
A generalization of the Funk–Radon transform
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The Funk–Radon transform assigns to a function on the two-sphere its mean values
along all great circles. We consider the following generalization: we replace the great
circles by the small circles being the intersection of the sphere with planes containing
a common point ζ inside the sphere. If ζ is the origin, this is just the classical Funk–
Radon transform. We find two mappings from the sphere to itself that enable us to
represent the generalized Radon transform in terms of the Funk–Radon transform. This
representation is utilized to characterize the nullspace and range as well as to prove an
inversion formula of the generalized Radon transform.
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1 Background

On the two-dimensional sphere S2, every circle can be described as the intersection of the sphere
with a plane,

C (ξ, x) =
{
η ∈ S2 | 〈ξ,η〉 = x

}
,

where ξ ∈ S2 is the normal vector of the plane and x ∈ [−1, 1] is the signed distance of the plane
to the origin. For x = ±1, the circle C (ξ, x) consists of only the singleton ±ξ. The spherical mean
operator S : C(S2) → C(S2 × [−1, 1]) assigns to a continuous function f defined on S2 its mean
values along all circles of the sphere, i.e.

Sf(ξ, x) =

∫
C (ξ,x)

f(η) dµ(η),

where µ denotes the Lebesgue measure on the circle C (ξ, x) normalized such that µ(C (ξ, x)) = 1.
The inversion of the spherical mean operator S is an overdetermined problem, e.g. Sf(ξ, 1) = f(ξ)
for all ξ ∈ S2. However, in practical applications Sf is often known only on a two-dimensional
sub-manifolds of S2 × [−1, 1].

An important example of such restriction is the Funk–Radon transform F , namely the restriction
of S to x = 0. It computes the averages along all great circles C (ξ, 0) of the sphere. Based on the
work of Minkowski [13], Funk [6] showed that every even, continuous function can be reconstructed
from its Funk–Radon transform. There are several reconstruction formulas, a famous one is due to
Helgason [8, Sec. III.1.C]. The range of the Funk–Radon transform in terms of Sobolev spaces was
characterized by Strichartz [24].
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A similar problem is the restriction of S to a fixed value x = x0 ∈ [−1, 1], which corresponds
to the family of circles with fixed diameter. Schneider [23] proved a so-called “freak theorem”,
which says that the set of values x0 for which Sf(ξ, x0) = 0 for all ξ ∈ S2 does not imply f = 0
is countable and dense in [−1, 1]. These possible values of x0 were further investigated by Rubin
[19]. Similar results were obtained for circles whose radius is one of two fixed values by Volchkov
and Volchkov [26].

Abouelaz and Daher [1] considered the restriction to the family of circles containing the north
pole. An inversion formula was found by Gindikin et al. [7]. Helgason [8, Sec. III.1.D] gave
this restriction the name spherical slice transform and showed that it is injective for continuously
differentiable functions vanishing at the north pole. Injectivity has also been shown to hold for
square-integrable functions vanishing in a neighborhood of the north pole [5], and for bounded
functions [20, Sec. 5].

Restricted to ξ3 = 0, which corresponds to the family of circles perpendicular to the equator, the
mean operator is injective for all functions f that are even with respect to the north–south direction,
i.e. f(ξ1, ξ2, ξ3) = f(ξ1, ξ2,−ξ3). Different reconstruction schemes were proposed in [7, 27, 10].
More generally, it was shown in [3] (see also [2]) that the restriction of the mean operator to the
set A × [−1, 1], where A is some subset of S2, is injective if and only if A is not contained in the
zero set of any harmonic polynomial.

In this article, we are going to look at circles that are the intersections of the sphere with planes
containing a fixed point (0, 0, z)> located on the north–south axis inside the unit sphere, where
z ∈ [0, 1). The spherical transform

Uzf(ξ) = Sf(ξ, zξ3), ξ ∈ S2,

computes the mean values of a continuous function f : S2 → C along all such circles. The spherical
transform Uz was first investigated by Salman [21] in 2015. He proved the injectivity of the spherical
transform for smooth functions supported inside the spherical cap {ξ ∈ S2 | ξ3 < z}. Furthermore,
he showed an inversion formula (see Proposition 6.1) using stereographic projection combined with
an inversion formula of a Radon-like transform in the plane, which integrates along all circles that
intersect the unit circle in two antipodal points. An inversion formula of U1 for multi-dimensional
spheres was shown in [22].

The central result of the present paper is Theorem 3.1, where we prove the factorization of the
spherical transform

Uz = NzFMz,

into the Funk–Radon transform F and the two operators Mz and Nz, which are defined in (3.1)
and (3.2), respectively. Both Mz and Nz consist of a dilation from the sphere to itself composed
with the multiplication of some weight.

Based on this factorization, we show in Theorem 4.4 that the nullspace of the spherical transform
Uz consists of all functions that are, multiplied with some weight, odd with respect to the point
reflection of the sphere about the point (0, 0, z)>. Moreover, it turns out that the ranges of the
spherical transform and the Funk–Radon transform coincide, considered they are both defined on
square-integrable functions on the sphere, see Theorem 4.6. The relation with the Funk–Radon
transform also allows us to state an inversion formula of the spherical transform in Theorem 5.1. In
Section 6, we review the proof of Theorem 3.1 from a different perspective that is connected with
Salman’s approach. We close the paper in Section 7 by examining the continuity of the spherical
transform Uz with respect to z that yields an injectivity result for U1.
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2 Definitions

We denote with R and C the fields of real and complex numbers, respectively. We define the two-
dimensional sphere S2 = {ξ ∈ R3 | ‖ξ‖ = 1} as the set of unit vectors ξ = (ξ1, ξ2, ξ3)

> ∈ R3 in the
three-dimensional Euclidean space R3 equipped with the scalar product 〈ξ,η〉 = ξ1η1 + ξ2η2 + ξ3η3
and the norm ‖ξ‖ = 〈ξ, ξ〉1/2. We make use of the sphere’s parametrization in terms of cylindrical
coordinates,

ξ(ϕ, t) =
(

cosϕ
√

1− t2, sinϕ
√

1− t2, t
)>

, ϕ ∈ [0, 2π), t ∈ [−1, 1], (2.1)

where we assume that the longitude ϕ is 2π-periodic. Let f : S2 → C be some measurable function.
With respect to cylindrical coordinates, the surface measure dξ on the sphere reads∫

S2
f(ξ) dξ =

∫ 1

−1

∫ 2π

0
f(ξ(ϕ, t)) dϕdt.

The Hilbert space L2(S2) is defined as the space of all measurable functions f : S2 → C, whose

norm ‖f‖L2(S2) = 〈f, f〉1/2 is finite, where

〈f, g〉 =

∫
S2
f(ξ)g(ξ) dξ

is the usual L2-inner product. Furthermore, we denote with C(S2) the set of continuous, complex-
valued functions defined on the sphere.

Let γ : [0, 1]→ S2, s 7→ γ(ϕ(s), t(s)) be a regular path on the sphere parameterized in cylindrical
coordinates. The line integral of a function f ∈ C(S2) along the path γ with respect to the
arc-length d` is given by

∫
γ
f d` =

∫ 1

0
f(γ(ϕ(s), t(s))

√
(1− t(s)2)

(
dϕ(s)

ds

)2

+
1

1− t(s)2

(
dt(s)

ds

)2

ds. (2.2)

The spherical transform. Every circle on the sphere can be described as the intersection of the
sphere with a plane, i.e.

C (ξ, x) =
{
η ∈ S2 | 〈ξ,η〉 = x

}
,

where ξ ∈ S2 is the normal vector of the plane and x ∈ [−1, 1] is the signed distance of the plane
to the origin. We consider circles whose planes contain a common point ζ ∈ R3 located in the
interior of the unit ball, i.e. ‖ζ‖ < 1. We say that a circle passes through ζ if its respective plane
contains ζ. By rotational symmetry, we can assume that the point ζ lies on the positive ξ3 axis.
For z ∈ [0, 1), we set

ζz = (0, 0, z)>.

The circles passing through ζz can be described by C (ξ, x) with x = 〈ξ, ζz〉 = zξ3. For a function
f ∈ C(S2), we define the spherical transform

Uzf(ξ) =
1

2π
√

1− z2ξ23

∫
C (ξ,zξ3)

f(η) d`(η), ξ ∈ S2, (2.3)

which computes the mean values of f along all circles passing through ζz. Note that the denomi-
nator in (2.3) is equal to the circumference of the circle C (ξ, zξ3).
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The Funk–Radon transform. Setting the parameter z = 0, the point ζ0 = (0, 0, 0)> is the center
of the sphere. Hence, the spherical transform U0 integrates along all great circles of the sphere.
This special case is the Funk–Radon transform

Ff(ξ) = U0f(ξ) =
1

2π

∫
〈ξ,η〉=0

f(η) d`(η), ξ ∈ S2, (2.4)

which is also known by the terms Funk transform, Minkowski–Funk transform or spherical Radon
transform, where the latter term is occasionally also refers to means over spheres in R3, cf. [16].

3 Relation with the Funk–Radon transform

Let z ∈ [0, 1) and f ∈ C(S2). We define the two transformations Mz, Nz : C(S2)→ C(S2) by

Mzf(ξ(ϕ, t)) =

√
1− z2

1 + zt
f

(
ξ

(
ϕ,

t+ z

1 + zt

))
, ξ ∈ S2 (3.1)

and

Nzf(ξ(ϕ, t)) =
1√

1− z2t2
f

(
ξ

(
ϕ, t

√
1− z2

1− z2t2

))
, ξ ∈ S2. (3.2)

Theorem 3.1. Let z ∈ [0, 1). Then the factorization of the spherical transform

Uz = NzFMz (3.3)

holds, where F is the Funk–Radon transform (2.4).

Proof. Let f ∈ C(S2) and ξ ∈ S2. By the definition of Uz in (2.3), we have

2π
√

1− z2ξ23 Uzf(ξ) =

∫
C (ξ,zξ3)

f(η) d`(η), (3.4)

where d` is the arc-length. We are going to use cylindrical coordinates η(ψ, u) ∈ S2, see (2.1). Let

[0, 1]→ C (ξ, zξ3) ⊂ S2, s 7→ η(ψ(s), u(s))

be some parameterization of the circle C (ξ, zξ3), which acts as domain of integration in (3.4). Then
we have by (2.2)

2π
√

1− z2ξ23 Uzf(ξ) =

∫ 1

0
f(η(ψ, u))

√
(1− u2)

(
dψ

ds

)2

+
1

1− u2

(
du

ds

)2

ds.

We perform the substitution u(s) 7→ v(s), where

u =
v + z

1 + zv
. (3.5)

By the chain rule,
du

ds
=

du

dv

dv

ds
=

1 + zv − z(z + v)

(1 + zv)2
dv

ds
=

1− z2

(1 + zv)2
dv

ds
.
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Thus, we have

2π
√

1− z2ξ23 Uzf(ξ)

=

∫ 1

0
f

(
η

(
ψ,

v + z

1 + zv

))√
1 + z2v2 − z2 − v2

(1 + zv)2

(
dψ

ds

)2

+
(1 + zv)2

1 + z2v2 − z2 − v2
(1− z2)2
(1 + zv)4

(
dv

ds

)2

ds

=

∫ 1

0
f

(
η

(
ψ,

v + z

1 + zv

))√
(1− v2)(1− z2)

(1 + zv)2

(
dψ

ds

)2

+
1− z2

(1− v2)(1 + zv)2

(
dv

ds

)2

ds

=

∫ 1

0
f

(
η

(
ψ,

v + z

1 + zv

)) √
1− z2

1 + zv

√
(1− v2)

(
dψ

ds

)2

+
1

1− v2

(
dv

ds

)2

ds. (3.6)

Plugging (3.2) into the last equation, we obtain by (2.2)

2π
√

1− z2ξ23 Uz(ξ) =

∫
Dz(ξ)

Mzf(η) d`(η), (3.7)

where

Dz(ξ) =

{
η(ψ, v) ∈ S2 : η

(
ψ,

v + z

1 + vz

)
∈ C (ξ, zξ3)

}
.

In the second part of the proof, we are going to show that

Dz(ξ(ϕ, t)) = C

(
ξ

(
ϕ, t

√
1− z2

1− z2t2

)
, 0

)
, (3.8)

which is a great circle on the sphere. The point η(ψ, v) ∈ S2 lies in the set Dz(ξ(ϕ, t)) if and only
if 〈

η

(
ψ,

v + z

1 + vz

)
, ξ(ϕ, t)

〉
= zt.

By the definition of the cylindrical coordinates (2.1), this equation can be rewritten as

(cosψ cosϕ+ sinψ sinϕ)

√
1−

(
v + z

1 + vz

)2√
1− t2 + t

v + z

1 + vz
= zt.

By the addition formula for the cosine, this is equivalent to

cos(ϕ− ψ)

√
1− v2

√
1− z2

1 + vz

√
1− t2 + t

v − vz2

1 + vz
= 0.

Now we multiply the last equation with (1 + vz)(1− z2)−1/2(1− z2t2)−1/2 and obtain

0 = cos(ϕ− ψ)
√

1− v2
√

1− t2√
1− z2t2

+ tv

√
1− z2√

1− z2t2

= cos(ϕ− ψ)
√

1− v2
√

1− t2 1− z2
1− z2t2

+ vt

√
1− z2

1− z2t2
,

which is exactly the equation of the great circle

C

(
ξ

(
ϕ, t

√
1− z2

1− z2t2

)
, 0

)
.

This shows (3.8). Combining (3.7) and (3.8), we obtain

Uz(ξ(ϕ, t)) =
1√

1− z2ξ23
FMzf

(
ξ

(
ϕ, t

√
1− z2

1− z2t2

))
.
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Figure 3.1: The red arrows indicate the transformation hz : S2 → S2, which was defined in (3.9)
and maps the equator (blue) to the circle of latitude z (green), for z = 0.33.

The proof of the decomposition of the spherical transform Uz in Theorem 3.1 is based on the
substitution (3.5), which can be expressed as the transformation

hz : S2 → S2, hz(ξ(ϕ, t)) = ξ

(
ϕ,

t+ z

1 + zt

)
(3.9)

where z ∈ [0, 1). ThenMzf(ξ) = f ◦hz(ξ) ·
√

1− z2/(1 + zξ3). By (3.6), the map hz is conformal,
i.e., it preserves angles. The transformation hz moves the points on the sphere northwards while
leaving the north and south pole unchanged. It maps the equator t = 0 to the circle of latitude
t = z, see Figure 3.1. Moreover, hz maps all great circles to circles passing through ζz. An
interpretation of hz in terms of the stereographic projection will be given in Section 6.

4 Properties of the spherical transform

4.1 The operators Mz and Nz
In the following two lemmas, we investigate the two transformations Mz and Nz from Theorem
3.1 as operators L2(S2)→ L2(S2) and compute their inverses.

Lemma 4.1. The operatorMz given in (3.1) can be extended to a unitary operatorMz : L2(S2)→
L2(S2). Its inverse is given by

M−1z g(ξ(ϕ, u)) = g

(
ξ

(
ϕ,

u− z
1− zu

)) √
1− z2

1− zu
, ξ(ϕ, u) ∈ S2. (4.1)

Proof. Let f ∈ C(S2). In order to proof that Mz is unitary, we are going to show first that
‖Mzf‖L2(S2) = ‖f‖L2(S2), which implies that Mz is an isometry on L2(S2) since the continuous

functions C(S2) are dense in L2(S2). In the integral

‖Mzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

∣∣∣∣∣f
(
ξ

(
ϕ,

t+ z

1 + zt

)) √
1− z2

1 + zt

∣∣∣∣∣
2

dtdϕ,

we substitute

t =
u− z
1− zu

, dt =
1− z2

(1− zu)2
du (4.2)
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and obtain

‖Mzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

∣∣∣∣f (ξ(ϕ, u− z + z(1− zu)

1− zu+ z(u− z)

))∣∣∣∣2 (1− z2)(1− zu)2

(1− zu+ z(u− z))2
1− z2

(1− zu)2
dudϕ

=

∫ 2π

0

∫ 1

−1
|f (ξ (ϕ, u))|2 dudϕ = ‖f‖2L2(S2) .

For the inversion formula (4.1), we apply the substitution (4.2) to (3.1) and obtain

Mzf

(
ξ

(
ϕ,

u− z
1− zu

))
1 + z u−z

1−zu√
1− z2

= f(ξ(ϕ, u)), ξ(ϕ, u) ∈ S2.

This equality implies that Mz is surjective and hence unitary.

Lemma 4.2. The operatorNz given in (3.2) can be extended to a bijective and continuous operator
Nz : L2(S2)→ L2(S2) satisfying

‖f‖L2(S2) ≤ ‖Nzf‖L2(S2) ≤ (1− z2)−1/4 ‖f‖L2(S2) (4.3)

for all f ∈ L2(S2). Its inverse is given by

N−1z g(ξ(ϕ, u)) = g

(
ξ

(
ϕ,

u√
1− z2 + z2u2

))√
1− z2

1− z2 + z2u2
. (4.4)

Proof. Let f ∈ C(S2). In the integral

‖Nzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

∣∣∣∣∣ 1√
1− z2t2

f

(
ξ

(
ϕ, t

√
1− z2

1− z2t2

))∣∣∣∣∣
2

dt dϕ,

we substitute
t =

u√
1− z2 + u2z2

with the derivative

dt

du
=

√
1− z2 + u2z2 − 2u2z2

2
√
1−z2+u2z2

1− z2 + u2z2
=

1− z2

(1− z2 + u2z2)3/2
.

Hence, we have

‖Nzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1
|f (ξ (ϕ, u))|2 1

1− z2 u2

1−z2+u2z2

1− z2

(1− z2 + u2z2)3/2
du dϕ

=

∫ 2π

0

∫ 1

−1
|f (ξ (ϕ, u))|2 1√

1− z2 + u2z2
dudϕ. (4.5)

Since the weight (1− z2 + u2z2)−1/2 in the integrand of (4.5) for u ∈ [−1, 1] attains its maximum
value of (1−z2)−1/2 at u = 0 and its minimum 1 at u = ±1, we can conclude (4.3). For the inversion
formula (4.4), we apply the substitution from the first part of the proof to (3.2) and obtain

f(ξ(ϕ, u)) =

√
1− z2u2

1− z2 + z2u2
Nzf

(
ξ

(
ϕ,

u√
1− z2 + z2u2

))
.
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4.2 Nullspace

Lemma 4.3. Let z ∈ [0, 1). We define

Rz : S2 → S2, ξ(ϕ, t) 7→ ξ

(
ϕ+ π,

2z − t− tz2

1− 2tz + z2

)
.

Then Rz is the point reflection of the sphere across the point ζz = (0, 0, z)>, i.e., for every ξ ∈ S2
the three points ξ, Rzξ and ζz are located on one line.

Proof. We are going to show that Rzξ can be written as an affine combination of ξ and ζz. We
assume that ϕ = 0, the general case then follows by rotation about the north–south axis. We have

ξ(0, t) = (
√

1− t2, 0, t)>.

Setting

α =
z2 − 1

1− 2tz + z2
< 0,

we obtain in 3D coordinates

αξ + (1− α)ζz =

(
z2 − 1

1− 2tz + z2

√
1− t2, 0, z2 − 1

1− 2tz + z2
(t− z) + z

)>
=

(
−

√
1− (1− 2tz + z2)2 − (z2 − 1)2(1− t2)

(1− 2tz + z2)2
, 0,

tz2 − t− z3 + 2z − 2tz2 + z3

1− 2tz + z2

)>

=

−
√

1−
(

2z − t− tz2
1− 2tz + z2

)2

, 0,
2z − t− tz2

1− 2tz + z2

> = Rzξ.

The following theorem shows that the functions in the nullspace of the spherical transform Uz
can be imagined as the set of functions that are odd with respect to the point reflection Rz and
the multiplication with some weight.

Theorem 4.4. Let z ∈ [0, 1). The nullspace of the spherical transform Uz consists of all functions
f ∈ L2(S2) for which Mzf is odd. The latter is equivalent to the condition that for almost every
ξ ∈ S2

f(ξ) = f(Rz(ξ))
1− z2

2zξ3 − 1− z2
. (4.6)

Proof. Let f ∈ L2(S2) with Uzf = 0. By the factorization (3.3), we have NzFMzf = 0. Since Nz
is injective by Lemma 4.2, we conclude that FMzf = 0. It is well-known that the nullspace of the
Funk–Radon transform F consists of the odd functions, cf. [6]. It follows that Uzf = 0 if and only
if Mzf is odd. That is, for almost every ξ ∈ S2, we have

Mzf(ξ) = −Mzf(−ξ)

and hence in cylindrical coordinates

f

(
ξ

(
ϕ,

t+ z

1 + tz

)) √
1− z2

1 + zt
= −f

(
ξ

(
ϕ+ π,

−t+ z

1− tz

)) √
1− z2

1− zt
. (4.7)

By setting

t =
z − u
uz − 1

,
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equation (4.7) becomes

f

(
ξ

(
ϕ,
z − u+ z(uz − 1)

uz − 1 + (z − u)z

))
= −f

(
ξ

(
ϕ+ π,

−z + u+ z(uz − 1)

uz − 1− z(z − u)

))
uz − 1 + z(z − u)

uz − 1− z(z − u)
,

which is equivalent to

f(ξ(ϕ, u)) = f

(
ξ

(
ϕ+ π,

u− 2z + uz2

2uz − 1− z2

))
1− z2

2uz − z2 − 1
.

4.3 Range

In order to obtain a description of the range of the spherical transform Uz, we introduce Sobolev
spaces on the sphere. For more details on such Sobolev spaces, we refer the reader to [12]. We
start by defining the associated Legendre polynomials

P kn (t) =
(−1)k

2nn!

(
1− t2

)k/2 dn+k

dtn+k
(
t2 − 1

)n
, t ∈ [−1, 1],

for all (n, k) ∈ I, where
I = {(n, k) | n ∈ N0, k = −n, . . . , n}

and N0 denotes the set of non-negative integers. The spherical harmonics

Y k
n (ξ(ϕ, t)) =

√
2n+ 1

4π

(n− k)!

(n+ k)!
P kn (t)eikϕ, ξ(ϕ, t) ∈ S2,

form an orthonormal basis in the Hilbert space L2(S2). Accordingly, any function f ∈ L2(S2) can
be expressed by its Fourier series

f =
∞∑
n=0

n∑
k=−n

f̂(n, k)Y k
n

with the Fourier coefficients

f̂(n, k) =

∫
S2
f(ξ)Y k

n (ξ) dξ.

For s ≥ 0, the Sobolev space Hs(S2) is defined as the space of all functions f ∈ L2(S2) with finite
Sobolev norm

‖f‖2Hs(S2) =

∞∑
n=0

n∑
k=−n

(
n+ 1

2

)2s ∣∣∣f̂(n, k)
∣∣∣2 .

Obviously, H0(S2) = L2(S2). Furthermore, we set L2
e(S2) and Hs

e (S2) as the respective spaces
restricted to even functions.

Before we give the theorem about the range of Uz, we need the following technical lemma.

Lemma 4.5. Let z ∈ [0, 1). The restriction of Nz, which was defined in (3.2), to an operator

Nz : H1/2
e (S2)→ H1/2

e (S2)

is continuous and bijective with

‖Nz‖H1/2(S2)→H1/2(S2) ≤
√

3(1− z2)−3/8 (4.8)

and
‖N−1z ‖H1/2(S2)→H1/2(S2) ≤

√
2(1− z2)−1/4. (4.9)
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Proof. The structure of this proof is as follows. At first, we consider the Sobolev space H1(S2),
where we compute the norms of f andNzf , from which we subsequently derive thatNz is continuous
on the Sobolev space H1(S2). Afterwards, we see the continuity of the inverse N−1z . Hence,
Nz : H1

e (S2)→ H1
e (S2) is a continuous bijection. In the last part, we utilize interpolation theory to

transfer the obtained continuity to the space H
1/2
e (S2).

The Sobolev norm in H1. Let f ∈ C∞(S2). In order to show that Nz is continuous on H1(S2), we
use a different characterization of the Sobolev norm (see [12, Theorems 4.12 and 6.12])

‖f‖2H1(S2) = ‖∇∗f‖2L2(S2) +
1

4
‖f‖2L2(S2) ,

with the surface gradient

∇∗ = eϕ
1√

1− t2
∂

∂ϕ
+ et

√
1− t2 ∂

∂t
,

where eϕ = (− sinϕ, cosϕ, 0)> and et = (−t cosϕ,−t sinϕ,
√

1− t2)> are the orthonormal tangent
vectors of the sphere with respect to the cylindrical coordinates (ϕ, t). Let f ∈ C∞(S2). Then we
have

‖f‖2H1(S2) =

∫ 2π

0

∫ 1

−1

[
1

4
|f(ξ(ϕ, t))|2 +

1

1− t2

∣∣∣∣∂f(ξ(ϕ, t))

∂ϕ

∣∣∣∣2 + (1− t2)
∣∣∣∣∂f(ξ(ϕ, t))

∂t

∣∣∣∣2
]

dt dϕ.

(4.10)
As in the proof of Lemma 4.2, we define

u = t

√
1− z2

1− z2t2
,

which implies

t =
u√

1− z2 + z2u2
.

Hence,
∂u

∂t
=

√
1− z2

(1− z2t2)3/2
=

(1− z2 + z2u2)3/2

1− z2
.

Furthermore, we set

v =
1√

1− z2t2
=

√
1− z2 + z2u2

1− z2
,

and we have
∂v

∂t
=

z2t

(1− z2t2)3/2
=
z2u(1− z2 + z2u2)

(1− z2)3/2
.

Hence, we can write
Nzf(ξ(ϕ, t)) = vf(ξ(ϕ, u)).

Thus, we have

‖∇∗Nzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

[
v2

1− t2

∣∣∣∣∂f(ξ(ϕ, u))

∂ϕ

∣∣∣∣2
+ (1− t2)

∣∣∣∣∂v∂t f(ξ(ϕ, u)) + v
∂f(ξ(ϕ, u))

∂u

∂u

∂t

∣∣∣∣2
]

dtdϕ.
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By the above formulas for u and v as well as their derivatives, we obtain

‖∇∗Nzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

[
1− z2 + z2u2

1− z2
1− z2 + z2u2

(1− z2)(1− u2)

∣∣∣∣∂f(ξ(ϕ, u))

∂ϕ

∣∣∣∣2
+

(1− z2)(1− u2)
1− z2 + z2u2

∣∣∣∣z2u(1− z2 + z2u2)

(1− z2)3/2
f(ξ(ϕ, u))

+

√
1− z2 + z2u2

1− z2
(1− z2 + z2u2)3/2

1− z2
∂f(ξ(ϕ, u))

∂u

∣∣∣∣2
]

· 1− z2

(1− z2 + z2u2)3/2
dudϕ

and hence

‖∇∗Nzf‖2L2(S2) =

∫ 2π

0

∫ 1

−1

[√
1− z2 + z2u2

(1− z2)(1− u2)

∣∣∣∣∂f(ξ(ϕ, u))

∂ϕ

∣∣∣∣2
+

1− u2

1− z2

∣∣∣∣ z2uf(ξ(ϕ, u))

(1− z2 + z2u2)1/4
+ (1− z2 + z2u2)3/4

∂f(ξ(ϕ, u))

∂u

∣∣∣∣2
]

dudϕ.

(4.11)

Boundedness on H1. By Lemma 4.2, we know that Nz is bounded on L2(S2), i.e., ‖Nzf‖L2(S2) ≤
(1 − z2)−1/4 ‖f‖L2(S2). In order to prove the boundedness Nz of in H1(S2), we still have to show

that ‖∇∗Nzf‖L2(S2) is bounded by a multiple of ‖f‖H1(S2). By (4.11) and the inequality |a+ b|2 ≤
2 |a|2 + 2 |b|2 for all a, b ∈ C, we have the upper bound

‖∇∗Nzf‖2L2(S2) ≤
∫ 2π

0

∫ 1

−1

[
2z4u2(1− u2) |f(ξ(ϕ, u))|2√

1− z2 + z2u2(1− z2)
+

√
1− z2 + z2u2

(1− z2)(1− u2)

∣∣∣∣∂f(ξ(ϕ, u))

∂ϕ

∣∣∣∣2
+

2(1− z2 + z2u2)3/2(1− u2)
1− z2

∣∣∣∣∂f(ξ(ϕ, u))

∂u

∣∣∣∣2
]

du dϕ.

We denote the coefficients of f and its derivatives in the integrand of the last equation with
αz(u), βz(u) and γz(u), such that

‖∇∗Nzf‖2L2(S2) ≤
∫ 2π

0

∫ 1

−1

[
αz(u) |f(ξ(ϕ, u))|2 + βz(u)

∣∣∣∣∂f(ξ(ϕ, u))

∂ϕ

∣∣∣∣2
+ γz(u)

∣∣∣∣∂f(ξ(ϕ, u))

∂u

∣∣∣∣2
]

dudϕ.

(4.12)

Comparing (4.12) with (4.10), we obtain

‖∇∗Nzf‖2L2(S2) ≤ sup
u∈(−1,1)

(
max

{
4αz(u), (1− u2)βz(u),

γz(u)

1− u2

})
‖f‖2H1(S2) .

Thus, if the arguments of the maximum in the previous equation are bounded uniformly with
respect to u ∈ (−1, 1), it follows that the operator Nz is bounded on H1(S2), since the space
C∞(S2) is dense in H1(S2). We see that the three terms

4αz(u) =
8z4u2(1− u2)√

1− (1− u2)z2(1− z2)

≤ 8z4u2(1− u2)√
1− (1− u2)(1− z2)

=
8z4 |u| (1− u2)

1− z2
≤ 8

1− z2

(4.13a)
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and

(1− u2)βz(u) =

√
1− z2 + z2u2

1− z2
≤ 1

1− z2
(4.13b)

and
γz(u)

1− u2
=

2(1− z2 + z2u2)3/2

1− z2
≤ 2

1− z2
(4.13c)

are bounded independently of u ∈ (−1, 1). Putting together the maximum of the three terms with
Lemma 4.2, we obtain

‖Nz‖H1(S2)→H1(S2) ≤
3√

1− z2
. (4.14)

Surjectivity on H1. Lemma 4.2 implies thatNz is injective. For proving thatNz : H1(S2)→ H1(S2)
is surjective, it is sufficient to show that the inverse operator N−1z restricted to H1(S2) is continuous
on H1(S2). Let g ∈ C∞(S2), which is dense in H1(S2). With a computation that is similar to the
first part of the proof and therefore skipped, we can obtain

‖N−1z g‖2H1(S2) =

∫ 2π

0

∫ 1

−1

[ √
1− z2

4
√

1− z2t2
|g(ξ(ϕ, t))|2 +

√
1− z2

√
1− z2t2

1− t2

∣∣∣∣∂g(ξ(ϕ, t))

∂ϕ

∣∣∣∣2
+

1− t2√
1− z2

√
1− z2t2

∣∣∣∣(1− z2t2)∂g(ξ(ϕ, t))

∂t
− tz2g(ξ(ϕ, t))

∣∣∣∣2
]

dtdϕ,

which is bounded by

‖N−1z g‖2H1(S2) ≤
∫ 2π

0

∫ 1

−1

[( √
1− z2

4
√

1− z2t2
+

2t2z4(1− t2)√
1− z2

√
1− z2t2

)
|g(ξ(ϕ, t))|2

+

√
1− z2

√
1− z2t2

1− t2

∣∣∣∣∂g(ξ(ϕ, t))

∂ϕ

∣∣∣∣2 +
(1− t2)(1− z2t2)2√

1− z2
√

1− z2t2

∣∣∣∣∂g(ξ(ϕ, t))

∂t

∣∣∣∣2
]

dt dϕ.

We proceed as in the previous part and denote the coefficients of g and its derivatives with α̃z(t),
β̃z(t) and γ̃z(t). We have analogously to (4.13)

4α̃z(t) =

√
1− z2√

1− z2t2
+

8t2z4(1− t2)√
1− z2

√
1− z2t2

≤ 1 +
8t2z4

√
1− t2√

1− z2
≤ 9√

1− z2
,

(1− t2)β̃z(t) =
√

1− z2
√

1− z2t2 ≤ 1,

γ̃z(t)

1− t2
=

2(1− z2t2)2√
1− z2

√
1− z2t2

=
2(1− z2t2)3/2√

1− z2
≤ 2√

1− z2
,

which implies
‖N−1z g‖H1(S2) ≤ 3(1− z2)−1/4 ‖g‖H1(S2) . (4.15)

Interpolation to H1/2. Every function f in the Sobolev spaces Hs(S2) can be identified with the

sequence of its Fourier coefficients f̂(n, k), (n, k) ∈ I. Hence, the Sobolev space Hs(S2) is isometri-
cally isomorphic to a weighted L2-space on the set I with the counting measure µ and the weight
ws(n, k) = (n+ 1

2)s, i.e.

Hs(S2) ∼= L2
ws(I;µ) =

f̂ ∈ L2(I;µ)

∣∣∣∣∣∣‖f̂‖2L2
ws

(I;µ) =
∑

(n,k)∈I

∣∣∣f̂(n, k)
∣∣∣2ws(n, k)2 <∞

 .
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For 0 ≤ s ≤ t and θ ∈ [0, 1], we can compute the interpolation space

[L2
ws(I;µ), L2

wt(I;µ)]θ = L2
w(I;µ),

where
w(n, k) = ws(n, k)1−θwt(n, k)θ =

(
n+ 1

2

)(1−θ)s+θt
= w(1−θ)s+θt(n, k),

see [25, Theorem 1.18.5]. So, for s = 0, t = 1 and θ = 1/2, the space H1/2(S2) is an interpolation
space between H0(S2) and H1(S2). By Lemma 4.2 and the first part of this proof, the operator
Nz is continuous on both H0(S2) → H0(S2) and H1(S2) → H1(S2) with norms given in (4.3) and
(4.14), respectively. Hence, it is also continuous H1/2(S2)→ H1/2(S2) with

‖Nz‖H1/2(S2)→H1/2(S2) ≤ ‖Nz‖
1/2
L2(S2)→L2(S2) ‖Nz‖

1/2
H1(S2)→H1(S2) ≤

√
3(1− z2)−3/8,

which shows (4.8). Also by interpolation between L2 and H1 and the respective norms from (4.3)
and (4.15), the inverse operator N−1z is continuous with

‖N−1z ‖H1/2(S2)→H1/2(S2) ≤
√

2(1− z2)−1/4.

which shows (4.9).

In order to obtain the claimed result on H
1/2
e (S2), it is left to show that Nz is invariant for even

functions. This follows from the fact that an even function plugged into (3.2) and (4.4) for Nz and
N−1z , respectively, yields again an even function.

Theorem 4.6. Let z ∈ [0, 1). Define L̃2
e,z(S2) as the subspace of L2(S2) of functions satisfying

f(ξ(ϕ, t)) = f

(
ξ

(
ϕ+ π,

t− 2z + tz2

2tz − 1− z2

))
1− z2

1 + z2 − 2tz

almost everywhere on S2. The spherical transform

Uz : L̃2
e,z(S2)→ H1/2

e (S2)

is linear, continuous and bijective.

Proof. This proof is based on the decomposition Uz = NzFMz derived in Theorem 3.1. Analo-
gously to the proof of Theorem 4.4, we see thatM−1z L2

e(S2) = L̃2
e,z(S2). Furthermore, the operator

Mz : L̃2
e,z(S2) → L2

e(S2) is continuous and bijective by Lemma 4.1. It is well-known that the
Funk–Radon transform

F : L2
e(S2)→ H1/2

e (S2)

is bijective and continuous, cf. [24, Lemma 4.3]. In Lemma 4.5, we have seen that Nz : H
1/2
e (S2)→

H
1/2
e (S2) is continuous and bijective.

5 An inversion formula

In the following theorem, we give an inversion formula for the spherical transform Uz. This formula
is based on the work of Helgason [8, Section III.1.C], who proved that every even function f can
be reconstructed from its Funk–Radon transform Ff via

f(η) =
1

2π

d

du

∫ u

0

∫
〈ξ,η〉2=1−w2

Ff(ξ) d`(ξ)
1√

u2 − w2
dw

∣∣∣∣∣
u=1

, η ∈ S2. (5.1)
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Theorem 5.1. Let z ∈ [0, 1) and f ∈ L̃2
e,z(S2). Then for η(ψ, v) ∈ S2

f(η(ψ, v)) =
1− z2

2π(1− zv)

d

du

∫ u

0

∫
Sz(v,w)

Uzf
(
ξ
(
ϕ, t√

1−z2+z2t2

))
√

1− z2 + z2t2
d`(ξ(ϕ, t))

dw√
u2 − w2

∣∣∣∣∣
u=1

,

where d` is the arc-length on the circle

Sz(v, w) =

{
ξ ∈ S2

∣∣∣∣〈ξ,η(ψ, z − vzv − 1

)〉
=
√

1− w2

}
.

Proof. We set g = Uzf . By the decomposition from Theorem 3.1 together with Lemma 4.1, we
have

f(η(ψ, v)) =M−1z F−1N−1z g(η(ψ, v)) (5.2)

=

√
1− z2

1− zv
F−1N−1z g

(
η

(
ψ,

v − z
1− zv

))
.

By Helgason’s formula (5.1), we obtain

f(η(ψ, v)) =

√
1− z2

2π(1− zv)

d

du

∫ u

0

∫
〈ξ,η(ψ, v−z1−zv )〉2=1−w2

N−1z g(ξ) d`(ξ)
dw√

u2 − w2

∣∣∣∣∣
u=1

.

Plugging (4.4) into the above equation, we conclude that

f(η(ψ, v)) =
1− z2

2π(1− zv)

d

du

∫ u

0

∫
Sz(v,w)

g
(
ξ
(
ϕ, t√

1−z2+z2t2

))
√

1− z2 + z2t2
d`(ξ(ϕ, t))

dw√
u2 − w2

∣∣∣∣∣∣
u=1

.

The inversion of the Funk–Radon transform F is a well-studied problem. Instead of Helgason’s
formula we used for Theorem 5.1, other inversion schemes of F could also be applied to (5.2),
like the reconstruction formulas in [7, 18, 14, 4]. For the numerical inversion of the Funk–Radon
transform, Louis et al. [11] proposed the mollifier method, which was used with locally supported
mollifiers in [17]. The mollifier method was combined with the spherical Fourier transform leading
to fast algorithms in [9]. Variational splines were suggested by Pesenson [15].

6 Relation with the stereographic projection

In this section, we take a closer look at the inversion method of the spherical transform used by
Salman [21] and describe its connection with our approach. His proof relies on the stereographic
projection π : S2 → R2. In cylindrical coordinates (2.1) on the sphere and polar coordinates

x(r, φ) = (r cosφ, r sinφ)> ∈ R2

in the plane R2, the stereographic projection is expressed by

π(ξ(ϕ, t)) = x

(√
1 + t

1− t
, ϕ

)

and conversely

π−1(x(r, φ)) = ξ

(
φ,
r2 − 1

r2 + 1

)
.
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Proposition 6.1. For z ∈ [0, 1), define

σz =

√
1 + z

1− z
. (6.1)

Let f ∈ C∞(S2) be a smooth function supported strictly inside the spherical cap {ξ ∈ S2 | ξ3 < z}.
Then f can be reconstructed from Uzf via

(f ◦ π−1)

 2σz

1 +
√

1 + 4 ‖x‖2
x



=

√
1 + 4 ‖x‖2

(
(1− z)

(
1 +

√
1 + 4 ‖x‖2

)
+ 4(1 + z) ‖x‖2

)
8π

(
1 +

√
1 + 4 ‖x‖2

)

∆x

∫ π

−π

∫ π/2

0

Uzf(ξ(ϕ, sin θ)) log
∣∣∣x1 cosϕ+ x2 sinϕ− 1

2

√
1− z2 tan θ

∣∣∣ dθ dϕ

cos θ
,

(6.2)

where ∆x = ∂2

∂x21
+ ∂2

∂x22
is the Laplacian with respect to x = (x1, x2)

> ∈ R2.

The inversion formula (6.2) was derived in [21] by considering the function f ◦ π−1 ◦ σz, where
σz : R2 → R2 is the uniform scaling in the plane defined by σzx = σzx with the scaling factor σz
given in (6.1). By the transformation

π−1 ◦ σz : R2 → S2,

every circle in the plane that intersects the unit circle {x ∈ R2 | x21 + x22 = 1} in two antipodal
points of the unit circle is mapped to a circle on the sphere passing through ζz and vice versa.
Afterwards, an inversion formula is applied to the function f ◦π−1◦σz for the Radon-like transform
that integrates a function along the circles intersecting the unit circle in antipodal points.

In this light, we can look in a different way at proof of Theorem 3.1. There we have considered
f ◦ hz. The transformation hz from (3.9) can be written in terms of the stereographic projection
as

hz = π−1 ◦ σz ◦ π.

Indeed, we have for any ξ(ϕ, t) ∈ S2

π−1 ◦ σz ◦ π(ξ(ϕ, t)) = π−1

(
x

(√
1 + z

1− z

√
1 + t

1− t
, ϕ

))

= ξ

(
ϕ,

1+z
1−z

1+t
1−t − 1

1+z
1−z

1+t
1−t + 1

)
= ξ

(
ϕ,

t+ z

1 + tz

)
= hz(ξ).

So, like Salman, we first perform the stereographic projection π followed by the scaling σ−1z in the
plane. But then, we use the inverse stereographic projection π−1 to come back to the sphere.

Both the stereographic projection π and the scaling σz map circles onto circles. Therefore, hz
also maps circles to circles. Furthermore, the stereographic projection maps great circles on the
sphere to circles that intersect the unit circle in two antipodal points. This way, we have found
another way to prove that the transformation hz maps great circles onto circles through ζz.
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7 Continuity results

In our previous considerations, we have left out z = 1. The spherical slice transform U1 computes
the mean values along all circles passing through the north pole (0, 0, 1)>. In this section, we look
at the continuity of Uz with respect to z and use this continuity to give an injectivity result for U1.

7.1 Continuity on C(S2)

Lemma 7.1 (Parametrization of the circles of integration). Let z ∈ [0, 1] and ξ(ϕ, t) ∈ S2. Then

Uzf(ξ) =
1

2π

∫ 2π

0
f(Cξzξ3(α)) dα,

where for x ∈ [−1, 1]

Cξ(ϕ,t)x (α) = η

(
arctan

( √
1− x2 sinα

t
√

1− x2 cosα+ x
√

1− t2

)
+ ϕ, xt−

√
1− t2

√
1− x2 cosα

)
. (7.1)

Proof. We derive a parametric representation of the circles

C (ξ, x) = {Cξx(α) | α ∈ [0, 2π)}, ξ ∈ S2, x ∈ [−1, 1].

If ξ = e3 is the north pole, C (e3, x) is the circle of latitude x, which can be parameterized in
Cartesian coordinates by

Ce
3

x (α) =


√

1− x2 cosα√
1− x2 sinα

x

 . (7.2)

We rotate Ce
3

x about the ξ2–axis with the angle arccos(t) by multiplication with the respective
rotation matrix and obtain

Cξ(0,t)x (α) =

 t 0
√

1− t2
0 1 0

−
√

1− t2 0 t

Ce
3

x (α) =

 t
√

1− x2 cosα+ x
√

1− t2√
1− x2 sinα

−
√

1− t2
√

1− x2 cosα+ xt

 .

Switching back to cylindrical coordinates, we rotate C
ξ(0,t)
x about the north–south axis with the

angle ϕ and obtain (7.1).

In the following theorem, we show the continuity of the spherical transform Uz with respect to z
on the set of continuous functions C(S2). The geodesic distance of two points ξ,η ∈ S2 is given by

d(ξ,η) = arccos(〈ξ,η〉).

Theorem 7.2. Let f ∈ C(S2). Then for z, w ∈ [0, 1],

lim
z→w
‖Uzf − Uwf‖L∞(S2) = 0. (7.3)

Proof. By Lemma 7.1,

|Uzf(ξ)− Uwf(ξ)| ≤ 1

2π

∫ 2π

0

∣∣∣f(Cξzξ3(α))− f(Cξwξ3(α))
∣∣∣ dα. (7.4)

Let δ > 0. Since f is uniformly continuous on S2, there exists a µ > 0 such that∣∣∣f(Cξzξ3(α))− f(Cξwξ3(α))
∣∣∣ < δ whenever d(Cξzξ3(α), Cξwξ3(α)) < µ.
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The circles Cξzξ3 and Cξwξ3 can be rotated to circles of latitude as in the proof of Lemma 7.1, so

d(Cξzξ3(α), Cξwξ3(α)) = d(Ce
3

zξ3(α), Ce
3

wξ3(α)) = |arccos(zξ3)− arccos(wξ3)| . (7.5)

Since the map (z, ξ3) 7→ arccos(zξ3) is uniformly continuous on [0, 1]× [−1, 1], there exists a ν > 0
such that

d(Cξzξ3(α), Cξwξ3(α)) < µ whenever |z − w| < ν.

7.2 Injectivity of U1
We have seen that the spherical transform Uz is continuous with respect to z ∈ [0, 1] and injective
for z < 1 on functions vanishing in a certain neighborhood of the north pole. Therefore, it would
be natural to assume that also U1 is injective for functions vanishing around the north pole. In
order to show the injectivity of U1, we restrict ourselves to Lipschitz continuous functions vanishing
around the north pole, which enables us to obtain a bound of ‖Uzf − U1f‖H1/2(S2) in terms of z.
This corresponds to a more general result from [5], where it was shown in a different way that the
spherical slice transform U1 is injective for functions in L2(S2) vanishing around the north pole.

A function f ∈ C(S2) is called Lipschitz continuous if there exists a constant Lf such that for

all ξ, ξ̃ ∈ S2
|f(ξ)− f(ξ̃)| ≤ Lf · d(ξ, ξ̃).

For ε > 0, denote with Cε(S2) and L2
ε (S2) the subspace of functions in C(S2) or L2(S2), respectively,

that vanish on the spherical cap {η ∈ S2 | η3 > 1− ε}.

Theorem 7.3. For ε > 0, let f ∈ Cε(S2) be Lipschitz continuous and U1f = 0. Then f = 0.

The proof of Theorem 7.3 relies on the following observation. For z ∈ (1− ε/2, 1), Theorem 4.6
shows that Uz is injective on L2

ε (S2) and we have

‖f‖L2(S2) = ‖U−1z Uzf‖L2(S2) ≤ ‖U
−1
z ‖H1/2

e (S2)→L2(S2) ‖Uzf‖H1/2
e (S2) . (7.6)

Before we come to the proof that f = 0, we derive a bound of ‖Uzf − U1f‖H1/2(S2) by a power of
(1− z).

The following lemma shows that Uzf vanishes around the north pole if f ∈ Cε(S2) and z > 1− ε.

Lemma 7.4. Let ε ∈ (0, 1), f ∈ Cε(S2) and z > 1− ε. Then Uzf(ξ) = 0 for all ξ ∈ S2 satisfying

ξ23 >
2ε− ε2

1− 2z + 2εz + z2
. (7.7)

Particularly, the spherical slice transform U1f(ξ) vanishes for ξ23 > 1− ε/2.

Proof. By the parametrization (7.1), the southmost point of the circle C (ξ, zξ3) has the latitude
zξ23−

√
1− ξ23

√
1− z2ξ23 . Hence, Uzf(ξ) must vanish for all ξ3 satisfying zξ23−

√
1− ξ23

√
1− z2ξ23 >

1− ε, which can be rewritten as

(zξ23 − 1 + ε)2 > (1− ξ23)(1− z2ξ23).

Expanding and collecting terms yields (7.7).

Lemma 7.5. Let ε ∈ (0, 1) and f ∈ Cε(S2) be Lipschitz continuous with constant Lf . Then for all
z ∈ [1− ε/2, 1]

‖Uzf − U1f‖L∞(S2) ≤ (1− z)Lf

√
8− 4ε

ε
. (7.8)
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Proof. Let ξ ∈ S2 and z, w ∈ [0, 1]. We have by Lemma 7.1 and because f is Lipschitz continuous

|Uzf(ξ)− Uwf(ξ)| ≤ 1

2π

∫ 2π

0

∣∣∣f(Cξzξ3(α))− f(Cξwξ3(α))
∣∣∣ dα

≤ Lf
1

2π

∫ 2π

0
d(Cξzξ3(α), Cξwξ3(α)) dα.

(7.9)

By (7.5),

d(Cξzξ3(α), Cξξ3(α)) = |arccos(zξ3)− arccos(wξ3)| ≤ (1− z) |ξ3|√
1− ξ23

,

where the last inequality follows by the mean value theorem applied to the arccosine with∣∣∣∣ ∂∂z arccos(zξ3)

∣∣∣∣ =

∣∣∣∣∣ −ξ3√
1− z2ξ23

∣∣∣∣∣ ≤ |ξ3|√
1− ξ23

.

Because f ∈ Cε(S2) and z > 1 − ε, Corollary 7.4 implies that for ξ23 ≥ 2ε−ε2
1+z2−2z(1−ε) , we have

Uzf(ξ) = 0 and U1f(ξ) = 0. For ξ23 ≤ 2ε−ε2
1+z2−2z(1−ε) , we have

|Uzf(ξ)− U1f(ξ)| ≤ Lf (1− z)
√

2ε− ε2
1 + z2 − 2z + 2zε− 2ε+ ε2

= Lf (1− z)
√

2ε− ε2
z + ε− 1

.

The claim (7.8) follows since z ≥ 1 − ε/2 and the denominator z + ε − 1 in the last equation is
monotone in z.

Lemma 7.6. Let z ∈ [0, 1] and f ∈ C(S2) be Lipschitz continuous with constant Lf . Then Uzf is
differentiable almost everywhere with

‖∇∗Uzf(ξ)‖ ≤ 2Lf .

Proof. Let ξ(ϕ, t),η(ψ, u) ∈ S2. As in (7.9), the Lipschitz continuity implies

|Uzf(ξ(ϕ, t))− Uzf(η(ψ, u))| ≤ Lf
1

2π

∫ 2π

0
d
(
C
ξ(ϕ,t)
zt (α), Cη(ψ,u)zu (α)

)
dα.

By the triangle inequality and (7.5),

d
(
C
ξ(ϕ,t)
zt (α), Cη(ψ,u)zu (α)

)
≤ d

(
C
ξ(ϕ,t)
zt (α), Cξ(ϕ,t)zu (α)

)
+ d

(
Cξ(ϕ,t)zu (α), Cη(ψ,u)zu (α)

)
= |arccos(zt)− arccos(zu)|+ d (ξ(ϕ, t),η(ψ, u)) .

Because Uzf is even, it suffices to consider 0 ≤ t ≤ u. Then

|arccos(zt)− arccos(zu)| = arccos(zt)− arccos(zu) ≤ arccos(t)− arccos(u),

where the last inequality follows because the derivative

∂

∂z
(arccos(zt)− arccos(zu)) =

u
√

1− z2t2 − t
√

1− z2u2√
1− z2u2

√
1− z2t2

is positive whenever t2(1− z2u2) < u2(1− z2t2), which is equivalent to t2 < u2. Moreover,

|arccos(t)− arccos(u)| = d(ξ(ϕ, t), ξ(ϕ, u)) ≤ d(ξ(ϕ, t),η(ψ, u)).
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Collecting the previous calculations, we have

|Uzf(ξ)− Uzf(η)| ≤ 2 d(ξ,η)Lf .

Hence Uzf is Lipschitz continuous and thus, by Rademacher’s theorem, it is differentiable almost
everywhere with

‖∇∗Uzf(ξ)‖ ≤ 2Lf .

Combining the two previous lemmas, we obtain that Uzf converges sufficiently fast to U1f in
H1/2(S2) as follows.

Lemma 7.7. Let ε ∈ (0, 1) and f ∈ Cε(S2) be Lipschitz continuous with constant Lf . Then there
exists a constant Kε > 0 such that for all z ∈ (1− ε/2, 1)

‖Uzf − U1f‖H1/2(S2) ≤
√

1− z LfKε.

Proof. We use interpolation between L2 and H1. By Lemma 7.5,

‖Uzf − U1f‖L2(S2) ≤
√

4π ‖Uzf − U1f‖L∞(S2) ≤
√

4π

√
8− 4ε

ε
Lf (1− z). (7.10)

On the other hand, we have

‖Uzf − U1f‖2H1(S2) = ‖∇∗(Uzf − U1f)‖2L2(S2) +
1

4
‖Uzf − U1f‖2L2(S2) .

Since z > 1− ε/2 and by (7.10), we see that

‖Uzf − U1f‖2L2(S2) ≤ 8πL2
f .

By Lemma 7.6,

‖∇∗(Uzf − U1f)‖2L2(S2) ≤ 2
(
‖∇∗Uzf‖2L2(S2) + ‖∇∗U1f‖2L2(S2)

)
≤ 8π

(
‖∇∗Uzf‖2L∞(S2) + ‖∇∗U1f‖2L∞(S2)

)
≤ 64πL2

f .

Hence, we obtain
‖Uzf − U1f‖H1(S2) ≤

√
66πLf .

Since H1/2(S2) is an interpolation space, by [25, Sec. 1.9.3] there exists a constant c > 0 such that

‖Uzf − U1f‖H1/2(S2) ≤ c ‖Uzf − U1f‖
1/2

H1/2(S2) ‖Uzf − U1f‖
1/2

H1/2(S2)

≤ c
√

1− z Lf
(

4π
8− 4ε

ε
66π

)1/4

.

Now we have assembled all ingredients to proof the injectivity theorem.

Proof of Theorem 7.3. Let f ∈ Cε(S2) be Lipschitz continuous with constant Lf , U1f = 0 and
z ∈ (1− ε/2, 1). The decomposition of Uz in Theorem 3.1 together with the unitarity of Mz from
Lemma 4.1 and the estimate of N−1z from (4.9) yield

‖U−1z ‖H1/2
e (S2)→L2(S2) ≤ ‖M

−1
z ‖L2(S2)→L2(S2) ‖F

−1‖
H

1/2
e (S2)→L2

e(S2)
‖N−1z ‖H1/2

e (S2)→H1/2
e (S2)

≤ ‖F−1‖
H

1/2
e (S2)→L2

e(S2)

√
3 (1− z)−1/4.

19



By Lemma 7.7 and because U1f = 0, there exists a constant Kε such that

‖Uzf‖H1/2(S2) ≤
√

1− z2 LfKε ≤
√

2
√

1− z LfKε.

Hence, by (7.6),

‖f‖L2(S2) ≤ ‖U
−1
z ‖H1/2

e (S2)→L2(S2) ‖Uzf‖H1/2
e (S2)

≤ (1− z)1/4
√

6LfKε ‖F−1‖H1/2(S2)→L2(S2) .

Computing the limit z → 1 shows that f = 0.

7.3 Continuity on L2(S2)

Theorem 7.2 shows the strong continuity of the spherical transform Uz on C(S2). In order to extend
that result to L2

ε (S2), we first prove the boundedness of Uz.

Theorem 7.8. Let ε ∈ (0, 1). Then the operator Uz : L2
ε (S2)→ L2(S2) is bounded independently

of z ∈ [0, 1] by
‖Uz‖L2

ε (S2)→L2(S2) ≤ (2ε− ε2)−1/4. (7.11)

Proof. We first show the boundedness of Uz on L1
ε (S2). Let f ∈ L1

ε (S2). By Lemma 7.1,

‖Uz |f |‖L1(S2) =

∫ 1

−1

∫ 2π

0

1

2π

∫ 2π

0

∣∣∣f (Cξ(ϕ,t)zt (α)
)∣∣∣ dα dϕdt.

By Fubini’s theorem and since the azimuth is 2π-periodic,

‖Uz |f |‖L1(S2) =
1

π

∫ 1

−1

∫ π

0

∫ 2π

0

∣∣∣f (ξ (ϕ,−√1− t2
√

1− z2t2 cosα+ zt2)
))∣∣∣ dϕdα dt.

We perform the substitution α 7→ x with

α = arccos

(
−x+ zt2√

1− t2
√

1− z2t2

)
,

dα

dx
=

1

√
1− t2

√
1− z2t2

√
1−

(
−x+zt2√

1−t2
√
1−z2t2

)2 =
1√

1− x2 + t2(−1− z2 + 2xz)

and obtain

‖Uz |f |‖L1(S2) =
1

π

∫ 1

−1

∫ zt2+
√
1−t2

√
1−z2t2

zt2−
√
1−t2

√
1−z2t2

1√
1− x2 + t2(−1− z2 + 2xz)

∫ 2π

0
|f(ξ(ϕ, x))| dϕdx dt.

By Fubini’s theorem and because f(ξ(ϕ, x)) vanishes for x > 1− ε

‖Uz |f |‖L1(S2) =
1

π

∫ 1−ε

−1

∫ √
1−x2√

1+z2−2xz

−
√

1−x2√
1+z2−2xz

1√
1− x2 + t2(−1− z2 + 2xz)

dt

∫ 2π

0
|f(ξ(ϕ, x))| dϕdx.

With the substitution u = t
√

1 + z2 − 2xz/
√

1− x2, we obtain

‖Uz |f |‖L1(S2) =

∫ 1−ε

−1

1√
1− 2xz + z2

∫ 2π

0
|f(ξ(ϕ, x))| dϕdx. (7.12)
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The term (1 − 2xz + z2)−1/2 is increasing with respect to x and thus attains its maximum at
x = 1− ε. Hence,

‖Uzf‖L1(S2) ≤ ‖Uz |f |‖L1(S2) ≤
1√

1− 2z(1− ε) + z2
‖f‖L1(S2) .

The right hand side of the last equation attains its maximum with respect to z at z = 1− ε, so

‖Uzf‖L1
ε (S2)→L1(S2) ≤

1√
1− 2(1− ε)z + z2

≤ 1√
1− (1− ε)2

=
1√

2ε− ε2
.

For f ∈ L∞(S2),

|Uzf(ξ)| ≤ 1

2π

∫ 2π

0

∣∣∣f(Cξzξ3(αξ3))
∣∣∣ dα ≤ ‖f‖L∞(S2) .

The Riesz–Thorin interpolation theorem (cf. [25]) yields

‖Uz‖L2
ε (S2)→L2(S2) ≤ ‖Uz‖

1/2
L1
ε (S2)→L1(S2) ‖Uz‖

1/2
L∞ε (S2)→L∞(S2) ≤ (2ε− ε2)−1/4.

In the following theorem, we conclude the strong continuity of Uz on L2
ε (S2) with a density

argument.

Theorem 7.9. Let ε > 0. The map [0, 1]→ L(L2
ε (S2), L2(S2)), z 7→ Uz is strongly continuous, i.e.,

for every f ∈ L2
ε (S2)

lim
w→z
‖Uwf − Uzf‖L2(S2) = 0.

Proof. Let f ∈ L2
ε (S2). Since the continuous functions are dense in L2

ε (S2), for every δ > 0 there
exists a continuous function g ∈ Cε(S2) such that ‖f − g‖L2(S2) < δ. Then by (7.11)

‖Uzf − Uwf‖L2(S2) ≤ ‖Uz(f − g)‖L2(S2) + ‖Uzg − Uwg‖L2(S2) + ‖Uw(f − g)‖L2(S2)

≤ 2(2ε− ε2)−1/4δ +
√

4π ‖Uzg − Uwg‖L∞(S2) .

By Theorem 7.2, we have

lim sup
w→z

‖Uzf − Uwf‖L2(S2) ≤ 2(2ε− ε2)−1/4δ.

The claim follows because the last equation is valid for all δ > 0.
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[14] F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction. SIAM,
Philadelphia, PA, USA, 2000.

[15] I. Z. Pesenson. Sampling, splines and frames on compact manifolds. GEM Int. J. Geomath.,
6(1):43–81, 2015.

[16] E. T. Quinto. Null spaces and ranges for the classical and spherical Radon transforms. J.
Math. Anal. Appl., 90(2):408–420, 1982.

[17] M. Riplinger and M. Spiess. Numerical inversion of the spherical Radon transform and the co-
sine transform using the approximate inverse with a special class of locally supported mollifiers.
J. Inverse Ill-Posed Probl., 22(4):497 – 536, 2013.

[18] B. Rubin. Spherical Radon transform and related wavelet transforms. Appl. Comput. Harmon.
Anal., 5(2):202–215, 1998.

[19] B. Rubin. Generalized Minkowski-Funk transforms and small denominators on the sphere.
Fract. Calc. Appl. Anal., 3(2):177–203, 2000.

[20] B. Rubin. Radon transforms and Gegenbauer-Chebyshev integrals, II; examples. Anal. Math.
Phys., Advance online publication, 2016.

[21] Y. Salman. An inversion formula for the spherical transform in S2 for a special family of circles
of integration. Anal. Math. Phys., 6(1):43 – 58, 2016.

22



[22] Y. Salman. Recovering functions defined on the unit sphere by integration on a special family
of sub-spheres. Anal. Math. Phys., Advance online publication, 2016.

[23] R. Schneider. Functions on a sphere with vanishing integrals over certain subspheres. J. Math.
Anal. Appl., 26:381–384, 1969.

[24] R. S. Strichartz. Lp estimates for Radon transforms in Euclidean and non-Euclidean spaces.
Duke Math. J., 48(4):699–727, 1981.

[25] H. Triebel. Interpolation theory, function spaces, differential operators. Barth, Heidelberg,
Leipzig, 2nd edition, 1995.

[26] V. V. Volchkov and V. V. Volchkov. Local two-radii theorems on the multi-dimensional sphere.
Izv. Math., 78(1):1–21, 2014.

[27] G. Zangerl and O. Scherzer. Exact reconstruction in photoacoustic tomography with circular
integrating detectors II: Spherical geometry. Math. Methods Appl. Sci., 33(15):1771–1782,
2010.

23


	1 Background
	2 Definitions
	3 Relation with the Funk–Radon transform
	4 Properties of the spherical transform
	4.1 The operators M and N
	4.2 Nullspace
	4.3 Range

	5 An inversion formula
	6 Relation with the stereographic projection
	7 Continuity results
	7.1 Continuity on C(S2)
	7.2 Injectivity of U1
	7.3 Continuity on L2(S2)


