The Funk-Radon transform and its generalizations Chemnitz University of Technology, Faculty of Mathematics

The Funk-Radon transform and its generalizations

Michael Quellmalz
Chemnitz University of Technology
Faculty of Mathematics

Modeling, analysis, and approximation theory toward applications in tomography and inverse problems
Braunschweig, 6 February 2018

The Radon transform

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Define the Radon transform

$$
\mathcal{R} f(\boldsymbol{\omega}, s)=\int_{\langle\boldsymbol{x}, \boldsymbol{\omega}\rangle=s} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{\omega} \in \mathbb{S}^{1}, s \in \mathbb{R}
$$

Questions:

- Injectivity
- Reconstruction formulas
- Stability of reconstruction

The Radon transform

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Define the Radon transform

$$
\mathcal{R} f(\boldsymbol{\omega}, s)=\int_{\langle\boldsymbol{x}, \boldsymbol{\omega}\rangle=s} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \boldsymbol{\omega} \in \mathbb{S}^{1}, s \in \mathbb{R}
$$

Questions:

- Injectivity
- Reconstruction formulas
- Stability of reconstruction

The circular Radon transform

$$
\text { Let } f: \mathbb{R}^{2} \rightarrow \mathbb{C} \text { and } A \subset \mathbb{R}^{2} \text {. }
$$

Define the circular Radon transform

$$
\int_{\|\boldsymbol{x}-\boldsymbol{a}\|=t} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad t \geq 0, \boldsymbol{a} \in A
$$

The circular Radon transform

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ and $A \subset \mathbb{R}^{2}$.
Define the circular Radon transform

$$
\int_{\|\boldsymbol{x}-\boldsymbol{a}\|=t} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad t \geq 0, \boldsymbol{a} \in A
$$

Explicit reconstruction formulas for

- A is a line
- A is a circle
- A is an ellipse
[Andersson, 1988]
[Finch, Patch \& Rakesh, 2004]
[Haltmeier, 2014]

The circular Radon transform

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ and $A \subset \mathbb{R}^{2}$.
Define the circular Radon transform

$$
\int_{\|\boldsymbol{x}-\boldsymbol{a}\|=t} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad t \geq 0, \boldsymbol{a} \in A
$$

Solution to the injectivity problem

The circular Radon transform of the set A is injective on $C_{c}\left(\mathbb{R}^{2}\right)$ if and only if A is not contained in any set of the form

$$
\omega\left(\Sigma_{N}\right) \cup F
$$

where

$$
\Sigma_{N}=\left\{t \mathrm{e}^{\pi \mathrm{i} k / N}: t \in \mathbb{R}, k=1, \ldots, N\right\}
$$

ω is a rigid motion in \mathbb{R}^{2} and F is a finite set.

From the plane to the sphere

- Central (gnomonic) projection from the origin to the plane tangential to sphere at the south pole $-e^{3}$
- Great circles on the sphere are mapped to straight lines in the plane
= Lime integrals become great circle integrals

From the plane to the sphere

- Central (gnomonic) projection from the origin to the plane tangential to sphere at the south pole $-e^{3}$
- Great circles on the sphere are mapped to straight lines in the plane

- Line integrals become great circle integrals

From the plane to the sphere

- Central (gnomonic) projection from the origin to the plane tangential to sphere at the south pole $-e^{3}$
- Great circles on the sphere are mapped to straight lines in the plane
- Line integrals become great circle integrals

[Gindikin, Reeds, Shepp, 1994]

Content

1. The Funk-Radon transform

Definition
Analysis
2. General classes of circles

Circles with fixed radius
Circles with fixed midpoints
Circles through the north pole
Plane sections through a fixed point
3. Incomplete great circles

Spherical surface wave tomography
Singular value decomposition
Special families of arcs
4. Cone-beam and Radon transform in 3D

Content

1. The Funk-Radon transform Definition Analysis
2. General classes of circles

Circles with fixed radius Circles with fixed midpoints Circles through the north pole Plane sections through a fixed point
3. Incomplete great circles

Spherical surface wave tomography
Singular value decomposition
Special families of arcs
4. Cone-beam and Radon transform in 3D

Funk-Radon transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$

Funk-Radon transform
(integrals of f along all great circles)

- \mathcal{F} is a linear onerator
- Normalization: $f \equiv 1 \Longrightarrow \mathcal{F} f \equiv 1$
- $\mathcal{F} f$ is even, i.e. $\mathcal{F} f(\boldsymbol{\xi})=\mathcal{F} f(-\boldsymbol{\xi})$
- If f is odd, then $\mathcal{F} f=0$

The Funk-Radon transform Definition

Funk-Radon transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\frac{1}{2 \pi} \int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

(integrals of f along all great circles)

- \mathcal{F} is a linear operator
- Normalization: $f \equiv 1 \Longrightarrow \mathcal{F} f \equiv 1$
- $\mathcal{F} f$ is even, i.e. $\mathcal{F} f(\boldsymbol{\xi})=\mathcal{F} f(-\boldsymbol{\xi})$
- If f is odd, then $\mathcal{F} f=0$

Funk-Radon transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\frac{1}{2 \pi} \int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

(integrals of f along all great circles)

- \mathcal{F} is a linear operator
- Normalization: $f \equiv 1 \Longrightarrow \mathcal{F} f \equiv 1$
- If f is odd, then $\mathcal{F} f=0$

The Funk-Radon transform Definition

Funk-Radon transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\frac{1}{2 \pi} \int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

(integrals of f along all great circles)

- \mathcal{F} is a linear operator
- Normalization: $f \equiv 1 \Longrightarrow \mathcal{F} f \equiv 1$
\square

Funk-Radon transform

- Sphere $\mathbb{S}^{2}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{3}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\begin{aligned}
& \mathcal{F}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right), \\
& \mathcal{F} f(\boldsymbol{\xi})=\frac{1}{2 \pi} \int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

(integrals of f along all great circles)

- \mathcal{F} is a linear operator
- Normalization: $f \equiv 1 \Longrightarrow \mathcal{F} f \equiv 1$
- $\mathcal{F} f$ is even, i.e. $\mathcal{F} f(\boldsymbol{\xi})=\mathcal{F} f(-\boldsymbol{\xi})$
- If f is odd, then $\mathcal{F} f=0$

History

Hermann Minkowski, 1904: Über die Körper konstanter Breite

- Integral over a great circle was used to proof that bodies of constant width and bodies of constant circumference are equivalent

Paul Funk, 1911: Über Flächen mit lauter geschlossenen geodätischen Linien Wanted to reconstruct a function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ on the sphere Given $\mathcal{F} f$ called the circle-integral function of f ("Kreis-Integralfunktion")

Johann Radon, 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten

Wanted to reconstruct a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the plane Given $\mathcal{R} f$, the integrals of f along all lines

Both the great circles on the sphere and the lines in the plane are
The Funk-Radon transform is also known as Minkowski-Funk transform, Funk transform or spherical Radon transform

History

Hermann Minkowski, 1904: Über die Körper konstanter Breite

- Integral over a great circle was used to proof that bodies of constant width and bodies of constant circumference are equivalent

Paul Funk, 1911: Über Flächen mit lauter geschlossenen geodätischen Linien Wanted to reconstruct a function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ on the sphere

Given $\mathcal{F} f$ called the circle-integral function of f ("Kreis-Integralfunktion")
Johann Radon, 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten Wanted to reconstruct a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the plane Given $\mathcal{R} f$, the integrals of f along all lines

Both the great circles on the sphere and the lines in the plane are
The Funk-Radon transform is also known as Minkowski-Funk transform, Funk transform or spherical Radon transform

History

Hermann Minkowski, 1904: Über die Körper konstanter Breite

- Integral over a great circle was used to proof that bodies of constant width and bodies of constant circumference are equivalent

Paul Funk, 1911: Über Flächen mit lauter geschlossenen geodätischen Linien Wanted to reconstruct a function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ on the sphere

Given $\mathcal{F} f$ called the circle-integral function of f ("Kreis-Integralfunktion")
Johann Radon, 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten

Wanted to reconstruct a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the plane
Given $\mathcal{R} f$, the integrals of f along all lines
Both the great circles on the sphere and the lines in the plane are
The Funk-Radon transform is also known as Minkowski-Funk transform, Funk transform or spherical Radon transform

History

Hermann Minkowski, 1904: Über die Körper konstanter Breite

- Integral over a great circle was used to proof that bodies of constant width and bodies of constant circumference are equivalent

Paul Funk, 1911: Über Flächen mit lauter geschlossenen geodätischen Linien Wanted to reconstruct a function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ on the sphere

Given $\mathcal{F} f$ called the circle-integral function of f ("Kreis-Integralfunktion")
Johann Radon, 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten

Wanted to reconstruct a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the plane
Given $\mathcal{R} f$, the integrals of f along all lines
Both the great circles on the sphere and the lines in the plane are geodesics
The Funk-Radon transform is also known as Minkowski-Funk transform, Funk transform or spherical Radon transform

History

Hermann Minkowski, 1904: Über die Körper konstanter Breite

- Integral over a great circle was used to proof that bodies of constant width and bodies of constant circumference are equivalent

Paul Funk, 1911: Über Flächen mit lauter geschlossenen geodätischen Linien Wanted to reconstruct a function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$ on the sphere

Given $\mathcal{F} f$ called the circle-integral function of f ("Kreis-Integralfunktion")
Johann Radon, 1917: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten

Wanted to reconstruct a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ on the plane
Given $\mathcal{R} f$, the integrals of f along all lines
Both the great circles on the sphere and the lines in the plane are geodesics
The Funk-Radon transform is also known as Minkowski-Funk transform, Funk transform or spherical Radon transform

Applications of the Funk-Radon transform

- Intersection bodies
- Fiber ball imaging
[Jensen Glenn \& Helnern 2016$]$
- Photoacoustic tomography (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
[Lutwak, 1988]
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
[Amirbekyan, Michel \& Simons, 2008]
- Synthetic aperture radar (SAR) [Yarman \& Yazici, 2011]
- Compton camera data in SPECT (Single Photon Emission Tamocranhy) [Kuchment \& Terzioglu, 2016]
- Fiber ball imaging
- Photoacoustic tomography (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
[Amirbekyan, Michel \& Simons, 2008]
- Synthetic aperture radar (SAR)
- Compton camera data in SPECT (Single Photon Emission Tomography) [Kuchment \& Terziog lu, 2016]
- Fiber ball imaging
- Photoacoustic tomography (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
- Synthetic aperture radar (SAR)
[Amirbekyan, Michel \& Simons, 2008]
[Yarman \& Yazici, 2011]
- Compton camera data in SPECT (Single Photon Emission Tomography) [Kuchment \& Terzioglu, 2016]
- Fiber ball imaging
[Jensen, Glann \& Helpern, 2016]
- Photoacoustic tomography (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
[Amirbekyan, Michel \& Simons, 2008]
- Synthetic aperture radar (SAR)
[Yarman \& Yazici, 2011]
- Compton camera data in SPECT (Single Photon Emission Tomography)
[Kuchment \& Terzioglu, 2016]
- Fiber ball imaging
- Photoacoustic tomocraphy (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
[Amirbekyan, Michel \& Simons, 2008]
- Synthetic aperture radar (SAR)
[Yarman \& Yazici, 2011]
- Compton camera data in SPECT (Single Photon Emission Tomography)
[Kuchment \& Terzioglu, 2016]
- Fiber ball imaging
[Jensen, Glenn \& Helpern, 2016]
- Photoacoustic tomography (PAT)

Applications of the Funk-Radon transform

- Intersection bodies
- Q-ball imaging in medicine
[Tuch, 2004]
- Surface wave models for earthquakes
[Amirbekyan, Michel \& Simons, 2008]
- Synthetic aperture radar (SAR)
[Yarman \& Yazici, 2011]
- Compton camera data in SPECT (Single Photon Emission Tomography)
[Kuchment \& Terzioglu, 2016]
- Fiber ball imaging
- Photoacoustic tomography (PAT)
[Jensen, Glenn \& Helpern, 2016]
[Hristova, Moon \& Steinhauer, 2016]

Spherical harmonics

An orthonormal basis on \mathbb{S}^{2}

Use cylindrical coordinates

$$
\boldsymbol{\xi}(\varphi, t)=(\cos \varphi, \sin \varphi, t) \in \mathbb{S}^{2}
$$

Define the spherical harmonics of degree n

Every $f \in L^{2}\left(\mathbb{S}^{2}\right)$ can be written as series

Fast algorithms for spherical Fourier transforms [Driscoll \& Healy, 1994] [Potts, Steidl \& Tasche, 1998] [Kunis \& Potts, 2003] [Keiner \& Potts, 2008]

Spherical harmonics

An orthonormal basis on \mathbb{S}^{2}

Use cylindrical coordinates

$$
\boldsymbol{\xi}(\varphi, t)=(\cos \varphi, \sin \varphi, t) \in \mathbb{S}^{2}
$$

Define the spherical harmonics of degree n

$$
Y_{n}^{k}(\varphi, t)=\sqrt{\frac{2 n+1}{4 \pi} \frac{(n-k)!}{(n+k)!}} P_{n}^{k}(t) \mathrm{e}^{\mathrm{i} k \varphi}
$$

Every $f \in L^{2}\left(\mathbb{S}^{2}\right)$ can be written as series

Fast algorithms for spherical Fourier transforms

The Funk-Radon transform Analysis

Spherical harmonics

An orthonormal basis on \mathbb{S}^{2}
Use cylindrical coordinates

$$
\boldsymbol{\xi}(\varphi, t)=(\cos \varphi, \sin \varphi, t) \in \mathbb{S}^{2}
$$

Define the spherical harmonics of degree n

$$
Y_{n}^{k}(\varphi, t)=\sqrt{\frac{2 n+1}{4 \pi} \frac{(n-k)!}{(n+k)!}} P_{n}^{k}(t) \mathrm{e}^{\mathrm{i} k \varphi}
$$

Every $f \in L^{2}\left(\mathbb{S}^{2}\right)$ can be written as series

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}, \quad \hat{f}(n, k):=\int_{\mathbb{S}^{2}} f(\boldsymbol{\xi}) \overline{Y_{n}^{k}(\boldsymbol{\xi})} \mathrm{d} \boldsymbol{\xi}
$$

Fast algorithms for spherical Fourier transforms

Spherical harmonics

An orthonormal basis on \mathbb{S}^{2}

Use cylindrical coordinates

$$
\boldsymbol{\xi}(\varphi, t)=(\cos \varphi, \sin \varphi, t) \in \mathbb{S}^{2}
$$

Define the spherical harmonics of degree n

$$
Y_{n}^{k}(\varphi, t)=\sqrt{\frac{2 n+1}{4 \pi} \frac{(n-k)!}{(n+k)!}} P_{n}^{k}(t) \mathrm{e}^{\mathrm{i} k \varphi}
$$

Every $f \in L^{2}\left(\mathbb{S}^{2}\right)$ can be written as series

$$
f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \hat{f}(n, k) Y_{n}^{k}, \quad \hat{f}(n, k):=\int_{\mathbb{S}^{2}} f(\boldsymbol{\xi}) \overline{Y_{n}^{k}(\boldsymbol{\xi})} \mathrm{d} \boldsymbol{\xi}
$$

Fast algorithms for spherical Fourier transforms
[Driscoll \& Healy, 1994] [Potts, Steidl \& Tasche, 1998] [Kunis \& Potts, 2003] [Keiner \& Potts, 2008]

Funk-Hecke formula

Let $g:[-1,1] \rightarrow \mathbb{C}$. Then

$$
\int_{\mathbb{S}^{2}} Y_{n}^{k}(\boldsymbol{\eta}) g(\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle) \mathrm{d} \boldsymbol{\eta}=Y_{n}^{k}(\boldsymbol{\xi}) \int_{-1}^{1} g(x) P_{n}(x) \mathrm{d} x
$$

P_{n} - Legendre polynomial of degree n

$$
g(\langle\boldsymbol{\xi}, \cdot\rangle
$$

For the Funk-Radon transform: Insert $g(t)=\delta(t)$
Singular walue decomposition (SVD)
The Funk-Radon transform is given by

Funk-Hecke formula

Let $g:[-1,1] \rightarrow \mathbb{C}$. Then

$$
\int_{\mathbb{S}^{2}} Y_{n}^{k}(\boldsymbol{\eta}) g(\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle) \mathrm{d} \boldsymbol{\eta}=Y_{n}^{k}(\boldsymbol{\xi}) \int_{-1}^{1} g(x) P_{n}(x) \mathrm{d} x
$$

P_{n} - Legendre polynomial of degree n

$g(\langle\boldsymbol{\xi}, \cdot\rangle$

For the Funk-Radon transform: Insert $g(t)=\delta(t)$

Singular value decomposition (SVD)

The Funk-Radon transform is given by

The Funk-Radon transform Analysis

Funk-Hecke formula

Let $g:[-1,1] \rightarrow \mathbb{C}$. Then

$$
\int_{\mathbb{S}^{2}} Y_{n}^{k}(\boldsymbol{\eta}) g(\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle) \mathrm{d} \boldsymbol{\eta}=Y_{n}^{k}(\boldsymbol{\xi}) \int_{-1}^{1} g(x) P_{n}(x) \mathrm{d} x
$$

P_{n} - Legendre polynomial of degree n

$g(\langle\boldsymbol{\xi}, \cdot\rangle$
For the Funk-Radon transform: Insert $g(t)=\delta(t)$

Singular value decomposition (SVD)

[Minkowski, 1904]
The Funk-Radon transform is given by

$$
\mathcal{F} Y_{n}^{k}(\boldsymbol{\xi})=\lambda_{n} Y_{n}^{k}(\boldsymbol{\xi}), \quad \lambda_{n}=P_{n}(0)= \begin{cases}\frac{(n-1)(n-3) \cdots 1}{n(n-2) \cdots 2}, & n \text { even }, \\ 0, & n \text { odd } .\end{cases}
$$

SVD for the inversion

Want to solve

$$
\mathcal{F} f=g
$$

We have

If f is even, we reconstruct

SVD for the inversion

Want to solve

$$
\mathcal{F} f=g
$$

We have

$$
\mathcal{F} f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \lambda_{n} \hat{f}(n, k) Y_{n}^{k}
$$

If f is even, we reconstruct

SVD for the inversion

Want to solve

$$
\mathcal{F} f=g
$$

We have

$$
\mathcal{F} f=\sum_{n=0}^{\infty} \sum_{k=-n}^{n} \lambda_{n} \hat{f}(n, k) Y_{n}^{k}
$$

If f is even, we reconstruct

$$
f=\sum_{\substack{n=0 \\ 2 \mid n}}^{\infty} \sum_{k=-n}^{n} \frac{1}{\lambda_{n}} \hat{g}(n, k) Y_{n}^{k}
$$

Sobolev spaces

For $s \geq 0$, the Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ is the completion of the space of polynomials $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s} .
$$

Theorem

The Funk-Radion transform is bijective

Sobolev spaces

For $s \geq 0$, the Sobolev space $H^{s}\left(\mathbb{S}^{2}\right)$ is the completion of the space of polynomials $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{s}^{2}=\sum_{n=0}^{\infty} \sum_{k=-n}^{n}|\hat{f}(n, k)|^{2}\left(n+\frac{1}{2}\right)^{2 s} .
$$

Theorem

The Funk-Radon transform is bijective

$$
\mathcal{F}: L_{\mathrm{even}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{even}}^{\frac{1}{2}}\left(\mathbb{S}^{2}\right)
$$

Content

1. The Funk-Radon transform

Definition Analysis
2. General classes of circles

Circles with fixed radius
Circles with fixed midpoints
Circles through the north pole Plane sections through a fixed point
3. Incomplete great circles

Spherical surface wave tomography
Singular value decomposition
Special families of arcs
4. Cone-beam and Radon transform in 3D

Circles on the sphere

A circle on the sphere is the intersection of the sphere with a plane:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$

Mean operator

$\mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\xi, \eta\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$
\square
$\mathcal{S} f(\boldsymbol{\xi}, 0)=\mathcal{F} f(\boldsymbol{\xi})$ is the Funk-Radon transform
$\mathcal{S} f(\boldsymbol{\xi}, 1)=f(\boldsymbol{\xi})$

Circles on the sphere

A circle on the sphere is the intersection of the sphere with a plane:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$

Mean operator

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

$\mathcal{S} f(\boldsymbol{\xi}, 0)=\mathcal{F} f(\boldsymbol{\xi})$ is the Funk-Radon transform

Circles on the sphere

A circle on the sphere is the intersection of the sphere with a plane:

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x\right\}
$$

$\boldsymbol{\xi} \in \mathbb{S}^{2}, x \in[-1,1]$

Mean operator

$$
\begin{aligned}
& \mathcal{S}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times[-1,1]\right), \\
& \mathcal{S} f(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
\end{aligned}
$$

$\mathcal{S} f(\boldsymbol{\xi}, 0)=\mathcal{F} f(\boldsymbol{\xi})$ is the Funk-Radon transform
$\mathcal{S} f(\boldsymbol{\xi}, 1)=f(\boldsymbol{\xi})$

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

"Freak theorem"

The set of values x_{n} for which $S_{x_{0}}$ is not injective is countable and dense in $[-1,1]$
This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$.
Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}
[Rubin, 2000]
Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"

The set of values x_{0} for which $S_{x_{0}}$ is not injective is countable and dense in $[-1,1]$
This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$.
Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}
[Rubin, 2000]
Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"
[Schneider, 1969]
The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.

> This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$
> Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}
> [Rubin, 2000]
> Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"
The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.
This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$.
Explicit algorithm to determine if $S_{x_{0}}$ is injective for given x_{0}
Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"
[Schneider, 1969]
The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.
This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$. Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0} [Rubin, 2000] Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Circles with fixed radius

For fixed $x_{0} \in[-1,1]$, compute

$$
\mathcal{S}_{x_{0}} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x_{0}} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{S}_{x_{0}} Y_{n}^{k}=P_{n}\left(x_{0}\right) Y_{n}^{k}
$$

"Freak theorem"
[Schneider, 1969]
The set of values x_{0} for which $\mathcal{S}_{x_{0}}$ is not injective is countable and dense in $[-1,1]$.
This is because $\mathcal{S}_{x_{0}}$ is injective if and only if $P_{n}\left(x_{0}\right)=0 \forall n \in \mathbb{N}$.
Explicit algorithm to determine if $\mathcal{S}_{x_{0}}$ is injective for given x_{0}
[Rubin, 2000]
Can be used for reconstruction in Compton tomography [Moon, 2016] [Palamodov, 2017]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions
- Orthogonal projection onto equatorial plane

Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp, 1994]

- Application in photoacoustic tomography
[Zangerl \& Scherzer, 2010]
- Singular value decomposition
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane

Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp, 1994]

- Application in photoacoustic tomography
[Zangerl \& Scherzer, 2070]
- Singular value decomposition
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the
 equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane
\nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp, 1994]
- Application in photoacoustic tomography
[Zangerl \& Scherzer, 2010] Singular value decomposition

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the
 equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane
\nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp, 1994]
- Application in photoacoustic tomography
[Zangerl \& Scherzer, 2010]
- Singular value decomposition
[Hielscher \& Q., 2016]

Vertical slices

$$
\mathcal{S}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{3}=0
$$

- Circles perpendicular to the
 equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane
\nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp, 1994]
- Application in photoacoustic tomography
[Zangerl \& Scherzer, 2010]
- Singular value decomposition [Hielscher \& Q., 2016]

Circles with all values of x

The vertical slices are a special case of

$$
\mathcal{S} f(\boldsymbol{\xi}, x), \quad \xi \in A \subset \mathbb{S}^{2}, x \in[-1,1] .
$$

Centers are on an arbitrary set $A \subset \mathbb{S}^{2}$
Theorem
[Agranovsky \& Quinto, 1996] [Agranovsky, Volchkov \& Zalcman, 1999]
The spherical mean operator \mathcal{S} restricted a set $A \subset \mathbb{S}^{2}$ is injective if and only if A is not a subset of the zero set of a nontrivial spherical harmonic $Y_{n} \in \mathscr{H}_{n}$ for any $n \in \mathbb{N}$.

Spherical slice transform

[Abouelaz \& Daher, 1993]

$$
\mathcal{S} f\left(\boldsymbol{\xi}, \xi_{3}\right)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

Circles through the north pole

- Stereographic projection turns circles into lines in the plane Radon transform in \mathbb{R}^{2}
- Injective if f is differentiable and vanishes at $(0,0,1)$
[Helgason, 1999]
- Injective for all functions $L^{2}\left(\mathbb{S}^{2}\right)$ vanishing around $(0,0,1)$
[Daher, 2005]
- Injective for all bounded functions $L^{\infty}\left(\mathbb{S}^{2}\right)$
[Rubin, 2017]

Spherical slice transform

[Abouelaz \& Daher, 1993]

$$
\mathcal{S} f\left(\boldsymbol{\xi}, \xi_{3}\right)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

Circles through the north pole

- Stereographic projection turns circles into lines in the plane \nearrow Radon transform in \mathbb{R}^{2}
- Injective if f is differentiable and vanishes at $(0,0,1)$
[Helgason, 1999]
- Injective for all functions $L^{2}\left(\mathbb{S}^{2}\right)$ vanishing around $(0,0,1)$
- Injective for all bounded functions $L^{\infty}\left(\mathbb{S}^{2}\right) \quad[$ Rubin, 2017]

Spherical slice transform

[Abouelaz \& Daher, 1993]

$$
\mathcal{S} f\left(\boldsymbol{\xi}, \xi_{3}\right)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

Circles through the north pole

- Stereographic projection turns circles into lines in the plane \nearrow Radon transform in \mathbb{R}^{2}
- Injective if f is differentiable and vanishes at $(0,0,1)$
[Helgason, 1999]
- Injective for all functions $L^{2}\left(\mathbb{S}^{2}\right)$ vanishing around $(0,0,1)$
- Injective for all bounded functions

Spherical slice transform

$$
\mathcal{S} f\left(\boldsymbol{\xi}, \xi_{3}\right)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

Circles through the north pole

- Stereographic projection turns circles into lines in the plane \nearrow Radon transform in \mathbb{R}^{2}
- Injective if f is differentiable and vanishes at $(0,0,1)$
[Helgason, 1999]
- Injective for all functions $L^{2}\left(\mathbb{S}^{2}\right)$ vanishing around $(0,0,1)$
[Daher, 2005]
- Injective for all bounded functions $L^{\infty}\left(\mathbb{S}^{2}\right) \quad[R u b i n, 2017]$

Spherical slice transform

$$
\mathcal{S} f\left(\boldsymbol{\xi}, \xi_{3}\right)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=\xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta})
$$

Circles through the north pole

- Stereographic projection turns circles into lines in the plane \nearrow Radon transform in \mathbb{R}^{2}
- Injective if f is differentiable and vanishes at $(0,0,1)$
[Helgason, 1999]
- Injective for all functions $L^{2}\left(\mathbb{S}^{2}\right)$ vanishing around $(0,0,1)$
[Daher, 2005]
- Injective for all bounded functions $L^{\infty}\left(\mathbb{S}^{2}\right)$
[Rubin, 2017]

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0,0, z), \quad 0 \leq z<1
$$

Plane section through $(0,0, z)$ is

Definition

$=0$: Funk-Radon transform

$=1$: Spherical slice transform

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0,0, z), \quad 0 \leq z<1
$$

Plane section through $(0,0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}\right\} .
$$

$$
z=1: \text { Spherical slice transform }
$$

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0,0, z), \quad 0 \leq z<1
$$

Plane section through $(0,0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}\right\} .
$$

Definition

$\mathcal{U}_{z}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right)$,
$\mathcal{U}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$
$z=0:$ Funk-Radon transform
$z=1$: Spherical slice transform

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0,0, z), \quad 0 \leq z<1
$$

Plane section through $(0,0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{2}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}\right\} .
$$

Definition

$\mathcal{U}_{z}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right)$,
$\mathcal{U}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{3}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$
$z=0$: Funk-Radon transform
$z=1$: Spherical slice transform

From great circles to small circles

Definition

Define the conformal map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

consisting of

Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$

2. Uniform scaling $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto \sqrt{\frac{1+z}{1-z}} x$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{\2
\square
maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the conformal map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$

2. Uniform scaling $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, x \mapsto \sqrt{\frac{1+z}{1-z} x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$

maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the conformal map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$

2. Uniform scaling $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection
\qquad
maps great circles to small circles through $(0,0, z)$.

From great circles to small circles

Definition

Define the conformal map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$

2. Uniform scaling $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$
maps great circles to small circles through $(0,0, z)$

From great circles to small circles

Definition

Define the conformal map $h: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$

$$
h(\boldsymbol{\xi})=\pi^{-1}\left(\sqrt{\frac{1+z}{1-z}} \pi(\boldsymbol{\xi})\right)
$$

consisting of

1. Stereographic projection $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$

2. Uniform scaling $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \boldsymbol{x} \mapsto \sqrt{\frac{1+z}{1-z}} \boldsymbol{x}$
3. Inverse stereographic projection $\pi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}$

We are going to see that

h maps great circles to small circles through $(0,0, z)$.

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)

- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

1) Stereographic projection π

- G... Great circle of \mathbb{S}^{2}
- E... Equator of \mathbb{S}^{2}
- G intersects E in two antipodal points (or is identical to E)
- $\pi(E)=E$
- $\pi(G)$ is a circle or line in \mathbb{R}^{2} that intersects $\pi(E)$ in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
intersects
in two antipodal points

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s

2) Scaling σ in the plane

- Uniform scaling with scale factor $s=\sqrt{\frac{1+z}{1-z}}$
- Unit circle E is mapped to the circle $\sigma(\pi(E))$ with radius s
- $\sigma(\pi(G))$ intersects $\sigma(\pi(E))$ in two antipodal points

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle through $(0,0, z)$

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle through $(0,0, z)$

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle through (0,0,

3) Inverse stereographic projection π^{-1}

- The circle with radius s is mapped to the circle of latitude $z ; h(E)$
- $h(G)=\pi^{-1}(\sigma(\pi(G)))$ intersects $h(E)$ in two antipodal points
- $h(G)$ is a small circle through $(0,0, z)$

Theorem

Let $z \in[0,1)$. The generalized Radon transform \mathcal{U}_{z} can be represented through

$$
\mathcal{U}_{z}=\mathcal{N}_{z} \mathcal{F} \mathcal{M}_{z}
$$

These operators are defined for $f \in C\left(\mathbb{S}^{2}\right)$ by

$$
\begin{aligned}
& -\mathcal{M}_{z} f(\boldsymbol{\xi})=\frac{\sqrt{1-z^{2}}}{1+z \xi_{3}}[f \circ h](\boldsymbol{\xi}) \\
& \quad h(\boldsymbol{\xi})=\frac{\sqrt{1-z^{2}}}{1+z \xi_{3}}\left(\xi_{1} \boldsymbol{e}^{1}+\xi_{2} \boldsymbol{e}^{2}\right)+\frac{z+\xi_{3}}{1+z \xi_{3}} \boldsymbol{e}^{3}
\end{aligned}
$$

- \mathcal{F}... Funk-Radon transform
- $\mathcal{N}_{z} f(\boldsymbol{\xi})=f\left(\frac{1}{\sqrt{1-z^{2} \xi_{3}^{2}}}\left(\xi_{1}, \xi_{2}, \sqrt{1-z^{2}} \xi_{3}\right)\right)$

Nullspace of \mathcal{U}_{z}

Theorem

For $\boldsymbol{\xi} \in \mathbb{S}^{2}$, we define $\xi^{*} \in \mathbb{S}^{2}$ as the point reflection of the sphere about the point $(0,0, z)$.

if and only if for almost every $\xi \in \mathbb{S}^{2}$

Nullspace of \mathcal{U}_{z}

Theorem

For $\boldsymbol{\xi} \in \mathbb{S}^{2}$, we define $\xi^{*} \in \mathbb{S}^{2}$ as the point reflection of the sphere about the point $(0,0, z)$.

Let $f \in L^{2}\left(\mathbb{S}^{2}\right)$. Then

$$
\mathcal{U}_{z} f=0
$$

if and only if for almost every $\boldsymbol{\xi} \in \mathbb{S}^{2}$

$$
f(\boldsymbol{\xi})=-\frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}} f\left(\boldsymbol{\xi}^{*}\right) .
$$

Range of \mathcal{U}_{z}

Theorem

The generalized Radon transform

$$
\mathcal{U}_{z}: \widetilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right) \rightarrow H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right)
$$

is continuous and bijective.

- $\widetilde{L}_{\mathrm{e}}^{2}\left(\mathbb{S}^{2}\right)=\left\{f \in L^{2}\left(\mathbb{S}^{2}\right) \left\lvert\, f(\boldsymbol{\eta})=f\left(\boldsymbol{\eta}^{*}\right) \frac{1-z^{2}}{1+z^{2}-2 z \eta_{3}}\right.\right\}$
- $H_{\mathrm{e}}^{1 / 2}\left(\mathbb{S}^{2}\right) \ldots$ Sobolev space of smoothness $1 / 2$ that contains only even functions

Content

1. The Funk-Radon transform

Definition
Analysis
2. General classes of circles

Circles with fixed radius
Circles with fixed midpoints
Circles through the north pole
Plane sections through a fixed point
3. Incomplete great circles

Spherical surface wave tomography
Singular value decomposition
Special families of arcs
4. Cone-beam and Radon transform in 3D

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

Assumption
A wave propagates along the arc of a great circle.

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

Assumption
A wave propagates along the arc of a great circle.

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

- Measure the traveltimes of surface waves between many pairs of epicenter and detector
- Reconstruct the local speed of propagation
\square
A wave propagates along the arc of a great circle.

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

- Measure the traveltimes of surface waves between many pairs of epicenter and detector
- Reconstruct the local speed of propagation

A wave propagates along the arc of a great circle.

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

- Measure the traveltimes of surface waves between many pairs of epicenter and detector
- Reconstruct the local speed of propagation

A wave propagates along the arc of a great circle.

Motivation: Spherical surface wave tomography

- Seismic waves propagate along the surface of the earth
- Speed of propagation depends on the position on \mathbb{S}^{2}

Method

- Measure the traveltimes of surface waves between many pairs of epicenter and detector
- Reconstruct the local speed of propagation

Assumption

A wave propagates along the arc of a great circle.

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$

Definition

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
$\Rightarrow \xi, \zeta \in \mathbb{S}^{2}$ not antipodal - $\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})$ great circle arc

Definition

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
- $\boldsymbol{\xi}, \boldsymbol{\zeta} \in \mathbb{S}^{2}$ not antipodal
$\Rightarrow \gamma(\xi, \zeta)$ great circle arc

Definition

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
- $\xi, \zeta \in \mathbb{S}^{2}$ not antipodal
- $\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})$ great circle arc

Defnition

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
- $\xi, \zeta \in \mathbb{S}^{2}$ not antipodal
- $\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})$ great circle arc

Definition

$$
\mathcal{B} f(\boldsymbol{\xi}, \boldsymbol{\zeta})=\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})} f \mathrm{~d} \gamma
$$

is not continuous

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
- $\xi, \zeta \in \mathbb{S}^{2}$ not antipodal
- $\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})$ great circle arc

Definition

$$
\mathcal{B} f(\boldsymbol{\xi}, \boldsymbol{\zeta})=\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})} f \mathrm{~d} \gamma
$$

$\mathcal{B}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)$ is not continuous

The arc transform

- Function $f: \mathbb{S}^{2} \rightarrow \mathbb{R}$
- Surface waves: $f=\frac{1}{c}$ (c... speed of sound)
- $\xi, \zeta \in \mathbb{S}^{2}$ not antipodal
- $\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})$ great circle arc

Definition

$$
\mathcal{B} f(\boldsymbol{\xi}, \boldsymbol{\zeta})=\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})} f \mathrm{~d} \gamma
$$

$\mathcal{B}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)$ is not continuous

We choose a different parameterization

The arc transform: alternative parameterization

- $\psi=\arccos \left(\boldsymbol{\xi}^{\top} \boldsymbol{\zeta}\right) \ldots$ length of γ

Definition

Theorem

$A: C\left(\mathbb{S}^{2}\right) \rightarrow C(\mathrm{SO}(3) \times[0,2 \pi])$ is

continuous.

The arc transform: alternative parameterization

- $\psi=\arccos \left(\boldsymbol{\xi}^{\top} \boldsymbol{\zeta}\right) \ldots$ length of γ
- $Q \in \mathrm{SO}(3)$ such that
- $Q \boldsymbol{\xi}=\boldsymbol{e}_{-\psi / 2}$ and
- $Q \boldsymbol{\zeta}=\boldsymbol{e}_{\psi / 2}$
where $\boldsymbol{e}_{\psi}=(\sin \psi, \cos \psi, 0)$

Definition

Theorem

\square

The arc transform: alternative parameterization

- $\psi=\arccos \left(\boldsymbol{\xi}^{\top} \boldsymbol{\zeta}\right) \ldots$ length of γ
- $Q \in \mathrm{SO}(3)$ such that
- $Q \boldsymbol{\xi}=\boldsymbol{e}_{-\psi / 2}$ and
- $Q \boldsymbol{\zeta}=\boldsymbol{e}_{\psi / 2}$
where $\boldsymbol{e}_{\psi}=(\sin \psi, \cos \psi, 0)$

Definition

$\mathcal{A}: C\left(\mathbb{S}^{2}\right) \rightarrow C(\mathrm{SO}(3) \times[0,2 \pi])$,

$$
\mathcal{A} f(Q, \psi)=\int_{-\psi / 2}^{\psi / 2} f\left(Q^{-1} \boldsymbol{e}_{\varphi}\right) \mathrm{d} \varphi
$$

Theorem

$$
\mathcal{A}: C\left(\mathbb{S}^{2}\right)-C(\mathrm{SO}(3) \times[0,2 \pi]) \text { is }
$$

continuous.

The arc transform: alternative parameterization

- $\psi=\arccos \left(\boldsymbol{\xi}^{\top} \boldsymbol{\zeta}\right) \ldots$ length of γ
- $Q \in \mathrm{SO}(3)$ such that
- $Q \boldsymbol{\xi}=\boldsymbol{e}_{-\psi / 2}$ and
- $Q \boldsymbol{\zeta}=\boldsymbol{e}_{\psi / 2}$
where $\boldsymbol{e}_{\psi}=(\sin \psi, \cos \psi, 0)$

Definition

$\mathcal{A}: C\left(\mathbb{S}^{2}\right) \rightarrow C(\mathrm{SO}(3) \times[0,2 \pi])$,

$$
\mathcal{A} f(Q, \psi)=\int_{-\psi / 2}^{\psi / 2} f\left(Q^{-1} \boldsymbol{e}_{\varphi}\right) \mathrm{d} \varphi
$$

Theorem

$\mathcal{A}: C\left(\mathbb{S}^{2}\right) \rightarrow C(\mathrm{SO}(3) \times[0,2 \pi])$ is continuous.

Notation: On the rotation group $\mathrm{SO}(3)$

- Rotation group

$$
\mathrm{SO}(3)=\left\{Q \in \mathbb{R}^{3 \times 3}: Q^{-1}=Q^{\top}, \operatorname{det}(Q)=1\right\}
$$

- Orthogonal basis on $L^{2}(\mathrm{SO}(3))$: rotational harmonics (Wigner D-functions)

Notation: On the rotation group $\mathrm{SO}(3)$

- Rotation group

$$
\mathrm{SO}(3)=\left\{Q \in \mathbb{R}^{3 \times 3}: Q^{-1}=Q^{\top}, \operatorname{det}(Q)=1\right\}
$$

- Orthogonal basis on $L^{2}(\mathrm{SO}(3))$: rotational harmonics (Wigner D-functions)

$$
D_{n}^{j, k}(Q)=\int_{\mathbb{S}^{2}} Y_{n}^{k}\left(Q^{-1} \boldsymbol{\xi}\right) \overline{Y_{n}^{j}(\boldsymbol{\xi})} \mathrm{d} \boldsymbol{\xi}
$$

Theorem

[Dahlen \& Tromp 1998]

Let $n \in \mathbb{N}$ and $k \in\{-n, \ldots, n\}$. Then

$$
\mathcal{A} Y_{n}^{k}(Q, \psi)=\sum_{j=-n}^{n} \widetilde{P}_{n}^{j}(0) D_{n}^{j, k}(Q) s_{j}(\psi)
$$

where

$$
s_{j}(\psi)= \begin{cases}\psi, & j=0 \\ \frac{2 \sin (j \psi / 2)}{j}, & j \neq 0\end{cases}
$$

and

$$
\widetilde{P}_{n}^{j}(0)= \begin{cases}(-1)^{\frac{n+j}{2}} \sqrt{\frac{2 n+1}{4 \pi} \frac{(n-j-1)!!(n+j-1)!!}{(n-j)!!(n+j)!!}}, & n+j \text { even } \\ 0, & n+j \text { odd }\end{cases}
$$

Singular value decomposition

The operator $\mathcal{A}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}(\mathrm{SO}(3) \times[0,2 \pi])$ is compact with the singular value decomposition

$$
\mathcal{A} Y_{n}^{k}=\sigma_{n} E_{n}^{k}, \quad n \in \mathbb{N}, k \in\{-n, \ldots, n\}
$$

with singular values

$$
\sigma_{n}=\sqrt{\frac{32 \pi^{3}}{2 n+1}} \sqrt{\frac{\pi^{2}}{3}\left|\widetilde{P}_{n}^{0}(0)\right|^{2}+\sum_{j=1}^{n} \frac{1}{j^{2}}\left|\widetilde{P}_{n}^{j}(0)\right|^{2}} \in \mathcal{O}\left(\frac{1}{\sqrt{n}}\right)
$$

and the orthonormal functions in $L^{2}(\mathrm{SO}(3) \times[0,2 \pi])$

$$
E_{k}^{n}=\sigma_{n}^{-1} \sum_{j=-n}^{n} \widetilde{P}_{n}^{j}(0) D_{n}^{j, k}(Q) s_{j}(\psi)
$$

Arcs from the north pole

- Fix one endpoint of the arcs as the north pole e^{3} :

$$
\mathcal{B} f(\boldsymbol{\xi}(\varphi, \vartheta))=\int_{\gamma\left(e^{3}, \boldsymbol{\xi}(\varphi, \vartheta)\right)} f \mathrm{~d} \gamma
$$

- Then f can be recovered from $\mathcal{B f}$ by

Arcs from the north pole

- Fix one endpoint of the arcs as the north pole e^{3} :

$$
\mathcal{B} f(\boldsymbol{\xi}(\varphi, \vartheta))=\int_{\gamma\left(e^{3}, \boldsymbol{\xi}(\varphi, \vartheta)\right)} f \mathrm{~d} \gamma
$$

- Then f can be recovered from $\mathcal{B} f$ by

$$
f(\boldsymbol{\xi}(\varphi, \vartheta))=\frac{\mathrm{d}}{\mathrm{~d} \vartheta} \mathcal{B} f(\boldsymbol{\xi}(\varphi, \vartheta)) .
$$

Arcs between two sets

[Amirbekyan 2007]

Let $A, B \subset \mathbb{S}^{2}$ nonempty. If $f \in C\left(\mathbb{S}^{2}\right)$ and

$$
\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})} f \mathrm{~d} \gamma=0 \quad \forall \boldsymbol{\xi} \in A, \boldsymbol{\zeta} \in B
$$

then $f \equiv 0$ on $\overline{A \cup B}$.

Arcs from the boundary of a set

Let $\Omega \subset \mathbb{S}^{2}$ be convex and strictly contained in a hemisphere. If $f \in C\left(\mathbb{S}^{2}\right)$ and

then $f=0$ on Ω.

Arcs between two sets

Let $A, B \subset \mathbb{S}^{2}$ nonempty. If $f \in C\left(\mathbb{S}^{2}\right)$ and

$$
\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\zeta})} f \mathrm{~d} \gamma=0 \quad \forall \boldsymbol{\xi} \in A, \boldsymbol{\zeta} \in B
$$

then $f \equiv 0$ on $\overline{A \cup B}$.

Arcs from the boundary of a set

Let $\Omega \subset \mathbb{S}^{2}$ be convex and strictly contained in a hemisphere. If $f \in C\left(\mathbb{S}^{2}\right)$ and

$$
\int_{\gamma(\boldsymbol{\xi}, \boldsymbol{\eta})} f \mathrm{~d} \gamma=0 \quad \forall \boldsymbol{\xi}, \boldsymbol{\eta} \in \partial \Omega
$$

then $f=0$ on Ω.

Arcs with fixed length

We fix the arclength $\psi \in[0,2 \pi]$ and define

$$
\mathcal{A}_{\psi}=\mathcal{A}(\cdot, \psi): L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}(\mathrm{SO}(3)) .
$$

Singular Value Decomposition

Let $\psi \in(0,2 \pi)$ be fixed. The operator $\mathcal{A}_{\psi}: L^{2}\left(\mathbb{S}^{2}\right) \rightarrow L^{2}(\mathrm{SO}(3))$ has the SVD

$$
\mathcal{A}_{\psi} Y_{n}^{k}=\mu_{n}(\psi) Z_{n, \psi}^{k}, \quad n \in \mathbb{N}, k \in\{-n, \ldots, n\}
$$

with singular values

$$
\mu_{n}(\psi)=\sqrt{\sum_{j=-n}^{n} \frac{8 \pi^{2}}{2 n+1}\left|\widetilde{P}_{n}^{j}(0)\right|^{2} s_{j}(\psi)^{2}}
$$

and singular functions

$$
Z_{n, \psi}^{k}=\frac{1}{\mu_{n}(\psi)} \sum_{j=-n}^{n} \widetilde{P}_{n}^{j}(0) s_{j}(\psi) D_{n}^{j, k} \in L^{2}(\mathrm{SO}(3)) .
$$

Hence \mathcal{A}_{ψ} is injective.

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=0.02 \pi
$$

Singular values $\mu_{n}(\psi)$: dependency on n

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=0.20 \pi
$$

Singular values $\mu_{n}(\psi)$: dependency on n

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=1.00 \pi \text { (half circle) }
$$

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=1.04 \pi
$$

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=1.90 \pi
$$

Singular values $\mu_{n}(\psi)$: dependency on n

$$
\psi=2.00 \pi \text { (Funk-Radon transform) }
$$

Singular values $\mu_{n}(\psi)$: dependency on arc-length ψ

Singular values: asymptotic behavior

Theorem
The singular values $\mu_{n}(\psi)$ of \mathcal{A}_{ψ} satisfy

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n \text { even }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
12 \pi \psi-2 \pi^{2}, & \psi \in[\pi, 2 \pi],\end{cases} \\
& \lim _{\substack{n \rightarrow \infty \\
n \text { odd }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
4 \pi^{2}-2 \pi \psi, & \psi \in[\pi, 2 \pi]\end{cases}
\end{aligned}
$$

Special cases

Singular values: asymptotic behavior

Theorem
The singular values $\mu_{n}(\psi)$ of \mathcal{A}_{ψ} satisfy

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n \text { even }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
12 \pi \psi-2 \pi^{2}, & \psi \in[\pi, 2 \pi]\end{cases} \\
& \lim _{\substack{n \rightarrow \infty \\
n \text { odd }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
4 \pi^{2}-2 \pi \psi, & \psi \in[\pi, 2 \pi]\end{cases}
\end{aligned}
$$

Special cases

$=2 \pi$: Funk-Radon transform: Injective only for even functions

 $\downarrow \psi=\pi$: Half-circle transform: Injective for all functions
Singular values: asymptotic behavior

Theorem
The singular values $\mu_{n}(\psi)$ of \mathcal{A}_{ψ} satisfy

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n \text { even }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
12 \pi \psi-2 \pi^{2}, & \psi \in[\pi, 2 \pi],\end{cases} \\
& \lim _{\substack{n \rightarrow \infty \\
n \text { odd }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
4 \pi^{2}-2 \pi \psi, & \psi \in[\pi, 2 \pi]\end{cases}
\end{aligned}
$$

Special cases

- $\psi=2 \pi$: Funk-Radon transform: Injective only for even functions
$\downarrow \psi=\pi$: Half-circle transform: Injective for all functions

Singular values: asymptotic behavior

Theorem
The singular values $\mu_{n}(\psi)$ of \mathcal{A}_{ψ} satisfy

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n \text { even }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
12 \pi \psi-2 \pi^{2}, & \psi \in[\pi, 2 \pi]\end{cases} \\
& \lim _{\substack{n \rightarrow \infty \\
n \text { odd }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
4 \pi^{2}-2 \pi \psi, & \psi \in[\pi, 2 \pi]\end{cases}
\end{aligned}
$$

Special cases

- $\psi=2 \pi$: Funk-Radon transform: Injective only for even functions
- $\psi=\pi$: Half-circle transform: Injective for all functions
half circles in one hemisphere

Singular values: asymptotic behavior

Theorem
The singular values $\mu_{n}(\psi)$ of \mathcal{A}_{ψ} satisfy

$$
\begin{aligned}
& \lim _{\substack{n \rightarrow \infty \\
n \text { even }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
12 \pi \psi-2 \pi^{2}, & \psi \in[\pi, 2 \pi]\end{cases} \\
& \lim _{\substack{n \rightarrow \infty \\
n \text { odd }}} n \mu_{n}(\psi)^{2}= \begin{cases}2 \pi \psi, & \psi \in[0, \pi] \\
4 \pi^{2}-2 \pi \psi, & \psi \in[\pi, 2 \pi]\end{cases}
\end{aligned}
$$

Special cases

- $\psi=2 \pi$: Funk-Radon transform: Injective only for even functions
- $\psi=\pi$: Half-circle transform: Injective for all functions
- half circles in one hemisphere
[Rubin 2017]

Content

1. The Funk-Radon transform Definition Analysis
2. General classes of circles

Circles with fixed radius Circles with fixed midpoints Circles through the north pole Plane sections through a fixed point
3. Incomplete great circles

Spherical surface wave tomography
Singular value decomposition
Special families of arcs
4. Cone-beam and Radon transform in 3D

3D transforms

Cone-beam transform (divergent beam X-ray transform), for a scanning set $\Gamma \subset \mathbb{R}^{d}$

$$
\begin{aligned}
& \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\omega})=\int_{0}^{\infty} f(\boldsymbol{a}+t \boldsymbol{\omega}) \mathrm{d} t \\
& \boldsymbol{\omega} \in \mathbb{S}^{2}, \boldsymbol{a} \in \Gamma
\end{aligned}
$$

Radon transform

3D transforms

Cone-beam transform (divergent beam X-ray transform), for a scanning set $\Gamma \subset \mathbb{R}^{d}$

$$
\begin{aligned}
& \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\omega})=\int_{0}^{\infty} f(\boldsymbol{a}+t \boldsymbol{\omega}) \mathrm{d} t \\
& \boldsymbol{\omega} \in \mathbb{S}^{2}, \boldsymbol{a} \in \Gamma
\end{aligned}
$$

Radon transform

$$
\mathcal{R} f(\boldsymbol{\omega}, s)=\int_{\langle\boldsymbol{x}, \boldsymbol{\omega}\rangle=s} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

Cone-beam and Radon transform

Grangeat's formula

$$
\frac{\partial}{\partial s} \mathcal{R} f\left(\boldsymbol{\omega}, \boldsymbol{a}^{\top} \boldsymbol{\omega}\right)=\int_{\boldsymbol{\xi} \in \mathbb{S}^{2}, \boldsymbol{\xi}^{\top} \boldsymbol{\omega}=0} \frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

Cone-beam and Radon transform

Grangeat's formula

$$
\frac{\partial}{\partial s} \mathcal{R} f\left(\boldsymbol{\omega}, \boldsymbol{a}^{\top} \boldsymbol{\omega}\right)=\int_{\boldsymbol{\xi} \in \mathbb{S}^{2}, \boldsymbol{\xi}^{\top} \boldsymbol{\omega}=0} \frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

Cone-beam and Radon transform

Grangeat's formula

$$
\frac{\partial}{\partial s} \mathcal{R} f\left(\boldsymbol{\omega}, \boldsymbol{a}^{\top} \boldsymbol{\omega}\right)=\int_{\boldsymbol{\xi} \in \mathbb{S}^{2}, \boldsymbol{\xi}^{\top} \boldsymbol{\omega}=0} \frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

With a generalized Funk-Radon transform
[Louis, 2016]

$$
\mathcal{S}^{(j)} f(\boldsymbol{\xi})=\int_{\mathbb{S}^{2}} \delta^{(j)}\left(\boldsymbol{\xi}^{\top} \boldsymbol{\eta}\right) f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}, \quad \boldsymbol{\xi} \in \mathbb{S}^{2}
$$

Grangeat's formula becomes

$$
\left.\frac{\partial}{\partial s} \mathcal{R} f(\boldsymbol{\omega}, s)\right|_{s=\boldsymbol{a}^{\top} \boldsymbol{\omega}}=-\mathcal{S}^{(1)} \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\omega})
$$

Cone-beam and Radon transform

Grangeat's formula

$$
\frac{\partial}{\partial s} \mathcal{R} f\left(\boldsymbol{\omega}, \boldsymbol{a}^{\top} \boldsymbol{\omega}\right)=\int_{\boldsymbol{\xi} \in \mathbb{S}^{2}, \boldsymbol{\xi}^{\top} \boldsymbol{\omega}=0} \frac{\partial}{\partial \boldsymbol{\omega}} \mathcal{D}_{a} f(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}
$$

With a generalized Funk-Radon transform
[Louis, 2016]

$$
\mathcal{S}^{(j)} f(\boldsymbol{\xi})=\int_{\mathbb{S}^{2}} \delta^{(j)}\left(\boldsymbol{\xi}^{\top} \boldsymbol{\eta}\right) f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}, \quad \boldsymbol{\xi} \in \mathbb{S}^{2}
$$

Grangeat's formula becomes

$$
\begin{gathered}
\left.\frac{\partial}{\partial s} \mathcal{R} f(\boldsymbol{\omega}, s)\right|_{s=\boldsymbol{a}^{\top} \boldsymbol{\omega}}=-\mathcal{S}^{(1)} \mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\omega}) \\
-\left.\left(\mathcal{S}^{(1)}\right)^{-1} \frac{\partial}{\partial s} \mathcal{R} f(\boldsymbol{\omega}, s)\right|_{s=\boldsymbol{a}^{\top} \boldsymbol{\omega}}=\mathcal{D}_{\boldsymbol{a}} f(\boldsymbol{\omega})
\end{gathered}
$$

Generalized Funk-Radon transform

Theorem

Let $j \in \mathbb{N}$. The generalized Funk-Radon transform $\mathcal{S}^{(j)}: C\left(\mathbb{S}^{2}\right) \rightarrow C\left(\mathbb{S}^{2}\right)$ satisfies the eigenvalue decomposition

$$
\mathcal{S}^{(j)} Y_{n}^{k}=P_{n}^{(j)}(0) Y_{n}^{k}, \quad n \in \mathbb{N}, k=-n, \ldots, n
$$

with eigenvalues

$$
P_{n}^{(j)}(0)= \begin{cases}2 \pi(-1)^{\frac{n-j}{2}} \frac{(n+j-1)!!}{(n-j)!!}, & n+j \text { even and }(n \geq j) \\ 0, & \text { otherwise }\end{cases}
$$

> for $j=1$: [Makai, Martini, Odor, 2000]
> general: [Q., Hielscher, Louis, 2018]

Cone-beam transform

Singular value decomposition

[Maaß, 1987] [Kazantsev, 2015] [Q., Hielscher, Louis, 2018]
The cone-beam transform \mathcal{D} with sources a on the sphere \mathbb{S}^{2}

$$
\begin{aligned}
& \mathcal{D} \tilde{V}_{m, l, k}(\boldsymbol{a}, \boldsymbol{\omega})= \\
& \frac{4 \pi}{\sqrt{2 m+3}} \sum_{j=-m-1}^{m+1} \frac{Y_{m+1}^{j}(\boldsymbol{a})}{\sum_{n=|m+1-l|}^{l+m+1} \frac{(-1)^{\frac{n+1}{2}}(n-1)!!}{n!!} G_{m+1, j, l, k}^{n, j+k} Y_{n}^{j+k}(\boldsymbol{\omega})}
\end{aligned}
$$

with the ball polynomials

$$
\widetilde{V}_{m, l, k}(s \boldsymbol{\omega})=\sqrt{2 m+3} s^{l} P_{\frac{m-l}{2}}^{\left(0, l+\frac{1}{2}\right)}\left(2 s^{2}-1\right) Y_{l}^{k}(\boldsymbol{\omega}), \quad s \in[0,1], \boldsymbol{\omega} \in \mathbb{S}^{2}
$$

and the Gaunt coefficients $G_{n_{1}, k_{1}, n_{2}, k_{2}}^{n, k}=\int_{\mathbb{S}^{2}} Y_{n_{1}}^{k_{1}}(\boldsymbol{\xi}) Y_{n_{2}}^{k_{2}}(\boldsymbol{\xi}) \overline{Y_{n}^{k}(\boldsymbol{\xi})} \mathrm{d} \boldsymbol{\xi}$.

\endinput

