

CHEMNITZ

A generalization of the Funk–Radon transform Faculty of Mathematics, Technische Universität Chemnitz

A generalization of the Funk-Radon transform

Michael Quellmalz

Faculty of Mathematics, Technische Universität Chemnitz

Chemnitz Symposium on Inverse Problems 2016 September 22, 2016

Table of content

1. Funk-Radon transform

Introduction Properties Generalizations

2. Generalized Radon transform for planes through a fixed point Definition Factorization Corollaries of the factorization Continuity in z

Table of content

1. Funk-Radon transform Introduction Properties Generalizations

2. Generalized Radon transform for planes through a fixed point Definition Factorization Corollaries of the factorization Continuity in z

• Sphere
$$\mathbb{S}^2 = \{ \boldsymbol{\xi} \in \mathbb{R}^3 : \| \boldsymbol{\xi} \| = 1 \}$$

- Function $f: \mathbb{S}^2 \to \mathbb{C}$
- Circles on the sphere are intersections of the sphere with planes:

$$\{\boldsymbol{\eta}\in\mathbb{S}^2:\langle\boldsymbol{\xi},\boldsymbol{\eta}\rangle=x\},\$$

$$(\pmb{\xi},x)\in\mathbb{S}^2\times[-1,1]$$

Spherical mean operator

$$\begin{split} \mathcal{S} &: C(\mathbb{S}^2) \to C(\mathbb{S}^2 \times [-1,1]), \\ \mathcal{S}f(\boldsymbol{\xi}, \boldsymbol{x}) &= \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = \boldsymbol{x}} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\lambda}(\boldsymbol{\eta}) \end{split}$$

• Sphere
$$\mathbb{S}^2 = \{ \boldsymbol{\xi} \in \mathbb{R}^3 : \| \boldsymbol{\xi} \| = 1 \}$$

• Function $f: \mathbb{S}^2 \to \mathbb{C}$

 Circles on the sphere are intersections of the sphere with planes:

$$\{\boldsymbol{\eta} \in \mathbb{S}^2 : \langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x\},\$$

$$(\pmb{\xi},x)\in\mathbb{S}^2\times[-1,1]$$

Spherical mean operator

$$\mathcal{S}: C(\mathbb{S}^2) \to C(\mathbb{S}^2 \times [-1, 1]),$$
$$\mathcal{S}f(\boldsymbol{\xi}, \boldsymbol{x}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = \boldsymbol{x}} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

• Sphere
$$\mathbb{S}^2 = \{ \boldsymbol{\xi} \in \mathbb{R}^3 : \| \boldsymbol{\xi} \| = 1 \}$$

• Function $f: \mathbb{S}^2 \to \mathbb{C}$

 Circles on the sphere are intersections of the sphere with planes:

$$\{\boldsymbol{\eta}\in\mathbb{S}^2:\langle\boldsymbol{\xi},\boldsymbol{\eta}\rangle=x\},\$$

$$(\pmb{\xi},x)\in\mathbb{S}^2\times[-1,1]$$

Spherical mean operator

$$\begin{split} \mathcal{S} \colon C(\mathbb{S}^2) &\to C(\mathbb{S}^2 \times [-1,1]), \\ \mathcal{S}f(\boldsymbol{\xi}, x) &= \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}) \end{split}$$

٤

Funk-Radon transform

- Restriction to all great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$\begin{aligned} \mathcal{F} \colon C(\mathbb{S}^2) &\to C(\mathbb{S}^2), \\ \mathcal{F}f(\boldsymbol{\xi}) &= \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}) \end{aligned}$$

Questions

Injectivity
 (Knowing the mean values of *f* on great circles, can we reconstruct *f*?)
 Pange

Funk-Radon transform

- Restriction to all great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$\begin{aligned} \mathcal{F} \colon C(\mathbb{S}^2) &\to C(\mathbb{S}^2), \\ \mathcal{F}f(\boldsymbol{\xi}) &= \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}) \end{aligned}$$

Questions

- 1. Injectivity (Knowing the mean values of *f* on great circles, can we reconstruct *f*?)
- 2. Range

Fourier series

Write $f \in L^2(\mathbb{S}^2)$ in terms of the spherical harmonics Y_n^k of degree n

$$f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n,k) Y_n^k.$$

Eingenvalue decomposition

[Minkowski, 1904]

The Funk-Radon transform is given by

$$\mathcal{F}Y_n^k(\boldsymbol{\xi}) = P_n(0)Y_n^k(\boldsymbol{\xi}), \qquad P_n(0) = \begin{cases} rac{(n-1)!!}{n!!}, & n \text{ even}, \\ 0, & n \text{ odd}. \end{cases}$$

 P_n – Legendre polynomial of degree n

 \implies The Funk–Radon transform is injective for even functions $f(\xi) = f(-\xi)$.

Fourier series

Write $f \in L^2(\mathbb{S}^2)$ in terms of the spherical harmonics Y_n^k of degree n

$$f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n,k) Y_n^k.$$

Eingenvalue decomposition

[Minkowski, 1904]

The Funk-Radon transform is given by

$$\mathcal{F}Y_n^k(\boldsymbol{\xi}) = P_n(0)Y_n^k(\boldsymbol{\xi}), \qquad P_n(0) = \begin{cases} \frac{(n-1)!!}{n!!}, & n \text{ even}, \\ 0, & n \text{ odd}. \end{cases}$$

P_n – Legendre polynomial of degree n

 \implies The Funk–Radon transform is injective for even functions $f(\xi) = f(-\xi)$.

Fourier series

Write $f\in L^2(\mathbb{S}^2)$ in terms of the spherical harmonics Y_n^k of degree n

$$f = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n,k) Y_n^k.$$

Eingenvalue decomposition

[Minkowski, 1904]

The Funk-Radon transform is given by

$$\mathcal{F}Y_n^k(\boldsymbol{\xi}) = P_n(0)Y_n^k(\boldsymbol{\xi}), \qquad P_n(0) = \begin{cases} rac{(n-1)!!}{n!!}, & n \text{ even}, \\ 0, & n \text{ odd}. \end{cases}$$

 P_n – Legendre polynomial of degree n

 \implies The Funk–Radon transform is injective for even functions $f(\boldsymbol{\xi}) = f(-\boldsymbol{\xi}).$

Sobolev spaces

For $s \ge 0$, the **Sobolev space** $H^s(\mathbb{S}^2)$ is the completion of the space of polynomials $f: \mathbb{S}^2 \to \mathbb{C}$ with the norm

$$\|f\|_{s}^{2} = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \left|\hat{f}(n,k)\right|^{2} \left(n + \frac{1}{2}\right)^{2s}$$

Theorem

[Strichartz, 1981]

The Funk–Radon transform is bijective

$$\mathcal{F}\colon L^2_{\text{even}}(\mathbb{S}^2) \to H^{\frac{1}{2}}_{\text{even}}(\mathbb{S}^2).$$

Sobolev spaces

For $s \ge 0$, the **Sobolev space** $H^s(\mathbb{S}^2)$ is the completion of the space of polynomials $f: \mathbb{S}^2 \to \mathbb{C}$ with the norm

$$\|f\|_{s}^{2} = \sum_{n=0}^{\infty} \sum_{k=-n}^{n} \left|\hat{f}(n,k)\right|^{2} \left(n + \frac{1}{2}\right)^{2s}$$

Theorem

[Strichartz, 1981]

The Funk-Radon transform is bijective

$$\mathcal{F}\colon L^2_{\text{even}}(\mathbb{S}^2) \to H^{\frac{1}{2}}_{\text{even}}(\mathbb{S}^2).$$

For fixed $x_0 \in [-1, 1]$, compute

$$\mathcal{S}_{x_0}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta}
angle = x_0} f(\boldsymbol{\eta}) \,\mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{S}_{x_0}Y_n^k = P_n(x_0)Y_n^k$$

"Freak theorem

[Schneider, 1969]

The set of values x_0 for which S_{x_0} is **not** injective is countable and dense in [-1, 1].

Explicit algorithm to determine if \mathcal{S}_{x_0} is injective for given x_0

For fixed $x_0 \in [-1, 1]$, compute

$$\mathcal{S}_{x_0}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta}
angle = x_0} f(\boldsymbol{\eta}) \,\mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{S}_{x_0}Y_n^k = P_n(x_0)Y_n^k$$

"Freak theorem

[Schneider, 1969]

The set of values x_0 for which S_{x_0} is **not** injective is countable and dense in [-1, 1].

Explicit algorithm to determine if S_{x_0} is injective for given x_0

For fixed $x_0 \in [-1, 1]$, compute

$$\mathcal{S}_{x_0}f(oldsymbol{\xi}) = \int_{\langle oldsymbol{\xi},oldsymbol{\eta}
angle = x_0} f(oldsymbol{\eta}) \,\mathrm{d}oldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{S}_{x_0}Y_n^k = P_n(x_0)Y_n^k$$

"Freak theorem"

[Schneider, 1969]

The set of values x_0 for which S_{x_0} is **not** injective is countable and dense in [-1, 1].

Explicit algorithm to determine if S_{x_0} is injective for given x_0

[Rubin, 2000]

For fixed $x_0 \in [-1, 1]$, compute

$$\mathcal{S}_{x_0}f(oldsymbol{\xi}) = \int_{\langle oldsymbol{\xi},oldsymbol{\eta}
angle = x_0} f(oldsymbol{\eta}) \,\mathrm{d}oldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{S}_{x_0}Y_n^k = P_n(x_0)Y_n^k$$

"Freak theorem"

[Schneider, 1969]

The set of values x_0 for which S_{x_0} is **not** injective is countable and dense in [-1, 1].

Explicit algorithm to determine if S_{x_0} is injective for given x_0

$$S(\boldsymbol{\xi}, x) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_3 = 0$$

Circles perpendicular to the equator

- ► Injective for symmetric functions f(ξ₁, ξ₂, ξ₃) = f(ξ₁, ξ₂, -ξ₃)
- Proof1: Orthogonal projection onto equatorial plane

[Gindikin, Reeds & Shepp, 1994]

$$\mathcal{S}(\boldsymbol{\xi}, x) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_3 = 0$$

- Circles perpendicular to the equator
- Injective for symmetric functions f(ξ1, ξ2, ξ3) = f(ξ1, ξ2, -ξ3)
- Proof1: Orthogonal projection onto equatorial plane

[Gindikin, Reeds & Shepp, 1994]

$$\mathcal{S}(\boldsymbol{\xi}, x) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_3 = 0$$

- Circles perpendicular to the equator
- ► Injective for symmetric functions f(ξ₁, ξ₂, ξ₃) = f(ξ₁, ξ₂, -ξ₃)
- Proof1: Orthogonal projection onto equatorial plane

[Gindikin, Reeds & Shepp, 1994]

$$\mathcal{S}(\boldsymbol{\xi}, x) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = x} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_3 = 0$$

- Circles perpendicular to the equator
- Injective for symmetric functions f(ξ1, ξ2, ξ3) = f(ξ1, ξ2, -ξ3)
- Proof1: Orthogonal projection onto equatorial plane

[Gindikin, Reeds & Shepp, 1994]

Table of content

1. Funk-Radon transform

Introduction Properties Generalizations

2. Generalized Radon transform for planes through a fixed point Definition Factorization Corollaries of the factorization

Continuity in z

Planes through a fixed point

[Salman, 2015]

Replace $\mathbf{0}$ by an arbitrary point

$$(0,0,z), \qquad 0 \leq z < 1$$

inside the sphere.

Circle through (0, 0, z) is

$$\{\boldsymbol{\eta}\in\mathbb{S}^2:\langle\boldsymbol{\xi},\boldsymbol{\eta}\rangle=z\xi_3\}.$$

Definition

$$\mathcal{U}_z \colon C(\mathbb{S}^2) \to C(\mathbb{S}^2),$$
$$\mathcal{U}_u f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \xi_3} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

Planes through a fixed point

[Salman, 2015]

Replace $\mathbf{0}$ by an arbitrary point

$$(0,0,z), \qquad 0 \leq z < 1$$

inside the sphere. Circle through (0, 0, z) is

$$\{\boldsymbol{\eta}\in\mathbb{S}^2:\langle\boldsymbol{\xi},\boldsymbol{\eta}\rangle=z\xi_3\}.$$

Definition

$$\mathcal{U}_z \colon C(\mathbb{S}^2) \to C(\mathbb{S}^2),$$
$$\mathcal{U}_u f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \xi_3} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

Planes through a fixed point

[Salman, 2015]

Replace $\mathbf{0}$ by an arbitrary point

$$(0,0,z), \qquad 0 \leq z < 1$$

inside the sphere. Circle through (0,0,z) is

$$\{\boldsymbol{\eta}\in\mathbb{S}^2:\langle\boldsymbol{\xi},\boldsymbol{\eta}
angle=z\xi_3\}.$$

Definition

$$\begin{aligned} \mathcal{U}_z \colon C(\mathbb{S}^2) &\to C(\mathbb{S}^2), \\ \mathcal{U}_u f(\boldsymbol{\xi}) &= \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \xi_3} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}) \end{aligned}$$

Definition

Define the map

$$h\colon \mathbb{S}^2\to \mathbb{S}^2, \quad h=\pi^{-1}\circ \sigma\circ \pi$$

consisting of

- 1. Stereographic projection $\pi: \mathbb{S}^2 \to \mathbb{R}^2$
- 2. Scaling in the plane $\, \sigma \colon \mathbb{R}^2 o \mathbb{R}^2, \, oldsymbol{x} \mapsto \sqrt{rac{1+z}{1-z}} \, oldsymbol{x}$
- 3. Inverse stereographic projection $\pi^{-1} \colon \mathbb{R}^2 o \mathbb{S}^2$

We show that

h maps great circles to small circles through (0, 0, z).

Definition

Define the map

$$h\colon \mathbb{S}^2\to \mathbb{S}^2, \quad h=\pi^{-1}\circ \sigma\circ \pi$$

consisting of

- 1. Stereographic projection $\pi \colon \mathbb{S}^2 \to \mathbb{R}^2$
- 2. Scaling in the plane $\sigma: \mathbb{R}^2 \to \mathbb{R}^2, x \mapsto \sqrt{\frac{1+z}{1-z}} x$
- 3. Inverse stereographic projection $\ \pi^{-1}\colon \mathbb{R}^2 o \mathbb{S}^2$

We show that

h maps great circles to small circles through (0, 0, z).

Definition

Define the map

$$h\colon \mathbb{S}^2\to \mathbb{S}^2, \quad h=\pi^{-1}\circ \sigma\circ \pi$$

consisting of

- 1. Stereographic projection $\pi \colon \mathbb{S}^2 \to \mathbb{R}^2$
- 2. Scaling in the plane $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2, \ {m x} \mapsto \sqrt{rac{1+z}{1-z}} \, {m x}$
- 3. Inverse stereographic projection $\pi^{-1} \colon \mathbb{R}^2 \to \mathbb{S}^2$

We show that

h maps great circles to small circles through (0, 0, z).

Definition

Define the map

$$h\colon \mathbb{S}^2\to \mathbb{S}^2, \quad h=\pi^{-1}\circ \sigma\circ \pi$$

consisting of

- 1. Stereographic projection $\pi \colon \mathbb{S}^2 \to \mathbb{R}^2$
- 2. Scaling in the plane $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2, \ \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \, \boldsymbol{x}$
- **3**. Inverse stereographic projection $\pi^{-1} \colon \mathbb{R}^2 \to \mathbb{S}^2$

We show that

h maps great circles to small circles through (0, 0, z).

Definition

Define the map

$$h\colon \mathbb{S}^2\to \mathbb{S}^2, \quad h=\pi^{-1}\circ \sigma\circ \pi$$

consisting of

- 1. Stereographic projection $\pi \colon \mathbb{S}^2 \to \mathbb{R}^2$
- 2. Scaling in the plane $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2, \ \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \, \boldsymbol{x}$
- **3**. Inverse stereographic projection $\pi^{-1} \colon \mathbb{R}^2 \to \mathbb{S}^2$

We show that

h maps great circles to small circles through $(0,0,z). \label{eq:holds}$

- ▶ *G* ... Great circle of S²
- E ... Equator of \mathbb{S}^2
- ► *G* intersects *E* in two antipodal points (or is identical to *E*)
- $\blacktriangleright \ \pi(E) = E$
- ► π(G) is a circle or line in ℝ² that intersects π(E) in two antipodal points

- ▶ *G* ... Great circle of S²
- E ... Equator of \mathbb{S}^2
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- ► π(G) is a circle or line in ℝ² that intersects π(E) in two antipodal points

- ▶ *G* ... Great circle of S²
- E ... Equator of \mathbb{S}^2
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- $\pi(G)$ is a circle or line in \mathbb{R}^2 that intersects $\pi(E)$ in two antipodal points

- ▶ *G* ... Great circle of S²
- E ... Equator of \mathbb{S}^2
- ► G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- ► π(G) is a circle or line in ℝ² that intersects π(E) in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s = \sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- σ(π(G)) intersects
 σ(π(E)) in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s = \sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- σ(π(G)) intersects
 σ(π(E)) in two antipodal
 points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s = \sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- σ(π(G)) intersects
 σ(π(E)) in two antipodal points

- ► The circle with radius *s* is mapped to the circle of latitude *z*; *h*(*E*)
- ► h(G) = π⁻¹(σ(π(G))) intersects h(E) in two antipodal points
- ► h(G) is a small circle through (0, 0, z)

- ► The circle with radius s is mapped to the circle of latitude z; h(E)
- h(G) = π⁻¹(σ(π(G))) intersects h(E) in two antipodal points
- ► h(G) is a small circle through (0, 0, z)

- ► The circle with radius s is mapped to the circle of latitude z; h(E)
- ► h(G) = π⁻¹(σ(π(G))) intersects h(E) in two antipodal points
- ► h(G) is a small circle through (0, 0, z)

- ► The circle with radius s is mapped to the circle of latitude z; h(E)
- ► h(G) = π⁻¹(σ(π(G))) intersects h(E) in two antipodal points
- ► h(G) is a small circle through (0, 0, z)

The resulting map h

Theorem

Let $z \in [0,1)$. The generalized Radon transform \mathcal{U}_z can be represented with the operators $\mathcal{M}_z, \mathcal{F}, \mathcal{N}_z \colon L^2(\mathbb{S}^2) \to L^2(\mathbb{S}^2)$ via

$$\mathcal{U}_z = \mathcal{N}_z \mathcal{F} \mathcal{M}_z.$$

These operators are defined for $f\in C(\mathbb{S}^2)$ by

$$\blacktriangleright \mathcal{M}_z f(\boldsymbol{\xi}) = \frac{\sqrt{1-z^2}}{1+z\xi_3} [f \circ h](\boldsymbol{\xi})$$

• \mathcal{F} ... Funk–Radon transform

$$\blacktriangleright \mathcal{N}_z f(\boldsymbol{\xi}) = f\left(\frac{1}{\sqrt{1-z^2\xi_3^2}}\left(\xi_1,\xi_2,\sqrt{1-z^2}\xi_3\right)\right)$$

Nullspace of \mathcal{U}_z

Theorem

- $\label{eq:rescaled} \mathbf{R} \dots \; \; \mbox{Reflection of the sphere about the point } (0,0,z)$
- $f \in L^2(\mathbb{S}^2)$

We have

 $\mathcal{U}_z f = 0$

if and only if for almost all $oldsymbol{\eta} \in \mathbb{S}^2$

$$f(\boldsymbol{\eta}) = -f(\mathbf{R}\boldsymbol{\eta})\frac{1-z^2}{1+z^2-2z\eta_3}.$$

Nullspace of \mathcal{U}_z

Theorem

- ${f R} \dots$ Reflection of the sphere about the point (0,0,z)
- $f \in L^2(\mathbb{S}^2)$

We have

$$\mathcal{U}_z f = 0$$

if and only if for almost all $oldsymbol{\eta} \in \mathbb{S}^2$

$$f(\boldsymbol{\eta}) = -f(\mathbf{R}\boldsymbol{\eta})\frac{1-z^2}{1+z^2-2z\eta_3}.$$

Range of \mathcal{U}_z

Theorem

The generalized Radon transform

$$\mathcal{U}_z \colon \widetilde{L}^2_{\mathrm{e}}(\mathbb{S}^2) \to H^{1/2}_{\mathrm{e}}(\mathbb{S}^2)$$

is continuous and bijective.

$$\blacktriangleright \ \widetilde{L}_{\mathrm{e}}^{2}(\mathbb{S}^{2}) = \left\{ f \in L^{2}(\mathbb{S}^{2}) \mid f(\boldsymbol{\eta}) = f(\mathbf{R}\boldsymbol{\eta}) \frac{1 - z^{2}}{1 + z^{2} - 2z\eta_{3}} \right\}$$

► H_e^{1/2}(S²) ... Sobolev space of smoothness 1/2 that contains only even functions

Use the factorization

$$\mathcal{U}_z^{-1} = \mathcal{M}_z^{-1} \mathcal{F}^{-1} \mathcal{N}_z^{-1}$$

- \mathcal{M}_z^{-1} and \mathcal{N}_z^{-1} can be computed explicitly
- ► For \mathcal{F}^{-1} : Fourier expansion of the Funk–Radon transform combined with the mollifier method (as regularization)

[Louis et al., 2011] [Hielscher & Q., 2015]

 Efficient implementation of the spherical Fourier transform available [Keiner & Potts, 2008]

Use the factorization

$$\mathcal{U}_z^{-1} = \mathcal{M}_z^{-1} \mathcal{F}^{-1} \mathcal{N}_z^{-1}$$

- \mathcal{M}_z^{-1} and \mathcal{N}_z^{-1} can be computed explicitly
- ► For *F*⁻¹: Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization)

[Louis et al., 2011] [Hielscher & Q., 2015]

 Efficient implementation of the spherical Fourier transform available [Keiner & Potts, 2008]

Use the factorization

$$\mathcal{U}_z^{-1} = \mathcal{M}_z^{-1} \mathcal{F}^{-1} \mathcal{N}_z^{-1}$$

- \mathcal{M}_z^{-1} and \mathcal{N}_z^{-1} can be computed explicitly
- ► For *F*⁻¹: Fourier expansion of the Funk-Radon transform combined with the mollifier method (as regularization) [Louis et al., 2011] [Hielscher & Q., 2015]
- Efficient implementation of the spherical Fourier transform available [Keiner & Potts, 2008]

Use the factorization

$$\mathcal{U}_z^{-1} = \mathcal{M}_z^{-1} \mathcal{F}^{-1} \mathcal{N}_z^{-1}$$

- \mathcal{M}_z^{-1} and \mathcal{N}_z^{-1} can be computed explicitly
- ► For *F*⁻¹: Fourier expansion of the Funk–Radon transform combined with the mollifier method (as regularization)

[Louis et al., 2011] [Hielscher & Q., 2015]

 Efficient implementation of the spherical Fourier transform available [Keiner & Potts, 2008]

Circles of integration of \mathcal{U}_z depend "smoothly" on z

Theorem

Let
$$f \in C(\mathbb{S}^2)$$
 and $z \in [0, 1]$. Then

$$\lim_{y \to z} \|\mathcal{U}_y f - \mathcal{U}_z f\|_{L^{\infty}(\mathbb{S}^2)} = 0.$$

[Abouelaz & Daher, 1993]

Circles through the north pole

We already know

- 1. U_z is continuous with respect to z
- 2. U_z is injective for functions vanishing for $\eta_3 > z$ for all z < 1

njectivity of \mathcal{U}_1

The spherical slice transform U_1 is injective for Lipschitz functions vanishing around the north pole.

[Abouelaz & Daher, 1993]

Circles through the north pole

We already know

- 1. U_z is continuous with respect to z
- 2. U_z is injective for functions vanishing for $\eta_3 > z$ for all z < 1

njectivity of \mathcal{U}_1

The spherical slice transform \mathcal{U}_1 is injective for Lipschitz functions vanishing around the north pole.

[Abouelaz & Daher, 1993]

Circles through the north pole

We already know

- 1. \mathcal{U}_z is continuous with respect to z
- 2. U_z is injective for functions vanishing for $\eta_3 > z$ for all z < 1

njectivity of \mathcal{U}_1

The spherical slice transform U_1 is injective for Lipschitz functions vanishing around the north pole.

[Abouelaz & Daher, 1993]

Circles through the north pole

We already know

- 1. \mathcal{U}_z is continuous with respect to z
- 2. U_z is injective for functions vanishing for $\eta_3 > z$ for all z < 1

Injectivity of \mathcal{U}_1

The spherical slice transform \mathcal{U}_1 is injective for Lipschitz functions vanishing around the north pole.

[Abouelaz & Daher, 1993]

Circles through the north pole

- ▶ U₁ is injective if f is differentiable and vanishes at (0,0,1) [Helgason, 1999]
- ► U₁ is injective for all bounded functions [Rubin, 2015]

[Abouelaz & Daher, 1993]

Circles through the north pole

- ► U₁ is injective if f is differentiable and vanishes at (0,0,1) [Helgason, 1999]
- ► U₁ is injective for all bounded functions [Rubin, 2015]

[Abouelaz & Daher, 1993]

Circles through the north pole

- ► U₁ is injective if f is differentiable and vanishes at (0,0,1) [Helgason, 1999]
- U₁ is injective for all bounded functions [Rubin, 2015]

Selected bibliography

P. Funk.

1

Über Flächen mit lauter geschlossenen geodätischen Linien. Math. Ann., 74(2): 278 – 300, 1913.

Y. Salman.

An inversion formula for the spherical transform in ${\cal S}^2$ for a special family of circles of integration.

Anal. Math. Phys., 6(1): 43 - 58, 2016.

M. Quellmalz.

A generalization of the Funk-Radon transform to circles passing through a fixed point.

Preprint 2015-17, Faculty of Mathematics, TU Chemnitz, 2015.

\endinput

Chemnitz, September 2016 · Michael Quellmalz

tu-chemnitz.de/~qmi