A generalization of the spherical Radon transform to circles passing through a fixed point

Michael Quellmalz

Technische Universität Chemnitz, Faculty of Mathematics

> 8th International Conference "Inverse Problems: Modeling \& Simulation"

26 May 2016

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\eta \in \mathbb{S}^{2}:\langle\xi, \eta\rangle=x\right\}
$$

for $\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$
" Spherical Radon transformn (a.k.a. Funk-Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

for $\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$

- Spherical Radon transform (a.k.a. Funk-Radon transform)

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

for $\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$

- Spherical Radon transform (a.k.a. Funk-Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right) \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

[Funk, 1913]

Generalized Radon transform

[Salman, 2015]
Replace 0 by an arbitrary point

$$
\boldsymbol{\zeta}=(0,0, z)^{\top}, \quad 0 \leq z<1
$$

inside the sphere.
Circle through ζ is

Definition

Generalized Radon transform

[Salman, 2015]
Replace 0 by an arbitrary point

$$
\boldsymbol{\zeta}=(0,0, z)^{\top}, \quad 0 \leq z<1
$$

inside the sphere.
Circle through ζ is

$$
\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\underbrace{\langle\boldsymbol{\xi}, \boldsymbol{\zeta}\rangle}_{=z \xi_{3}}\} .
$$

Definition

Generalized Radon transform

[Salman, 2015]
Replace 0 by an arbitrary point

$$
\boldsymbol{\zeta}=(0,0, z)^{\top}, \quad 0 \leq z<1
$$

inside the sphere.
Circle through ζ is

$$
\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\underbrace{\langle\boldsymbol{\xi}, \boldsymbol{\zeta}\rangle}_{=z \xi_{3}}\} .
$$

Definition

$\mathcal{U}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right)$,
$\mathcal{U} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$

What is known about the spherical Radon transform

The spherical Radon transform

$$
\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.
Its nullspace consists of all odd functions $f(\boldsymbol{\xi})=-f(-\boldsymbol{\xi})$.

What about the generalized Radon transform?

What is known about the spherical Radon transform

The spherical Radon transform

$$
\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.
Its nullspace consists of all odd functions $f(\boldsymbol{\xi})=-f(-\boldsymbol{\xi})$.

Question

What about the generalized Radon transform?

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto \sqrt{\frac{1+z}{1-z} x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through $\zeta=(0,0, z)^{\top}$

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto \sqrt{\frac{1+z}{1-z} x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through $\zeta=(0,0, z)^{\top}$.

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection
h maps great circles to small circles through $\zeta=(0,0, z)^{\top}$.

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through $\zeta=(0,0, z)^{\top}$

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$

We show that

h maps great circles to small circles through $\boldsymbol{\zeta}=(0,0, z)^{\top}$.

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
> - $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$

Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
intersects
$\sigma(\pi(E))$ in two antipodal

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s

intersects

in two antinodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- $\sigma(\pi(G))$ intersects $\sigma(\pi(E))$ in two antipodal points

3) Inverse stereographic projection π^{-1}

- The circle with radius s is
mapped to the circle of latitude $z ; \quad h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$
intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle through $\zeta=(0,0, z)$

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
intersects $h(E)$ in two
antipodal points

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
is a small circle through $\zeta=(0,0, z)$

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle

The resulting map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\eta})=\left(\begin{array}{l}
\frac{\sqrt{1-z^{2}}}{1-z \eta_{3}} \eta_{1} \\
\frac{\sqrt{1-z^{2}}}{1-z \eta_{3}} \eta_{2} \\
\frac{z+\eta_{3}}{1-z \eta_{3}}
\end{array}\right)
$$

Theorem

Let $z \in[0,1)$. The generalized Radon transform \mathcal{U} can be represented with the operators $\mathcal{M}, \mathcal{F}, \mathcal{N}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}\left(\mathbb{S}^{2}\right)$ via

$$
\mathcal{U}=\mathcal{N} \mathcal{F} \mathcal{M}
$$

These operators are defined for $f \in C\left(\mathbb{S}^{2}\right)$ by

- $\mathcal{M} f(\boldsymbol{\xi})=\frac{\sqrt{1-z^{2}}}{1+z \xi_{3}}[f \circ h](\boldsymbol{\xi})$
- \mathcal{F}... spherical Radon transform
- $\mathcal{N} f(\boldsymbol{\xi})=f\left(\frac{1}{\sqrt{1-z^{2} \xi_{3}^{2}}}\left(\xi_{1}, \xi_{2}, \sqrt{1-z^{2}} \xi_{3}\right)\right)$

Nullspace of \mathcal{U}

Theorem

R... Reflection of the sphere about the point $\zeta=(0,0, z)^{\top}$
$f \in L^{2}\left(\mathbb{S}^{2}\right)$
We have

$$
\mathcal{U} f=0
$$

if and only if for almost all $\boldsymbol{\eta} \in \mathbb{S}^{2}$

Nullspace of \mathcal{U}

Theorem

R... Reflection of the sphere about the point $\zeta=(0,0, z)^{\top}$

$$
f \in L^{2}\left(\mathbb{S}^{2}\right)
$$

We have

$$
\mathcal{U} f=0
$$

if and only if for almost all $\boldsymbol{\eta} \in \mathbb{S}^{2}$

$$
f(\boldsymbol{\eta})=-f(\mathbf{R} \boldsymbol{\eta}) \frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}}
$$

Factorization

Range of \mathcal{U}

Theorem

The generalized Radon transform

$$
\mathcal{U}: \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)=\left\{f \in L^{2}\left(\mathbb{S}^{2}\right) \left\lvert\, f(\boldsymbol{\eta})=f(\mathbf{R} \boldsymbol{\eta}) \frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}}\right.\right\}$
- $H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right) \ldots$ Sobolev space of smoothness $1 / 2$ that contains only even functions

Sketch of proof

We show

$$
\mathcal{U}=\mathcal{N F} \mathcal{F M}: \tilde{L}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\mathcal{M}: \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ is unitary
- $\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective
 $\mathcal{N}, \mathcal{N}^{-1}: H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right)$ are continuous
- $\mathcal{N}: H_{c}^{1 / 2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and biiective (shown with interpolation theory [Triebel, 1995])

Sketch of proof

We show

$$
\mathcal{U}=\mathcal{N F} \mathcal{F M}: \tilde{L}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\mathcal{M}: \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ is unitary
- $\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective

- $\mathcal{N}: H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective (shown with interpolation theory [Triebel, 1995])

Sketch of proof

We show

$$
\mathcal{U}=\mathcal{N F} \mathcal{F} M: \tilde{L}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\mathcal{M}: \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ is unitary
- $\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective
- $\mathcal{N}, \mathcal{N}^{-1}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ are continuous and $\mathcal{N}, \mathcal{N}^{-1}: H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right)$ are continuous interpolation theory [Triebel, 1995])

Sketch of proof

We show

$$
\mathcal{U}=\mathcal{N F} \mathcal{F M}: \tilde{L}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\mathcal{M}: \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ is unitary
- $\mathcal{F}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective
- $\mathcal{N}, \mathcal{N}^{-1}: L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow L_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$ are continuous and $\mathcal{N}, \mathcal{N}^{-1}: H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1}\left(\mathbb{S}^{2}\right)$ are continuous
- $\mathcal{N}: H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)$ is continuous and bijective (shown with interpolation theory [Triebel, 1995])

Inversion formula

Theorem

Let $z \in[0,1)$ and $f \in \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$. For $\boldsymbol{\eta} \in \mathbb{S}^{2}$,

$$
f(\boldsymbol{\eta})=\left.\frac{1-z^{2}}{2 \pi(1-z v)} \frac{\mathrm{d}}{\mathrm{~d} u} \int_{0}^{u} \int_{\mathscr{S}_{z}(\boldsymbol{\eta}, w)} \mathcal{U} f\left(\frac{\left(\sqrt{1-z^{2}}\left(\xi_{1}, \xi_{2}\right), \xi_{3}\right)}{\sqrt{1-z^{2}+z^{2} \xi_{3}^{2}}}\right) \mathrm{d} s(\boldsymbol{\xi}) \frac{\mathrm{d} w}{\sqrt{u^{2}-w^{2}}}\right|_{u=1}
$$

where $\mathrm{d} s$ is the arc-length on the circle

$$
\mathscr{S}_{z}(\boldsymbol{\eta}, w)=\left\{\boldsymbol{\xi} \in \mathbb{S}^{2} \mid\left\langle\boldsymbol{\xi},\left(\sqrt{1-z^{2}}\left(\eta_{1}, \eta_{2}\right), \eta_{3}-z\right)\right\rangle=\left(1-z \eta_{3}\right) \sqrt{1-w^{2}}\right\} .
$$

based on an inversion formula of the spherical Radon transform by [Helgason, 1980]

Inversion formula

Theorem

Let $z \in[0,1)$ and $f \in \tilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)$. For $\boldsymbol{\eta} \in \mathbb{S}^{2}$,

$$
f(\boldsymbol{\eta})=\left.\frac{1-z^{2}}{2 \pi(1-z v)} \frac{\mathrm{d}}{\mathrm{~d} u} \int_{0}^{u} \int_{\mathscr{S}_{z}(\boldsymbol{\eta}, w)} \mathcal{U} f\left(\frac{\left(\sqrt{1-z^{2}}\left(\xi_{1}, \xi_{2}\right), \xi_{3}\right)}{\sqrt{1-z^{2}+z^{2} \xi_{3}^{2}}}\right) \mathrm{d} s(\boldsymbol{\xi}) \frac{\mathrm{d} w}{\sqrt{u^{2}-w^{2}}}\right|_{u=1}
$$

where $\mathrm{d} s$ is the arc-length on the circle

$$
\mathscr{S}_{z}(\boldsymbol{\eta}, w)=\left\{\boldsymbol{\xi} \in \mathbb{S}^{2} \mid\left\langle\boldsymbol{\xi},\left(\sqrt{1-z^{2}}\left(\eta_{1}, \eta_{2}\right), \eta_{3}-z\right)\right\rangle=\left(1-z \eta_{3}\right) \sqrt{1-w^{2}}\right\} .
$$

- based on an inversion formula of the spherical Radon transform by [Helgason, 1980]

Numerical inversion (via Fourier expansion)

- The last inversion formula is numerically unstable
- Utilize factorization

- \mathcal{M}^{-1} and \mathcal{N}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the spherical Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Numerical inversion (via Fourier expansion)

- The last inversion formula is numerically unstable
- Utilize factorization

$$
\mathcal{U}^{-1}=\mathcal{M}^{-1} \mathcal{F}^{-1} \mathcal{N}^{-1}
$$

- \mathcal{M}^{-1} and \mathcal{N}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the spherical Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]
- The last inversion formula is numerically unstable
- Utilize factorization

$$
\mathcal{U}^{-1}=\mathcal{M}^{-1} \mathcal{F}^{-1} \mathcal{N}^{-1}
$$

- \mathcal{M}^{-1} and \mathcal{N}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the spherical Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Numerical inversion (via Fourier expansion)

- The last inversion formula is numerically unstable
- Utilize factorization

$$
\mathcal{U}^{-1}=\mathcal{M}^{-1} \mathcal{F}^{-1} \mathcal{N}^{-1}
$$

- \mathcal{M}^{-1} and \mathcal{N}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the spherical Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Numerical inversion (via Fourier expansion)

- The last inversion formula is numerically unstable
- Utilize factorization

$$
\mathcal{U}^{-1}=\mathcal{M}^{-1} \mathcal{F}^{-1} \mathcal{N}^{-1}
$$

- \mathcal{M}^{-1} and \mathcal{N}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the spherical Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available
[Keiner \& Potts, 2008]

The case $z=1$ (spherical slice transform) [Abouelaz \& Daher, 1993]

$$
\mathcal{V} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

- "Circles through the North pole"
- Stereographic projection turns circles into lines in the plane
- \mathcal{V} is injective for all bounded functions
[Rubin, 2015]

The case $z=1$ (spherical slice transform) [Abouelaz \& Daher, 1993]

$$
\mathcal{V} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

- "Circles through the North pole"
- Stereographic projection turns circles into lines in the plane
- \mathcal{V} is injective for all bounded functions
[Rubin, 2015]

The case $z=1$ (spherical slice transform) [Abouelaz \& Daher, 1993]

$$
\mathcal{V} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

- "Circles through the North pole"
- Stereographic projection turns circles into lines in the plane
- \mathcal{V} is injective for all bounded functions
[Rubin, 2015]

Selected bibliography

\square P. Funk.

Über Flächen mit lauter geschlossenen geodätischen Linien.
Math. Ann., 74(2): 278 - 300, 1913.
囯 Y. Salman.
An inversion formula for the spherical transform in S^{2} for a special family of circles of integration.
Anal. Math. Phys., 6(1): 43 - 58, 2016.
圊 M. Quellmalz.
A generalization of the Funk-Radon transform to circles passing through a fixed point.
Preprint, Faculty of Mathematics, TU Chemnitz, 2015.

\endinput

