N → ∞ if and only if 1 − 2s < −1, or equivalently s > 1. This
shows that the Fourier series of f converges uniformly to a continuous function provided
s > 1. Since the Fourier series converges to f in the L2-norm, we obtain that

|f (x)| =

∣∣∣∣∣∣
∞∑
n=0

n∑
k=−n

f̂ (n, k)Yn,k (x)

∣∣∣∣∣∣
≤ ‖f‖Hs(S2)

√√√√ ∞∑
n=0

1
2π

(
n+ 1

2

)1−2s
.

2.2.4 Spherical convolution
The spherical convolution ψ ? f of ψ ∈ L2 ([−1, 1]) with a spherical function f ∈ L2 (S2) is
defined as

ψ ? f (x) =
ˆ
S2
ψ (〈x,y〉) f (y) dy, x ∈ S2,

cf. [7, Section 2.1]. In this definition, y 7→ ψ (〈x,y〉) can be taken as a radial function on
the sphere. The spherical convolution satisfies the following Young inequality:

Proposition 2.9. The spherical convolution ? : L2 ([−1, 1])×L2 (S2)→ L2 (S2) , (ψ, f) 7→
ψ ? f is bilinear and bounded operator satisfying

‖ψ ? f‖L2(S2) ≤ ‖ψ‖L2([−1,1]) ‖f‖L2(S2) .

Proof. Let ψ ∈ L2 ([−1, 1]) and f ∈ L2 (S2), then, by Fubini’s theorem,

‖ψ ? f‖2
L2(S2) =

ˆ
S2

∣∣∣∣∣
ˆ
S2
ψ (〈x,y〉) f (y) dy

∣∣∣∣∣
2

dx

≤
ˆ
S2

ˆ
S2
|ψ (〈x,y〉) f (y)|2 dy dx

=
ˆ
S2

(ˆ
S2
|ψ (〈x,y〉)|2 dx

)
|f (y)|2 dy.

Since x 7→ |ψ (〈x,y〉)|2 is a radial function, we can use (2.31) to evaluate the inner integral

ˆ
S2
|ψ (〈x,y〉)|2 dx =

1ˆ

−1

|ψ (t)|2 dt = ‖ψ‖2
L2([−1,1]) .

Hence,
‖ψ ? f‖2

L2(S2) ≤ ‖ψ‖
2
L2([−1,1])

ˆ
S2
|f (y)|2 dy.
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2.2 Approximation theory on the sphere

The following theorem is known as the Funk-Hecke formula, c.f. [7, Theorem 1.2.9].

Proposition 2.10. Let ψ ∈ L2 ([−1, 1]) and Yn ∈Hn (S2), then

ψ ? Yn (x) =
ˆ
S2
ψ (〈x,y〉)Yn(y) dy = ψ̂(n)Yn (x) , x ∈ S2 (2.41)

with

ψ̂(n) = 2π
1ˆ

−1

ψ(t)Pn(t) dt = 2π 〈ψ, Pn〉L2[−1,1] , n ∈ N0. (2.42)

Proof. At first, we assume that ψ is a polynomial of degree N ∈ N, so we expand ψ in
terms of the Legendre polynomials,

ψ(t) =
N∑
m=0

ψ̂(m)2m+ 1
4π Pm(t) =

N∑
m=0

ψ̂(m)Fm(t).

From the reproducing property (2.32) of Zn, it follows that

ψ ? Yn (x) =
ˆ
S2
Yn(y)ψ (〈x,y〉) dy

=
N∑
m=0

ψ̂(m)
ˆ
S2
Yn(y)Fm (〈x,y〉) dy

=
N∑
m=0

ψ̂(m)
ˆ
S2
Yn(y)Zm (x,y) dy

= ψ̂(n)Yn (x) .

Now, let ψ be an arbitrary function in L2 ([−1, 1]), then ψ can be approximated with
respect to the L2 norm by polynomials, which follows from the Weierstrass approximation
theorem and the fact that the set of continuous function is dense in L2 ([−1, 1]). Together
with the boundedness of the convolution shown in Proposition 2.9, this implies (2.41).

A simple corollary from Proposition 2.10 is the equation

ψ ? f =
∞∑
n=0

n∑
k=−n

ψ̂ (n) f̂ (n, k)Yn,k (2.43)

where f ∈ L2 (S2), ψ ∈ L2 [−1, 1], and ψ̂ (n) is defined in (2.42). So the spherical convo-
lution of two functions is just the multiplication of their Fourier coefficients. The identity
(2.43) is an analogue to the convolution theorem for functions on the torus.
Convolutions can also be used for approximating functions. Therefore, we convolute a
spherical function f ∈ L2 (S2) with a mollifier ψ ∈ L2 ([−1, 1]), such that ψ ? f is “near”
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2 Preliminaries

to f . A sequence of such such mollifiers (ψj)j∈N is called an approximate identity if for all
f ∈ L2 (S2),

lim
j→∞
‖f − ψj ? f‖L2(S2) = 0.

An equivalent characterization of approximate identities is that

lim
j→∞

ψ̂j(n) = 1 for all n ∈ N0,

see [15, Section 8.1]. The following theorem gives an upper bound for the approximation.

Proposition 2.11. Let f ∈ Hs (S2) for s ≥ 0 and ψ ∈ L2 ([−1, 1]), then the error of the
approximation of f by ψ ? f is bounded by

‖f − ψ ? f‖L2(S2) ≤ sup
n∈N0


∣∣∣1− ψ̂(n)

∣∣∣(
n+ 1

2

)s
 ‖f‖Hs(S2)

where ψ̂ (n) is defined in (2.42).

Proof. From Parseval’s identity (2.2) and the Funk-Hecke formula (2.41), we obtain

‖f − ψ ? f‖2
L2(S2) =

∞∑
n=0

n∑
k=−n

|〈f − ψ ? f, Yn,k〉|2

=
∞∑
n=0

n∑
k=−n

∣∣∣f̂(n, k)− ψ̂(n)f̂(n, k)
∣∣∣2

=
∞∑
n=0

n∑
k=−n

∣∣∣1− ψ̂(n)
∣∣∣2(

n+ 1
2

)2s

(
n+ 1

2

)2s ∣∣∣f̂(n, k)
∣∣∣2 . (2.44)

Now we can write the supremum of the first factor in (2.44) left of the sums, insert the
Hs-norm of f from Definition 2.7, and we see that

‖f − ψ ? f‖2
L2(S2) ≤ sup

n∈N0


∣∣∣1− ψ̂(n)

∣∣∣2(
n+ 1

2

)2s

 ‖f‖2
Hs(S2) .
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3
Circular Averages on the Sphere

3.1 The mean operator on the sphere

In this section, we describe properties of the mean operator on the sphereM that computes
the mean values along circles of functions defined on the two-dimensional unit sphere
S2. Every circle on the sphere can be described as the intersection of S2 with a plane
{y ∈ R3 : 〈x,y〉 = t} where x ∈ S2 and t ∈ [−1, 1]. The diameter of the sphere that is
perpendicular to the circle is called the axis of the circle. The endpoints of this axis, i.e.
x and −x, are called the poles of the circle, cf. [27].
The mean operatorM : C (S2)→ C (S2 × [−1, 1]) is defined for every function f ∈ C (S2)
by

Mf (x, t) =


1

2π
√

1−t2
´
〈x,y〉=t f (y) ds (y) , x ∈ S2, t ∈ (−1, 1)

f (x,±t) , x ∈ S2, t = ±1
(3.1)

(cf. [7, Section 2.1], [48]) where ds denotes the arc length along the circle {y ∈ S2 : 〈x,y〉 = t},
which has the poles x and −x the radius

√
1− t2. So the spherical meanMf (x, t) is just

the mean value of f on that circle. For t = ±1, the set {y ∈ S2 : 〈x,y〉 = ±1} consists
only of the single point x on the sphere, soMf (x,±1) = f (±x) can be seen as the “mean
value” of f on the set {±x}.
The factor 2π

√
1− t2 in (3.1) is equal to the circumference of a circle {y ∈ S2 : 〈x,y〉 = t}.

Hence, the mean operator applied to a constant function f ≡ c ∈ C gives a function that is
constant in both x and t and has the same value as f . Moreover, the following symmetry
property of the mean operator on the sphere is easy to check,

Mf (x, t) =Mf (−x,−t) , (x, t) ∈ S2 × [−1, 1].

As a consequence of (2.31), the integration over the whole sphere can be written with the
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3 Circular Averages on the Sphere

help of the mean operator on the sphere as
ˆ
S2
f(x) dx = 2π

1ˆ

−1

Mf(y, t) dt (3.2)

for any y ∈ S2.
Theorem 3.1 ([4, Section 4.2], [7, Section 2.1]). Let f ∈ L2 (S2), Yn ∈ Hn (S2) and
t ∈ [−1, 1], then

〈Mf (·, t) , Yn〉 = Pn(t) 〈f, Yn〉 , n ∈ N0. (3.3)

Proof. Let g ∈ L2 [−1, 1] and n ∈ N0. For a spherical harmonic Yn ∈Hn, we have

g ? Yn (x) =
ˆ
S2
g (〈x,y〉)Yn (y) dy

=
1ˆ

−1

ˆ
〈x,y〉=t

g (t)Yn (y) ds (y) dt

= 2π
1ˆ

−1

g (t)MYn (x, t) dt, x ∈ S2. (3.4)

Using the Funk-Hecke formula (2.41), we have on the other side

g ? Yn = 2πYn
1ˆ

−1

g(t)Pn(t) dt. (3.5)

Combining the equations (3.4) and (3.5) yields
1ˆ

−1

g (t)MYn (·, t) dt = Yn

1ˆ

−1

g(t)Pn(t) dt.

Because this equality is valid for all g ∈ L2 [−1, 1], we can conclude
MYn (·, t) = Pn(t)Yn (3.6)

for almost all t ∈ [−1, 1]. Since both sides of (3.6) are continuous with respect to t, the
equality must hold for all t. Finally (3.3) follows by the Fourier decomposition of f .

Theorem 3.1 can be seen as a kind of generalization of the Funk-Hecke formula (2.41).
Formally, inserting the δ distribution into the Funk-Hecke formula, ψ = δ ((·)− t), would
yield (3.3) immediately, but the delta distribution does not lie in L2 [−1, 1].
The singular value decomposition of the mean operator on the sphere follows from Theorem
3.1,

Mf (x, t) =
∞∑
n=0

n∑
k=−n

f̂ (n, k)Pn (t)Yn,k (x) .
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3.2 The circular average transform

Restrictions of the mean operator on the sphere. When considering the reconstruction
of a function f whereMf is given, we have more information available than we actually
need. To see that, we assume that we knowMf (x, 1) for all x ∈ S2. Then, by definition,
we have already full information about the function f ≡ Mf (·, 1). So it makes sense to
consider the inversion ofM when we only know the spherical means on a submanifold of
the image space S2 × [−1, 1].
A well-known example is the so-called spherical Radon or Funk transform, where we fix
t = 0, cf. [16, 8]. In that case, we integrate f along all great circles of the sphere. Obviously,
all odd functions lie in the nullspace of the Funk transform. It has been shown that any
even function f ∈ L2 (S2) can be reconstructed from its Funk transform. The translation
operator is a slight generalization to the Funk transform, cf. [48]. Instead of t = 0, we fix
an arbitrary t0 ∈ [−1, 1].
Another example was considered in [24, II.1.C]. For the spherical slice transform, a function
is integrated along all circles passing through the north pole. Formally, the spherical slice
transform of a function f is given by x 7→ Mf (x, 〈x, e3〉) for x ∈ S2 with x3 ≥ 0.
In the following, we will take a closer look at the circular average transform, which computes
the integrals along all circles that have their poles on the equator.

3.2 The circular average transform
In order to define the circular average transform, we introduce some notation. Let σ ∈ T
be a point on the one-dimensional torus T = [0, 2π). Now we denote with

eσ = (cosσ, sin σ, 0)> ∈ S2

the point on the equator of the two-dimensional sphere S2 with longitude σ.

Definition 3.2. The circular average transform T f of a continuous function f ∈ C(S2) is
defined by

T f (σ, t) =Mf (eσ, t) , (σ, t) ∈ T× [−1, 1] , (3.7)
whereM is the mean operator from (3.1).

The circular average transform T f (σ, t) computes the mean values of a function f along
the circles

C (σ, t) =
{
y ∈ S2 : 〈y, eσ〉 = t

}
. (3.8)

We denote with C = {C(σ, t) : (σ, t) ∈ T× [−1, 1]} the set of all these circles. Then C
contains exactly those circles of the sphere whose poles are located on the equator of the
sphere.
For (σ, t) ∈ T× [−1, 1], the small circles C(σ, t) and C(σ + π,−t) are equal. With that in
mind, we define the equivalence relation ∼ on the domain T × [−1, 1] by saying that two
points (σ, t) and (σ′, t′) are equivalent if t = −t′ and σ = σ′ + π + 2kπ for some integer k.
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3 Circular Averages on the Sphere

Figure 3.1: Red: Circles C (σ, t) for a fixed σ = 5π/18. The plane with the grid is the
x1–x2 plane.

So the set of circles C is topologically equivalent to the quotient set (T× [−1, 1]) / ∼. This
set is called a Möbius band, which was first described in 1886, see [39]. It can be described
as a rectangle [0, π]× [−1, 1] whose lower and upper edge are identified via (0, t) ∼ (π,−t)
for t ∈ [−1, 1], see Figure 3.2 on page 37.

Proposition 3.3. Let (σ, t) ∈ T × [−1, 1]. The small circles C(σ, t) given in (3.8) have
the parameterized representation

C(σ, t) =

t
 cosσ

sin σ
0

+
√

1− t2
 − sin σ cosϕ

cosσ cosϕ
sinϕ

 : ϕ ∈ T

 . (3.9)

Proof. For x = (x1, x2, x3)> ∈ S2, we obtain from (3.8)

x ∈ C(σ, t)⇔ x1 cosσ + x2 sin σ = t.
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3.2 The circular average transform

−10 1

π

polar
angle σ

distance t
from the center of C(σ, t)

to the origin

Figure 3.2: Left: Visualization of the Möbius band. The red arrows are identified with
each other.
Right: The Möbius band embedded in R3. (image: CC-BY-SA 3.0 JoshDif)

At first, let σ = 0, then the circle C(0, t) is parametrized by

C(0, t) =
{(
t,
√

1− t2 cosϕ,
√

1− t2 sinϕ
)

: ϕ ∈ T
}
.

The circle C(σ, t) is just a rotation of C(0, t) with the angle σ around the x3 axis. This
rotation can be described with the rotation matrix

Qσ =

 cosσ − sin σ 0
sin σ cosσ 0

0 0 1

 .
So we have C(σ, t) = QσC(0, t) which shows that

C(σ, t) =


 t cosσ −

√
1− t2 cosϕ sin σ

t sin σ +
√

1− t2 cosϕ cosσ√
1− t2 sinϕ

 : ϕ ∈ T

 .

The following basic properties of the circular average transform are easy to see.
1. As a special case of spherical means, the circular average transform preserves constant

functions in the sense of
f ≡ c ∈ C⇒ T f ≡ c.

Furthermore, it satisfies the symmetry

T f(σ, t) = T f(σ + π,−t), σ ∈ [0, π] , t ∈ [−1, 1] .
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3 Circular Averages on the Sphere

2. Let Ref denote the reflection in the x1–x2 plane, i.e. Ref(x1, x2, x3) = (x3, x2,−x3).
Then T f = T (Reff) for all functions f : S2 → C. So, if the function f is odd in the
third component, then its circular average transform vanishes.

3. Equation (3.9) implies the formula

T f (σ, cosϑ) = 1
2π

2πˆ

0

f (γσ,t(ϕ)) dϕ (3.10)

with the integration path

γσ,t : T→ S2 : ϕ 7→ t

 cosσ
sin σ

0

+
√

1− t2
 − sin σ cosϕ

cosσ cosϕ
sinϕ

 .
One should note that the integration variable ϕ does not represent the arc length
on a circle C(σ, t). Instead, the length of the tangent vector is ‖γ̇σ,t‖ =

√
1− t2.

When we rewrite the integral (3.10) in terms of the arc length, it must be divided by√
1− t2.

Remark 3.4. The family C consists of all circles whose poles are located on the equator e⊥3
of the sphere. One could also define the circular average transform for circles with poles
on any great circle x⊥, x ∈ S2. But since we are free to choose the coordinate system, we
restrict our considerations to the equator.
The following theorem gives a necessary condition for a function to be in the range of the
circular average transform. This range condition is very much like the range condition for
the planar Radon transform that was proven in [24, Lemma 2.3].
Theorem 3.5. For every function f ∈ C (S2), the circular average transform T f satisfies
the following condition: For every n ∈ N0, the function

σ 7→
1ˆ

1

T f (σ, t) tn dt, σ ∈ T,

is a trigonometric polynomial in σ of degree n.

Proof. Using (3.2) and (3.7), we observe that that for f ∈ C (S2) and g ∈ C ([−1, 1])
1ˆ

−1

T f (σ, t) g(t) dt =
1ˆ

−1

Mf (eσ, t) g(t) dt

=
1ˆ

−1

ˆ
〈x,eσ〉=t

f (x) g(t) ds (x) dt

=
ˆ
S2
f (x) g (〈x, eσ〉) dx

= g ? f (eσ) .
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3.3 Relation to planar Radon transforms

Considering the Funk-Hecke formula (2.41), we see that if g is a polynomial of degree n,
then g ? f is a homogeneous polynomial of degree n on the sphere. So g ? f can be written
in terms of spherical harmonics,

g ? f =
n∑

k=−n
αkYn,k

for some coefficient vector α ∈ C2n+1. Inserting the representation (2.39) of the spherical
harmonics shows that f ? g (eσ) is a trigonometric polynomial of degree n in σ.

3.3 Relation to planar Radon transforms
In this section, we present two well-known transforms that are defined on the two dimen-
sional plane, namely the Radon transform and the circular Radon transform. We utilize
two mappings from the sphere onto the plane to establish a connection from the circular
average transform to these other transforms.

3.3.1 Relation to the circular Radon transform

Definition 3.6. Let f : R2 → C be a function on the two-dimensional plane. Then its
circular Radon transform is defined as (see [46])

Rcf(u, r) = 1
2π

2πˆ

0

f (u+ r cosϕ, r sinϕ) dϕ, (u, r) ∈ R× R+. (3.11)

The circular Radon transform of a function f computes the mean value of a function along
circles having the center (u, 0), which lies on the x1 axis of the two-dimensional plane, and
the radius r. The circumference of such a circle is 2πr. The circular Radon transform of
a constant function f0 ≡ c ∈ C is again constant,

Rcf0(u, r) = 1
2π

2πˆ

0

c dϕ = c, (u, r) ∈ R× R+.

The following theorem shows the relation between the circular Radon transform and the
circular average transform. A similar version of the theorem was proven in [59]. This
method was also used in [58] as one step of inverting the circular Radon transform with
the help of the Funk transform. Before stating the theorem, we define the stereographic
projection of the two-sphere onto the x2–x3 plane by

π(−1,0,0) : S2\ {(−1, 0, 0)} → R2, π(−1,0,0)(x) =
(

x2

1 + x1
,

x3

1 + x1

)
.
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3 Circular Averages on the Sphere

The pushforward metric in R2 with respect to the stereographic projection is called the
spherical metric. It is given by

dx1dx2

1 + x2
1 + x2

2
, (3.12)

see [54, Chapter 1].

Theorem 3.7. Let π(−1,0,0) denote the stereographic projection as above and (σ, t) ∈ T ×
[−1, 1] satisfy t + cos σ 6= 0. Then the following relation between the circular average
transform on the sphere and the circular Radon transform in the plane holds:

√
1− t2 [T f ] (σ, t) (3.13)

= [Rc (F )]
(

t sin σ +
√

1− t2 cosσ
1 + t cosσ −

√
1− t2 sin σ

−
√

1− t2
t+ cosσ ,

√
1− t2

t+ cosσ

)

where

F (ξ) =

[
f ◦ π(−1,0,0)

]
(ξ)

2
(
1 + ‖ξ‖2

) , ξ ∈ R2.

Proof. Let (σ, t) ∈ T × [−1, 1]. It is well-known that the stereographic projection maps
circles onto circles. At first, we calculate the radius of the circle π(−1,0,0)Cσ,t. Inserting
ϕ = 0 and ϕ = π into (3.9) gives us the points

x1,2 =
(
t cosσ ∓

√
1− t2 sin σ, t sin σ ±

√
1− t2 cosσ, 0

)>
which are antipodal on the circle Cσ,t. Then the stereographic projection of these points
is given by

π(−1,0,0)x1,2 =
(

t sin σ ±
√

1− t2 cosσ
1 + t cosσ ∓

√
1− t2 sin σ

, 0
)
.

Since the circle Cσ,t is symmetric in the x3 coordinate, the circle π(−1,0,0)Cσ,t is symmetric
in its second coordinate. So the points π(−1,0,0)x1 and π(−1,0,0)x2 are also antipodal on the
circle π(−1,0,0)Cσ,t. Hence the radius rσ,t of the circle π(−1,0,0)Cσ,t is given by

rσ,t = 1
2

(
t sin σ +

√
1− t2 cosσ

1 + t cosσ −
√

1− t2 sin σ
− t sin σ −

√
1− t2 cosσ

1 + t cosσ +
√

1− t2 sin σ

)

=
√

1− t2
t+ cosσ .

Now we determine the center (uσ,t, 0) of the circle π(−1,0,0)Cσ,t, which is just the midpoint
of the two antipodal points x1 and x2, so

uσ,t = t sin σ +
√

1− t2 cosσ
1 + t cosσ −

√
1− t2 sin σ

−
√

1− t2
t+ cosσ .

Equation (3.13) follows by inserting the formula (3.12) of the spherical metric in the plane.
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3.3 Relation to planar Radon transforms

The circular Radon transform has been examined in many publications like [46] or [2]. The
latter featured an inversion method utilizing Fourier transforms. The connection shown in
Theorem 3.7 can be used to compute the inversion of the circular average transform. This
approach has some drawbacks, like, it is necessary to deal with functions on the whole
plane instead of the compact sphere.

3.3.2 Relation to the Radon transform

The circular average transform on the sphere is closely related to the Radon transform in
the plane which was first described in [44] (for an English version, see [45]). The Radon
transform R of a function f : R2 → C is defined by

Rf (σ, t) =
ˆ

〈eσ ,x〉=t

f(x) ds(x), (σ, t) ∈ T× R,

where the integral is carried out with respect to the arc length s. The domain of integration
is the line {x ∈ R2 : 〈eσ,x〉 = t} which has the angle σ to the x2 axis and the distance t
to the origin. The Radon transform can be written equivalently in terms of a line integral
as

Rf(σ, t) =
∞̂

−∞

f

(
t

(
cosσ
sin σ

)
+
(
− sin σ
cosσ

)
u

)
du, (σ, t) ∈ T× R.

Let f : S2 → C be a function on the sphere. We define its corresponding planar function
f̃ : R2 → C by

f̃ (x1, x2) = 1
2π
√
x2

1 + x2
2


f


x1

x2√
1− x2

1 − x2
2

+ f


x1

x2

−
√

1− x2
1 − x2

2

 , x2
1 + x2

2 < 1

0, otherwise.

The corresponding planar function f̃ is like an orthogonal projection of the function f
onto the x1–x2 plane. For every point (x1, x2) ∈ B1(0) ⊂ R2 in the open unit circle
B1(0) = {x ∈ R2 : ‖x‖ < 1}, there exist exactly two points on the sphere whose first two

coordinates are equal to those of (x1, x2), namely x± =
(
x1, x2,±

√
1− x2

1 − x2
2

)>
. The

corresponding planar function function evaluated at (x1, x2) is just the average of f (x+)
and f (x−). If the function f is even with respect to the x3 axis, then we have

f (x)
π
√
x2

1 + x2
2

= f̃ (x1, x2)

for x = (x1, x2, x3)> ∈ S2.
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3 Circular Averages on the Sphere

Theorem 3.8. Let f be a function on the sphere which is even in the third component and
f̃ denote its corresponding planar function as defined above. Then the following relation
between the circular average transform on the sphere and the Radon transform on the plane
holds:

T f(σ, t) =
[
Rf̃

]
(σ, t) , (σ, t) ∈ T× (−1, 1) .

Proof. According to (3.10), we have

T f (σ, t) = 1
π

πˆ

0

f

t
 cosσ

sin σ
0

+
√

1− t2
 − cosϕ sin σ

cosϕ cosσ
sinϕ


 dϕ.

because f is even in the third component. T f can be written in terms of the corresponding
planar function f̃ as

T f (σ, t)√
1− t2 − (1− t2) (cosϕ)2

=
πˆ

0

f̃

(
t

(
cosσ
sin σ

)
+
√

1− t2 cosϕ
(
− sin σ
cosσ

))
dϕ

since ∥∥∥∥∥t
(

cosσ
sin σ

)
+
√

1− t2
(
− cosϕ sin σ
cosϕ cosσ

)∥∥∥∥∥
2

= t2 +
(
1− t2

)
(cosϕ)2 .

Performing the substitution

u =
√

1− t2 cosϕ,

with

du =
√

1− t2 sinϕ dϕ

=
√

1− t2
√

1− u2

1− t2 dϕ

=
√

1− t2 − u2 dϕ

leads to

T f (σ, cosϑ)√
1− t2 − u2

= 1
2π

√
1−t2ˆ

−
√

1−t2

f̃

(
t

(
cosσ
sin σ

)
+ u

(
− sin σ
cosσ

))
√

1− t2 − u2
du. (3.14)

Since f̃ vanishes outside the unit circle B1(0) by definition, equation (3.14) becomes

T f (σ, cosϑ) =
ˆ

〈x,(cosσ
sinσ)〉=t

f̃ (x) ds(x).
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3.4 Singular value decomposition

The Radon transform and its inversion have been subject to many publications, since it
is used to describe the mathematics of computerized tomography, cf. [24, 49]. Using the
equivalence shown in Theorem 3.8 to compute the circular average transform is somehow
problematic because the corresponding function usually has a singularity along the unit
circle ‖x‖ = 1. If, for instance, the function f ≡ 1 is constant on the two-sphere, its
corresponding function

f̃(x) = 1
π
√

1− ‖x‖2
, x ∈ B1(0) ⊂ R2

has a singularity along the unit circle because

lim
‖x‖↑1

f̃(x) =∞ whereas lim
‖x‖↓1

f̃(x) = 0.

3.4 Singular value decomposition

The following theorem shows the singular value decomposition (SVD) of the circular av-
erage transform T in terms of the spherical harmonics Yn,k and the functions Bn,k from
(2.29). This will be the basis of our inversion algorithm.

Theorem 3.9. The circular average transform, as defined in (3.7), can be extended con-
tinuously to a compact linear operator T : L2 (S2)→ L2 (T× [−1, 1]). The singular system

{(Yn,k, Bn,k, λ (n, k)) : n ∈ N0, k = −n, . . . , n}

of the circular average transform consists of the spherical harmonics Yn,k, cf. (2.39), the
basis functions

Bn,k : T× [−1, 1]→ C, (σ, t) 7→
√

2n+ 1
4π eikσPn(t),

cf. (2.29), and the singular values

λ (n, k) =

(−1)(n+k)/2 (n+k−1)!!
(n−k)!!

√
(n−k)!
(n+k)! , n+ k even

0, otherwise.
(3.15)

The following singular value decomposition holds for all f ∈ L2 (S2),

〈T f,Bn,k〉 = λ (n, k) 〈f, Yn,k〉 , n ∈ N0, k = −n, . . . , n. (3.16)

Notation. We are going to use the symbol T for the operator defined for continuous func-
tions in (3.7) as well as for its extension on L2 (S2).
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3 Circular Averages on the Sphere

Proof. Let n ∈ N0 and k ∈ {−n, . . . , n}. Initially, we compute the circular average trans-
form applied to a spherical harmonic Yn,k. By the Definition 3.2 of the circular average
transform, the singular value decomposition of the mean operator in Theorem 3.1 and the
definition of the spherical harmonics in (2.39),

T Yn,k (σ, t) = MYn,k (eσ, t)
= Pn (t)Yn,k (eσ)

= Pn (t)
√

2n+ 1
4π

√√√√(n− k)!
(n+ k)!e

ikσPn,k (0) .

To derive a closed formula for Pn,k (0), we start with the case Pn,0(0) = Pn(0). According
to the recurrence relation (2.38) for the Legendre polynomials, we have for n ≥ 1

Pn(0) = −(n− 1)Pn−2(0)
n

=

(−1)n/2 (n−1)!!
n!! : n even

0 : n odd

and P0 (0) = 1. With the recurrence relation (2.38) for the associated Legendre polynomi-
als, we obtain for n, k ≥ 1,

Pn,k (0) = − (n+ k − 1)Pn−1,k−1 (0)

= (−1)k (n+ k − 1)!!
(n− k − 1)!!Pn−k,0 (0)

= (−1)k (n+ k − 1)!!
(n− k − 1)!!

(
1 + (−1)n−k

)
2 (−1)(n−k)/2 (n− k − 1)!!

(n− k)!!

= (−1)(n+k)/2 (n+ k − 1)!!
(n− k)!!

(
1 + (−1)n−k

)
2

and, by (2.37),

Pn,−k(0) = (−1)k (n− k)!
(n+ k)!Pn,k(0)

= (n− k − 1)!!
(n+ k)!! (−1)(n+k)/2+k

(
1 + (−1)n−k

)
2

where we define (−1)!! = 1. Hence,

T Yn,k (σ, t) = (−1)(n+k)/2 (n+ k − 1)!!
(n− k)!!

(
1 + (−1)n−k

)
2

√
2n+ 1

4π

√√√√(n− k)!
(n+ k)!

·Pn (t) eikσ

= (−1)(n+k)/2 (n+ k − 1)!!
(n− k)!!

(
1 + (−1)n−k

)
2

√√√√(n− k)!
(n+ k)!Bn,k (σ, t) .
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3.4 Singular value decomposition

With λ(n, k) from (3.15) and the orthonormality of Yn,k and Bn,k, this proves (3.16).
Let f ∈ span {Yn,k : n ∈ N0, k = −n, . . . , n}, i.e. f is a polynomial. Then

T f =
∞∑
n=0

n∑
k=−n

f̂ (n, k)λ (n, k)Bn,k (σ, t)

where the first summation is only over finitely many indexes n.
Since the singular values λ (n, k) are bounded independently of n and k, the operator T
is bounded on span {Yn,k : n ∈ N0, k = −n, . . . , n} with respect to the corresponding L2

norms. So T is a bounded linear operator on a dense subspace of L2 (S2). Hence, there
exists a unique bounded linear operator L2 (S2) → L2 (T× [−1, 1]) extending T . For
simplicity, we denote the extension just by T . Because the sequence λ (n, k) converges to
zero for n→∞, the operator T is also compact.

Remark 3.10. Double factorials can be expressed in terms of factorials for n even by

(n− 1)!! = n!
2n/2

(
n
2

)
!

(3.17)

and
n!! = 2n/2

(
n

2

)
!. (3.18)

With these formulas we can derive a representation of the singular values (3.15) without
double factorials. For n+ k even,

λ (n, k) = (−1)(n+k)/2 (n+ k − 1)!!
(n− k)!!

√√√√(n− k)!
(n+ k)!

= (−1)(n+k)/2 (n+ k)!
2(n+k)/2

(
n+k

2

)
!

1
2(n−k)/2

(
n−k

2

)
!

√√√√(n− k)!
(n+ k)!

= (−1)(n+k)/2

√
(n+ k)!

√
(n− k)!

2n
(
n+k

2

)
!
(
n−k

2

)
!
. (3.19)

Asymptotics of the singular values. To describe the asymptotic behavior of the singular
values λ(n, k), we use the following version of Stirling’s formula. It was shown in [47] that
for n = 1, 2, . . .

n! =
√

2πnn+1/2e−ner(n) (3.20)

where rn satisfies
1

12n+ 1 < rn <
1

12n. (3.21)
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3 Circular Averages on the Sphere

Theorem 3.11. Let n ∈ N0, k ∈ {−n, . . . , n}, and n+ k be even, then the singular values
λ (n, k) of the circular average transform, cf. Theorem 3.9, can be written as

|λ(n, k)| =
√

2
π

1
4
√
n2 − k2

eR(n,k) (3.22)

where
|R(n, k)| < 1

3 min (n+ k, n− k) . (3.23)

Furthermore, for n even, we have

|λ(n, n)| ' 1
4
√
πn

, n→∞. (3.24)

Proof. By Stirling’s formula (3.20) and the representation (3.19) of the singular values,

|λ(n, k)| =

√
(n+ k)!

√
(n− k)!

2n
(
n+k

2

)
!
(
n−k

2

)
!

=
√

2π
√

(n+ k)n+k+1/2 e−(n+k)er(n+k)
√

(n− k)n−k+1/2 e−(n−k)er(n−k)

2n2π
((

n+k
2

)n+k+1
2 e−n+k

2 er(
n+k

2 )
)((

n−k
2

)n−k+1
2 e−n−k2 er(

n−k
2 )
)

= 1√
2π

2−n+n+k+1
2 +n−k+1

2 (n+ k)
n−k+1/2

2 −n−k+1
2 (n− k)

n−k+1/2
2 −n−k+1

2 ·

e−
n+k

2 −
n−k

2 +n+k
2 +n−k

2 e
r(n+k)

2 + r(n−k)
2 −r(n+k

2 )−r(n−k2 )

=
√

2√
π

(n+ k)−1/4(n− k)−1/4eR(n,k).

where
R (n, k) = r (n+ k)

2 + r (n− k)
2 − r

(
n+ k

2

)
− r

(
n− k

2

)
.

This shows (3.22).
Next, we derive a bound for the error term R(n, k). We set ν = min (n+ k, n− k), then

n+ k, n− k ∈ {ν, ν + 1, . . . , 2n− ν} .

With the inequality (3.21) for r, we derive the upper bound

R (n, k) = r (n+ k)
2 + r (n− k)

2 − r
(
n+ k

2

)
− r

(
n− k

2

)

<
1

24 (n+ k) + 1
24 (n− k) −

1
6 (n+ k) + 1 −

1
6 (n+ k) + 1

≤ 1
24ν + 1

24ν −
1

6 (2n− ν) + 1 −
1

6 (2n− ν) + 1

= 1
12ν −

2
6 (2n− ν) + 1
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3.4 Singular value decomposition

and, analogously, the lower bound

R (n, k) = r (n+ k)
2 + r (n− k)

2 − r
(
n+ k

2

)
− r

(
n− k

2

)

> − 1
6 (n+ k) −

1
6 (n+ k)

> − 1
6ν −

1
6ν

= − 1
3ν .

The last two calculations imply (3.23).
Now let n ∈ N be even. Using the same arguments as in the first part of the proof, we
observe that

|λ(n, n)| =

√
(2n)!

2n
(

2n
2

)
!

=

√√
2π (2n)2n+1/2 e−2ner(2n)

2n
√

2πnn+1/2e−ner(n)

= 1
4
√
πn

er(2n)/2−r(n).

Equation (3.24) follows using the truncated Taylor series of the exponential function

e1/x = 1 +O
(1
x

)
, x→∞.

Remark 3.12. To get a better understanding of the error bound (3.23) for the asymptotic
expression (3.22) of the singular values of the circular average transform, let us fix some
ν ∈ N. Then

|R (n, k)| < 1
3ν , n ≥ ν, |k| ≤ n− ν.

Adjoint operator. Let A ∈ L (X → Y ) be a bounded linear operator between the two
Hilbert spaces X and Y . Then the operator A? ∈ L (Y → X) satisfying 〈Af, g〉 = 〈f, A?g〉
for all f ∈ X and g ∈ Y is called the adjoint operator of A.

Theorem 3.13. The adjoint operator of the circular average transform T : L2 (S2) →
L2 (T× [−1, 1]) is given by

T ?g(x) = 1
2π

2πˆ

0

g (σ, 〈x, eσ〉) dσ. (3.25)
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3 Circular Averages on the Sphere

Proof. Let f ∈ C (S2) and g ∈ C (T× [−1, 1]). Then, by (2.31),

〈T f, g〉 =
2πˆ

0

1ˆ

−1

T f (σ, t) g (σ, t) dt dσ

=
2πˆ

0


1ˆ

−1

Mf (eσ, t) g (σ, t) dt

 dσ

= 1
2π

2πˆ

0

ˆ
S2

f (x) g (σ, 〈x, eσ〉) dx

 dσ = 〈f, T ?g〉 .

Since the sets of continuous functions are dense in both the Hilbert spaces L2 (S2) and
L2 (T× [−1, 1]), we can conclude (3.25).

3.5 Computing the circular average transform

In this section, we describe an algorithm for the computation of the circular average trans-
form based on its singular value decomposition from Theorem 3.9. Suppose that we are
given a continuous function f ∈ C (S2). For the derivation of an algorithm, we assume
that f is a polynomial of degree up to N ∈ N. In the first step, we compute the Fourier
coefficients f̂(n, k) via the quadrature

f̂(n, k) =
J∑
j=1

ωjf (xj)Yn,k (xj) , n = 0, . . . , N, k = −n, . . . , n (3.26)

with the nodes xj and the corresponding weights ωj for j = 1, . . . , J . The computation
of (3.26) can be done efficiently with the adjoint Nonequispaced Fast Spherical Fourier
Transform (NFSFT) which was developed in [31]. The adjoint NFSFT is an approximative
algorithm for computing the Fourier coefficients f̂ (n, k) up to degree N given the function
values f (xj). When the number of nodes J is in O (N2), the NFSFT needs O

(
N2 log2N

)
operations. The NFSFT is available as part of the open source NFFT software package
[30].
We want to compute the circular average transform T f at some nodes

(σl, tm) ∈ T× [−1, 1] , l = 1, . . . , L, m = 1, . . . ,M.

From the singular value decomposition in Theorem 3.9, we obtain that

T f (σl, tm) =
√

2n+ 1
4π

N∑
n=0

n∑
k=−n

f̂ (n, k)λ (n, k) eikσlPn (tm) . (3.27)
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3.5 Computing the circular average transform

First we examine the inner sum from (3.27). Therefore, we define the matrix S ∈ C(N+1)×L

by

S(n, l) =
n∑

k=−n
f̂ (n, k)λ (n, k) eikσl , n = 0, . . . , N, l = 1, . . . , L.

We choose the equidistant nodes

σl = 2πl
L
, l = 1, . . . , L

which is a pretty natural choice on T. When we define f̂ (n, k) = 0 for |k| > n, then, for a
fixed n, we can rewrite S with the discrete Fourier transform defined in (2.27):

S(n, l) =
n∑

k=−n
f̂ (n, k)λ (n, k) e2πikl/L

=
2n+1∑
k=0

f̂ (n,N − k)λ (n,N − k) e−2πikl/Le2πiNl/L

=
[
DFT

(
f̂ (n,N − ◦)λ (n,N − ◦)

)]
(l)e2πiNl/L. (3.28)

So [S(n, l)]l is the discrete Fourier transform of the vector
[
f̂ (n, k)λ (n, k)

]
k
multiplied

with an exponential function. For analyzing the computational complexity, we assume
that L,M,N ∈ O(N). In (3.28), we compute N fast Fourier transforms of size L which
leads to a complexity of O (N2 logN). If the nodes σl are not equidistant, the FFT can
be replaced by the NFFT (Nonequispaced Fast Fourier Transform) which is of the same
complexity class, see [35].
Now, (3.27) can be written as

T f (σl, tm) =
√

2n+ 1
4π

N∑
n=0

S(n, l)Pn (tm) . (3.29)

Evaluating the sum in (3.29) means computing the product of the matrices S> and
[Pn (tm)]N, M

n=0,m=1. The computation of this matrix product is done in O (N3) arithmetic
operations. The matrix [Pn (tm)]N, M

n=0,m=1 can be evaluated using the three-term recurrence
for the Legendre polynomials, which can be done using O (N2) operations. The computa-
tion of (3.29) can be accelerated with the fast polynomial transform algorithms proposed
in [43] which leads to a complexity of O

(
N2 (logN)2

)
steps. Hence, the whole computa-

tion of the circular average transform can be done with O
(
N2 (logN)2

)
operations. For

the case that tm are the Chebyshev nodes, we can alternatively use the algorithm [21] to
compute (3.29) in O

(
N2 (logN)2 / log logN

)
steps.

The following algorithm sums up the considerations in this section.
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3 Circular Averages on the Sphere

Algorithm 3.14. Input: Function values f (xj) of the function f ∈ ΠN (S2), a quadrature
rule

J∑
j=1

ωjf(xj)

using the weights ωj and the nodes xj ∈ S2 that is exact for ΠN (S2), and nodes

(σl, tm) ∈ T× [−1, 1] , l = 1, . . . , L, m = 1, . . . ,M,

where T f should be calculated.
1. Compute the Fourier coefficients

f̂(n, k) :=
J∑
j=1

ωjf (xj)Yn,k (xj)

for n = 0, . . . , N, k = −n, . . . , n.
2. Compute for each n = 0, . . . , N the fast Fourier transform

S(n, l) :=
[
DFT

(
f̂ (n,N − ◦)λ (n,N − ◦)

)]
(l)e2πiNl/L

for l = 1, . . . , L.
3. Compute the discrete Legendre transform

T f
(

2πl
L
, tm

)
:=
√

2n+ 1
4π

N∑
n=0

S(n, l)Pn (tm)

for l = 1, . . . , L, m = 1, . . . ,M .
Output: Circular average transform

T f
(

2πl
L
, tm

)
, l = 1, . . . , L, m = 1, . . . ,M.
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4
Inversion of the Circular Average Transform

We consider the inversion of the circular average transform T from Definition 3.2. Given a
function T f , we want to compute the original function f ∈ L2 (S2). As shown in Theorem
3.9, the circular average transform T : L2 (S2) → L2 (T× [−1, 1]) is a compact operator.
Therefore, the inversion of the circular average transform is a so-called ill-posed problem.
An ill-posed problem is, loosely speaking, a problem which is overly sensible to small
deviations of the input data. For a more detailed view on ill-posed problems and their
regularization, we refer to [29, 28].

4.1 Regularization

Pseudo-inverse. As a compact operator, the circular average transform is not invertible.
That is why we introduce the concept of a pseudo-inverse. We denote by

R(T ) =
{
T f : f ∈ L2

(
S2
)}

the range of the operator T and by

N(T ) =
{
f ∈ L2

(
S2
)

: T f = 0
}

the nullspace of T . The singular value decomposition from Theorem 3.9 shows that the
nullspace of the circular average transform is non-trivial, in particular

N(T ) = span {Yn,k : n ∈ N0, |k| ≤ n, n+ k odd} , (4.1)

which is equal to the set of all functions of L2 (S2) that are odd in its third coordinate.
The orthogonal complement of N(T ) is denoted by

N(T )⊥ =
{
f ∈ L2

(
S2
)

: 〈f, h〉 = 0, h ∈ N(T )
}
.
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4 Inversion of the Circular Average Transform

We define the generalized inverse or Moore-Penrose pseudo-inverse

T † : D(T †) = R(T )⊕ R(T )⊥ −→ N(T )⊥

of the operator T as follows, cf. [29, Section 2.9]. Let g ∈ D(T †) , so g = g1 + g2 can
be written as the sum of g1 ∈ R(T ) and g2 ∈ R(T )⊥. The set {f ∈ L2 (S2) : T f = g1}
is a convex subset of the Hilbert space L2 (S2). Hence there exists a unique function
f0 ∈ L2 (S2) that minimizes the norm ‖·‖L2(S2) on that set, i.e. ‖f0‖L2(S2) ≤ ‖f‖L2(S2) for
all f ∈ L2 (S2) with T f = g1. We define

T †g = f0.

It is easy to see that T † is a linear operator. Another direct consequence from the definition
is, that T †T is equal to the orthogonal projection onto N (T )⊥. Since T is compact, its
pseudo-inverse is unbounded.
Another characterization of the pseudo-inverse uses the singular value decomposition of
the operator T . For a function g that lies in the domain D

(
T †
)
of the pseudo-inverse, we

have

T̂ †g(n, k) =

λ (n, k)−1 ĝ(n, k), λ(n, k) 6= 0
0, otherwise,

and thus
T †g =

∞∑
n=0

n∑
k=−n

2|(n+k)

ĝ(n, k)
λ(n, k)Yn,k, g ∈ D

(
T †
)
. (4.2)

The mollifier method. We use the so-called mollifier method for invere problems which
was introduced in [38]. The idea is to compute a smoothened version of f , namely

ψ ? f (x) =
ˆ
S2
ψ (〈x,y〉) f (y) dy, x ∈ S2 (4.3)

for some mollifier ψ : [−1, 1]→ R.
Let g ∈ C (T× [−1, 1])∩D(T †), we want to compute f = T †g. We assume that the mollifier
ψ is a polynomial of degreeN ∈ N. As in the Funk-Hecke formula from Proposition 2.10, we
denote the Fourier coefficients of the mollifier ψ with respect to the Legendre polynomials
Pn by

ψ̂(n) = 2π
1ˆ

−1

ψ(t)Pn (t) dt, n = 0, . . . , N.

So we can write the mollifier in terms of its Legendre decomposition

ψ (t) =
N∑
n=0

2n+ 1
4π ψ̂ (n)Pn (t) , t ∈ [−1, 1]
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(cf. Subsection 2.1.1). Thus, by the addition theorem (2.35),

ψ (〈x,y〉) =
N∑
n=0

n∑
k=−n

ψ̂ (n)Yn,k (x)Yn,k (y) , x,y ∈ S2.

With the Funk-Hecke formula (2.41), we see that

ψ ? f (x) =
ˆ
S2
ψ (〈x,y〉) f (y) dy

=
∞∑
n=0

n∑
k=−n

ψ̂ (n) f̂ (n, k)Yn,k (x) , x ∈ S2.

This formula also shows that the smoothened solution is a polynomial of degree N , i.e.
ψ ? f ∈ ΠN (S2). The mollified solution ψ ? f can be expressed in terms of the given
function g, by (4.2) we have

ψ ? T †g =
∞∑
n=0

ψ̂ (n)
n∑

k=−n
2|(n+k)

ĝ(n, k)
λ(n, k)Yn,k. (4.4)

Discrete data. Suppose that we are given the function values of T f on the discrete data
points (σl, tm) ∈ T× [−1, 1],

T f (σl, tm) , l = 1, . . . , L, m = 1, . . . ,M

We are going to use a quadrature rule on T× [−1, 1], namely,

Qh =
L∑
l=1

M∑
m=1

wl,mh (σl, tm) , h ∈ C (T× [−1, 1]) , (4.5)

cf. Subsection 2.1.3.
For the mollified solution (4.4), we compute the Fourier coefficients

ĝ (n, k) = 〈g,Bn,k〉 =
1ˆ

−1

2πˆ

0

g (σ, t)Bn,k(σ, t) dσ dt.

We replace the integral from the inner product by the quadrature rule Q and obtain

〈g,Bn,k〉Q =
L∑
l=1

M∑
m=1

wl,mg (σl, tm)Bn,k(σ, t).

As in (2.6) for the general case, we denote by

LNg (σ, t) =
N∑
n=0

n∑
k=−n

〈g,Bn,k〉QBn,k(σ, t) (4.6)
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4 Inversion of the Circular Average Transform

the hyperinterpolation onto

ΠN (T× [−1, 1]) = span {Bn,k(σ, t) : n = 0, . . . , N, k = −n, . . . , n} .

Note that, in the definition of the hyperinterpolation, we have made the restriction |k| ≤ n
because the functions Bn,k where |k| > n do not lie in the range of the circular average
transform, see Theorem 3.5.
We define the discretized regularized solution

fψ = ψ ? T †LNg. (4.7)

Noisy data. We assume that the given data g is disrupted by some white noise ε which
is specified in the next definition.

Definition 4.1. Let L,M ∈ N0 and (σl, tm) ∈ T× [−1, 1], l = 1, . . . , L, m = 1, . . . ,M, be
the nodes of a quadrature as in (4.5). Furthermore, let the random variable ε : CL×M → C
be

1. unbiased, i.e. E (ε (l,m)) = 0 for all (l,m), and
2. uncorrelated, i.e. E (ε (l,m) ε (l′,m′)) = 0 for (l,m) 6= (l′,m′), and
3. has a standard deviation of δ > 0, i.e. E

(
ε (l,m)2

)
= δ2 for all (l,m).

Then we denote the noisy data by

gε (σl, tm) = T f (σl, tm) + ε (l,m)

and we define the estimator
f εψ = ψ ?

(
T †LNgε

)
(4.8)

where we use the convention that

LNgε =
N∑
n=0

n∑
k=−n

L∑
l=1

M∑
m=1

gε (σl, tm)Bn,k (σl, tm)Bn,k.

This is a standard statistical model for inverse problems, cf. [5]. Note that the estimator
f εψ also depends on the quadrature Q and the degree N .

4.2 Decomposition of the error
As a measure for the accuracy of the estimator f εψ of the actual solution f , we use the
mean integrated squared error (MISE). The MISE is defined as

MISE
(
f εψ, f

)
= E

∥∥∥f εψ − f∥∥∥2

L2(S2)
= E

(ˆ
S2

∣∣∣f εψ(x)− f(x)
∣∣∣2 dx

)
.
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4.2 Decomposition of the error

We want to bound the MISE over some Sobolev balls

F (s, S) =
{
f ∈ Hs

(
S2
)
∩ N (T )⊥ : ‖f‖Hs(S2) ≤ S

}
for some positive constants s, S > 0. To be more precise, we are interested in the maximum
risk

sup
f∈F (s,S)

MISE
(
f εψ, f

)
. (4.9)

The condition that f lies in the orthogonal complement of the nullspace of the circular
average transform is important since the nullspace is nontrivial, cf. (4.1). If this condition
were dropped, we could replace f by f + αf0 where f0 ∈ N (T ) \ {0} and α ∈ R. Then
the data T (f + αf0) would be exactly the same as T f and, no matter what estimator we
use, the MISE would grow infinitely for α → ∞. Thus, the maximum risk could not be
bounded.
Now it is pretty reasonable to ask for mollifiers ψ that minimize the maximum risk. The
maximum risk for the “best” choice of the mollifier is called the minimax risk

inf
ψ∈L2[−1,1]

sup
f∈F (s,S)

MISE
(
f εψ, f

)
, (4.10)

cf. [53]. We are looking for mollifiers minimizing the maximum risk asymptotically as N
goes to infinity.
In the rest of this section, we derive bounds for the MISE.

Lemma 4.2. Let N be a positive integer and ε fulfill the conditions from Definition 4.1.
Then the expected value of the estimator f εψ given in (4.8) is equal to the regularized solution
fψ with exact data from (4.7), i.e.

Ef εψ = fψ.

Proof. We have for x ∈ S2,

Ef εψ (x) = E
([
ψ ?

(
T †LNgε

)]
(x)

)
=

([
ψ ?

(
T †LNg

)]
(x)

)
+ E

([
ψ ?

(
T †LNε

)]
(x)

)
= fψ (x) +

ψ ? T †
 N∑
n=0

n∑
k=−n

L∑
l=1

M∑
m=1

Eε (l,m)Bn,k (σl, tm)Bn,k

 (x)

= fψ (x)

because Eε (l,m) = 0 as assumed in Definition 4.1.

Theorem 4.3. Let f ∈ C (S2), fψ be as given in (4.7), and f εψ be the estimator of f from
Definition 4.1 where ε satisfies the conditions from there. Then the following decomposition
of the MISE holds:

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
= ‖f − fψ‖2

L2(S2) + E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
. (4.11)
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4 Inversion of the Circular Average Transform

The MISE consists of the bias term

‖f − fψ‖2
L2(S2)

and the variance term

E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
.

Proof. We have

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
= E

∥∥∥(f − Ef εψ
)
−
(
f εψ − Ef εψ

)∥∥∥2

L2(S2)

= E
∥∥∥f − Ef εψ

∥∥∥2

L2(S2)
+ E

∥∥∥f εψ − Ef εψ
∥∥∥2

L2(S2)

−E
(
2Re

〈
f − Ef εψ, f εψ − Ef εψ

〉)
where Re denotes the real part of a complex number. Because the expected value and the
inner product are linear, we observe that

E
〈
f − Ef εψ, f εψ − Ef εψ

〉
=

〈
f − Ef εψ,E

(
f εψ − Ef εψ

)〉
=

〈
f − Ef εψ,Ef εψ − Ef εψ

〉
= 0.

The lemma above shows that Ef εψ = fψ which finally implies (4.11).

We are going to analyze the variance and the bias term of (4.11) separately.

4.2.1 Variance error

Theorem 4.4. Let f ∈ N (T )⊥, N ∈ N, ψ ∈ L2 ([−1, 1]), and the estimator f εψ as in
Definition 4.1 using the hyperinterpolation LN from (4.6). Then the variance term of
(4.11) is given by

E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
= δ2

N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 . (4.12)
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4.2 Decomposition of the error

Proof. By Parseval’s equality and the uncorrelatedness of ε from Definition 4.1,

E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
=

N∑
n=0

n∑
k=−n

2|(n+k)

E

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

L∑
l=1

M∑
m=1

wl,mε (l,m)Bn,k (σl, tm)

∣∣∣∣∣∣
2

=
N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2

·

L∑
l,l′=1

M∑
m,m′=1

wl,mwl′,m′Bn,k (σl, tm)Bn,k (σl′ , tm′)Eε (l,m) ε (l′,m′)

= δ2
N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 (4.13)

which proves (4.12).

This theorem shows that the variance error (4.12) is independent of the particular func-
tion f . In fact, the variance error depends only on the variance δ of the data error, the
hyperinterpolation LN and the choice of the mollifier ψ.
Proposition 4.5. Let the conditions of Theorem 4.4 hold. If the quadrature Q, on which
the hyperinterpolation LN is based, is exact for the functions |Bn,k|2, n ≤ N , |k| ≤ n, and
has constant weights, i.e. wl,m = 4π/(LM), then

E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
= 4πδ2

LM

N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2

. (4.14)

Proof. Let wl,m = 4π/(LM) and the quadrature be exact of degree 2N . Since the functions
Bn,k are an orthonormal system and |Bn,k|2 is a polynomial of degree 2n ≤ 2N for which
Q is exact, we have by Theorem 4.4

L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 = 4π

LM

L∑
l=1

M∑
m=1

wl,m |Bn,k (σl, tm)|2

= 4π
LM

2πˆ

0

1ˆ

−1

|Bn,k (σ, t)|2 dt dσ

= 4π
LM

and thus

E
∥∥∥fψ − f εψ∥∥∥2

L2(S2)
= 4πδ2

LM

N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2

.
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4 Inversion of the Circular Average Transform

Remark 4.6. The assumption in Proposition 4.5, that the quadrature weights should be
constant, is rather strict. Let Q be the usual equidistant quadrature with respect to σ
on the unit arc, and some quadrature on the unit interval as defined in Subsection 2.1.1.1
with respect to t. So σl = 2πl/L. We denote with tm the nodes and with ωm the weights
of the quadrature in the t variable, so that wl,m = 2πωm/L. Using the definition of Bn,k

in (2.29), the inner sums from (4.13) become
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 =

n+ 1
2

2π

M∑
m=1

(2π
L

)2
ω2
m

∣∣∣eikσlPn (tm)
∣∣∣2

= 2π
L

(
n+ 1

2

) M∑
m=1

ω2
mPn (tm)2 . (4.15)

The numerical computation of (4.15) for n ≤ N suggests that(
n+ 1

2

) M∑
m=1

ω2
mPn (tm)2 ≈ 2

M
(4.16)

for n and M being sufficiently large which can be seen in Figure 4.1 on page 59. So (4.16)
gives a justification to believe that (4.14) is approximately true for the Gauss-Legendre
and Clenshaw-Curtis quadrature. From Theorem 4.4, we know that (4.16) holds with “=”
if the quadrature has equal weights.
In the following definition, we will make an assumption on LN . That assumption is a
weaker version of (4.16).

Definition 4.7. For N ∈ N, let LN be an L×M -point hyperinterpolation on T× [−1, 1]
using the quadrature QN with positive weights wl,m > 0 and the nodes (σl, tm), as defined
in (4.6). We say that LN is applicable if there exist constants γ, γ ∈ (0,∞) such that the
equation

γ
4π
LM

≤
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 ≤ γ

4π
LM

, n = 0, . . . , N, k = −n, . . . , n, (4.17)

holds for every sufficiently large N , QN is exact for Π2N (T× [−1, 1]), and LM ∈ O (N2)
for N →∞.

Proposition 4.5 shows that equal-weight quadratures are applicable. In the following, we
are going to prove the applicability of a hyperinterpolation based on the Fejér quadrature.

Lemma 4.8 (Fejér quadrature). Let tm and ωm, m = 1, . . . ,M , be the nodes and weights
of the the Fejér quadrature as defined in Subsection 2.1.1.1 and let Pn denote the n-th
Legendre polynomial, as usual. Then

M∑
m=1

ω2
m |Pn (tm)|2 = γ2

M

π

M

1ˆ

−1

√
1− t2 |Pn (t)|2 dt, M ∈ N, n ≤M − 1,
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4.2 Decomposition of the error

100 101 102 1030.92

0.94

0.96

0.98

1

1.02

n

Gauss-Legendre quadrature
Clenshaw-Curtis quadrature

Figure 4.1: Numerical computation of N
2
∑M
m=1

(
n+ 1

2

)
ω2
mPn (tm)2 from (4.15) with N =

1000 and M = 2N , where tm, ωm denote the nodes and weights of either
the Gauss-Legendre or Clenshaw-Curtis quadrature. This figure suggests that
(4.16) holds for large n. Note that the factor N/2 is equal to the right side of
that equation.

where
0.9028233 = γ < γM < γ = 1.1789797, M ∈ N. (4.18)

Proof. The Fejér quadrature uses the nodes (2.20)

tm = cos (θm) , θm = mπ

M + 1 , m = 1, . . . ,M

and the weights (2.22)

ωm = 4
M + 1 sin (θm)

bM/2c∑
j=1

sin ((2j − 1) θm)
2j − 1 , m = 1, . . . ,M.

We want to derive an approximation of ωm, therefore we define for M ∈ N the function

SM(θ) =
bM/2c∑
j=1

sin ((2j − 1) θ)
2j − 1 , θ ∈ (−π, π) , (4.19)
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4 Inversion of the Circular Average Transform

which is equal to the sum in (2.22) where we replaced θm by θ. The function SM is the
bM/2c-th partial sum of the Fourier series of the Heaviside step function

θ 7→ π

4 sgnθ, θ ∈ (−π, π) ,

where sgn denotes the sign function, cf. [20, 1.442]. So SM(θ) converges for M → ∞ to
the constant π/4 for all θ ∈ (0, π), but this convergence is not uniform. In fact, SM(θ)
oscillates near the boundary θ ∈ {0, π} of the interval. The fact that this oscillation does
not decrease even for large M is known as the Gibbs phenomenon. In [26], it was shown
that

bM/2c∑
j=1

sin ((2j − 1) θm)
2j − 1 = π

4γM,m (4.20)

with some constants γM,m satisfying

γ < γM,m < γ, m = 1, . . . ,M, M ∈ N.

Combining (2.22) and (4.20) yields

ωm = π

M + 1γM,m sin (θm) . (4.21)

Up to the factor γM,m, the weights ωm are equal to the weights of the Gauss-Chebyshev
quadrature of the second kind (2.21), which uses the same nodes as the Fejér quadrature.
Because the M -point Gauss-Chebyshev quadrature of the second kind is exact of degree
2M − 1 for the integral with respect to the measure

√
1− t2 dt, and Pn is the Legendre

polynomial of degree n, we have for M ≥ n+ 1

1ˆ

−1

|Pn (t)|2
√

1− t2 dt = π

M + 1

M∑
m=1

(sin (θm))2 |Pn (cos θm)|2 .

Considering this and (4.21) leads to

M∑
m=1

ω2
m |Pn (tm)|2 =

(
π

M + 1

)2 M∑
m=1

(sin θm)2 γ2
M,m |Pn (cos θm)|2

= γ2
M

π

M + 1

M∑
m=1

π

M + 1 (sin θm)2 |Pn (cos θm)|2

= γ2
M

π

M + 1

1ˆ

−1

√
1− t2 |Pn (t)|2 dt

where γM satisfies the same inequality as γM,m.
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4.2 Decomposition of the error

Remark 4.9. The inequality (4.18) is asymptotically sharp for m ∈ {1, 2,M − 1,M} and
M →∞ while γM,m is considerably nearer to one whenm is farther away from the extremal
points 1 and M , which can be seen in [26]. Thus, also γM is closer to one than the lower
and upper bounds γ and γ, respectively.

Lemma 4.10. For n→∞,

(
n+ 1

2

) 1ˆ

−1

|Pn (t)|2
√

1− t2 dt = 2
π

+O
(
n−1/2

)
. (4.22)

Proof. By Stieltjes’ formula (2.15), we have
1ˆ

−1

|Pn (t)|2
√

1− t2 dt =
πˆ

0

(Pn (cos θ))2 (sin θ)2 dθ

=
πˆ

0

 2
πn

(
cos

((
n+ 1

2

)
θ − π

4

))2

sin θ +O
(
(n sin θ)−3/2

) (sin θ)2 dθ

= 2
πn

πˆ

0

(
cos

((
n+ 1

2

)
θ − π

4

))2
sin θ dθ +O

(
n−3/2

)
. (4.23)

It is left to evaluate the integral in (4.23). With the formula (cosx)2 = (cos 2x+ 1) /2, we
observe that

(
cos

((
n+ 1

2

)
θ − π

4

))2
=

cos
(
(2n+ 1) θ − π

2

)
+ 1

2

= sin ((2n+ 1) θ) + 1
2 .

Using this and the integral formula [20, 2.532.1], we do for n ≥ 1 the calculation
ˆ (

cos
((
n+ 1

2

)
θ − π

4

))2
sin θ dθ = 1

2

ˆ
(sin ((2n+ 1) θ) sin θ + sin θ) dθ

= 1
2

(
cos (2nθ)

4n − sin ((2n+ 2) θ)
2 (2n+ 2) − cos θ

)

Finally, we calculate the definite integral
πˆ

0

(
cos

((
n+ 1

2

)
θ − π

4

))2
sin θ dθ = 1

2

[
cos (2nθ)

4n − sin ((2n+ 2) θ)
2 (2n+ 2) − cos θ

]π
0

= 1

from which the claimed formula (4.22) follows.
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4 Inversion of the Circular Average Transform

Corollary 4.11. Let, for N ∈ N, LN be the hyperinterpolation on T× [−1, 1] based on the
quadrature that is the tensor product of the N–point equidistant quadrature on the torus
and the (N + 1)–point Fejér quadrature on the unit interval. Then LN is applicable in the
sense of Definition 4.7.

Proof. This follows directly from the previous two lemmas and Remark 4.6.

4.2.2 Bias error

With the triangle inequality, we split up the bias error into a smoothing and an aliasing
error,

‖f − fψ‖L2(S2) ≤ ‖f − ψ ? f‖L2(S2) +
∥∥∥ψ ? (f − T †LNg)∥∥∥

L2(S2)
.

Smoothing error. If f ∈ Hs (S2) for s ≥ 0, then Proposition 2.11 implies that the
smoothing error is bounded by

‖f − ψ ? f‖L2(S2) ≤ sup
n∈N0


∣∣∣1− ψ̂(n)

∣∣∣(
n+ 1

2

)s
 ‖f‖Hs(S2) . (4.24)

Aliasing error. If the quadrature Q, on which LN is based, is exact of degree 2N , then
by Theorem 2.2

‖g − LNg‖L2(T×[−1,1]) ≤ 2
√

4π inf
g∈ΠN (T×[−1,1])

‖f − g‖C(T×[−1,1]) .

To derive an upper bound for the quadrature error, we define the Sobolev-like space
Hs
T (T× [−1, 1]) as the closure of the set of polynomials

span {Bn,k : n ∈ N0, k = −n, . . . , n, 2| (n+ k)}

with respect to the Sobolev-like norm

‖g‖Hs
T (T×[−1,1]) =

∞∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ĝ (n, k)

(
n+ 1

2

)s
λ(n, k)

∣∣∣∣∣∣
2

.

As a direct consequence of this definition,

‖f‖Hs(S2) = ‖T f‖Hs
T (T×[−1,1]) for all f ∈ Hs

(
S2
)
∩ N (T )⊥ . (4.25)

The following two lemmas are taken from [25] where they were proven for the Sobolev
spaces Hs (S2) on the two-sphere.
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4.2 Decomposition of the error

Lemma 4.12. For s > 1, the Sobolev-like space Hs
T (T× [−1, 1]) can be embedded contin-

uously into the space of continuous functions C (T× [−1, 1]). Let N ∈ N, then there exists
a constant c > 0 independent of N such that following estimates are valid.
• For g ∈ Hs

T (T× [−1, 1]),

‖g‖C(T×[−1,1]) ≤ c ‖g‖Hs
T (T×[−1,1]) , g ∈ Hs

T (T× [−1, 1]) . (4.26)

• For g ∈ ΠN (T× [−1, 1])⊥,

‖g‖C(T×[−1,1]) ≤ c
(
N + 1

2

)1−s
‖g‖Hs

T (T×[−1,1]) . (4.27)

and

‖g‖H0
T (T×[−1,1]) ≤

(
N + 1

2

)−s
‖g‖Hs

T (T×[−1,1]) . (4.28)

• For g ∈ ΠN (T× [−1, 1]),

‖g‖H0
T (T×[−1,1]) ≤ c

(
N + 1

2

)1/2
‖g‖L2(T×[−1,1]) . (4.29)

Proof. By (3.15),

λ(n, k) =

√√√√(n+ 1
2

)
(n− k)!

(n+ k)! Pn,k(0), n ∈ N0, k = −n, . . . , n, 2| (n+ k) .

From the definition of the spherical harmonics in (2.39) and the addition formula (2.35),
we observe that

n∑
k=−n

2|(n+k)

|λ(n, k)|2 =
n∑

k=−n
2|(n+k)

(
n+ 1

2

)
(n− k)!

(n+ k)! |Pn,k(0)|2

= 4π
2n+ 1

n∑
k=−n

2|(n+k)

∣∣∣∣Yn,k(0, π2 )
∣∣∣∣2

≤ 4π
2n+ 1

n∑
k=−n

∣∣∣∣Yn,k(0, π2 )
∣∣∣∣2

= 1.

Let (σ, t) ∈ T× [−1, 1] and g ∈ Hs
T (T× [−1, 1]), then, by the Cauchy-Schwartz inequality
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4 Inversion of the Circular Average Transform

and the definition of Bn,k,

|g (σ, t)| =

∣∣∣∣∣∣∣∣
∞∑
n=0

n∑
k=−n

2|(n+k)

ĝ (n, k)Bn,k(σ, t)

∣∣∣∣∣∣∣∣
=

∞∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ĝ (n, k)

(
n+ 1

2

)s
λ(n, k)

∣∣∣∣∣∣
∣∣∣∣∣∣
√

2n+ 1
4π eikσPn(t)λ(n, k)

∣∣∣∣∣∣
(
n+ 1

2

)−s

≤ ‖g‖Hs
T (T×[−1,1])

√√√√√√
∞∑
n=0

2n+ 1
4π |Pn(t)|2

(
n+ 1

2

)−2s n∑
k=−n

2|(n+k)

|λ(n, k)|2

≤ ‖g‖Hs
T (T×[−1,1])

√√√√ ∞∑
n=0

(
n+ 1

2

)1−2s
.

This sum converges if and only if 1− 2s < −1 which is equivalent to s > 1. Hence, there
exists a constant c > 0 depending only on s such that

‖g‖∞ ≤ c ‖g‖Hs
T (T×[−1,1]) , g ∈ Hs

T (T× [−1, 1]) .

This shows the validity of (4.26).
Like in Section 2.1, we denote with PN the L2-orthogonal projection onto ΠN (T× [−1, 1]).
Similarly to the first part of the proof, we observe that there exists a constant c1 > 0
independent of N and g such that

‖g − PNg‖C(T×[−1,1]) =

∥∥∥∥∥∥∥∥
∞∑

n=N+1

n∑
k=−n

2|(n+k)

ĝ (n, k)Bn,k

∥∥∥∥∥∥∥∥
C(T×[−1,1])

≤ ‖g‖Hs
T (T×[−1,1])

√√√√ ∞∑
n=N+1

(
n+ 1

2

)1−2s

≤ c1

(
N + 1

2

)1−s
‖g‖Hs

T (T×[−1,1])

which proves (4.27). Analogously, the calculation

‖g − PNg‖H0
T (T×[−1,1]) =

∞∑
n=N+1

n∑
k=−n

2|(n+k)

ĝ (n, k)Bn,k

≤
(
N + 1

2

)−s
‖g − PNg‖Hs

T (T×[−1,1])

shows (4.28).
By (3.22), we have for g ∈ ΠN (T× [−1, 1]),
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‖g‖2
H0
T (T×[−1,1]) =

N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣ĝ(n, k) 1
λ(n, k)

∣∣∣∣∣
2

≤ ‖g‖2
L2(T×[−1,1]) sup

{
1

|λ(n, k)|2
: n = 0, . . . , N, |k| ≤ n, 2| (n+ k)

}

≤ c2

(
N + 1

2

)
‖g‖2

L2(T×[−1,1])

which shows (4.29).
Theorem 4.13. Let s > 1, f ∈ Hs (S2)∩N (T )⊥, and g = T f . Furthermore, let for every
N ∈ N, the quadrature used for the hyperinterpolation LN be exact for ΠN (T× [−1, 1]).
Then there exists a constant c > 0 independent of f and N so that∥∥∥T † (LNg − g)

∥∥∥
L2(S2)

≤ c
(
N + 1

2

)3/2−s
‖f‖Hs(S2) .

Proof. We first note that, because s > 1, g is continuous and hence LNg exists. Since
PNg ∈ ΠN (T× [−1, 1]) and LNp = p for p ∈ ΠN (T× [−1, 1]), we have LNPN = PN and∥∥∥T † (LNg − g)

∥∥∥
L2(S2)

= ‖LNg − g‖H0
T (T×[−1,1])

= ‖LN (g − PNg)− (g − PNg)‖H0
T (T×[−1,1])

≤ ‖LN (g − PNg)‖H0
T (T×[−1,1]) + ‖g − PNg‖H0

T (T×[−1,1]) .(4.30)

Now we examine both terms of the equation (4.30). From (4.28), we observe that that

‖g − PNg‖H0
T (T×[−1,1]) ≤

(
N + 1

2

)−s
‖g − PNg‖Hs

T (T×[−1,1]) . (4.31)

For the first term of (4.30), we use the Lemma 4.12. Equation (4.29) yields that

‖LN (g − PNg)‖H0
T (T×[−1,1]) ≤

(
N + 1

2

)1/2
‖LN (g − PNg)‖L2(T×[−1,1]) . (4.32)

By Theorem 2.2,
‖LN (g − PNg)‖L2(T×[−1,1]) ≤

√
4π ‖g − PNg‖C(T×[−1,1]) . (4.33)

By (4.27), there exists a constant c1 independent of g and N such that

‖g − PNg‖C(T×[−1,1]) ≤ c1

(
N + 1

2

)1−s
‖g − PNg‖Hs

T (T×[−1,1]) . (4.34)

Combining (4.30), (4.31), (4.32), (4.33), and (4.34) yields∥∥∥T † (LNg − g)
∥∥∥
L2(S2)

≤ c
(
N + 1

2

)3/2−s
‖g − PNg‖Hs

T (T×[−1,1])

where c is some positive constant. Since PN is a projection, ‖g − PNg‖Hs
T (T×[−1,1]) ≤

‖g‖Hs
T (T×[−1,1]), which finally proves the theorem.
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4 Inversion of the Circular Average Transform

With this result, we are able to show the following estimate for the aliasing error.
Corollary 4.14. Let the conditions from Theorem 4.13 hold. If

∣∣∣ψ̂(n)
∣∣∣ ≤ 1 for all n ∈ N

and f ∈ Hs (S2) ∩ N (T )⊥, then the aliasing error is bounded by∥∥∥ψ ? T † (g − LNg)
∥∥∥
L2(S2)

≤ c
(
N + 1

2

)3/2−s
‖f‖Hs(S2) . (4.35)

Proof. This is a direct consequence of Theorem 4.13 and the Funk-Hecke formula (2.41).

Combining the decomposition from Theorem 4.3 with the bounds for the variance error,
smoothing error and aliasing error from (4.14), (4.24) and (4.35), respectively, yields that
for f ∈ F (s, S),

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
≤

 sup
n∈2N0

∣∣∣1− ψ̂(n)
∣∣∣(

n+ 1
2

)s S + c
(
N + 1

2

)3/2−s
S

2

(4.36)

+δ2
N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 .

4.3 Optimal mollifiers
For a positive number s, we define the following family of mollifiers

ψÑ =
Ñ∑
n=0

2n+ 1
4π ψ̂Ñ(n)Pn, Ñ ≥ 0 (4.37)

by its Fourier coefficients

ψ̂Ñ(n) =
(

1−
(
n+ 1

2
Ñ + 1

2

)s)
, n = 0, . . . ,

⌊
Ñ
⌋
. (4.38)

The so-defined mollifiers ψÑ are polynomials of degree
⌊
Ñ
⌋
. Later, in Theorem 4.17, we

will show that this family of mollifiers is in a certain way optimal for the reconstruction of
functions f ∈ F (s, S).
Similar to these mollifiers ψÑ , we can define the Dirichlet kernel

ψDir
Ñ =

Ñ∑
n=0

2n+ 1
4π Pn

of order Ñ ∈ N0. The Dirichlet kernels are often used for this kind of regularization
introduced in the previous section, but that the Dirichlet kernel oscillates more than that
from (4.37), which can be seen in Figure 4.2 on page 67.
In the following, we will prove the asymptotic optimality of the family {ψÑ}Ñ .
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Figure 4.2: The mollifier ψÑ (cos θ) as defined in (4.38) and its Fourier coefficients, with the
parameters Ñ = 8 (in blue), Ñ = 16 (in red), and s = 4. We have also plotted
the Dirichlet kernel for Ñ = 16 in green. It can be seen that the Dirichlet
kernel oscillates way more than ψÑ on the whole interval. For Ñ → ∞, both
the mollifiers ψÑ and ψDir

Ñ
behave like an approximation of the Dirac delta

distribution centered at θ = 0.

Lemma 4.15. Let ψ ∈ L2 [−1, 1], s > 1 and S > 0. Furthermore, let the estimator f εψ of
the function f ∈ C (S2) and the noise ε be as in Definition 4.1, and the quadrature used
for the hyperinterpolation LN be exact for ΠN (T× [−1, 1]). If N is sufficiently large, then
there exists an index Ñ∗ ≥ 0 for which the maximum risk (4.9) of the estimator f εψ is
bounded from below by

sup
f∈F (s,S)

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
≥ δ2

N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 (4.39)

+ S2(
Ñ∗ + 1

2

)2s .

The lower bound from (4.39) is the same as the upper bound from (4.36) without the
aliasing error.

Proof. We define the set

N =
{
Ñ ≥ 0 : ψ̂Ñ (n) ≤

∣∣∣ψ̂ (n)
∣∣∣ ∀n ∈ N0

}
(4.40)
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4 Inversion of the Circular Average Transform

which is not empty because 0 ∈ N . It is easy to see that N is closed. Since the mollifier
ψ ∈ L2 [−1, 1] is integrable, its Fourier coefficients ψ̂ (n) vanish as n → ∞, so N is
bounded. Hence, there exists an Ñ∗ = max N . Now we choose an integer n∗ ∈ N0 such
that ψ̂Ñ∗ (n∗) =

∣∣∣ψ̂ (n∗)
∣∣∣. If n∗ is even, we define the function

f ∗ = S(
n∗ + 1

2

)sYn∗,0 ∈PbÑ∗c
(
S2
)
,

if n∗ is odd then we replace Yn∗,0 by Yn∗,1 in the definition of f ∗. In both cases, f ∗ is in
the orthogonal complement of N (T ) and has an Hs norm of S. Then, by (4.11),

sup
f∈F (s,S)

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
≥ E

∥∥∥f ∗ − (f ∗)εψ
∥∥∥2

L2(S2)
=
∥∥∥f ∗ − f ∗ψ∥∥∥2

L2(S2)
+ E

∥∥∥fψÑ∗ − f εψÑ∗∥∥∥2

L2(S2)
.

The bias term from (4.11) with respect to f ∗ reads∥∥∥f ∗ − f ∗ψ∥∥∥2

L2(S2)
= ‖f ∗ − ψ ? f ∗‖2

L2(S2) = ‖f ∗ − ψÑ∗ ? f ∗‖
2
L2(S2)

The aliasing error
∥∥∥ψ ? T † (T f ∗ − LNT f ∗)

∥∥∥
L2(S2)

vanishes if N is sufficiently large since f ∗

is a polynomial. Using the Funk-Hecke formula (2.41) and the definition of ψÑ∗ , we obtain

‖f ∗ − ψÑ∗ ? f ∗‖
2
L2(S2) =

N∑
n=0

n∑
k=−n

∣∣∣(1− ψ̂Ñ∗ (n∗)
)
f̂ (n, k)

∣∣∣2
=

(
1− ψ̂Ñ∗ (n∗)

)2 S2(
n∗ + 1

2

)2s

=
(
1− ψ̂ (n∗)

)2 S2(
Ñ∗ + 1

2

)2s

= ‖f ∗ − ψ ? f ∗‖2
L2(S2) .

By the definition of Ñ∗, we have
∣∣∣ψ̂ (n)

∣∣∣ ≥ ψ̂Ñ∗ (n) for all n ∈ N0. Hence, Theorem 4.4
implies that the variance error of f ∗ with the mollifier ψÑ∗ is not smaller than with ψ.

The following lemma gives us an asymptotic expression of the sum in the variance error
(4.14) for the mollifier ψÑ from (4.37).

Lemma 4.16. Let ψÑ the mollifier from (4.38). For Ñ →∞,

Ñ∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ (n)
λ (n, k)

∣∣∣∣∣∣
2

' dsÑ
3. (4.41)

where
ds = π3s2

3 (2s+ 3) (s+ 3) , (4.42)
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4.3 Optimal mollifiers

Proof. At first, we compute the sum

n∑
k=−n

2|(n+k)

∣∣∣∣∣ 1
λ (n, k)

∣∣∣∣∣
2

' π

2

n∑
k=−n

2|(n+k)

√
n2 − k2

' π

4

nˆ
−n

√
n2 − k2 dk

= π2

8 n
2

where we have used the asymptotic expression of the singular values λ(n, k) in Theorem
3.11. Now we can insert the Fourier coefficients of the mollifier (4.38) and see that, for
Ñ →∞,

Ñ∑
n=0
|ψÑ (n)|2

n∑
k=−n

2|(n+k)

∣∣∣∣∣ 1
λ (n, k)

∣∣∣∣∣
2

' π2

8

Ñ∑
n=0

n2
(

1−
(
n+ 1

2
Ñ + 1

2

)s)2

' π2

8

N̂̃

0

n2
(

1−
(
n+ 1

2
Ñ + 1

2

)s)2

dn

' π2s2

12 (2s+ 3) (s+ 3)Ñ
3.

After all that preparation, we can finally state our main theorem.

Theorem 4.17. Let s > (1 +
√

10)/2, S > 0, and δ > 0. For every N ∈ N, let LN be
an L ×M-point hyperinterpolation, as defined in (4.6), that is applicable in the sense of
Definition 4.7. Furthermore, let the data error ε satisfy the conditions from Definition 4.1
and have the standard deviation δ. Then the family {ψÑ}Ñ , that was defined in (4.38), is
an asymptotically optimal family of mollifiers for the estimator f εψ for the inversion of the
circular average transform T of functions f belonging to the class F (s, S). In particular,
for L,M →∞, there exist parameters Ñ (L,M) such that

sup
f∈F (s,S)

E
∥∥∥∥f − f εψÑ(L,M)

∥∥∥∥2

L2(S2)
' inf

ψ∈L2[−1,1]
sup

f∈F (s,S)
E
∥∥∥f − f εψ∥∥∥2

L2(S2)
.
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4 Inversion of the Circular Average Transform

Furthermore, the minimax risk of the MISE is asymptotically for L,M →∞ bounded byγ δ2ds
LM

(
2sS2

3δ2ds

) 3
2s+3

+ S2
(

2sS2

3δ2ds

) −2s
2s+3

 (LM)−
2s

2s+3

> inf
ψ∈L2[−1,1]

sup
f∈F (s,S)

E
∥∥∥f − f εψ∥∥∥2

(4.43)

>

γδ2ds

(
2sS2

3δ2ds

) 3
2s+3

+ S2
(

2sS2

3δ2ds

) −2s
2s+3

 (LM)−
2s

2s+3 .

Proof. If L,M are sufficiently large, then, by Lemma 4.15, there exists an Ñ > 0 such that

inf
ψ∈L2[−1,1]

sup
f∈F (s,S)

E
∥∥∥f − f εψ∥∥∥2

L2(S2)
(4.44)

≥ δ2
Ñ∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ + 1
2

)2s .

The main idea behind the proof of this theorem is, to calculate the the parameter Ñ such
that the variance and smoothing error are about equal and to show that the aliasing error
is asymptotically lower when s is sufficiently large.
We minimize the right side of (4.44) with respect to Ñ and denote the optimal argument
with Ñ (L,M).
Plugging the conditions (4.17) and (4.41) into the equation (4.12) for the variance term
yields

δ2
N∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ + 1
2

)2s

? γ
δ2dsÑ

3

LM
+ S2(

Ñ + 1
2

)2s . (4.45)

In order to minimize the right side of (4.45) with respect to Ñ , we make its derivative with
respect to Ñ vanish:

(−2s)S2Ñ−2s−1 + 3γ δ
2ds
LM

Ñ2 = 0

⇔ 3γ 3δ2ds
LM

Ñ2s+3 = 2sS2.

Hence, the right side of (4.45) is asymptotically minimized for L,M →∞ by

Ñ1 (L,M) =
(

2sS2

3γδ2ds
LM

) 1
2s+3

.
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4.3 Optimal mollifiers

Plugging this value for Ñ1 (L,M) into (4.39) yields the following asymptotically lower
bound of the maximum risk

δ2
Ñ1(L,M)∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ1(L,M) (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ1 (L,M) + 1
2

)2s

?

γδ2ds

(
2sS2

3γδ2ds

) 3
2s+3

+ S2
(

2sS2

3γδ2ds

) −2s
2s+3

 (LM)
−2s

2s+3 . (4.46)

Plugging this equation into (4.44) proves the first inequality of (4.43). From this, we also
see that, for the choice Ñ1 (L,M), both terms of the sum in the right side of (4.45) decrease
of the order (LM)

−2s
2s+3 .

As we did above to derive (4.45), we can insert the upper bound for the variance error and
obtain

δ2
Ñ∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ + 1
2

)2s

> γ
δ2dsÑ

3

LM
+ S2(

Ñ + 1
2

)2s , (4.47)

which is exactly like the equation (4.45) for the lower bound except that γ is replaced by
γ. Minimizing the right side of (4.47) with respect to Ñ gives us the argument

Ñ2 (L,M) =
(

2sS2

3γδ2ds
LM

) 1
2s+3

.

Analogously to the derivation of (4.46), we plug Ñ2 (L,M) into (4.47) and observe that

δ2
Ñ2(L,M)∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ2(L,M) (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ2 (L,M) + 1
2

)2s

> c (LM)
2s

2s+3 (4.48)

where c is some positive constant. According to (4.46) and (4.48), we have for the real
minimizer Ñ (L,M) that

δ2
Ñ(L,M)∑
n=0

n∑
k=−n

2|(n+k)

∣∣∣∣∣∣ ψ̂Ñ(L,M) (n)
λ (n, k)

∣∣∣∣∣∣
2
L∑
l=1

M∑
m=1
|wl,mBn,k (σl, tm)|2 + S2(

Ñ (L,M) + 1
2

)2s

∈ Θ
(
(LM)

2s
2s+3

)
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and
Ñ (L,M) ∈ Θ

(
(LM)

2s
2s+3

)
(4.49)

as L,M →∞.
In the second part of the proof, we derive the upper bound for the maximum risk. By
(4.36), (4.41), and (4.35), we have for f ∈ F (s, S)

E
∥∥∥f − f εψÑ∥∥∥2

≤

 sup
n∈N0

∣∣∣1− ψ̂Ñ(n)
∣∣∣(

n+ 1
2

)s S +
∥∥∥ψ ? T † (g − LNg)

∥∥∥
L2(S2)

2

+E
∥∥∥fψÑ − f εψÑ∥∥∥2

L2(S2)
(4.50)

>

(
S

Ñ s
+ c

(
N + 1

2

)3/2−s
S

)2

+ γ
δ2dsÑ

3

LM
. (4.51)

Now we plug Ñ1 (L,M) from the first part of the proof into (4.51) and we see that

E
∥∥∥f − f εψÑ∥∥∥2

L2(S2)
>

S ( 2sS2

3γδ2ds

) −s
2s+3

(LM)
−s

2s+3 + c
(
N + 1

2

)3/2−s
S

2

(4.52)

+γδ2ds

(
2sS2

3γδ2ds

) 3
2s+3

(LM)
−2s

2s+3 .

We have assumed that LM ∈ O (N2) and

s >
1 +
√

10
2 ⇒ 3

2 − s <
−s

2s+ 3 .

Hence, only those terms in the sum in (4.52) that grow like (LM)−2s/(2s+3) play a significant
role as L and M go to infinity. Thus, the aliasing error is asymptotically negligible. This
yields to the upper bound

lim
L,M→∞

sup
f∈F (s,S)

E
∥∥∥∥f − f εψÑ1(L,M)

∥∥∥∥2

L2(S2)
· (LM)

2s
2s+3

≤ γδ2ds

(
2sS2

3γδ2ds

) 3
2s+3

+ S2
(

2sS2

3γδ2ds

) −2s
2s+3

, (4.53)

which proves the second inequality of (4.43).
It is left to show the optimality of the family of mollifiers ψÑ to complete the proof. When
we insert the optimal value Ñ (L,M) into both (4.44) and (4.51), those two bounds coincide
except for the aliasing term, but since Ñ (L,M) grows of the same order as Ñ1 (L,M), the
aliasing part is again negligible.
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This theorem is somehow remarkable. It shows that, if we want to minimize the maximum
risk asymptotically over all mollifiers ψ ∈ L2 ([−1, 1]), it suffices to minimize it over the
family ψÑ which only depends on one real parameter Ñ ≥ 0. Additionally, this theorem
shows that the MISE decreases of the order (LM)

−2s
2s+3 for a good choice of Ñ (L,M). So,

the higher the smoothness parameter s is, the faster the MISE decreases. For s→∞, we
have −2s

2s+3 → −1.
Remark 4.18. Taking a closer look at the last proof shows the following. If we drop the
condition for s and replace it by s > 3/2, then this method is still converging, i.e.

lim
L,M→∞

sup
f∈F (s,S)

E
∥∥∥∥f − f εψÑ(L,M)

∥∥∥∥2

L2(S2)
= 0.

This can be seen in (4.52) where it follows from the fact that the aliasing error is in
O
(
(LM)3/2−s

)
and thus the MISE vanishes for L,M →∞. But the aliasing error may be

the dominating part of the MISE if s is smaller than it was required in the theorem.
Remark 4.19. Theorem 4.17 gives us a near-optimal choice Ñ1 (L,M) for the regularization
parameter Ñ for a function f with ‖f‖Hs(S2) = S. In practice, the Sobolev norm of
the solution f is usually unknown, so Ñ1 (L,M) cannot be computed as in the theorem.
However, there exist a variety of heuristic methods to choose the regularization parameter
Ñ . A famous one is the L-curve method which was introduced in [23], that consists of
creating a log-log plot of the norm of the regularized solution f εψÑ versus the norm of the
residual f − f εψÑ for different values of Ñ . The resulting graph is usually shaped like the
letter “L” and the the regularization parameter Ñ is chosen to be at the “corner” of the
graph. An overview on different parameter choice methods can be found in [3].
Remark 4.20. Instead of the mollifier method, we could have also used the approach of
Fourier multipliers. This means that in (4.4) the coefficients ψ̂(n), that depend only on n,
are replaced by the Fourier multipliers ψ̂(n, k) depending on n and k. So, despite being
very similar, this approach is slightly more general. However, in the case of this thesis, it
would have led to the same results as for the mollifier method. This is, because the shape
of the optimal mollifier ψÑ only depends on the Sobolev space Hs which can be seen in
Lemma 4.15. More precisely, in the definition of the Sobolev norm in (2.40), the Fourier
coefficients f̂ (n, k) are multiplied by a factor that does only depend on n and not on k.

4.4 Photoacoustic tomography
This section is about an application of the circular average transform in photoacoustic
tomography (PAT) (see also [56, 10]). PAT is based on the photoacoustic effect which
states that a medium generates sound waves when absorbing electromagnetic waves. PAT
is about reconstructing an image of the examined object by detecting the pressure waves
outside the object during a time interval. The detected pressure is used to calculate a
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3D image of the initial pressure in the object. PAT has several advantages over other
technologies. Optical tomography provides high-resolution images but these are limited
to a low depth of around 1 mm. Ultrasound imaging has a greater depth than optical
tomography while the resolution is lower. PAT combines the high resolution and imaging
depth of the former methods. Furthermore, PAT can excite different molecules at different
optical wavelengths and therefore shows some information about the chemical composition.
Since the 2000s, PAT has found many applications in biomedical imaging including cancer
diagnosis and vascular imaging.
There are two main set-ups for the detectors used in PAT: A common way is to use
piezoelectric crystals that measure the pressure at some points outside an object, but the
resolution of this method is obviously limited to the size of the piezoelectric elements. A
different approach makes use of optic pressure sensors that measure the “integral” of the
pressure along the sensor. We describe a setting from [59] which uses optical sensors that
integrate the pressure along circles. These circles lie on the sphere with their poles on the
equator and can be written as C (σ, t) like in (3.8). The detector measures the integrated
pressure along the circles C (0, tm) , m = 1, . . . ,M at different times τ . This procedure is
repeated L times and the detector is rotated around the x3 axis each time, so we measure the
pressure integrated along the circles C (σl, tm) , , l = 1, . . . , L, m = 1, . . . ,M for different
times τ .
As shown in [59], the reconstruction of the initial pressure f ∈ C (R3) can be done in two
steps. The first step is basically solving the wave equation. This step gives us the circular
average transform Trf(σ, t) of the initial pressure on spheres rS2 with radius r ≤ r0. The
second step consists of the reconstruction of the initial pressure f from its circular averages
for all spheres with radius r ≤ r0.

4.5 Practical computation

The algorithm for the computation of the inverse circular average transform is the transpose
to that of Section 3.5. Suppose we are given a function

g = T f ∈ ΠN (T× [−1, 1]) .

In the first step, we compute the Fourier coefficients

T̂ f(n, k) = 1√
2π

1ˆ

−1

2πˆ

0

g (σ, t) e−ikσpn(t) dσ dt.

For the numerical computation of T̂ f , we use a quadrature Q from (4.5) with equidistant
nodes

σl = 2πl
L
, l = 1, . . . , L = 2N + 1
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in the first variable, some arbitrary nodes
tm, m = 1, . . . ,M

in the second variable, and the weights

wl,m = 2π
L
ωm, l = 1, . . . , L, m = 1, . . . ,M

and get

T̂ f(n, k) = 1√
2π

L∑
l=1

M∑
m=1

wl,mg (σl, tm) e−ikσlpn(tm) (4.54)

for n = 0, . . . , N, k = −n, . . . , n. Like we did in Section 3.5, we denote the inner sum in
(4.54) with A(k,m) and see

T̂f(n, k) = 2π
L

√
2n+ 1

4π

M∑
m=1

ωmPn(tm)A(k,m).

We can rewrite A using the DFT from (2.27)

A(k −N,m) =
L−1∑
l=0

g(σl, tm)e−2πilk/Le2πilN/L

=
[
DFT

(
g(σ(·), tm)

)
e2πi(·)N/L

]
(k), k = 0, . . . , 2N, m = 1, . . . ,M.

For the computation of the DFT, we use the FFT, so the computation of A needsO (N2 logN)
arithmetic operations.
The next step is the computation of the Legendre transform

T̂ f(n, k) = 2π
L

√
2n+ 1

4π

M∑
m=1

Pn(tm)A(k,m).

Using the fast Legendre transform algorithms from [43] or [21], the computation of T̂ f is
done in O

(
N2 (logN)2

)
or O

(
N2 (logN)2 / log logN

)
operations, respectively.

In the next step, we multiply the Fourier coefficients T̂ f with the inverse singular values
λ (n, k)−1 and the regularization coefficients ψ̂(n). Before we can do this, we have to project
T f onto the range of T by defining T̂ f(n, k) = 0 for n+ k odd or |k| > n. Now we set

f̂ψ(n, k) = λ (n, k)−1 ψ̂(n)T̂ f(n, k), n = 0, . . . , N, k = −n, . . . , n.
From the definition,

fψ = ψ ? T †LNT f =
N∑
n=0

n∑
k=−n

f̂ψ(n, k)Yn,k

In the last step, we compute the function values of fψ. The computation of O(N2) values
of fψ can be done using the NFSFT with O

(
N2 (logN)2

)
operations, see [34]. Summing

up these considerations yields to the following algorithm:
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4 Inversion of the Circular Average Transform

Algorithm 4.21. Input: Function values g(σl, tm) of the function g = T f ∈ ΠN (T× [−1, 1])
at nodes σl = 2πl/L, l = 1, . . . , L = 2N + 1 and tm with the corresponding weights ωm,
m = 1, . . . ,M .

1. Compute for each m = 1, . . . ,M the fast Fourier transform

A(k −N,m) =
[
DFT

(
g(σ(·), tm)

)
e2πi(·)N/L

]
(k), k = 0, . . . , 2N.

2. Compute the fast Legendre transform

T̂ f(n, k) = 2π
L

√
2n+ 1

4π

M∑
m=1

ωmPn(tm)A(k,m), n = 0, . . . , N, k = −N, . . . , N.

3. Multiply the Fourier coefficients with the singular values, compute

f̂ψ(n, k) =

λ (n, k)−1 ψ̂(n)T̂ f(n, k), n = 0, . . . , N, k = −n, . . . , n, 2| (n+ k)
0, otherwise

4. Compute the spherical Fourier transform

fψ(xj) =
N∑
n=0

n∑
k=−n

f̂ψ(n, k)Yn,k(xj), j = 1, . . . , J.

Output: Function values fψ (xj) of the function ψ ? T †LNT f at nodes xj, j = 1, . . . , J .
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5
Conclusion and Outlook

Results

Here we are at the very last chapter of this thesis. We have examined the reconstruction of
a function given data sampled from its circular average transform on the sphere. We have
chosen the mollifier approach to construct an estimator and found out that it suffices to
choose the mollifier from the class ψÑ (see (4.37)) for achieving the optimal minimax rate
for the error. This means that, for practical applications, we need to consider only the real
number Ñ as a regularization parameter. The existence of such minimax estimators like
ψÑ has been proved before for a more general setting, which differs from ours in the fact
the data function is given in terms of its Fourier coefficients, cf. [5].
To obtain the optimality of ψÑ , we have imposed some conditions on the quadrature
formulas that we used, and we have proved that these conditions are fulfilled for the Fejér
quadrature. Moreover, we have generalized existing estimates of the hyperinterpolation
error for a different domain, namely the side of a cylinder.

Outlook

Since we have proposed an algorithm to compute the circular average transform, computa-
tional tests should be done to confirm our theoretical results numerically. This is subject
to further research.
Another interesting point is the concept of applicability of quadrature formulas, which was
introduced in Definition 4.7. So far, we have only proved the applicability of the constant-
weight and the Fejér quadrature. It is possible that this result could be generalized to
other quadratures like the Gauss-Legendre rule.
In this thesis, we have shown the optimality of the class ψÑ only for the circular average
transform. Nevertheless, our setting of sampled noisy data can also be used for other inte-
gral transforms on the sphere. It would be interesting to see if (or under which conditions)
this class is optimal for other transforms, too.
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