

CHEMNITZ

Optimal mollifiers for spherical deconvolution Faculty of Mathematics, Technische Universität Chemnitz

Optimal mollifiers for spherical deconvolution

Michael Quellmalz

Faculty of Mathematics, Technische Universität Chemnitz

Mecklenburg Workshop Approximation Theory and Function Spaces March 16–20, 2015 (joint work with Ralf Hielscher)

Content

1. Introduction

2. Spherical convolution operators

Definition Spherical harmonics and convolution operators Sobolev spaces Examples

3. Spherical Deconvolution

Noisy data Discrete data Asymptotiacally optimal mollifiers

4. Application

Algorithm Numerical results for the Funk-Radon transform

- Sphere $S^2 = \{ \xi \in \mathbb{R}^3 : \|\xi\| = 1 \}$
- Function $f: \mathbb{S}^2 \to \mathbb{C}$ on the sphere
- Funk-Radon transform computes the integrals along all great circles

$$\mathcal{R}f(oldsymbol{\xi}) = \int_{oldsymbol{\xi}\cdotoldsymbol{\eta}=0} f(oldsymbol{\eta}) \, \mathrm{d}s(oldsymbol{\eta}) \ = \int_{\mathbb{S}^2} f(oldsymbol{\eta}) \delta(oldsymbol{\xi}\cdotoldsymbol{\eta}) \, \mathrm{d}oldsymbol{\eta}$$

What we want to do

Compute f from the given values $\mathcal{R}f$ (inverse problem)

- Sphere $S^2 = \{ {\pmb{\xi}} \in \mathbb{R}^3 : \| {\pmb{\xi}} \| = 1 \}$
- Function $f: \mathbb{S}^2 \to \mathbb{C}$ on the sphere
- Funk-Radon transform computes the integrals along all great circles

$$\mathcal{R}f(\boldsymbol{\xi}) = \int_{\boldsymbol{\xi}\cdot\boldsymbol{\eta}=0} f(\boldsymbol{\eta}) \, \mathsf{d}s(\boldsymbol{\eta})$$
$$= \int_{\mathbb{S}^2} f(\boldsymbol{\eta}) \delta(\boldsymbol{\xi}\cdot\boldsymbol{\eta}) \, \mathsf{d}\boldsymbol{\eta}$$

What we want to do

Compute f from the given values $\mathcal{R}f$ (inverse problem)

- Sphere $S^2 = \{ {\pmb{\xi}} \in \mathbb{R}^3 : \| {\pmb{\xi}} \| = 1 \}$
- Function $f: \mathbb{S}^2 \to \mathbb{C}$ on the sphere
- Funk-Radon transform computes the integrals along all great circles

$$\begin{split} \mathcal{R}f(\boldsymbol{\xi}) &= \int_{\boldsymbol{\xi}\cdot\boldsymbol{\eta}=0} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}) \\ &= \int_{\mathbb{S}^2} f(\boldsymbol{\eta}) \delta(\boldsymbol{\xi}\cdot\boldsymbol{\eta}) \, \mathrm{d}\boldsymbol{\eta} \end{split}$$

What we want to do

Compute f from the given values $\mathcal{R}f$ (inverse problem)

- Sphere $S^2 = \{ {\pmb{\xi}} \in \mathbb{R}^3 : \| {\pmb{\xi}} \| = 1 \}$
- Function $f: \mathbb{S}^2 \to \mathbb{C}$ on the sphere
- Funk-Radon transform computes the integrals along all great circles

$$\begin{split} \mathcal{R}f(\boldsymbol{\xi}) &= \int_{\boldsymbol{\xi}\cdot\boldsymbol{\eta}=0} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}) \\ &= \int_{\mathbb{S}^2} f(\boldsymbol{\eta}) \delta(\boldsymbol{\xi}\cdot\boldsymbol{\eta}) \, \mathrm{d}\boldsymbol{\eta} \end{split}$$

What we want to do

Compute f from the given values $\mathcal{R}f$ (inverse problem)

Paul Funk.

Über Flächen mit lauter geschlossenen geodätischen Linien.

Math. Ann., 74(2):278 – 300, June 1913.

Sigurdur Helgason. *The Radon Transform.* Birkhäuser, 2nd edition, 1999.

Alfred Karl Louis, Martin Riplinger, Malte Spiess, and Evgeny Spodarev. Inversion algorithms for the spherical Radon and cosine transform. Inverse Problems, 27(3):035015, March 2011.

Martin Riplinger and Malte Spiess.

Numerical inversion of the spherical Radon transform and the cosine transform using the approximate inverse with a special class of locally supported mollifiers.

J. Inverse Ill-Posed Probl., 22(4):497 – 536, December 2013.

Ralf Hielscher and Michael Quellmalz.

Optimal mollifiers for spherical deconvolution.

Preprint 2015-04, Faculty of Mathematics, Technische Universität Chemnitz, 2015.

Spherical convolution

- Function $f : \mathbb{S}^2 \to \mathbb{C}$ on the sphere
- Kernel function $h: [-1,1] \to \mathbb{C}$ on the interval

$$\mathcal{M}f(\boldsymbol{\xi}) = h \star f(\boldsymbol{\xi}) = \int_{\mathbb{S}^2} f(\boldsymbol{\eta}) h(\boldsymbol{\xi} \cdot \boldsymbol{\eta}) \, \mathrm{d}\boldsymbol{\eta}, \quad \boldsymbol{\xi} \in \mathbb{S}^2.$$

$$h(t) = |t|$$

Spherical convolution

- $\blacktriangleright \;$ Function $\; f: \mathbb{S}^2 \to \mathbb{C} \; \text{on the sphere} \;$
- Kernel function $h: [-1,1] \rightarrow \mathbb{C}$ on the interval

Definition (convolution operator)

The operator ${\mathcal M}$ of convolution with h is defined as

$$\mathcal{M}f(\boldsymbol{\xi}) = h \star f(\boldsymbol{\xi}) = \int_{\mathbb{S}^2} f(\boldsymbol{\eta}) h(\boldsymbol{\xi} \cdot \boldsymbol{\eta}) \, \mathrm{d}\boldsymbol{\eta}, \quad \boldsymbol{\xi} \in \mathbb{S}^2.$$

 $h(\pmb{\xi}\cdot \circ) = |\pmb{\xi}\cdot \circ|$

• Every function $f \in L^2(\mathbb{S}^2)$ can be written as Fourier series

$$f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n,k) Y_n^k$$

- Fourier coefficients $\hat{f}(n,k) := \int_{\mathbb{S}^2} f(\boldsymbol{\xi}) \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi}$
- Y_n^k spherical harmonics of degree n

Funk-Hecke formula (for convolution operators)

$$\mathcal{M}f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{\mathcal{M}}(n) \hat{f}(n,k) Y_{n}^{k}$$

with

$$\hat{\mathcal{M}}(n) = 2\pi \int_{-1}^{1} h(t) P_n(t) \,\mathrm{d}t$$

P_n – Legendre polynomial of degree n

• Every function $f \in L^2(\mathbb{S}^2)$ can be written as Fourier series

$$f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n,k) Y_n^k$$

- ► Fourier coefficients $\hat{f}(n,k) := \int_{\mathbb{S}^2} f(\boldsymbol{\xi}) \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi}$
- Y_n^k spherical harmonics of degree n

Funk-Hecke formula (for convolution operators)

$$\mathcal{M}f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{\mathcal{M}}(n)\hat{f}(n,k)Y_{n}^{k}$$

with

$$\hat{\mathcal{M}}(n) = 2\pi \int_{-1}^{1} h(t) P_n(t) \,\mathrm{d}t$$

 P_n – Legendre polynomial of degree n

Definition

Let $s \ge 0$. The Sobolev space $H^s(\mathbb{S}^2)$ is the completion of the space of polynomials $f: \mathbb{S}^2 \to \mathbb{C}$ with the norm

$$\|f\|_{s}^{2} := \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \left|\hat{f}(n,k)\right|^{2} \left(n + \frac{1}{2}\right)^{2s}$$

Assumption on ${\mathcal M}$

For s > 0 and $\beta > 0$, let the convolution operator

$$\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$$

be bijective and continuous (hence \mathcal{M}^{-1} is continuous)

• Assumption is equivalent to $\hat{\mathcal{M}}(n) \sim n^{-\beta}$

Definition

Let $s \ge 0$. The Sobolev space $H^s(\mathbb{S}^2)$ is the completion of the space of polynomials $f: \mathbb{S}^2 \to \mathbb{C}$ with the norm

$$\|f\|_{s}^{2} := \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \left|\hat{f}(n,k)\right|^{2} \left(n+\frac{1}{2}\right)^{2s}$$

Assumption on $\ensuremath{\mathcal{M}}$

For s > 0 and $\beta > 0$, let the convolution operator

$$\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$$

be bijective and continuous (hence \mathcal{M}^{-1} is continuous)

- Assumption is equivalent to $\hat{\mathcal{M}}(n) \sim n^{-\beta}$

Spherical convolution operators Examples

Some notable examples of convolution operators

► Funk-Radon transform is the convolution with the delta distribution $h(t) = \delta(t)$

$$\mathcal{R}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{1}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

► Hemispherical transform is the convolution with $h(t) = \mathbf{1}_{t \ge 0}(t)$ (Funk, 1915)

$$\mathcal{H}: H^s_{\mathrm{o}}(\mathbb{S}^2) \to H^{s+\frac{3}{2}}_{\mathrm{o}}(\mathbb{S}^2)$$

• spherical cosine transform is the convolution with h(t) = |t| (Petty, 1961)

$$\mathcal{C}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{5}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

Spherical convolution operators Examples

Some notable examples of convolution operators

► Funk-Radon transform is the convolution with the delta distribution $h(t) = \delta(t)$

$$\mathcal{R}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{1}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

► Hemispherical transform is the convolution with $h(t) = \mathbf{1}_{t \ge 0}(t)$ (Funk, 1915)

$$\mathcal{H}: H^s_{\mathrm{o}}(\mathbb{S}^2) \to H^{s+\frac{3}{2}}_{\mathrm{o}}(\mathbb{S}^2)$$

• spherical cosine transform is the convolution with h(t) = |t| (Petty, 1961)

$$\mathcal{C}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{5}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

Some notable examples of convolution operators

► Funk-Radon transform is the convolution with the delta distribution $h(t) = \delta(t)$

$$\mathcal{R}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{1}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

► Hemispherical transform is the convolution with $h(t) = \mathbf{1}_{t \ge 0}(t)$ (Funk, 1915)

$$\mathcal{H}: H^s_{\mathrm{o}}(\mathbb{S}^2) \to H^{s+\frac{3}{2}}_{\mathrm{o}}(\mathbb{S}^2)$$

• spherical cosine transform is the convolution with h(t) = |t| (Petty, 1961)

$$\mathcal{C}: H^s_{\mathrm{e}}(\mathbb{S}^2) \to H^{s+\frac{5}{2}}_{\mathrm{e}}(\mathbb{S}^2)$$

- Various applications in stereology and geometric tomography
- Funk–Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(ruon, 2007) mirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

Amirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

mirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Amirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004)

(Amirbekyan & Michel & Simons, 2008)

(Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004) (Amirbekyan & Michel & Simons, 2008)

(Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)

Hemispherical transfrom

- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004) (Amirbekyan & Michel & Simons, 2008)

(Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004)

(Amirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004) ichal & Simons, 2009)

(Amirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004) (Amirbekyan & Michel & Simons, 2008) (Yarman & Yazici, 2011)

- Various applications in stereology and geometric tomography
- Funk-Radon transform
- Intersection bodies
- Q-ball imaging in medicine
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
- Hemispherical transfrom
- Discrete choice models in economy
- Spherical cosine transform
- Projection bodies
- Estimating the rose of directions of fiber processes (Kiderlen & Pfrang, 2005)

(Tuch, 2004) (Amirbekyan & Michel & Simons, 2008)

(Yarman & Yazici, 2011)

We have $g = \mathcal{M}f \in H^{s+\beta}(\mathbb{S}^2)$ We want $f \in H^s(\mathbb{S}^2)$

The decomposition in eigenfunctions and eigenvalues yields

$$f = \mathcal{M}^{-1}g = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \frac{\hat{g}(n,k)}{\hat{\mathcal{M}}(n)} Y_{n}^{k}$$

- Small deviation *ε* (white noise)
- ▶ Idea: multiply the Fourier coefficients in (1) with suitable filter coefficients $\hat{\psi}(n) \in [0, 1]$
- This is a convolution with ψ : mollifier method

- We have $g = \mathcal{M}f \in H^{s+\beta}(\mathbb{S}^2)$ We want $f \in H^s(\mathbb{S}^2)$
- The decomposition in eigenfunctions and eigenvalues yields

$$f = \mathcal{M}^{-1}g = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \frac{\hat{g}(n,k)}{\hat{\mathcal{M}}(n)} Y_n^k \tag{1}$$

- Small deviation *ε* (white noise)
- ▶ Idea: multiply the Fourier coefficients in (1) with suitable filter coefficients $\hat{\psi}(n) \in [0, 1]$
- This is a convolution with ψ : mollifier method

We have $g = \mathcal{M}f + \varepsilon$ We want $f \in H^s(\mathbb{S}^2)$

The decomposition in eigenfunctions and eigenvalues yields

$$f = \mathcal{M}^{-1}g = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \frac{\hat{g}(n,k)}{\hat{\mathcal{M}}(n)} Y_n^k \tag{1}$$

Small deviation ε (white noise)

- ▶ Idea: multiply the Fourier coefficients in (1) with suitable filter coefficients $\hat{\psi}(n) \in [0, 1]$
- This is a convolution with ψ : mollifier method

We have $g = \mathcal{M}f + \varepsilon$ We want $f \in H^s(\mathbb{S}^2)$

The decomposition in eigenfunctions and eigenvalues yields

$$\boldsymbol{\psi} \star \boldsymbol{f} = \boldsymbol{\psi} \star \mathcal{M}^{-1} \boldsymbol{g} = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{\boldsymbol{\psi}}(n) \frac{\hat{\boldsymbol{g}}(n,k)}{\hat{\mathcal{M}}(n)} \boldsymbol{Y}_{n}^{k} \tag{1}$$

- **Small deviation** *ε* (white noise)
- ► Idea: multiply the Fourier coefficients in (1) with suitable filter coefficients $\hat{\psi}(n) \in [0, 1]$
- This is a convolution with ψ : mollifier method

We have $g = \mathcal{M}f + \varepsilon$ We want $f \in H^s(\mathbb{S}^2)$

The decomposition in eigenfunctions and eigenvalues yields

$$\psi \star f = \psi \star \mathcal{M}^{-1}g = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{\psi}(n) \frac{\hat{g}(n,k)}{\hat{\mathcal{M}}(n)} Y_{n}^{k} \tag{1}$$

- **Small deviation** *ε* (white noise)
- ► Idea: multiply the Fourier coefficients in (1) with suitable filter coefficients $\hat{\psi}(n) \in [0, 1]$
- This is a convolution with ψ : mollifier method

$$g(\boldsymbol{\xi}_m) = \mathcal{M}f(\boldsymbol{\xi}_m) + \varepsilon(\boldsymbol{\xi}_m), \quad m = 1, \dots, M.$$

Idea: Use a quadrature formula to calculate

$$\hat{g}(n,k) = \int_{\mathbb{S}^2} g(\boldsymbol{\xi}) \, \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi} \approx \sum_{m=1}^M \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$$

▶ Define hyperinterpolation of degree N (Sloan, 1995) (Hesse & Sloan, 2006

$$\mathcal{L}_{N}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \left(\sum_{m=1}^{M} \omega_{m}g(\boldsymbol{\xi}_{m}) \overline{Y_{n}^{k}(\boldsymbol{\xi}_{m})} \right) Y_{n}^{k}$$

Estimator

$$\mathcal{E}_{N,\psi}(g) = \psi \star \mathcal{M}^{-1} \mathcal{L}_N(g).$$

$$g(\boldsymbol{\xi}_m) = \mathcal{M}f(\boldsymbol{\xi}_m) + \varepsilon(\boldsymbol{\xi}_m), \quad m = 1, \dots, M.$$

Idea: Use a quadrature formula to calculate

$$\hat{g}(n,k) = \int_{\mathbb{S}^2} g(\boldsymbol{\xi}) \, \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi} \approx \sum_{m=1}^M \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$$

Define hyperinterpolation of degree N (Sloan, 1995) (Hesse & Sloan, 2006)

$$\mathcal{L}_N g = \sum_{n=0}^N \sum_{k=-n}^n \left(\sum_{m=1}^M \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)} \right) Y_n^k$$

Estimator

$$\mathcal{E}_{N,\psi}(g) = \psi \star \mathcal{M}^{-1} \mathcal{L}_N(g).$$

$$g(\boldsymbol{\xi}_m) = \mathcal{M}f(\boldsymbol{\xi}_m) + \varepsilon(\boldsymbol{\xi}_m), \quad m = 1, \dots, M.$$

Idea: Use a quadrature formula to calculate

$$\hat{g}(n,k) = \int_{\mathbb{S}^2} g(\boldsymbol{\xi}) \, \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi} \approx \sum_{m=1}^M \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$$

▶ Define hyperinterpolation of degree *N* (Sloan, 1995) (Hesse & Sloan, 2006)

$$\mathcal{L}_{N}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \left(\sum_{m=1}^{M} \omega_{m}g(\boldsymbol{\xi}_{m}) \overline{Y_{n}^{k}(\boldsymbol{\xi}_{m})} \right) Y_{n}^{k}$$

Estimator

$$\mathcal{E}_{N,\psi}(g) = \psi \star \mathcal{M}^{-1} \mathcal{L}_N(g).$$

$$g(\boldsymbol{\xi}_m) = \mathcal{M}f(\boldsymbol{\xi}_m) + \varepsilon(\boldsymbol{\xi}_m), \quad m = 1, \dots, M.$$

Idea: Use a quadrature formula to calculate

$$\hat{g}(n,k) = \int_{\mathbb{S}^2} g(\boldsymbol{\xi}) \, \overline{Y_n^k(\boldsymbol{\xi})} \, \mathrm{d}\boldsymbol{\xi} \approx \sum_{m=1}^M \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$$

▶ Define hyperinterpolation of degree *N* (Sloan, 1995) (Hesse & Sloan, 2006)

$$\mathcal{L}_{N}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \left(\sum_{m=1}^{M} \omega_{m}g(\boldsymbol{\xi}_{m}) \overline{Y_{n}^{k}(\boldsymbol{\xi}_{m})} \right) Y_{n}^{k}$$

Estimator

$$\mathcal{E}_{N,\psi}(g) = \psi \star \mathcal{M}^{-1} \mathcal{L}_N(g).$$

TUC, MA · March 2015 · Michael Quellmalz

https://www.tu-chemnitz.de/~qmi

Mean integrated squared error MISE

$$\mathbb{E} \left\| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \right\|_{L^2}^2 = \mathbb{E} \int_{\mathbb{S}^2} \left| f(\boldsymbol{\xi}) - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)(\boldsymbol{\xi}) \right|^2 \, \mathrm{d}\boldsymbol{\xi}$$

For $s, S \ge 0$, define the class of functions

$$\mathscr{F}(s,S) = \left\{ f \in H^s(\mathbb{S}^2) : \|f\|_s \le S \right\}$$

Want to minimize the maximum risk

$$\sup_{\mathcal{C}\in\mathscr{F}(s,S)} \mathbb{E} \|f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)\|_{L^2}^2$$

► Minimax error

$$\inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \left\| f - \mathcal{E}_{N,\psi} (\mathcal{M}f + \varepsilon) \right\|_{L^2}^2$$

Mean integrated squared error MISE

$$\mathbb{E} \left\| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \right\|_{L^2}^2 = \mathbb{E} \int_{\mathbb{S}^2} \left| f(\boldsymbol{\xi}) - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)(\boldsymbol{\xi}) \right|^2 \, \mathrm{d}\boldsymbol{\xi}$$

 $\blacktriangleright\,$ For $s,S\geq 0$, define the class of functions

$$\mathscr{F}(s,S) = \left\{ f \in H^s(\mathbb{S}^2) : \|f\|_s \leq S \right\}$$

Want to minimize the maximum risk

$$\sup_{\mathcal{C}\in\mathscr{F}(s,S)} \mathbb{E} \|f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)\|_{L^2}^2$$

► Minimax error

J

$$\inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \|_{L^2}^2$$

Mean integrated squared error MISE

$$\mathbb{E} \left\| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \right\|_{L^2}^2 = \mathbb{E} \int_{\mathbb{S}^2} \left| f(\boldsymbol{\xi}) - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)(\boldsymbol{\xi}) \right|^2 \, \mathrm{d}\boldsymbol{\xi}$$

 $\blacktriangleright~$ For $s,S\geq 0$, define the class of functions

$$\mathscr{F}(s,S) = \left\{ f \in H^s(\mathbb{S}^2) : \|f\|_s \leq S \right\}$$

Want to minimize the maximum risk

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \|_{L^2}^2$$

Minimax error

J

$$\inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \|_{L^2}^2$$

Mean integrated squared error MISE

$$\mathbb{E} \left\| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \right\|_{L^2}^2 = \mathbb{E} \int_{\mathbb{S}^2} \left| f(\boldsymbol{\xi}) - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon)(\boldsymbol{\xi}) \right|^2 \, \mathrm{d}\boldsymbol{\xi}$$

 $\blacktriangleright~$ For $s,S\geq 0$, define the class of functions

$$\mathscr{F}(s,S) = \left\{ f \in H^s(\mathbb{S}^2) : \|f\|_s \leq S \right\}$$

Want to minimize the maximum risk

$$\sup_{f\in\mathscr{F}(s,S)}\mathbb{E}\left\|f-\mathcal{E}_{N,\psi}(\mathcal{M}f+\varepsilon)\right\|_{L^{2}}^{2}$$

Minimax error

J

$$\inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \left\| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \right\|_{L^2}^2$$

- Let s > 1.62 and S > 0
- Convolution operator M : H^s(S²) → H^{s+β}(S²) be bijective and continuous
- For every $N \in \mathbb{N}$ let the hyperinterpolation \mathcal{L}_N be exact (i.e. a projector) with $M \sim N^2$ nodes and almost constant weights cf. (Filbir & Mhaskar, 2010)
- White noise $\varepsilon(\boldsymbol{\xi}_m)$

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi_{L(N)}^{s}} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2}$$
$$\simeq \inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2} \simeq \operatorname{const} \cdot M^{\frac{-s}{s+\beta+1}}.$$

- Let s > 1.62 and S > 0
- Convolution operator $\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$ be bijective and continuous
- For every $N \in \mathbb{N}$ let the hyperinterpolation \mathcal{L}_N be exact (i.e. a projector) with $M \sim N^2$ nodes and almost constant weights cf. (Filbir & Mhaskar, 2010)
- White noise $\varepsilon(\boldsymbol{\xi}_m)$

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathscr{E}_{N,\psi_{L(N)}^{s}} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2}$$
$$\simeq \inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathscr{E}_{N,\psi} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2} \simeq \operatorname{const} \cdot M^{\frac{-s}{s+\beta+1}}.$$

- Let s > 1.62 and S > 0
- Convolution operator $\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$ be bijective and continuous
- For every $N \in \mathbb{N}$ let the hyperinterpolation \mathcal{L}_N be exact (i.e. a projector) with $M \sim N^2$ nodes and almost constant weights cf. (Filbir & Mhaskar, 2010)
- White noise $\varepsilon(\boldsymbol{\xi}_m)$

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi_{L(N)}^{s}} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2}$$
$$\simeq \inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2} \simeq \operatorname{const} \cdot M^{\frac{-s}{s+\beta+1}}.$$

- Let s > 1.62 and S > 0
- Convolution operator $\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$ be bijective and continuous
- For every $N \in \mathbb{N}$ let the hyperinterpolation \mathcal{L}_N be exact (i.e. a projector) with $M \sim N^2$ nodes and almost constant weights cf. (Filbir & Mhaskar, 2010)
- White noise $\varepsilon(\boldsymbol{\xi}_m)$

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathscr{E}_{N,\psi_{L(N)}^{s}} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2}$$

$$\simeq \inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathscr{E}_{N,\psi} (\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2} \simeq \operatorname{const} \cdot M^{\frac{-s}{s+\beta+1}}.$$

- Let s > 1.62 and S > 0
- Convolution operator $\mathcal{M}: H^s(\mathbb{S}^2) \to H^{s+\beta}(\mathbb{S}^2)$ be bijective and continuous
- For every $N \in \mathbb{N}$ let the hyperinterpolation \mathcal{L}_N be exact (i.e. a projector) with $M \sim N^2$ nodes and almost constant weights cf. (Filbir & Mhaskar, 2010)
- White noise $\varepsilon(\boldsymbol{\xi}_m)$

$$\sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi_{L(N)}^{s}}(\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2}$$

$$\simeq \inf_{\psi} \sup_{f \in \mathscr{F}(s,S)} \mathbb{E} \| f - \mathcal{E}_{N,\psi}(\mathcal{M}f + \varepsilon) \|_{L^{2}}^{2} \simeq \operatorname{const} \cdot M^{\frac{-s}{s+\beta+1}}.$$

Spherical Deconvolution Asymptotiacally optimal mollifiers

TUC, MA · March 2015 · Michael Quellmalz

https://www.tu-chemnitz.de/~qmi

Spherical Deconvolution Asymptotiacally optimal mollifiers

- 1. Compute the Fourier coefficients $\widehat{\mathcal{L}_N g}(n,k) = \sum \omega_m g({m \xi}_m) \overline{Y_n^k({m \xi}_m)}$
- 2. Compute the regularization $\widehat{\mathcal{E}_{N,\psi}g}(n,k) = \frac{\psi(n)}{\hat{\mathcal{M}}(n)}\widehat{\mathcal{L}_Ng}(n,k)$
- 3. Compute the estimator $\mathcal{E}_{N,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \widehat{\mathcal{E}_{N,\psi}g}(n,k) Y_{n}^{k}$
- ► Complexity: $O(N^2 \log^2 N)$ with fast spherical Fourier transform (NFSFT) (Driscoll & Healy, 1994) (Potts, Steidl & Tasche, 1998) (Kunis & Potts, 2003) (Keiner & Potts, 2008)

- 1. Compute the Fourier coefficients $\widehat{\mathcal{L}_N g}(n,k) = \sum_{m=1}^m \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$
- 2. Compute the regularization $\widehat{\mathcal{E}_{N,\psi}g}(n,k) = \frac{\psi(n)}{\hat{\mathcal{M}}(n)}\widehat{\mathcal{L}_Ng}(n,k)$
- 3. Compute the estimator $\mathcal{E}_{N,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \widehat{\mathcal{E}_{N,\psi}g}(n,k) Y_{n}^{k}$
- ► Complexity: O(N² log² N) with fast spherical Fourier transform (NFSFT) (Driscoll & Healy, 1994) (Potts, Steidl & Tasche, 1998) (Kunis & Potts, 2003) (Keiner & Potts, 2008)

- 1. Compute the Fourier coefficients $\widehat{\mathcal{L}_N g}(n,k) = \sum_{m=1}^{M} \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$
- 2. Compute the regularization $\widehat{\mathcal{E}_{N,\psi}g}(n,k) = \frac{\hat{\psi}(n)}{\hat{\mathcal{M}}(n)}\widehat{\mathcal{L}_Ng}(n,k)$
- 3. Compute the estimator $\mathcal{E}_{N,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \widehat{\mathcal{E}_{N,\psi}g}(n,k) Y_{n}^{k}$
- ► Complexity: O(N² log² N) with fast spherical Fourier transform (NFSFT) (Driscoll & Healy, 1994) (Potts, Steidl & Tasche, 1998) (Kunis & Potts, 2003) (Keiner & Potts, 2008)

- 1. Compute the Fourier coefficients $\widehat{\mathcal{L}_N g}(n,k) = \sum_{m=1}^m \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$
- 2. Compute the regularization $\widehat{\mathcal{E}_{N,\psi}g}(n,k) = \frac{\hat{\psi}(n)}{\hat{\mathcal{M}}(n)}\widehat{\mathcal{L}_Ng}(n,k)$
- 3. Compute the estimator $\mathcal{E}_{N,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \widehat{\mathcal{E}_{N,\psi}g}(n,k) Y_{n}^{k}$
- ► Complexity: O(N² log² N) with fast spherical Fourier transform (NFSFT) (Driscoll & Healy, 1994) (Potts, Steidl & Tasche, 1998) (Kunis & Potts, 2003) (Keiner & Potts, 2008)

- 1. Compute the Fourier coefficients $\widehat{\mathcal{L}_N g}(n,k) = \sum_{m=1}^{M} \omega_m g(\boldsymbol{\xi}_m) \overline{Y_n^k(\boldsymbol{\xi}_m)}$
- 2. Compute the regularization $\widehat{\mathcal{E}_{N,\psi}g}(n,k) = \frac{\hat{\psi}(n)}{\hat{\mathcal{M}}(n)}\widehat{\mathcal{L}_Ng}(n,k)$
- 3. Compute the estimator $\mathcal{E}_{N,\psi}g = \sum_{n=0}^{N} \sum_{k=-n}^{n} \widehat{\mathcal{E}_{N,\psi}g}(n,k) Y_{n}^{k}$
- ► Complexity: $O(N^2 \log^2 N)$ with fast spherical Fourier transform (NFSFT) (Driscoll & Healy, 1994) (Potts, Steidl & Tasche, 1998) (Kunis & Potts, 2003) (Keiner & Potts, 2008)

Application Numerical results for the Funk–Radon transform

Test function *f* (quadratic spline)

Funk–Radon transform of f

$$\mathcal{R}f(\boldsymbol{\xi}) = \int_{\boldsymbol{\xi}\cdot\boldsymbol{\eta}=0} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$$

Application Numerical results for the Funk-Radon transform

Application Numerical results for the Funk-Radon transform

TUC, MA · March 2015 · Michael Quellmalz

https://www.tu-chemnitz.de/~qmi

\endinput