A generalization of the Funk-Radon transform
 Chemnitz University of Technology, Faculty of Mathematics

A generalization of the Funk-Radon transform

Michael Quellmalz

Chemnitz University of Technology
Faculty of Mathematics

Radon-type transforms: Basis for Emerging Imaging
100 Years of the Radon Transform Linz, March 30, 2017

Table of content

1. Funk-Radon transform

Introduction
Properties
Known results
2. Funk-Radon transform for slices through a fixed point

Definition
Decomposition
Geometric interpretation
Properties

Table of content

1. Funk-Radon transform

Introduction
Properties
Known results
2. Funk-Radon transform for slices through a fixed point Definition
Decomposition
Geometric interpretation
Properties

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circle is the intersection of \mathbb{S}^{2} with a plane:

$\xi \in \mathbb{S}^{2}, x \in[-1,1]$

Spherical means

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circle is the intersection of \mathbb{S}^{2} with a plane:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$$
\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]
$$

Spherical means

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Circle is the intersection of \mathbb{S}^{2} with a plane:

$$
\begin{aligned}
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\} \\
\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]
\end{aligned}
$$

Spherical means

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

Funk-Radon transform

- Restriction to great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

Injectivity
(Can we recor struct f from its means along all great circles?)
Range of \mathcal{F}

Funk-Radon transform

- Restriction to great circles
- Funk-Radon transform (a.k.a. Funk transform or spherical Radon transform)

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

Questions

1. Injectivity
(Can we reconstruct f from its means along all great circles?)
2. Range of \mathcal{F}

Funk-Radon transform
Properties

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ with respect to spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}
$$

Eigenvalue decomposition

The Funk-Dadon transform

P_{n} - Legendre polynomial of degree n

Fun'k-Radon transform is injective for even functions $f(\xi)=f(-\xi)$.

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ with respect to spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}
$$

Eigenvalue decomposition

[Minkowski, 1904]
The Funk-Radon transform

$$
\mathcal{F} Y_{n}^{k}(\boldsymbol{\xi})=P_{n}(0) Y_{n}^{k}(\boldsymbol{\xi}), \quad P_{n}(0)= \begin{cases}\frac{(n-1)!!}{n!!}, & n \text { even }, \\ 0, & n \text { odd }\end{cases}
$$

P_{n} - Legendre polynomial of degree n
Funk-Radon transform is injective for even functions $f(\xi)=f(-\xi)$.

Fourier series

Write $f \in L^{2}\left(\mathbb{S}^{2}\right)$ with respect to spherical harmonics Y_{n}^{k} of degree n

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k} .
$$

Eigenvalue decomposition

[Minkowski, 1904]
The Funk-Radon transform

$$
\mathcal{F} Y_{n}^{k}(\boldsymbol{\xi})=P_{n}(0) Y_{n}^{k}(\boldsymbol{\xi}), \quad P_{n}(0)= \begin{cases}\frac{(n-1)!!}{n!!}, & n \text { even }, \\ 0, & n \text { odd }\end{cases}
$$

P_{n} - Legendre polynomial of degree n
Funk-Radon transform is injective for even functions $f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$.

Sobolev spaces

Let $s \geq 0$. The Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ consists of functions $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s}
$$

Theorem

[Strichartz, 1981]
The Funle-Dadon transform is continuous and bijective

- Inversion of \mathcal{F} is incorrect of degree $\frac{1}{2}$

Sobolev spaces

Let $s \geq 0$. The Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ consists of functions $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s}
$$

Theorem

[Strichartz, 1981]
The Funk-Radon transform is continuous and bijective

$$
\mathcal{F}: L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\text {even }}^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)
$$

- Inversion of \mathcal{F} is incorrect of degree $\frac{1}{2}$

Sobolev spaces

Let $s \geq 0$. The Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ consists of functions $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s}
$$

Theorem

The Funk-Radon transform is continuous and bijective

$$
\mathcal{F}: L_{\text {even }}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\text {even }}^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)
$$

- Inversion of \mathcal{F} is incorrect of degree $\frac{1}{2}$

Circles with fixed radius

- For $x_{0} \in[-1,1]$ fixed, we define

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

"Freak theorem"

[Schneider, 1969]
The set of values r_{0} for which $S_{x_{0}}$ is not injective is countable and dense in
\square
$\mathcal{S}_{x_{0}}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow H^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)$ is continuous
Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}

Circles with fixed radius

- For $x_{0} \in[-1,1]$ fixed, we define

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"

The set of values r_{0} for which $S_{x_{0}}$ is not injective is countable and dense in

$\mathcal{S}_{x_{0}}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow H^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)$ is continuous

Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}

Circles with fixed radius

- For $x_{0} \in[-1,1]$ fixed, we define

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.

Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}

Circles with fixed radius

- For $x_{0} \in[-1,1]$ fixed, we define

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.
$\mathcal{S}_{x_{0}}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow H^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)$ is continuous
[Rubin, 2000]

Circles with fixed radius

- For $x_{0} \in[-1,1]$ fixed, we define

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

- Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.
$\mathcal{S}_{x_{0}}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow H^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)$ is continuous
[Rubin, 2000]
Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}

Vertical slices

$$
\mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions
- Proof1: Orthogonal projection onto the equatorial plane [Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions

$$
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)
$$

- Proof1: Orthogonal projection onto the equatorial plane [Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions

$$
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)
$$

- Proof1: Orthogonal projection onto the equatorial plane
[Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics

Vertical slices

$$
\mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions
$f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Proof1: Orthogonal projection onto the equatorial plane
[Gindikin, Reeds \& Shepp, 1994]
- Proof2: Spherical harmonics
[Hielscher \& Q., 2016]

Local two-radii problem

- $B_{R}=\left\{\boldsymbol{\xi} \in \mathbb{S}^{2}: \xi_{3}>\cos R\right\}$... spherical cap north of the circle of latitude $R \in(0, \pi]$
- $r_{1}, r_{2}<R$... latitudes of centers

Then

$$
\mathcal{S} f(\boldsymbol{\xi}, t)=0, \quad \xi_{d+1}=\cos r_{j}, t>\cos \left(R-r_{j}\right), j \in\{1,2\}
$$

implies $f=0$ for all $f \in L_{\mathrm{loc}}^{1}\left(B_{R}\right)$ if and only if $R \geq r_{1}+r_{2}$ and

$$
P_{\nu}^{k}\left(\cos r_{1}\right)^{2}+P_{\nu}^{k}\left(\cos r_{2}\right)^{2}>0 \quad \forall k \in \mathbb{N}_{0}, \nu>k
$$

Higher dimensions

- $\mathbb{S}^{d} \ldots d$-dimensional sphere
- $\mathbb{R}^{d+1} \ldots(d+1)$-dimensional ambient space

- Great circle becomes ($d-1$)-dimensional subsphere

- For $f \in C\left(\mathbb{S}^{d}\right)$, we set

Theorem

[Strichartz, 1981]
The Funk-Radon transform is continuous and bijective

Higher dimensions

- $\mathbb{S}^{d} \ldots d$-dimensional sphere
- $\mathbb{R}^{d+1} \ldots(d+1)$-dimensional ambient space
- Great circle becomes $(d-1)$-dimensional subsphere
- For $f \in C\left(\mathbb{S}^{d}\right)$, we set

Theorem

[Strichartz, 1981]
The Funk-Ra don transform is continuous and bijective

CHEMNITZ

Higher dimensions

- \mathbb{S}^{d}... d-dimensional sphere
- $\mathbb{R}^{d+1} \ldots(d+1)$-dimensional ambient space
- Great circle becomes $(d-1)$-dimensional subsphere
- For $f \in C\left(\mathbb{S}^{d}\right)$, we set

$$
\mathcal{F} f(\boldsymbol{\xi})=\int_{\mathbb{S}^{d} \cap\{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0\}} f(\boldsymbol{\eta}) \mathrm{d} \mu
$$

Theorem

The Funk-Radon transform is continuous and bijective

Higher dimensions

- $\mathbb{S}^{d} \ldots d$-dimensional sphere
- $\mathbb{R}^{d+1} \ldots(d+1)$-dimensional ambient space
- Great circle becomes $(d-1)$-dimensional subsphere
- For $f \in C\left(\mathbb{S}^{d}\right)$, we set

$$
\mathcal{F} f(\boldsymbol{\xi})=\int_{\mathbb{S}^{d} \cap\{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0\}} f(\boldsymbol{\eta}) \mathrm{d} \mu
$$

Theorem

The Funk-Radon transform is continuous and bijective

$$
\mathcal{F}: L_{\text {even }}^{2}\left(\mathbb{S}^{d}\right) \rightarrow H_{\mathrm{even}}^{\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

Table of content

1. Funk-Radon transform

Introduction
Properties
Known results
2. Funk-Radon transform for slices through a fixed point

Definition
Decomposition
Geometric interpretation
Properties

Slices through a fixed point

Replace 0 by

$$
z \boldsymbol{e}^{d+1}, \quad 0 \leq z<1
$$

inside the sphere.
Intersection with hyperplane through $z e^{d+1}$ is given by

$$
\left\{\eta \in \mathbb{S}^{d}:\langle\xi, \eta\rangle=z \xi_{d+1}\right\} .
$$

Definition

11. $C\left(\mathbb{S}^{d}\right) \rightarrow C\left(\mathbb{S}^{d}\right)$
$\mathcal{U}_{z} f(\xi)=\int_{\langle\xi, \eta\rangle=z \xi_{d+1}} f(\eta) \mathrm{d} \lambda(\eta)$

Slices through a fixed point

Replace 0 by

$$
z e^{d+1}, \quad 0 \leq z<1
$$

inside the sphere.
Intersection with hyperplane through $z e^{d+1}$ is given by

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{d}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d+1}\right\} .
$$

Definition

$11 \cdot C\left(\mathbb{S}^{d}\right)-C\left(\mathbb{S}^{d}\right)$

Slices through a fixed point

Replace 0 by

$$
z e^{d+1}, \quad 0 \leq z<1
$$

inside the sphere.
Intersection with hyperplane through $z e^{d+1}$ is given by

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{d}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d+1}\right\} .
$$

Definition

$\mathcal{U}_{z}: C\left(\mathbb{S}^{d}\right) \rightarrow C\left(\mathbb{S}^{d}\right)$,
$\mathcal{U}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d+1}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$

Theorem

[Salman, 2016]
Let $z \in[0,1), \sigma=\sqrt{\frac{1+z}{1-z}}$ and $f \in C^{1}\left(\mathbb{S}^{d}\right)$ be supported in the interior of $\left\{\boldsymbol{\xi} \in \mathbb{S}^{d}:-1 \leq \xi_{d+1} \leq z\right\}$. Then f can be reconstructed by

$$
\begin{aligned}
& \left(f \circ \pi^{-1}\right)\left(\frac{2 \sigma \boldsymbol{x}}{1+\sqrt{1+4|\boldsymbol{x}|^{2}}}\right)= \\
& \left(\frac{(-1)^{\frac{d-2}{2}}(1-z) \sqrt{1+4|\boldsymbol{x}|^{2}}}{2^{3 d-2} \pi^{d} \sigma^{d-5}}\left(\frac{\left(1+\sqrt{1+4|\boldsymbol{x}|^{2}}\right)^{2}+4 \sigma^{2}|\boldsymbol{x}|^{2}}{1+\sqrt{1+4|\boldsymbol{x}|^{2}}}\right)^{d-1}\right. \\
& \triangle_{\bar{x}}^{\frac{d}{2}} \int_{\mathbb{S}^{d-1}} \int_{0}^{\frac{\pi}{2}}\left(\mathcal{U}_{z} f\right)\left((\cos \theta) \phi+(\sin \theta) \boldsymbol{\epsilon}^{d+1}\right) \log \left|\boldsymbol{x} \cdot \boldsymbol{\phi}-\frac{1}{2} \sqrt{1-z^{2}} \tan \theta\right| \frac{\mathrm{d} \theta \mathrm{~d} \phi}{\sqrt{1-z^{2} \sin ^{2} \theta} \cos \theta}, \\
& d \geq 2 \text { even } \\
& \frac{(-1)^{\frac{d-1}{2}}(1-z) \sqrt{1+4|\boldsymbol{x}|^{2}}}{2^{3 d-1} \pi^{d-1} \sigma^{d-2}}\left(\frac{\left(1+\sqrt{1+4|\boldsymbol{x}|^{2}}\right)^{2}+4 \sigma^{2}|\boldsymbol{x}|^{2}}{1+\sqrt{1+4|\boldsymbol{x}|^{2}}}\right)^{d-1} \\
& \triangle_{\boldsymbol{x}^{\frac{d+1}{2}}} \int_{\mathbb{S}^{d-1}} \int_{0}^{\frac{\pi}{2}}\left(\mathcal{U}_{z} f\right)\left((\cos \theta) \boldsymbol{\phi}+(\sin \theta) \boldsymbol{\epsilon}^{d+1}\right)\left|\boldsymbol{x} \cdot \boldsymbol{\phi}-\frac{1}{2} \sqrt{1-z^{2}} \tan \theta\right| \frac{\mathrm{d} \theta \mathrm{~d} \boldsymbol{\phi}}{\sqrt{1-z^{2} \sin ^{2} \theta} \cos \theta},
\end{aligned}
$$

Let $z \in[0,1)$. The generalized Radon transform \mathcal{U}_{z} can be represented through

$$
\mathcal{U}_{z}=\mathcal{N}_{z} \mathcal{F} \mathcal{M}_{z}
$$

- $\mathcal{M}_{z} f(\boldsymbol{\xi})=\left(\frac{\sqrt{1-z^{2}}}{1+z \xi_{d+1}}\right)^{d-1} f \circ h(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d}$

$$
h(\boldsymbol{\xi})=\sum_{i=1}^{d} \frac{\sqrt{1-z^{2}}}{1+z \xi_{d+1}} \xi_{i} e^{i}+\frac{z+\xi_{d+1}}{1+z \xi_{d+1}} e^{d+1}
$$

- \mathcal{F}... Funk-Radon transform
- $\mathcal{N}_{z} f(\boldsymbol{\xi})=\left(1-z^{2} \xi_{d+1}^{2}\right)^{-\frac{d-1}{2}} f \circ g(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d}$

$$
g(\boldsymbol{\xi})=\frac{1}{\sqrt{1-z^{2} \xi_{d+1}^{2}}}\left(\sum_{i=1}^{d} \xi_{i} e^{i}+\sqrt{1-z^{2}} \xi_{d+1} e^{d+1}\right)
$$

Geometric interpretation of h (for \mathbb{S}^{2})

Theorem

The map

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

is conformal. It consists of

1. Stereographic projection $\pi: \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$

2. Uniform scaling $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, x \mapsto \sqrt{\frac{1+z}{1-z}} x$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{d} \rightarrow S^{d}$
\square
h maps great circles to small circles through $z e^{d+1}$.

Geometric interpretation of h (for \mathbb{S}^{2})

Theorem

The map

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

is conformal. It consists of

1. Stereographic projection $\pi: \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$

2. Uniform scaling
3. Inverse stereographic projection
h maps great circles to small circles through $z e^{d+1}$

Geometric interpretation of h (for \mathbb{S}^{2})

Theorem

The map

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

is conformal. It consists of

1. Stereographic projection $\pi: \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$

2. Uniform scaling $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection
h maps great circles to small circles through $z e^{d+1}$

Geometric interpretation of h (for \mathbb{S}^{2})

Theorem

The map

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

is conformal. It consists of

1. Stereographic projection $\pi: \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$

2. Uniform scaling $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}$
h maps great circles to small circles through $z e^{d+1}$

Geometric interpretation of $h\left(\right.$ for $\left.\mathbb{S}^{2}\right)$

Theorem

The map

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

is conformal. It consists of

1. Stereographic projection $\pi: \mathbb{S}^{d} \rightarrow \mathbb{R}^{d}$

2. Uniform scaling $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{d} \rightarrow \mathbb{S}^{d}$

We are going to see that

h maps great circles to small circles through $z \boldsymbol{e}^{d+1}$.

1) Stereographic projection π

- $G \ldots$ great circle of \mathbb{S}^{2}
- E... equator of \mathbb{S}^{2}

1) Stereographic projection π

- $G \ldots$ great circle of \mathbb{S}^{2}
- E... equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(G)$ is circle or line in \mathbb{R}^{2} and intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- $G \ldots$ great circle of \mathbb{S}^{2}
- E... equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$

1) Stereographic projection π

- G... great circle of \mathbb{S}^{2}
- E... equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is circle or line in \mathbb{R}^{2} and intersects $\pi(E)$ in two antipodal points

2) Uniform scaling

- Scaling with
factor $\sigma=\sqrt{\frac{1+z}{1-z}}$
Unit circle E becomes circle $\sigma(\pi(E))$ with radius σ
intersects

$\sigma(\pi(E))$ in two antipodal

points

2) Uniform scaling

- Scaling with
factor $\sigma=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E becomes circle $\sigma(\pi(E))$ with radius σ
intersects
in two antipodal

2) Uniform scaling

- Scaling with
factor $\sigma=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E becomes circle $\sigma(\pi(E))$ with radius σ
- $\sigma(\pi(G))$ intersects $\sigma(\pi(E))$ in two antipodal points

3) Inverse stereographic projection π^{-1}

3) Inverse stereographic projection π^{-1}

- Circle with radius s becomes circle of latitude z; $h(E)$
intersects $h(E)$ in two antipodal points is small circle through

3) Inverse stereographic projection π^{-1}

- Circle with radius s becomes circle of latitude z; $h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
is small circle through

3) Inverse stereographic projection π^{-1}

- Circle with radius s becomes circle of latitude z; $h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
- $h(G)$ is small circle through

Nullspace of \mathcal{U}_{z}

Theorem

For $\boldsymbol{\xi} \in \mathbb{S}^{d}$ we define $\boldsymbol{\xi}^{*} \in \mathbb{S}^{d}$ as the point reflection of the sphere about the point $z \boldsymbol{e}^{d+1}$. Let $f \in L^{2}\left(\mathbb{S}^{d}\right)$. Then if and only if for almost every $\boldsymbol{\xi} \in \mathbb{S}^{d}$

Nullspace of \mathcal{U}_{z}

Theorem

For $\boldsymbol{\xi} \in \mathbb{S}^{d}$ we define $\boldsymbol{\xi}^{*} \in \mathbb{S}^{d}$ as the point reflection of the sphere about the point $z \boldsymbol{e}^{d+1}$. Let $f \in L^{2}\left(\mathbb{S}^{d}\right)$. Then

$$
\mathcal{U}_{z} f=0
$$

if and only if for almost every $\boldsymbol{\xi} \in \mathbb{S}^{d}$

$$
f(\boldsymbol{\xi})=-\left(\frac{1-z^{2}}{1+z^{2}-2 z \eta_{d+1}}\right)^{d-1} f\left(\boldsymbol{\xi}^{*}\right) .
$$

Funk-Radon transform for slices through a fixed point

Range of \mathcal{U}_{z}

Theorem

The generalized Radon transform

$$
\mathcal{U}_{z}: \widetilde{H}_{\mathrm{e}}^{s}\left(\mathbb{S}^{d}\right) \rightarrow H_{\mathrm{e}}^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

is bijective and continuous.

- $\widetilde{H}_{\mathrm{e}}^{s}\left(\mathbb{S}^{d}\right)=\left\{f \in H^{s}\left(\mathbb{S}^{d}\right) \left\lvert\, f(\boldsymbol{\xi})=\left(\frac{1-z^{2}}{1+z^{2}-2 z \eta_{d+1}}\right)^{d-1} f(\boldsymbol{\xi})\right.\right\}$
- $H_{\mathrm{e}}^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \ldots$ Sobolev space of even functions

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

We have

where

$$
h(\boldsymbol{\xi})=\sum_{i=1}^{d} \frac{\sqrt{1-z^{2}}}{1+z \xi_{d+1}} \xi_{i} e^{i}+\frac{z+\xi_{d+1}}{1+z \xi_{d+1}} e^{d+1}
$$

Funk-Radon transform for slices through a fixed point Properties

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{\boldsymbol{z}}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{2}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

Lemma 1

Let $s \in \mathbb{N}_{0}$ and $g \in C^{s}\left(\mathbb{S}^{d}\right)$. Then there exists c_{s} such that

$$
\|f g\|_{H^{s}\left(\mathbb{S}^{d}\right)} \leq c_{s}\|f\|_{H^{s}\left(\mathbb{S}^{d}\right)}\|g\|_{C^{s}\left(\mathbb{S}^{d}\right)} \quad \forall f \in H^{s}\left(\mathbb{S}^{d}\right), \forall g \in C^{s}\left(\mathbb{S}^{d}\right) .
$$

Lemma 2

Let $s \in \mathbb{N}_{0}$ and $g \in C^{s}\left(\mathbb{S}^{d} \rightarrow \mathbb{S}^{d}\right)$ be a diffeomorphism. Then there exists $C_{g, s}$ such that

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{\boldsymbol{z}}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

Lemma 1

Let $s \in \mathbb{N}_{0}$ and $g \in C^{s}\left(\mathbb{S}^{d}\right)$. Then there exists c_{s} such that

$$
\|f g\|_{H^{s}\left(\mathbb{S}^{d}\right)} \leq c_{s}\|f\|_{H^{s}\left(\mathbb{S}^{d}\right)}\|g\|_{C^{s}\left(\mathbb{S}^{d}\right)} \quad \forall f \in H^{s}\left(\mathbb{S}^{d}\right), \forall g \in C^{s}\left(\mathbb{S}^{d}\right)
$$

Lemma 2

Let $s \in \mathbb{N}_{0}$ and $g \in C^{s}\left(\mathbb{S}^{d} \rightarrow \mathbb{S}^{d}\right)$ be a diffeomorphism. Then there exists $C_{g, s}$ such that

$$
\|f \circ g\|_{H^{s}\left(\mathbb{S}^{d}\right)} \leq C_{g, s}\|f\|_{H^{s}\left(\mathbb{S}^{d}\right)} \quad \forall f \in H^{s}\left(\mathbb{S}^{d}\right)
$$

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

Theorem

The Funk-Radon transform

$$
\mathcal{F}: L_{\mathrm{even}}^{2}\left(\mathbb{S}^{d}\right) \rightarrow H_{\mathrm{even}}^{\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

is continuous and bijective.

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

We have

$$
\mathcal{N}_{z} f(\boldsymbol{\xi})=\underbrace{\left(1-z^{2} \xi_{d+1}^{2}\right)^{-\frac{d-1}{2}}}_{\text {multiplication }} \underbrace{f \circ g}_{\text {composition }}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d}
$$

where

$$
g: \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}, \quad g(\boldsymbol{\xi})=\frac{1}{\sqrt{1-z^{2} \xi_{d+1}^{2}}}\left(\sum_{i=1}^{d} \xi_{i} \boldsymbol{e}^{i}+\sqrt{1-z^{2}} \xi_{d+1} \boldsymbol{e}^{d+1}\right)
$$

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

- The Lemmas imply that $\mathcal{N}_{z}: H^{s} \rightarrow H^{s}$ is continuous for $s \in \mathbb{N}_{0}$ The same holds for \mathcal{N}_{z}^{-1}
- Continuity for arbitrary $s>0$ follows with theory of interpolation spaces [Triebel, 1995])

Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

- The Lemmas imply that $\mathcal{N}_{z}: H^{s} \rightarrow H^{s}$ is continuous for $s \in \mathbb{N}_{0}$
- The same holds for \mathcal{N}_{z}^{-1}

Continuity for arbitrary $s>0$ follows with theory of interpolation spaces

 [Triebel, 1995])
Sketch of proof

$$
\mathcal{U}: H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{M}_{z}} H^{s}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{F}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right) \xrightarrow{\mathcal{N}_{z}} H^{s+\frac{d-1}{2}}\left(\mathbb{S}^{d}\right)
$$

- The Lemmas imply that $\mathcal{N}_{z}: H^{s} \rightarrow H^{s}$ is continuous for $s \in \mathbb{N}_{0}$
- The same holds for \mathcal{N}_{z}^{-1}
- Continuity for arbitrary $s>0$ follows with theory of interpolation spaces [Triebel, 1995])

囯 P．Funk．
Über Flächen mit lauter geschlossenen geodätischen Linien．
Math．Ann．，74（2）： 278 －300， 1913.
圊 Y．Salman．
An inversion formula for the spherical transform in S^{2} for a special family of circles of integration．
Anal．Math．Phys．，6（1）： 43 －58， 2016.
目 Y．Salman．
Recovering functions defined on the unit sphere by integration on a special family of sub－spheres．
Anal．Math．Phys．，advance online publication， 2016.
國 M．Quellmalz．
A generalization of the Funk－Radon transform．
Inverse Problems 33（3）：035016， 2017.

\endinput

