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The Funk–Radon transform, also known as the spherical Radon transform,
assigns to a function on the sphere its mean values along all great circles.
Since its invention by Paul Funk in 1911, the Funk–Radon transform has
been generalized to other families of circles as well as to higher dimensions.

We are particularly interested in the following generalization: we consider
the intersections of the sphere with hyperplanes containing a common point
inside the sphere. If this point is the origin, this is the same as the afore-
mentioned Funk–Radon transform. We give an injectivity result and a range
characterization of this generalized Radon transform by finding a relation
with the classical Funk–Radon transform.
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1 Introduction

The reconstruction of a function from its integrals along certain submanifolds is a key
task in various mathematical fields, including the modeling of imaging modalities, cf.
[17]. One of the first works was in 1911 by Funk [6]. He considered what later became
known by the names Funk–Radon transform, Minkowski–Funk transform or spherical
Radon transform. Here, the function is defined on the unit sphere and we know its
mean values along all great circles. Another famous example is the Radon transform
[21], where a function on the plane is assigned to its mean values along all lines. Over
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the last more than 100 years, the Funk–Radon transform has been generalized to other
families of circles as well as to higher dimensions.

In this article, we draw our attention to integrals along certain subspheres of the
(d−1)-dimensional unit sphere Sd−1 = {ξ ∈ Rd | ‖ξ‖ = 1}. Any subsphere of Sd−1 is the
intersection of the sphere with a hyperplane. In particular, we consider the subspheres of
Sd−1 whose hyperplanes have the common point (0, . . . , 0, z)> strictly inside the sphere
for z ∈ [0, 1). We define the spherical transform Uzf of a function f ∈ C(Sd−1) by

Uzf(ξ) =
1

V (C ξ
z )

∫
C ξz

f dC ξ
z , ξ ∈ Sd−1,

which computes the mean values of f along the subspheres

C ξ
z = {η ∈ Sd−1 | 〈η, ξ〉 = zξd}, z ∈ [0, 1),

where V (C ξ
z ) denotes the (d− 2)-dimensional volume of C ξ

z .
The spherical transform Uz on the two-dimensional sphere S2 was first investigated

by Salman [24] in 2016. He showed the injectivity of this transform Uz for smooth
functions f ∈ C∞(S2) that are supported inside the spherical cap {ξ ∈ S2 | ξ3 < z}
as well as an inversion formula. This result was extended to the d-dimensional sphere
in [25], where also the smoothness requirement was lowered to f ∈ C1(Sd). A different
approach was taken in [19], where a relation with the classical Funk–Radon transform U0
was established and also used for a characterization of the nullspace and range of Uz for
z < 1.

In the present paper, we extend the approach of [19] to the d-dimensional case. We
use a similar change of variables to connect the spherical transform Uz with the Funk–
Radon transform F = U0 in order to characterize its nullspace. However, the description
of the range requires some more effort, because the operator Uz is smoothing of degree
(d− 2)/2.

In the case z = 0, we have sections of the sphere with hyperplanes through the
origin, which are also called maximal subspheres of Sd−1 or great circles on S2. We
obtain the classical Funk–Radon transform F = U0. The case z = 1 corresponds to the
subspheres containing the north pole (0, . . . , 0, 1)>. This case is known as the spherical
slice transform U1 and has been investigated since the early 1990s in [1, 4, 9]. However,
unlike Uz for z < 1, the spherical slice transform U1 is injective for f ∈ L∞(Sd−1), see
[22]. The main tool to derive this injectivity result of U1 is the stereographic projection,
which turns the subspheres of Sd−1 through the north pole into hyperplanes in Rd−1

and thus connecting the spherical slice transform U1 to the Radon transform on Rd−1.
For z → ∞, we obtain vertical slices of the sphere, i.e., sections of the sphere with
hyperplanes that are parallel to the north–south axis. This case is well-known for S2,
see [7, 29, 11, 23]. In 2016, Palamodov [18, Section 5.2] published an inversion formula
for a certain nongeodesic Funk transform, which considers sections of the sphere with
hyperplanes that have a fixed distance to the point (0, . . . , 0, z)>. This contains both the
transform Uz as well as for z = 0 the sections with subspheres having constant radius
previously considered by Schneider [26] in 1969.
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A key tool for analyzing the stability of inverse problems are Sobolev spaces, cf. [14]
for the Radon transform and [10] for the Funk–Radon transform. The Sobolev space
Hs(Sd−1) can be imagined as the space of functions f : Sd−1 → C whose derivatives up
to order s are square-integrable, and we denote by Hs

even(Sd−1) its restriction to even
functions f(ξ) = f(−ξ). A thorough definition of Hs(Sd−1) is given in Section 5.2. The
behavior of the Funk–Radon transform was investigated by Strichartz [27], who found

that the Funk–Radon transform F : Hs
even(Sd−1) → H

s+(d−2)/2
even (Sd−1) is continuous and

bijective. In Theorem 6.3, we show that basically the same holds for the generalized
transform Uz, i.e., the spherical transform Uz : Hs

z (Sd−1)→ H
s+(d−2)/2
even (Sd−1) is bounded

and bijective and its inverse is also bounded, where Hs
z (Sd−1) contains functions that

are symmetric with respect to the point reflection in (0, . . . , 0, z)>.
This paper is structured as follows. In Section 2, we give a short introduction to

smooth manifolds and review the required notation on the sphere. In Section 3, we
show the relation of Uz with the classical Funk–Radon transform F = U0. With the
help of that factorization, we characterize the nullspace of the spherical transform Uz
in Section 4. In Section 5, we consider Sobolev spaces on the sphere and show the
continuity of certain multiplication and composition operators. Then, in Section 6, we
prove the continuity of the spherical transform Uz in Sobolev spaces. Finally, we include
a geometric interpetation of our factorization result in Section 7.

2 Preliminaries and definitions

2.1 Manifolds

We give a brief introduction to smooth manifolds, more can be found in [2]. We denote
by R and C the real and complex numbers, respectively. We define the d-dimensional
Euclidean space Rd equipped with the scalar product 〈ξ,η〉 =

∑d
i=1 ξiηi and the norm

‖ξ‖ = 〈ξ, ξ〉1/2. We denote the unit vectors in Rd with εi, i.e. εij = δi,j, where δ is the

Kronecker delta. Every vector ξ ∈ Rd can be written as ξ =
∑d

i=1 ξiε
i.

A diffeomorphism is a bijective, smooth mapping Rn → Rn whose inverse is also
smooth. We say a function is smooth if it has derivatives of arbitrary order. An n-
dimensional smooth manifold M without boundary is a subset of Rd such that for every
ξ ∈M there exists an open neighborhood N(ξ) ⊂ Rd containing ξ, an open set U ⊂ Rd,
and a diffeomorphism m : U → N(ξ) such that

m(U ∩ (Rn × {0}d−n)) = M ∩N(ξ).

We call m : V →M a map of the manifold M , where V = U ∩ (Rn × {0}d−n). An atlas
of M is a finite family of maps mi : Vi →M , i = 1, . . . , l, such that the sets mi(Vi) cover
M . We define the tangent space TξM of M at ξ ∈ M as the set of vectors x ∈ Rd for
which there exists a smooth path γ : [0, 1]→M satisfying γ(0) = ξ and γ′(0) = x.

A k-form ω on M is a family (ωξ)ξ∈M of antisymmetric k-linear functionals

ωξ : (TξM)k → R,
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where (TξM)k = TξM × · · · × TξM . Let f : M → N be a smooth mapping between the
manifolds M and N and let ω be a k-form on N . The pullback of ω is the k-form f ∗(ω)
on M that is defined for any v1, . . . ,vk ∈ TξM by

f ∗(ω)([vi]ki=1) = ω

([
d

dt
f ◦ γi(t)

∣∣∣∣
t=0

]k
i=1

)
,

where γi : [0, 1] → M are smooth paths satisfying γi(0) = ξ and γ′i(0) = vi. If the
smooth function f : Rd → Rd extends to the surrounding space, the pullback can be
expressed as

f ∗(ω)([vi]ki=1) = ω([Jf v
i]ki=1), (2.1)

where Jf denotes the Jacobian matrix of f .
An atlas {mi : Vi →M}li=1 is called orientation of M if for each i, j the determinant of

the Jacobian of m−1i ◦mj is positive wherever it exists. A basis e1, . . . , en of the tangent
space TξM is oriented positively if for some i with ξ ∈ mi(Vi) the determinant of
the matrix [Jm−1

i
e1, . . . , Jm−1

i
en] is positive. Up to the multiplication of a constant real

number depending only on ξ, there exists only one n-form on an n-dimensional manifold.
Let e1, . . . , en be a positively oriented, orthonormal basis of the tangent space TξM .
Then the volume form dM is the unique n-form on M satisfying dM(e1, . . . , en) = 1.

A set {ϕi}li=1 of functions ϕi ∈ C∞(M) is a partition of unity of the manifold M with
respect to an atlas {mi : Vi → M}li=1 if supp(ϕi) ⊂ mi(Vi) for all i and

∑l
i=1 ϕi ≡ 1 on

M . Then the integral of a k-form ω on M is defined as∫
M

ω =
l∑

i=1

∫
Vi

m∗i (ϕi · ω) =
l∑

i=1

∫
Vi

ci dRn,

where the latter is the standard volume integral dRn on Vi ⊂ Rn and the functions
ci : Vi → R are uniquely determined by the condition m∗i (ϕi · ω) = ci dRn.

Let f : M → N = f(M) be a diffeomorphism between the n-dimensional manifolds
M and f(M), and let ω be an n-form on N . Then the substitution rule [13, p. 94] holds,∫

f(M)

ω =

∫
M

f ∗(ω). (2.2)

2.2 The sphere

Let d ≥ 3. The (d− 1)-dimensional unit sphere

Sd−1 = {ξ ∈ Rd | ‖ξ‖ = 1}

is a (d− 1)-dimensional manifold in Rd with tangent space

TξSd−1 = {x ∈ Rd | 〈ξ,x〉 = 0}
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for ξ ∈ Sd−1. We define an orientation on Sd−1 by saying that a basis [xi]d−1i=1 of TξSd−1
is oriented positively if the determinant det[ξ,x1, . . . ,xd−1] > 0. We denote the volume
of the (d− 1)-dimensional unit sphere Sd−1 with

∣∣Sd−1∣∣ =

∫
Sd−1

dSd−1 =
2πd/2

Γ(d/2)
.

2.2.1 The spherical transform

Every (d− 2)-dimensional subsphere of the sphere Sd−1 is the intersection of Sd−1 with
a hyperplane, i.e.

S(ξ, t) =
{
η ∈ Sd−1 | 〈ξ,η〉 = t

}
,

where ξ ∈ Sd−1 is the normal vector of the hyperplane and t ∈ [−1, 1] is the signed
distance of the hyperplane to the origin. We define an orientation on the subsphere
S(ξ, t) by saying that a basis [ei]d−2i=1 of the tangent space TηS(ξ, t) is oriented positively
if

det
(
η, ξ, e1, . . . , ed−2

)
> 0.

In the following, we consider subspheres of Sd−1 whose hyperplanes have a common
point located in the interior of the unit ball. Because of the rotational symmetry, we
can assume that this point lies on the positive ξd axis. For z ∈ [0, 1), we consider the
point

zεd = (0, . . . , 0, z)>.

The (d− 2)-dimensional subsphere that is located in one hyperplane together with zεd

can be described by S(ξ, t) with ξ ∈ Sd−1 and t =
〈
ξ, zεd

〉
= zξd. We define the

subsphere
C ξ
z = S(ξ, zξd).

The (d− 2)-dimensional sphere C ξ
z has radius

√
1− z2ξ2d and volume

V (C ξ
z ) =

∣∣Sd−2∣∣ (1− z2ξ2d)(d−2)/2 .
For a continuous function f : Sd−1 → C, we define its spherical transform Uzf by

Uzf(ξ) =
1

V (C ξ
z )

∫
C ξz

f dC ξ
z , ξ ∈ Sd−1, (2.3)

which computes the mean values of f along the subspheres C ξ
z .

Remark 2.1. The subspheres C ξ
z , along which we integrate, can also be imagined in the

following way. The centers of the subspheres C ξ
z are located on a sphere that contains

the origin and zεd and is rotationally symmetric about the North–South axis. This can
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be seen as follows. The center of the sphere C ξ
z is given by zξdξ. Then the distance of

zξdξ to the point z
2
εd reads

∥∥∥zξdξ − z

2
εd
∥∥∥2 =

d−1∑
i=1

ξ2i z
2ξ2d +

(
zξ2d −

z

2

)2
= (1− ξ2d)z2ξ2d +

(
zξ2d −

z

2

)2
=
(z

2

)2
,

which is independent of ξ. So, the centers of C ξ
z are located on a sphere with center z

2
εd

and radius z
2
.

2.2.2 The Funk–Radon transform

Setting the parameter z = 0, the point 0εd = (0, . . . , 0)> is the center of the sphere Sd−1.
Hence, the spherical transform U0 integrates along all maximal subspheres of the sphere
Sd−1. This special case is called the Funk–Radon transform

Ff(ξ) = U0f(ξ) =
1

|Sd−2|

∫
C ξ0

f dC ξ
0 , ξ ∈ Sd−1, (2.4)

which is also known by the terms Funk transform, Minkowski–Funk transform or spheri-
cal Radon transform, where the latter term occasionally also refers to means over (d− 1)-
dimensional spheres in Rd, cf. [20].

3 Relation with the Funk–Radon transform

In this section, we show a connection between the spherical transform Uz and the Funk–
Radon transform F .

3.1 Two mappings on the sphere

Let z ∈ (−1, 1). We define the transformations hz, gz : Sd−1 → Sd−1 by

hz(η) =
d−1∑
i=1

√
1− z2

1 + zηd
ηiε

i +
z + ηd
1 + zηd

εd (3.1)

and

gz(ξ) =
1√

1− z2ξ2d

(
d−1∑
i=1

ξiε
i +
√

1− z2ξdεd
)
. (3.2)

Remark 3.1. The definitions of both hz and gz rely only on the d-th coordinate. The
values in the other coordinates are just multiplied with the same factor in order to make
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the vectors stay on the sphere. Furthermore, the transformations hz and gz are bijective
with their respective inverses given by

h−1z (ω) = h−z(ω) =
d−1∑
i=1

√
1− z2

1− zωd
ωiε

i +
ωd − z
1− zωd

εd (3.3)

and

g−1z (ω) = g iz√
1−z2

(ω) =
1√

1− z2 + z2ω2
d

(
d−1∑
i=1

√
1− z2 ωiεi + ωdε

d

)
. (3.4)

The computation of the inverses is straightforward and therefore omitted here.

The following lemma shows that the inverse of hz applied to the subsphere C ξ
z yields

a maximal subsphere of Sd−1 with normal vector gz(ξ).

Lemma 3.2. Let z ∈ (−1, 1) and ξ ∈ Sd−1. Then

h−1z (C ξ
z ) = C

gz(ξ)
0 . (3.5)

Proof. Let η ∈ Sd−1. Then η lies in h−1z (C ξ
z ) if and only if hz(η) ∈ C ξ

z , i.e.,

〈hz(η), ξ〉 = zξd.

By the definition of hz in (3.1), we have

d−1∑
i=1

√
1− z2

1 + zηd
ηiξi +

z + ηd
1 + zηd

ξd = zξd.

After subtracting the right-hand side from the last equation, we have

d−1∑
i=1

√
1− z2

1 + zηd
ηiξi +

1− z2

1 + zηd
ηdξd = 0.

Multiplication with (1 + zηd)(1− z2)−1/2(1− z2ξ2d)−1/2 yields

d−1∑
i=1

1√
1− z2ξ2d

ηiξi +

√
1− z2√

1− z2ξ2d
ηdξd = 0,

which is equivalent to 〈η, gz(ξ)〉 = 0, so we obtain that η ∈ C
gz(ξ)
0 .

Lemma 3.3. Let z ∈ (−1, 1) and ξ ∈ Sd−1. Denote by dC ξ
z and dC

gz(ξ)
0 the volume

forms on the manifolds C ξ
z and C

gz(ξ)
0 , respectively. Then the following relation between

the pullback of the volume form dC ξ
z over hz and dC

gz(ξ)
0 holds. For η ∈ C

gz(ξ)
0 , we

have

h∗z(dC ξ
z ) =

(√
1− z2

1 + zηd

)d−2
dC g(ξ)

0 . (3.6)

Furthermore, we have for the volume form dSd−1 on the sphere

h∗z(dSd−1) =

(√
1− z2

1 + zηd

)d−1
dSd−1. (3.7)
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Proof. We compute the Jacobian Jhz of hz, which comprises the partial derivatives of
hz. For all l,m ∈ {1, . . . , d− 1}, we have

∂[hz]l
∂ηm

=

√
1− z2

1 + zηd
δl,m,

∂[hz]l
∂ηd

= −ηl
z
√

1− z2
(1 + zηd)2

,

∂[hz]d
∂ηm

= 0,
∂[hz]d
∂ηd

=
1− z2

(1 + zηd)2
.

(3.8)

Let [ei]d−2i=1 be an orthonormal basis of the tangent space TηC
gz(ξ)
0 . Then Jhze

i ∈ Thz(η)C ξ
z

for i = 1, . . . , d− 1 is given by

Jhze
i =

d−1∑
l=1

(√
1− z2

1 + zηd
eil − ηl

z
√

1− z2
(1 + zηd)2

eid

)
εl +

1− z2

(1 + zηd)2
eidε

d.

Hence, we have for all i, j ∈ {1, . . . , d− 2}

〈
Jhze

i, Jhze
j
〉

=
d−1∑
l=1

(
1− z2

(1 + zηd)2
eile

j
l −

z(1− z2)
(1 + zηd)3

ηl
(
eile

j
d + ejl e

i
d

)
+
z2(1− z2)
(1 + zηd)4

η2l e
i
de
j
d

)
+

(1− z2)2

(1 + zηd)4
eide

j
d.

Expanding the sum, we obtain

〈
Jhze

i, Jhze
j
〉

=
1− z2

(1 + zηd)2

d−1∑
l=1

eile
j
l −

z(1− z2)
(1 + zηd)3

(
ejd

d−1∑
l=1

ηle
i
l + eid

d−1∑
l=1

ηle
j
l

)

+
z2(1− z2)
(1 + zηd)4

eide
j
d

d−1∑
l=1

η2l +
(1− z2)2

(1 + zηd)4
eide

j
d.

Since the vectors ei and ej are elements of an orthonormal basis, we have 〈ei, ej〉 =∑d
l=1 e

i
le
j
l = δi,j. Furthermore, we know that 〈ei,η〉 = 〈ej,η〉 = 0 because ei and ej are

in the tangent space TηC
g(ξ)
0 ⊂ TηSd−1, and also ‖η‖2 = 1. Hence, we have〈

Jhze
i, Jhze

j
〉

=
1− z2

(1 + zηd)2
(δi,j − eide

j
d) + 2

z(1− z2)
(1 + zηd)3

ηde
i
de
j
d

+
z2(1− z2)
(1 + zηd)4

eide
j
d(1− η

2
d) +

(1− z2)2

(1 + zηd)4
eide

j
d

=
1− z2

(1 + zηd)4
eide

j
d

(
−(1 + zηd)

2 + 2zηd(1 + zηd) + z2(1− η2d) + 1− z2
)

+
1− z2

(1 + zηd)2
δi,j

=
1− z2

(1 + zηd)2
δi,j.
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The above computation shows that the vectors {Jhzei}di=1 are orthogonal with length
‖Jhzei‖ =

√
1− z2/(1 + zηd). By the definition of the pullback in (2.1) and the fact

that the volume form dC ξ
z is a multilinear (d− 2)-form, we obtain

h∗z(dC ξ
z )([ei]d−2i=1 ) = dC ξ

z ([Jhze
i]d−2i=1 ) =

(√
1− z2

1 + zηd

)d−2
. (3.9)

If we set [ei]d−1i=1 as a basis of the tangent space Tη(Sd−1) in order to obtain (3.7), the
previous calculations still hold except that the exponent d − 2 is replaced by d − 1 in
equation (3.9).

Finally, we prove that the basis
[
Jhze

1, . . . , Jhze
d
]

of Thz(η)C
ξ
z is oriented positively,

i.e., that
d(z) := det

(
hz(η), ξ, Jhze

1, . . . , Jhze
d
)
> 0.

By the formula (3.8) of Jhz , the function d : [0, 1)→ R is continuous, and it satisfies

d(0) = det
(
h0(η), ξ, Jh0e

1, . . . , Jh0e
d−2) = det

(
η, g0(ξ), e1, . . . , ed−2

)
> 0

since both h0 and g0 are equal to the identity map and we assumed the orthonormal
basis

[
e1, . . . , ed−2

]
be oriented positively. By the orthogonality of the vectors ξ, hz(η)

and Jhze
i, we see that d(z) vanishes nowhere and, hence, we obtain that d(z) > 0 for

all z ∈ [0, 1). The assertion follows by the uniqueness of the volume form dC
gz(ξ)
0 .

3.2 Factorization

Let z ∈ (−1, 1) and f ∈ C(Sd−1). We define the two transformationsMz, Nz : C(Sd−1)→
C(Sd−1) by

Mzf(ξ) =

(√
1− z2

1 + zξd

)d−2
f ◦ hz(ξ), ξ ∈ Sd−1 (3.10)

and
Nzf(ξ) = (1− z2ξ2d)−

d−2
2 f ◦ gz(ξ), ξ ∈ Sd−1. (3.11)

Remark 3.4. The transformations Mz and Nz are inverted by

f(η) =

(√
1− z2

1− zηd

)d−2
Mzf(h−1z (η)) =M−zMzf(η), (3.12)

and

f(η) =

(
1− z2

1− (1− z2)η2d

) d−2
2

Nz(g−1z (η)), η ∈ Sd−1, (3.13)

respectively.

Now we are able to prove our main theorem about the factorization of the spherical
transform Uz.
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Theorem 3.5. Let z ∈ [0, 1). Then the factorization of the spherical transform

Uz = NzFMz (3.14)

holds, where F is the Funk–Radon transform (2.4).

Proof. Let f ∈ C(S2) and ξ ∈ Sd−1. By the definition of Uz in (2.3), we have∣∣Sd−2∣∣ (1− z2ξ2d) d−2
2 Uzf(ξ) =

∫
C ξz

f dC ξ
z . (3.15)

Then we have by the substitution rule (2.2)∫
C ξz

f dC ξ
z =

∫
h−1
z (C ξz )

(f ◦ hz)h∗z(dC ξ
z ).

By (3.6) and (3.5), we obtain∫
C ξz

f dC ξ
z =

∫
C
gz(ξ)
0

f(hz(η))

(√
1− z2

1 + zηd

)d−2
dC

gz(ξ)
0 (η).

By the definition of Mz in (3.10), we see that∫
C ξz

f dC ξ
z =

∫
C
gz(ξ)
0

Mzf dC
gz(ξ)
0 .

The definition of the Funk–Radon transform (2.4) shows that∫
C ξz

f dC ξ
z = FMzf(gz(ξ)),

which implies (3.14).

The factorization theorem 3.5 enables us to investigate the properties of the spherical
transform Uz. Because the operators Mz and Nz are relatively simple, we can transfer
many properties from the Funk–Radon transform, which has been studied by many
authors already, to the spherical transform Uz.

4 Nullspace

With the help of the factorization (3.14) obtained in the previous section, we obtain the
following characterization of the nullspace of the spherical transform Uz.
Theorem 4.1. Let z ∈ [0, 1) and f ∈ C(Sd−1). Then Uzf = 0 if and only if

f(ω) = −
(

1− z2

1− 2zωd + z2

)d−2
f ◦ rz(ω), ω ∈ Sd−1, (4.1)

where rz : Sd−1 → Sd−1 is given by

rz(ω) =
d−1∑
i=1

z2 − 1

1 + z2 − 2zωd
ωiε

i +
2z − z2ωd − ωd
1 + z2 − 2zωd

εd. (4.2)
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Proof. Let f ∈ C(Sd−1). Since the operator Nz is bijecive by Remark 3.1, we see that
Uzf = NzFMzf = 0 if and only if FMzf = 0. The nullspace of the Funk–Radon
transform F consists of the odd functions, cf. [8, Proposition 3.4.12], so we obtain

Mzf(η) = −Mzf(−η), η ∈ Sd−1.

By the definition of Mz in (3.10), we have(√
1− z2

1 + zηd

)d−2
f ◦ hz(η) = −

(√
1− z2

1− zηd

)d−2
f ◦ hz(−η).

We substitute ω = hz(η) and obtain

f(ω) = −

(
1 + z ωd−z

1−zωd
1− z ωd−z

1−zωd

)d−2

f ◦ hz(−h−1z (ω))

= −
(

1− zωd + z(ωd − z)

1− zωd − z(ωd − z)

)d−2
f ◦ hz(−h−1z (ω))

= −
(

1− z2

1− 2zωd + z2

)d−2
f ◦ hz(−h−1z (ω)).

In order to show that rz = hz(−h−1z ), we compute the d-th component

[hz(−h−1z (ω))]d =
z + z−ωd

1−zωd
1 + z z−ωd

1−zωd

=
z − z2ωd + z − ωd
1− zωd + z2 − zωd

=
2z − z2ωd − ωd
1− 2zωd + z2

.

For i ∈ {1, . . . , d− 1}, we have

[hz(−h−1z (ω))]i =

√
1− z2

1− z ωd−z
1−zωd

−
√

1− z2
1− zωd

ωi =
z2 − 1

1− 2zωd + z2
ωi.

Remark 4.2. The map rz from (4.2) is the point reflection of the sphere Sd−1 about
the point zεd. This can be seen as follows. Let ω ∈ Sd−1. The vectors ω − zεd and
rz(ω)− zεd are parallel if for all i ∈ {1, . . . , d}

[rz(ω)]i
ωi

=
[rz(ω)]d − z
ωd − z

.

We have

ωi
[rz(ω)]i

[rz(ω)]d − z
ωd − z

=
2z − z2ωd − ωd − z(1 + z2 − 2zωd)

(z2 − 1)(ωd − z)

=
z + z2ωd − ωd − z3

(z2 − 1)(ωd − z)
= 1,

provided all denominators are nonzero.
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5 Function spaces on the sphere

Before we can state the range of the spherical transform Uz, we have to introduce some
function spaces on the sphere Sd−1. The Hilbert space L2(Sd−1) comprises all square-
integrable functions with the inner product of two functions f, g : Sd−1 → C

〈f, g〉L2(Sd−1) =

∫
Sd−1

f(ξ) g(ξ) dSd−1(ξ)

and the norm ‖f‖L2(Sd−1) = 〈f, f〉1/2
L2(Sd−1)

.

5.1 The space Cs(Sd−1) and differential operators on the sphere

For brevity, we denote by ∂i = ∂
∂xi

the partial derivative with respect to the i-th variable.

We extend a function f : Sd−1 → C to the surrounding space Rd \ {0} by setting

f •(x) = f

(
x

‖x‖

)
, x ∈ Rd \ {0}.

The surface gradient ∇• on the sphere is the orthogonal projection of the gradient
∇ = (∂1, . . . , ∂d)

> onto the tangent space of the sphere. For a differentiable function
f : Sd−1 → C, we have

∇•f(ξ) = ∇f •(ξ), ξ ∈ Sd−1.
In a similar manner, the restriction of the Laplacian

∆ = ∂21 + · · ·+ ∂2d

to the sphere is known as the Laplace–Beltrami operator [16, (§14.20)]

∆•f(ξ) = ∆f •(ξ), ξ ∈ Sd−1.

For a multi-index α = (α1, . . . , αd) ∈ Nd
0, we define its norm ‖α‖1 =

∑d
i=1 |αi| and the

differential operator Dα = ∂α1
1 · · · ∂

αd
d . Let s ∈ N0. We denote by Cs(Sd−1) the space of

functions f : Sd−1 → C whose extension f • has continuous derivatives up to the order s
with the norm

‖f‖Cs(Sd−1) = max
‖α‖1≤s

sup
ξ∈Sd−1

|Dαf •(ξ)| .

The space C0(Sd−1) = C(Sd−1) is the space of continuous functions with the uniform
norm. The definition implies for f ∈ Cs+1(Sd−1)

‖f‖Cs(Sd−1) ≤ ‖f‖Cs+1(Sd−1) . (5.1)

We define the space Cs(Sd−1 → Rd) of vector fields f : Sd−1 → Rd with the norm as the
Euclidean norm over its component functions, i.e., for f(ξ) = [fi(ξ)]di=1 we set

‖f‖Cs(Sd−1→Rd) =

√√√√ d∑
i=1

‖fi‖2Cs(Sd−1).
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We see that for f ∈ Cs+1(Sd−1)

‖∇•f‖2Cs(Sd−1→Rd) =
d∑
i=1

‖∂if •‖2Cs(Sd−1) ≤
d∑
i=1

‖f‖2Cs+1(Sd−1) = d ‖f‖2Cs+1(Sd−1) . (5.2)

5.2 Sobolev spaces

We give a short introduction to Sobolev spaces on the sphere based on [3] (see also
[5, 15]). We define the Legendre polynomial Pn,d of degree n ∈ N0 and in dimension d
by [3, (2.70)]

Pn,d(t) = (−1)n
(d− 3)!!

(2n+ d− 3)!!
(1− t2)

3−d
2

(
d

dt

)n
(1− t2)n+

d−3
2 , t ∈ [−1, 1].

For f ∈ L2(Sd−1) and n ∈ N0, we define the projection operator

Pn,df(ξ) =
Nn,d

|Sd−1|

∫
Sd−1

f(η)Pn,d(〈ξ,η〉) dSd(η), ξ ∈ Sd−1,

where

Nn,d = dim(Pn,d(L2(Sd−1))) =
(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
.

Note that Pn,d is the L2(Sd−1)-orthogonal projection onto the pairwise orthogonal spaces
Pn,d(L2(Sd−1)) of harmonic polynomials that are homogeneous of degree n restricted to
the sphere Sd−1. Every function f ∈ L2(Sd−1) can be written as the Laplace series

f =
∞∑
n=0

Pn,df.

We define the Sobolev space Hs(Sd−1) of smoothness s ≥ 0 as the space of all functions
f ∈ L2(Sd−1) with finite Sobolev norm [3, (3.98)]

‖f‖Hs(Sd−1) =

√√√√ ∞∑
n=0

(
n+

d− 2

2

)2s

‖Pn,df‖2L2(Sd−1) (5.3)

=

∥∥∥∥(−∆• + (d−2)2
4

)s/2
f

∥∥∥∥
L2(Sd−1)

. (5.4)

Similarly to (5.1), we define the Sobolev norm of a vector field f : Sd−1 → Rd as the
Euclidean norm over its component functions f(ξ) = (f1(ξ), . . . , fd(ξ)), i.e.,

‖f‖2Hs(Sd−1→Rd) =
d∑
i=1

‖fi‖2Hs(Sd−1) . (5.5)
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Since the negative Laplace–Beltrami operator −∆• is self-adjoint, we can write the
Sobolev norm (5.4) as

‖f‖2Hs(Sd−1) =
〈(
−∆• + (d−2)2

4

)s
f, f
〉
L2(Sd−1)

.

We have for s ∈ N0

‖f‖2Hs+1(Sd−1) =

∫
Sd−1

((
−∆• + (d−2)2

4

)s+1

f(ξ)

)
f(ξ) dSd−1(ξ)

=

∫
Sd−1

((
−∆• + (d−2)2

4

)(
−∆• + (d−2)2

4

)s
f(ξ)

)
f(ξ) dSd−1(ξ).

Then the Green–Beltrami identity [16, §14, Lemma 1]

−
∫
Sd−1

f(ξ) ∆•g(ξ) dSd−1(ξ) =

∫
Sd−1

〈∇•f(ξ), ∇•g(ξ)〉 dSd−1(ξ),

f ∈ C2(Sd−1), g ∈ C1(Sd−1)
(5.6)

implies that

‖f‖2Hs+1(Sd−1) =

∫
Sd−1

〈
∇•f(ξ), ∇•

(
−∆• + (d−1)2

4

)s
f(ξ)

〉
dSd−1(ξ)

+
(d− 2)2

4

∫
Sd−1

((
−∆• + (d−2)2

4

)s
f(ξ)

)
f(ξ) dSd−1(ξ).

Since the gradient ∇• and the Laplacian ∆• commute by Schwarz’s theorem, we obtain
the recursion

‖f‖2Hs+1(Sd−1) = ‖∇•f‖2Hs(Sd−1→Rd) + (d−2)2
4
‖f‖2Hs(Sd−1) . (5.7)

5.3 Sobolev spaces as interpolation spaces

The norm of a bounded linear operator A : X → Y between two Banach spaces X and
Y with norms ‖·‖X and ‖·‖Y , respectively, is defined as

‖A‖X→Y = sup
x∈X\{0}

‖Ax‖Y
‖x‖X

.

The following proposition shows that the boundedness of linear operators in Sobolev
spaces Hs(S2) can be interpolated with respect to the smoothness parameter s. This
result is derived from a more general interpolation theorem in [28].

Proposition 5.1. Let 0 ≤ s0 ≤ s1, and let A : Hs1(Sd−1) → Hs1(Sd−1) be a bounded
linear operator such that its restriction to Hs0(Sd−1) is also bounded. For θ ∈ [0, 1], we
set sθ = (1− θ)s0 + θs1. Then the restriction of A to Hsθ(Sd−1) is bounded with

‖A‖Hsθ (Sd−1)→Hsθ (Sd−1) ≤ ‖A‖
1−θ
Hs0 (Sd−1)→Hs0 (Sd−1) ‖A‖

θ
Hs1 (Sd−1)→Hs1 (Sd−1) .
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Proof. For n ∈ N0, let {Y k
n,d | k = 1, . . . , Nn,d} be an orthonormal basis of Pn,d(L2(Sd−1)),

and let f ∈ L2(Sd−1). We write f as the Fourier series

f =
∞∑
n=0

Nn,d∑
k=1

〈
f, Y k

n,d

〉
L2(Sd−1)

Y k
n,d.

On the index set
I = {(n, k) | n ∈ N0, k = 1, . . . , Nn,d},

we define for s ≥ 0 the weight function

ws(n, k) = (n+ d−2
2

)2s.

Then the Sobolev space Hs(Sd−1) is isometrically isomorphic to the weighted L2-space

L2(I;ws) =

f̂ : I → C

∣∣∣∣∣∣‖f̂‖2L2(I;ws)
=
∑

(n,k)∈I

∣∣∣f̂(n, k)
∣∣∣2ws(n, k) <∞


that consists of the Fourier coefficients

f̂(n, k) =
〈
f, Y k

n,d

〉
L2(Sd−1)

on the set I with the counting measure. By [28, Theorem 1.18.5], the complex interpo-
lation space between L2(I;ws0)

∼= Hs0(Sd−1) and L2(I;ws1)
∼= Hs1(Sd−1) is[

L2(I;ws0), L
2(I;ws1)

]
θ

= L2(I;w),

where

w(n, k) = (ws0(n, k))1−θ (ws1(n, k))θ =
(
n+ d−2

2

)2((1−θ)s+θt)
= wsθ(n, k).

Hence, L2(I;w) ∼= Hsθ(Sd−1). The assertion is a property of the interpolation space.

5.4 Multiplication and composition operators

The following two theorems show that multiplication and composition with a smooth
function are continuous operators in spherical Sobolev spaces Hs(Sd−1).

Theorem 5.2. Let s ∈ N0. The multiplication operator

Hs(Sd−1)× Cs(Sd−1)→ Hs(Sd−1), (f, v) 7→ fv

is continuous. In particular, for all f ∈ Hs(Sd−1) and v ∈ Cs(Sd−1), we have

‖fv‖Hs(Sd−1) ≤ csd ‖f‖Hs(Sd−1) ‖v‖Cs(Sd−1) , (5.8)

where
cd =

√
2d+ 2.
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Proof. We use induction over s ∈ N0. For s = 0, we have

‖fv‖2L2(Sd−1) =

∫
Sd−1

|f(ξ) v(ξ)|2 dξ ≤ ‖f‖2L2(Sd) ‖v‖
2
C(Sd−1) .

Let the claimed equation (5.8) hold for s ∈ N0, and let f ∈ Hs+1(Sd−1) and v ∈
Cs+1(Sd−1). Then the decomposition (5.7) of the Sobolev norm yields

‖fv‖2Hs+1(Sd−1) = ‖∇•(fv)‖2Hs(Sd−1→Rd) + (d−2)2
4
‖fv‖2Hs(Sd−1)

= ‖f∇•v + v∇•f‖2Hs(Sd−1→Rd) + (d−2)2
4
‖fv‖2Hs(Sd−1) .

By the triangle inequality and since (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R, we obtain

‖fv‖2Hs+1(Sd−1) ≤ 2 ‖f∇•v‖2Hs(Sd−1→Rd) + 2 ‖v∇•f‖2Hs(Sd−1)→Rd + (d−2)2
4
‖fv‖2Hs(Sd−1) .

By the induction hypothesis, we have

c−2sd ‖fv‖2Hd+1(Sd−1) ≤ 2 ‖f‖2Hs(Sd−1) ‖∇
•v‖2Cs(Sd−1→Rd) + 2 ‖∇•f‖2Hs(Sd−1→Rd) ‖v‖

2
Cs(Sd−1)

+ (d−2)2
4
‖f‖2Hs(Sd−1) ‖v‖

2
Cs(Sd−1) .

= 2 ‖f‖2Hs(Sd−1) ‖∇
•v‖2Cs(Sd−1→Rd) + ‖∇•f‖2Hs(Sd−1→Rd) ‖v‖

2
Cs(Sd−1)

+ ‖f‖2Hs+1(Sd−1) ‖v‖
2
Cs(Sd−1) ,

where we made use of the decomposition (5.7) of the Sobolev norm. Furthermore, we
apply (5.2) and obtain

c−2sd ‖fv‖2Hd+1(Sd−1) ≤ 2d ‖f‖2Hs(Sd−1) ‖v‖
2
Cs+1(Sd−1) + ‖f‖2Hs+1(Sd−1) ‖v‖

2
Cs(Sd−1)

+ ‖f‖2Hs+1(Sd−1) ‖v‖
2
Cs(Sd−1) .

Because the involved norms are non-decreasing with respect to s, we see that

‖fv‖Hs+1(Sd−1) ≤ csd
√

2d+ 2 ‖f‖Hs+1(Sd−1) ‖v‖Cs+1(Sd−1) ,

which shows (5.8).

Theorem 5.3. Let s ∈ N0, and let v : Sd−1 → Sd−1 be bijective with v ∈ Cs(Sd−1 →
Sd−1) and v−1 ∈ C1(Sd−1 → Sd−1). Then there exists a constant bd,s(v) such that for all
f ∈ Hs(Sd−1), we have

‖f ◦ v‖Hs(Sd−1) ≤ bd,s(v) ‖f‖Hs(Sd−1) .

Proof. We have for s = 0

‖f ◦ v‖2L2(Sd−1) =

∫
Sd−1

|f(v(ξ))|2 dSd−1(ξ).
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The substitution η = v(ξ) yields with the substitution rule (2.2)

‖f ◦ v‖2L2(Sd−1) =

∫
Sd−1

|f(η)|2
[
(v−1)∗(dSd−1)

]
(η).

Since v−1 ∈ C1(Sd−1 → Sd−1), there exists a continuous function ν : Sd−1 → R such that
the pullback satisfies (v−1)∗(dSd−1) = ν dSd−1. Hence, we have

‖f ◦ v‖2L2(Sd−1) ≤ ‖f‖
2
L2(Sd−1) ‖ν‖C(Sd−1) ,

which shows the claim for s = 0.
We use induction on s ∈ N0. By the decomposition (5.7) of the Sobolev norm, we

have
‖f ◦ v‖2Hs+1(Sd−1) = ‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) + (d−2)2

4
‖f ◦ v‖2Hs(Sd−1) . (5.9)

By the induction hypothesis, the second summand of (5.9) is bounded by

‖f ◦ v‖Hs(Sd) ≤ bd,s(v) ‖f‖Hs(Sd) . (5.10)

Furthermore, by (5.5) and the chain rule, we have for the first summand of (5.9)

‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) = ‖∇(f ◦ v)•‖2Hs(Sd−1→Rd)

=
d∑
i=1

‖∂i(f ◦ v)•‖2Hs(Sd−1)

=
d∑
i=1

∥∥∥∥∥
d∑
j=1

((∂jf
•) ◦ v•) ∂iv•j

∥∥∥∥∥
2

Hs(Sd−1)

.

Applying the triangle inequality for the sum over j and Jensen’s inequality (
∑d

j=1 xj)
2 ≤

d
∑d

j=1 x
2
j , we obtain

‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) ≤
d∑
i=1

d
d∑
j=1

∥∥((∂jf
•) ◦ v•) ∂iv•j

∥∥2
Hs(Sd−1)

.

By Theorem 5.2, we have

‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) ≤ d c2sd

d∑
j=1

‖(∂jf •) ◦ v•‖2Hs(Sd−1)

d∑
i=1

∥∥∂iv•j∥∥2Cs(Sd−1)

≤ d2 c2sd

d∑
j=1

‖(∂jf •) ◦ v•‖2Hs(Sd−1) ‖vj‖
2
Cs+1(Sd−1) ,

where the last line follows from (5.2). By the induction hypothesis, we see that

‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) ≤ d2 c2sd bd,s(v)2
d∑
j=1

‖∂jf •‖2Hs(Sd−1) ‖vj‖
2
Cs+1(Sd−1) .
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By (5.5) and the fact that ‖vj‖2Cs+1(Sd−1) ≤ ‖v‖
2
Cs+1(Sd−1→Rd) for all j = 1, . . . , d, we

obtain

‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) ≤ d2 c2sd bd,s(v)2 ‖∇•f‖2Hs(Sd−1→Rd) ‖v‖
2
Cs+1(Sd−1→Rd) .

Inserting the last equation and (5.10) into (5.9), we obtain

‖f ◦ v‖2Hs+1(Sd−1)

= ‖∇•(f ◦ v)‖2Hs(Sd−1→Rd) + (d−2)2
4
‖f ◦ v‖2Hs(Sd−1)

≤ bd,s(v)2
(
d2 c2sd ‖∇•f‖

2
Hs(Sd−1→Rd) ‖v‖

2
Cs+1(Sd−1→Rd) + (d−2)2

4
‖f‖2Hs(Sd)

)
= bd,s(v)2

((
d2 c2sd ‖v‖

2
Cs+1(Sd−1→Rd) − 1

)
‖∇•f‖2Hs(Sd−1→Rd) + ‖f‖2Hs+1(Sd−1)

)
≤ bd,s(v)2d2 c2sd ‖v‖

2
Cs+1(Sd−1→Rd) ‖f‖

2
Hs+1(Sd−1) ,

where we have made use of (5.7).

Remark 5.4. The last theorem resembles a similar result found in [12, Theorem 1.2]:
LetM be a smooth, closed and oriented d-dimensional manifold and, for s > d

2
+1, let ϕ ∈

Hs(M → M) be an orientation-preserving C1-diffeomorphism. Then the composition
map

Hs(M)→ Hs(M), f 7→ f ◦ ϕ
is continuous. However, Theorem 5.3 is not a special case of this result because Theorem
5.3 requires only s ≥ 0 but imposes stronger assumptions on ϕ.

6 Range

In this section, we show that for s ≥ 0 the spherical transform

Uz : Hs(Sd−1)→ Hs+(d−2)/2(Sd−1)

is continuous. To this end, we seperately investigate the parts of the decomposition
obtained in Theorem 3.5,

Uz = NzFMz.

6.1 Continuity of F
The following property of the Funk–Radon transform in Sobolev spaces was shown by
Strichartz [27, Lemma 4.3] using an asymptotic analysis of its eigenvalues.

Proposition 6.1. Denote by Hs
even(Sd−1) the restriction of the Sobolev space Hs(Sd−1)

to even functions f(ξ) = f(−ξ). The Funk–Radon transform

F : Hs
even(Sd−1)→ H

s+ d−2
2

even (Sd−1)

is continuous and bijective.
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6.2 Continuity of Mz and Nz

Theorem 6.2. Let z ∈ [0, 1) and s ∈ R with s ≥ 0. The operators

Mz : Hs(Sd−1)→ Hs(Sd−1)

and
Nz : Hs(Sd−1)→ Hs(Sd−1),

as defined in (3.10) and (3.11), are continuous and open.

Proof. We first perform the proof for Mz. Initially, we consider only the situation
s ∈ N0. Let f ∈ Hs(Sd−1) and z ∈ (−1, 1). We write

Mzf(ξ) = wz(ξ) [f ◦ hz](ξ), ξ ∈ Sd−1,

where

wz : Sd−1 → R, wz(ξ) =

(√
1− z2

1 + zξd

)d−2
and hz is given in (3.1). We see that the extension

w•z(x) = wz

(
x

‖x‖

)
=

(√
1− z2 ‖x‖

‖x‖+ zxd

)d−2
, x ∈ Rd \ {0},

is smooth except in the origin, i.e., w•z ∈ C∞(Rd \ {0}). Hence, wz ∈ C∞(Sd−1). Then
Theorem 5.2 implies that

‖wz (f ◦ hz)‖Hs(Sd−1) ≤ csd ‖wz‖Cs(Sd−1) ‖f ◦ hz‖Hs(Sd−1) . (6.1)

Moreover, the extension of hz,

h•z : Rd \ {0} → Rd, h•z(x) =
d−1∑
i=1

√
1− z2

‖x‖+ zxd
xiε

i +
z ‖x‖+ xd
‖x‖+ zxd

εd,

is also smooth, so hz ∈ C∞(Sd−1 → Sd−1). This implies that also the inverse h−1z = h−z,
see (3.3), is smooth. So hz is a diffeomorphism and Theorem 5.3 together with (6.1)
implies that

‖Mzf‖Hs(Sd−1) ≤ csd ‖wz‖Cs(Sd−1) ‖f ◦ hz‖Hs(Sd−1)

≤ csd ‖wz‖Cs(Sd−1) bd,s(hz) ‖f‖Hs(Sd−1) .

Thus, the operator Mz : Hs(Sd−1)→ Hs(Sd−1) is continuous.
Now let s ∈ R with s ≥ 0. The above proof shows that both the restrictions ofMz to

Hbsc and to Hbsc+1 are continuous, where bsc denotes the largest integer that is smaller
than or equal to s. The continuity ofMz on Hs(Sd−1) follows by the interpolation result
Proposition 5.1.

19



In order to prove the openness of Mz, we show that the inverse M−1
z restricted to

Hs(Sd−1) is continuous. However, we have already done this because M−1
z = M−z by

(3.12).
The same argumentation as above also works for the operator Nz as follows. Let

z ∈ [0, 1) and s ∈ N0. We write

Nzf(ξ) = vz(ξ) [f ◦ gz](ξ), ξ ∈ Sd−1,

where
vz(ξ) = (1− z2ξ2d)−

d−2
2 , ξ ∈ Sd−1.

We see that the extension

v•z(x) =

(
‖x‖2

‖x‖2 − z2x2d

) d−2
2

, x ∈ Rd \ {0},

is smooth and hence vz ∈ Cs(Sd). Theorem 5.2 yields

‖vz (f ◦ gz)‖Hs(Sd−1) ≤ csd ‖vz‖Cs(Sd−1) ‖f ◦ gz‖Hs(Sd−1) .

Since the extensions of both

g•z(x) = gz

(
x

‖x‖

)
=

1√
‖x‖2 − z2x2d

(
d−1∑
i=1

xiε
i +
√

1− z2 xdεd
)
, x ∈ Rd \ {0},

and its inverse (3.4)

[(g−1z )•](x) =
1√

‖x‖2 − z2 + z2x2d

(
√

1− z2
d−1∑
i=1

ωiε
i + xdε

d

)
, x ∈ Rd \ {0},

are smooth functions on Rd\{0}, we see that gz is a smooth diffeomorphism in Cs(Sd−1).
By Theorem 5.3, there exists a constant bd,s(gz) independent of f such that

‖f ◦ gz‖Hs(Sd−1) ≤ bd,s(gz) ‖f‖Hs(Sd−1) .

Hence, Nz is a bounded operator on Hs(Sd−1). An analogue computation shows that
the inverse operator (3.13)

N−1z f(η) =
f(g−1z (η))

vz(g−1z (η))
=

(
1− z2

1− z2 + z2η2d

) d−2
2

(f ◦ g−1z )(η), η ∈ Sd−1

is also bounded on Hs(Sd−1). The assertion for general s follows by the same interpola-
tion argument as for Mz.
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6.3 Continuity of Uz
Theorem 6.3. Let z ∈ (0, 1) and s ∈ R with s ≥ 0. We set Hs

z (Sd−1) as the subspace
of all functions f ∈ Hs(Sd−1) that satisfy

f(ω) =

(
1− z2

1− 2zωd + z2

)d−2
f ◦ rz(ω), ω ∈ Sd−1, (6.2)

almost everywhere, where the point reflection rz about the point zεd is given in (4.2).
Then the spherical transform

Uz : Hs
z (Sd−1)→ H

s+ d−2
2

even (Sd−1)

is continuous and bijective and its inverse operator is also continuous.

Proof. In Theorem 3.5, we obtained the decomposition

Uz = NzFMz.

We are going to look at the parts of this decomposition separately. By Theorem 6.2, we
obtain that

Mz : Hs(Sd−1)→ Hs(Sd−1)

is continuous and bijective. The same holds for the restriction

Mz : Hs
z (Sd−1)→ Hs

even(Sd−1),

which follows from the characterization of the nullspace in Theorem 4.1. By Proposition
6.1, the Funk–Radon transform

F : Hs
even(Sd−1)→ H

s+ d−2
2

even (Sd−1)

is continuous and bijective. Finally, Theorem 6.2 and the observation that any function
f : Sd−1 → C is even if and only if Nzf is even show that

Nz : H
s+ d−2

2
even (Sd−1)→ H

s+ d−2
2

even (Sd−1)

is continuous and bijective. The continuity of the inverse operator of Uz follows from
the open mapping theorem.

Theorem 6.3 is a generalization of Proposition 6.1 for the Funk–Radon transform F ;
the main difference is that the space Hs

even(Sd−1) is replaced by Hs
z (Sd−1), which contains

functions that satisfy the symmetry condition (6.2) with respect to the point reflection in
z εd. Furthermore, the spherical transform Uz is smoothing of degree d−2

2
, which comes

from the fact that Uz takes the integrals along (d− 2)-dimensional submanifolds.
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7 Geometric interpretation

We give geometric interpretations of the mappings gz and hz : Sd−1 → Sd−1 that were
defined in Section 3.1. The mapping gz consists of a scaling with the factor

√
1− z2

along the ξd axis, which maps the sphere to an ellipsoid, which is symmetric with respect
to rotations about the ξd axis. Then a central projection maps this ellipsoid onto the
sphere again.

In order give a description of the mapping hz, we define the stereographic projection

π : Sd−1 \ {εd} → Rd−1, ξ 7→
d−1∑
i=1

ξi
1− ξd

εi

and its inverse

π−1 : Rd−1 → Sd−1 \ {εd}, x 7→ 2x+ (‖x‖2 − 1) εd

1 + ‖x‖2
.

The following corollary states that, via stereographic projection, the map hz on the
sphere Sd−1 corresponds to a uniform scaling in the equatorial hyperplane Rd−1 with the

scaling factor
√

1+z
1−z .

Corollary 7.1. Let ξ ∈ Sd−1 and z ∈ (0, 1). Then we have

hz(ξ) = π−1

(√
1 + z

1− z
π(ξ)

)
.

Proof. We are going to show that

π(hz(ξ)) =

√
1 + z

1− z
π(ξ)

holds. We have on the one hand√
1 + z

1− z
π(ξ) =

√
1 + z

1− z

d−1∑
i=1

ξi
1− ξd

εi

and the other hand

π(hz(ξ)) =
d−1∑
i=1

√
1−z2 ξi
1+zξd

1− z+ξd
1+zξd

εi =
d−1∑
i=1

√
1− z2 ξi

1 + zξd − (z + ξd)
εi

=
d−1∑
i=1

√
1− z2 ξi

(1− z) (1− ξd)
εi.

The assertion follows by canceling
√

1− z.
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