A generalization of the Funk-Radon transform Faculty of Mathematics, Technische Universität Chemnitz

A generalization of the Funk-Radon transform

Michael Quellmalz

Faculty of Mathematics, Technische Universität Chemnitz

Chemnitz Symposium on Inverse Problems 2016 September 22, 2016

Table of content

1. Funk-Radon transform

Introduction
Properties
Generalizations
2. Generalized Radon transform for planes through a fixed point

Definition
Factorization
Corollaries of the factorization
Continuity in z

Table of content

1. Funk-Radon transform

Introduction
Properties
Generalizations
2. Generalized Radon transform for planes through a fixed point Definition
Factorization
Corollaries of the factorization
Continuity in z

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$

Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\eta \in \mathbb{S}^{2}:\langle\xi, \eta\rangle=x\right\},
$$

Spherical mean operator

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$$
(\boldsymbol{\xi}, x) \in \mathbb{S}^{2} \times[-1,1]
$$

Spherical mean operator

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$$
(\boldsymbol{\xi}, x) \in \mathbb{S}^{2} \times[-1,1]
$$

Spherical mean operator

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

Funk-Radon transform

- Restriction to all great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

[Funk, 1913]

Range

Funk-Radon transform

- Restriction to all great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

Questions

1. Injectivity
(Knowing the mean values of f on great circles, can we reconstruct f ?)
2. Range

Funk-Radon transform
Properties

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ in terms of the spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}
$$

Eingenvalue decomposition

The Funk-Dadon transform is given by

P_{n} - Legendre polynomial of degree n
\Rightarrow The Funk- Dadon transform is injective for even functions

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ in terms of the spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}
$$

Eingenvalue decomposition

[Minkowski, 1904]
The Funk-Radon transform is given by

$$
\mathcal{F} Y_{n}^{k}(\boldsymbol{\xi})=P_{n}(0) Y_{n}^{k}(\boldsymbol{\xi}), \quad P_{n}(0)= \begin{cases}\frac{(n-1)!!}{n!!}, & n \text { even }, \\ 0, & n \text { odd } .\end{cases}
$$

P_{n} - Legendre polynomial of degree n
\Longrightarrow The Funk-Radon transform is injective for even functions

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ in terms of the spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k} .
$$

Eingenvalue decomposition

[Minkowski, 1904]
The Funk-Radon transform is given by

$$
\mathcal{F} Y_{n}^{k}(\boldsymbol{\xi})=P_{n}(0) Y_{n}^{k}(\boldsymbol{\xi}), \quad P_{n}(0)= \begin{cases}\frac{(n-1)!!}{n!!}, & n \text { even }, \\ 0, & n \text { odd } .\end{cases}
$$

P_{n} - Legendre polynomial of degree n
\Longrightarrow The Funk-Radon transform is injective for even functions
$f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$.

Sobolev spaces

For $s \geq 0$, the Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ is the completion of the space of polynomials $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s}
$$

Theorem

Sobolev spaces

For $s \geq 0$, the Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ is the completion of the space of polynomials $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s}
$$

Theorem

The Funk-Radon transform is bijective

$$
\mathcal{F}: L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\text {even }}^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)
$$

Circles with fixed radius

－For fixed $x_{0} \in[-1,1]$ ，compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

－Eigenvalue decomposition

＂Freak theorem＂

［Schneider，1969］
The set of values x_{0} for which $S_{x_{0}}$ is not injective is countable and dense in $[-1,1]$ ．

Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}
［Rubin，2000］

Circles with fixed radius

- For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"

[Schneider, 1969]
The set of values x_{0} for which $S_{x_{0}}$ is not injective is countable and dense in $[-1,1]$

Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given $x_{0} \quad$ [Rubin, 2000]

Circles with fixed radius

- For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.

$$
\text { Explicit algorithm to determine if } \mathcal{S}_{x_{0}} \text { is injective for given } x_{0} \quad \text { [Rubin, 2000] }
$$

Circles with fixed radius

- For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.

Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0} [Rubin, 2000]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=$
- Proof1: Orthogonal projection onto equatorial plane [Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=$ $f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Proof1: Orthogonal projection onto equatorial plane [Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=$ $f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Proof1: Orthogonal projection onto equatorial plane
[Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=$ $f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Proof1: Orthogonal projection onto equatorial plane
[Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Table of content

1. Funk-Radon transform

Introduction
Properties
Generalizations
2. Generalized Radon transform for planes through a fixed point Definition

Factorization

Corollaries of the factorization
Continuity in z

Planes through a fixed point

Replace 0 by an arbitrary point

$$
(0,0, z), \quad 0 \leq z<1
$$

inside the sphere.

Circle through $(0,0, z)$ is

Definition

$11 \cdot C\left(\mathbb{S}^{2}\right)-C\left(\mathbb{S}^{2}\right)$

Planes through a fixed point

Replace 0 by an arbitrary point

$$
(0,0, z), \quad 0 \leq z<1
$$

inside the sphere．
Circle through $(0,0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}\right\}
$$

Planes through a fixed point

Replace 0 by an arbitrary point

$$
(0,0, z), \quad 0 \leq z<1
$$

inside the sphere.
Circle through $(0,0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}\right\}
$$

Definition

$$
\begin{aligned}
& \mathcal{U}_{z}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right) \\
& \mathcal{U}_{u} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto \sqrt{\frac{1+z}{1-z}} x$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection
h maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
h maps great circles to small circles through ($0,0, z$).

From great circles to small circles

Definition

Define the map

$$
h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}, \quad h=\pi^{-1} \circ \sigma \circ \pi
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$
2. Scaling in the plane $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$

We show that

h maps great circles to small circles through $(0,0, z)$.

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
$\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
> - $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle radius s

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- $\sigma(\pi(G))$ intersects $\sigma(\pi(E))$ in two antipodal points

3) Inverse stereographic projection π^{-1}

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
intersects $h(E)$ in two antipodal points

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle

The resulting map h

$$
h(\boldsymbol{\eta})=\left(\begin{array}{c}
\frac{\sqrt{1-z^{2}}}{1-z \eta_{3}} \eta_{1} \\
\frac{\sqrt{1-z^{2}}}{1-z \eta_{3}} \eta_{2} \\
\frac{z+\eta_{3}}{1-z \eta_{3}}
\end{array}\right)
$$

$h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is conformal

Theorem

Let $z \in[0,1)$. The generalized Radon transform \mathcal{U}_{z} can be represented with the operators $\mathcal{M}_{z}, \mathcal{F}, \mathcal{N}_{z}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}\left(\mathbb{S}^{2}\right)$ via

$$
\mathcal{U}_{z}=\mathcal{N}_{z} \mathcal{F} \mathcal{M}_{z}
$$

These operators are defined for $f \in C\left(\mathbb{S}^{2}\right)$ by

- $\mathcal{M}_{z} f(\boldsymbol{\xi})=\frac{\sqrt{1-z^{2}}}{1+z \xi_{3}}[f \circ h](\boldsymbol{\xi})$
- \mathcal{F}... Funk-Radon transform
- $\mathcal{N}_{z} f(\boldsymbol{\xi})=f\left(\frac{1}{\sqrt{1-z^{2} \xi_{3}^{2}}}\left(\xi_{1}, \xi_{2}, \sqrt{1-z^{2}} \xi_{3}\right)\right)$

Nullspace of \mathcal{U}_{z}

Theorem

R... Reflection of the sphere about the point $(0,0, z)$

$$
f \in L^{2}\left(\mathbb{S}^{2}\right)
$$

We have

Nullspace of \mathcal{U}_{z}

Theorem

R... Reflection of the sphere about the point $(0,0, z)$
$f \in L^{2}\left(\mathbb{S}^{2}\right)$
We have

$$
\mathcal{U}_{z} f=0
$$

if and only if for almost all $\boldsymbol{\eta} \in \mathbb{S}^{2}$

$$
f(\boldsymbol{\eta})=-f(\mathbf{R} \boldsymbol{\eta}) \frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}}
$$

Range of \mathcal{U}_{z}

Theorem

The generalized Radon transform

$$
\mathcal{U}_{z}: \widetilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\widetilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)=\left\{f \in L^{2}\left(\mathbb{S}^{2}\right) \left\lvert\, f(\boldsymbol{\eta})=f(\mathbf{R} \boldsymbol{\eta}) \frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}}\right.\right\}$
- $H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right) \ldots$ Sobolev space of smoothness $1 / 2$ that contains only even functions

Inversion via Fourier expansion

- Use the factorization

$$
\mathcal{U}_{z}^{-1}=\mathcal{M}_{z}^{-1} \mathcal{F}^{-1} \mathcal{N}_{z}^{-1}
$$

- \mathcal{M}_{z}^{-1} and \mathcal{N}_{z}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Inversion via Fourier expansion

- Use the factorization

$$
\mathcal{U}_{z}^{-1}=\mathcal{M}_{z}^{-1} \mathcal{F}^{-1} \mathcal{N}_{z}^{-1}
$$

- \mathcal{M}_{z}^{-1} and \mathcal{N}_{z}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Generalized Radon transform for planes through a fixed point

Inversion via Fourier expansion

- Use the factorization

$$
\mathcal{U}_{z}^{-1}=\mathcal{M}_{z}^{-1} \mathcal{F}^{-1} \mathcal{N}_{z}^{-1}
$$

- \mathcal{M}_{z}^{-1} and \mathcal{N}_{z}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available
[Keiner \& Potts, 2008]

Inversion via Fourier expansion

- Use the factorization

$$
\mathcal{U}_{z}^{-1}=\mathcal{M}_{z}^{-1} \mathcal{F}^{-1} \mathcal{N}_{z}^{-1}
$$

- \mathcal{M}_{z}^{-1} and \mathcal{N}_{z}^{-1} can be computed explicitly
- For \mathcal{F}^{-1} : Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization)
[Louis et al., 2011] [Hielscher \& Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner \& Potts, 2008]

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Continuity in z

Circles of integration of \mathcal{U}_{z} depend "smoothly" on z

Theorem

Let $f \in C\left(\mathbb{S}^{2}\right)$ and $z \in[0,1]$. Then

$$
\lim _{y \rightarrow z}\left\|\mathcal{U}_{y} f-\mathcal{U}_{z} f\right\|_{L^{\infty}\left(\mathbb{S}^{2}\right)}=0
$$ Continuity in z

$z=1$: Spherical slice transform \mathcal{U}_{1}

Circles through the north pole

We already know

\mathcal{U}_{z} is continuous with respect to
\mathcal{U}_{z} is injective for functions vanishing for $\eta_{3}>z$ for all

Injectivity of U_{1}
The spherical slice transform \mathcal{U}_{1} is
injective for Lipschitz functions
vanishing around the north pole.
$z=1$: Spherical slice transform \mathcal{U}_{1}

Circles through the north pole

We already know

1. \mathcal{U}_{z} is continuous with respect to z
\mathcal{U}_{z} is injective for functions vanishing for $\eta_{3}>z$ for all
\square
The spherical slice transform \mathcal{U}_{1} is
injective for Lipschitz functions
vanishing around the north pole.
$z=1$: Spherical slice transform \mathcal{U}_{1}
[Abouelaz \& Daher, 1993]

Circles through the north pole

We already know

1. \mathcal{U}_{z} is continuous with respect to z
2. \mathcal{U}_{z} is injective for functions vanishing for $\eta_{3}>z$ for all $z<1$

Injectivity of \mathcal{U}_{1}
The spherical slice transform \mathcal{U}_{1} is
injective for Lipschitz functions
vanishing around the north pole.

Circles through the north pole

We already know

1. \mathcal{U}_{z} is continuous with respect to z
2. \mathcal{U}_{z} is injective for functions vanishing for $\eta_{3}>z$ for all $z<1$

Injectivity of \mathcal{U}_{1}

The spherical slice transform \mathcal{U}_{1} is injective for Lipschitz functions vanishing around the north pole.

- Stereographic projection turns circles into lines in the plane \nearrow Radon transform in \mathbb{R}^{2}

- \mathcal{U}_{1} is injective if f is

 differentiable and vanishes at $(0,0,1) \quad[H e l g a s o n, 1999]$- \mathcal{U}_{1} is injective for all bounded functions
- Stereographic projection turns circles into lines in the plane Radon transform in \mathbb{R}^{2}
- \mathcal{U}_{1} is injective if f is differentiable and vanishes at $(0,0,1)$ [Helgason, 1999]
- \mathcal{U}_{1} is injective for all bounded functions
- Stereographic projection turns circles into lines in the plane ${ }^{7}$ Radon transform in \mathbb{R}^{2}
- \mathcal{U}_{1} is injective if f is differentiable and vanishes at $(0,0,1)$ [Helgason, 1999]
- \mathcal{U}_{1} is injective for all bounded functions
[Rubin, 2015]

Selected bibliography

\square P. Funk.

Über Flächen mit lauter geschlossenen geodätischen Linien.
Math. Ann., 74(2): 278 - 300, 1913.
國 Y. Salman.
An inversion formula for the spherical transform in S^{2} for a special family of circles of integration.
Anal. Math. Phys., 6(1): 43 - 58, 2016.
量 M. Quellmalz.
A generalization of the Funk-Radon transform to circles passing through a fixed point.
Preprint 2015-17, Faculty of Mathematics, TU Chemnitz, 2015.

\endinput

