

Reconstructing Functions on the Sphere from Circular Means Chemnitz University of Technology, Faculty of Mathematics

# Reconstructing Functions on the Sphere from Circular Means

Michael Quellmalz

Chemnitz University of Technology Faculty of Mathematics

Chemnitz Symposium on Inverse Problems 2019 On Tour in Frankfurt Goethe-Universität Frankfurt am Main 30 September 2019



### Content

- 1. Funk-Radon transform
- 2. Circular means on the sphere

#### 3. Examples

Circles with fixed radius Vertical slices Sections through a fixed point Circles through the North Pole (z = 1)



### Content

#### 1. Funk-Radon transform

#### 2. Circular means on the sphere

#### 3. Examples

Circles with fixed radius Vertical slices Sections through a fixed point Circles through the North Pole (z = 1)



[Funk 1911]

- ▶ Sphere  $S^{d-1} = \{ \xi \in \mathbb{R}^d : ||\xi|| = 1 \}$
- Function  $f: \mathbb{S}^{d-1} \to \mathbb{C}$
- Funk–Radon transform

$$\mathcal{F}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

(integrals of f along all great circles)

#### Goal

Reconstruct the function f from integrals  $\mathcal{F}f$ 

▶ Possible for even functions  $f(\boldsymbol{\xi}) = f(-\boldsymbol{\xi})$ 





- ▶ Sphere  $S^{d-1} = \{ \xi \in \mathbb{R}^d : \|\xi\| = 1 \}$
- Function  $f: \mathbb{S}^{d-1} \to \mathbb{C}$
- Funk–Radon transform

$$\mathcal{F}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d} \lambda(\boldsymbol{\eta})$$

(integrals of f along all great circles)

#### Goal

Reconstruct the function f from integrals  $\mathcal{F}f$ 

▶ Possible for even functions  $f(\boldsymbol{\xi}) = f(-\boldsymbol{\xi})$ 





- ▶ Sphere  $S^{d-1} = \{ \xi \in \mathbb{R}^d : \|\xi\| = 1 \}$
- Function  $f: \mathbb{S}^{d-1} \to \mathbb{C}$
- Funk–Radon transform

$$\mathcal{F}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d} \lambda(\boldsymbol{\eta})$$

(integrals of f along all great circles)

#### Goal

Reconstruct the function f from integrals  $\mathcal{F}f$ 

▶ Possible for even functions  $f(\boldsymbol{\xi}) = f(-\boldsymbol{\xi})$ 

[Funk 1911]



- ▶ Sphere  $S^{d-1} = \{ \xi \in \mathbb{R}^d : \|\xi\| = 1 \}$
- Function  $f: \mathbb{S}^{d-1} \to \mathbb{C}$
- Funk–Radon transform

$$\mathcal{F}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 0} f(\boldsymbol{\eta}) \, \mathrm{d} \lambda(\boldsymbol{\eta})$$

(integrals of f along all great circles)

#### Goal

Reconstruct the function f from integrals  $\mathcal{F}f$ 

• Possible for even functions  $f(\boldsymbol{\xi}) = f(-\boldsymbol{\xi})$ 







### Content

#### 1. Funk-Radon transform

#### 2. Circular means on the sphere

#### 3. Examples

Circles with fixed radius Vertical slices Sections through a fixed point Circles through the North Pole (z = 1)



- $\blacktriangleright f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$



- integral  $d\lambda$  is normalized to one
- ► The inversion of  $\mathcal{M}$  is overdetermined e.g.  $\mathcal{M}f(\boldsymbol{\xi}, 1) = f(\boldsymbol{\xi})$
- ▶ Reconstruct f knowing Mf on a submanifold of  $\mathbb{S}^{d-1} \times [-1, 1]$



- $\blacktriangleright f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$



- integral  $d\lambda$  is normalized to one
- ► The inversion of *M* is overdetermined e.g. *Mf*(*ξ*, 1) = *f*(*ξ*)
- ▶ Reconstruct f knowing Mf on a submanifold of  $S^{d-1} \times [-1, 1]$



- $\blacktriangleright f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$

### Singular value decomposition

[Berens, Butzer & Pawelke 1961]

- $Y_n^k$  spherical harmonic of degree n
- ▶  $P_{n,d}$  Legendre (ultraspherical) polynomial of degree *n* in dimension *d*, orthogonal polynomial on [-1, 1] w.r.t. the weight  $(1 t^2)^{\frac{d-3}{2}}$

Then

$$\mathcal{M}Y_n^k(\boldsymbol{\xi},t) = Y_n^k(\boldsymbol{\xi})P_{n,d}(t).$$



- $\blacktriangleright f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$

### Singular value decomposition

[Berens, Butzer & Pawelke 1961]

- $Y_n^k$  spherical harmonic of degree n
- ▶  $P_{n,d}$  Legendre (ultraspherical) polynomial of degree *n* in dimension *d*, orthogonal polynomial on [-1, 1] w.r.t. the weight  $(1 t^2)^{\frac{d-3}{2}}$

Then

$$\mathcal{M}Y_n^k(\boldsymbol{\xi},t) = Y_n^k(\boldsymbol{\xi})P_{n,d}(t).$$



- $\blacktriangleright f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$

### Singular value decomposition

[Berens, Butzer & Pawelke 1961]

- $Y_n^k$  spherical harmonic of degree n
- ▶  $P_{n,d}$  Legendre (ultraspherical) polynomial of degree n in dimension d, orthogonal polynomial on [-1, 1] w.r.t. the weight  $(1 t^2)^{\frac{d-3}{2}}$

Then

$$\mathcal{M}Y_n^k(\boldsymbol{\xi},t) = Y_n^k(\boldsymbol{\xi})P_{n,d}(t).$$



- $\blacktriangleright \ f \colon \mathbb{S}^{d-1} \to \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$\mathcal{M}f(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in [-1,1]$$



### Theorem "Euler-Poisson-Darboux equation"

Let  $f \in C^2(\mathbb{S}^{d-1})$ . Denote by  $\Delta_{\boldsymbol{\xi}}^{\bullet}$  the Laplace–Beltrami operator w.r.t.  $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$ . Then, for  $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$  and  $t \in (-1, 1)$ , the mean operator  $\mathcal{M}f$  satisfies

$$\Delta_{\boldsymbol{\xi}}^{\bullet} \mathcal{M} f(\boldsymbol{\xi},t) = \left( (1-t^2) \frac{\partial^2}{\partial t^2} - (d-1) t \frac{\partial}{\partial t} \right) \mathcal{M} f(\boldsymbol{\xi},t).$$

### Sobolev spaces

▶ Sobolev space  $H^s(\mathbb{S}^{d-1})$  with smoothness index  $s \in \mathbb{R}$  is the completion of the space of smooth functions  $f : \mathbb{S}^{d-1} \to \mathbb{C}$  with the norm

$$\|f\|_{H^{s}(\mathbb{S}^{d-1})}^{2} = \sum_{n=0}^{\infty} \sum_{k=1}^{N_{n,d}} \left|\langle f, Y_{n}^{k} \rangle\right|^{2} \left(n + \frac{d-2}{2}\right)^{2s}$$

▶ Sobolev norm in  $H^{s,r}(\mathbb{S}^{d-1} \times [-1,1])$  for  $s, r \in \mathbb{R}$ 

$$\|g\|_{H^{s,r}(\mathbb{S}^{d-1}\times[-1,1];w_d)}^2 = \sum_{n,l=0}^{\infty} \sum_{k=1}^{N_{n,d}} \left| \langle g, Y_n^k \, \widetilde{P}_{l,d} \rangle \right|^2 \left( n + \frac{d-2}{2} \right)^{2s} \left( l + \frac{d-2}{2} \right)^{2r}$$

 $Y^k_n(m{\xi})\,\widetilde{P}_{l,d}(t)$  form orthonormal basis in  $L^2(\mathbb{S}^{d-1} imes[-1,1];w_d)$  with weight $w_d(m{\xi},t)=(1-t^2)^{rac{d-3}{2}}$ 

### Sobolev spaces

▶ Sobolev space  $H^s(\mathbb{S}^{d-1})$  with smoothness index  $s \in \mathbb{R}$  is the completion of the space of smooth functions  $f : \mathbb{S}^{d-1} \to \mathbb{C}$  with the norm

$$\|f\|_{H^{s}(\mathbb{S}^{d-1})}^{2} = \sum_{n=0}^{\infty} \sum_{k=1}^{N_{n,d}} \left|\langle f, Y_{n}^{k} \rangle\right|^{2} \left(n + \frac{d-2}{2}\right)^{2s}$$

▶ Sobolev norm in  $H^{s,r}(\mathbb{S}^{d-1} \times [-1,1])$  for  $s, r \in \mathbb{R}$ 

$$\|g\|_{H^{s,r}(\mathbb{S}^{d-1}\times[-1,1];w_d)}^2 = \sum_{n,l=0}^{\infty} \sum_{k=1}^{N_{n,d}} \left| \langle g, Y_n^k \, \widetilde{P}_{l,d} \rangle \right|^2 \left( n + \frac{d-2}{2} \right)^{2s} \left( l + \frac{d-2}{2} \right)^{2r}$$

 $Y_n^k(\boldsymbol{\xi}) \widetilde{P}_{l,d}(t)$  form orthonormal basis in  $L^2(\mathbb{S}^{d-1} \times [-1,1]; w_d)$  with weight  $w_d(\boldsymbol{\xi},t) = (1-t^2)^{\frac{d-3}{2}}$ 



### Sobolev estimate of $\ensuremath{\mathcal{M}}$

#### Theorem

Let  $s \in \mathbb{R}.$  The mean operator  $\mathcal M$  on the sphere  $\mathbb S^{d-1}$  extends to a bounded linear operator

$$\mathcal{M}: H^{s}(\mathbb{S}^{d-1}) \to H^{s+\frac{d-2}{2},0}(\mathbb{S}^{d-1} \times [-1,1]; w_{d}).$$



### Injectivity sets of the mean operator $\ensuremath{\mathcal{M}}$

#### Theorem

#### [Hielscher, Q.]

Let  $D \subset \mathbb{S}^{d-1} \times [-1,1]$ ,  $g_0 \colon D \to \mathbb{C}$ , and let  $s > \frac{d-1}{2}$ . The following are equivalent:

1. The problem

$$\mathcal{M}\big|_D f = g_0$$

has a unique solution  $f \in H^s(\mathbb{S}^{d-1})$ .

2. The Euler-Poisson-Darboux differential equation

$$\Delta_{\boldsymbol{\xi}}^{\bullet}g(\boldsymbol{\xi},t) = \left( (1-t^2) \frac{\partial^2}{\partial t^2} - (d-1) t \frac{\partial}{\partial t} \right) g(\boldsymbol{\xi},t).$$

with boundary condition  $g|_D = g_0$  has a unique solution

$$g \in H^{s + \frac{d-2}{2}, 0}(\mathbb{S}^{d-1} \times [-1, 1]; w_d).$$

### Content

- 1. Funk-Radon transform
- 2. Circular means on the sphere

#### 3. Examples

Circles with fixed radius Vertical slices Sections through a fixed point Circles through the North Pole (z = 1)



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_z Y_n^k = P_{n,d}(z) \, Y_n^k$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $\mathcal{T}_z$  is **not** injective is countable and dense in [-1,1].



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_z Y_n^k = P_{n,d}(z) \, Y_n^k$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $\mathcal{T}_z$  is **not** injective is countable and dense in [-1,1].



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_z Y_n^k = P_{n,d}(z) \, Y_n^k$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $T_z$  is **not** injective is countable and dense in [-1, 1].



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_{z}Y_{n}^{k}=P_{n,d}(z)\,Y_{n}^{k}$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $T_z$  is **not** injective is countable and dense in [-1, 1].

This is because  $\mathcal{T}_z$  is injective if and only if  $P_{n,d}(z) = 0 \ \forall n \in \mathbb{N}_0$ .

Explicit algorithm to determine if  $\mathcal{T}_z$  is injective for given z

Applications in Compton tomography



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_z Y_n^k = P_{n,d}(z) \, Y_n^k$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $T_z$  is **not** injective is countable and dense in [-1, 1].

This is because  $\mathcal{T}_z$  is injective if and only if  $P_{n,d}(z) = 0 \ \forall n \in \mathbb{N}_0$ .

Explicit algorithm to determine if  $T_z$  is injective for given z

Applications in Compton tomography

[Rubin 2000]



$$\mathcal{T}_{z}f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z} f(\boldsymbol{\eta}) \, \mathrm{d} \boldsymbol{\eta}$$

Eigenvalue decomposition

$$\mathcal{T}_{z}Y_{n}^{k}=P_{n,d}(z)\,Y_{n}^{k}$$



#### "Freak theorem"

[Schneider 1969]

The set of values z for which  $T_z$  is **not** injective is countable and dense in [-1, 1].

$$\mathcal{M}(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_d = 0$$



#### Circles perpendicular to the equator

- ► Injective for symmetric functions  $f(\xi_1, \xi_2, \xi_3) = f(\xi_1, \xi_2, -\xi_3)$
- ► Orthogonal projection onto equatorial plane 
  → Radon transform in 
  R<sup>2</sup>
  [Gindikin Reeds & Shepp 19
- Application in photoacoustic tomography [Zangerl & Scherzer 2010]
  - Singular value decomposition [Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]

$$\mathcal{M}(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_d = 0$$



► Circles perpendicular to the equator
 ► Injective for symmetric functions f(ξ1, ξ2, ξ3) = f(ξ1, ξ2, -ξ3)

► Orthogonal projection onto equatorial plane Radon transform in R<sup>2</sup> [Gindikin, Reeds & Shepp 199

 Application in photoacoustic tomography [Zangerl & Scherzer 2010]

 Singular value decomposition [Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]

$$\mathcal{M}(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_d = 0$$



- Circles perpendicular to the equator
- ► Injective for symmetric functions  $f(\xi_1, \xi_2, \xi_3) = f(\xi_1, \xi_2, -\xi_3)$

 Application in photoacoustic tomography [Zangerl & Scherzer 2010]

 Singular value decomposition [Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]

$$\mathcal{M}(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_d = 0$$



- Circles perpendicular to the equator
- ► Injective for symmetric functions  $f(\xi_1, \xi_2, \xi_3) = f(\xi_1, \xi_2, -\xi_3)$
- Application in photoacoustic tomography [Zangerl & Scherzer 2010]
  - Singular value decomposition [Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]

$$\mathcal{M}(\boldsymbol{\xi},t) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = t} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta}), \qquad \xi_d = 0$$



- Circles perpendicular to the equator
- ► Injective for symmetric functions  $f(\xi_1, \xi_2, \xi_3) = f(\xi_1, \xi_2, -\xi_3)$
- Application in photoacoustic tomography [Zangerl & Scherzer 2010]
- Singular value decomposition [Hielscher & Q. 2016] [Rubin 2018] [Q. 2019]

## Planes through a fixed point

Consider an arbitrary point inside the sphere:

 $(0,\ldots,0,z), \qquad 0 \le z < 1$ 

Plane section through  $(0, \ldots, 0, z)$  is

 $\{oldsymbol{\eta}\in\mathbb{S}^{d-1}:\langleoldsymbol{\xi},oldsymbol{\eta}
angle=z\xi_d\}.$ 

#### Definition

$$\mathcal{U}_z f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \boldsymbol{\xi}_d} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

z = 0: Funk–Radon transform



#### 30 September 2019 · Michael Quellmalz

#### tu-chemnitz.de/~qmi

Reconstructing Functions on the Sphere from Circular Means Examples

### Planes through a fixed point

Consider an arbitrary point inside the sphere:

 $(0,\ldots,0,z), \qquad 0 \le z < 1$ 

Plane section through  $(0, \ldots, 0, z)$  is

$$\{\boldsymbol{\eta} \in \mathbb{S}^{d-1} : \langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z\xi_d\}.$$

#### Definition

$$\mathcal{U}_z f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \boldsymbol{\xi}_d} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

z = 0: Funk–Radon transform



#### 30 September 2019 · Michael Quellmalz

#### tu-chemnitz.de/~qmi

[Salman 2016]

Reconstructing Functions on the Sphere from Circular Means Examples

### Planes through a fixed point

Consider an arbitrary point inside the sphere:

 $(0,\ldots,0,z), \qquad 0 \le z < 1$ 

Plane section through  $(0, \ldots, 0, z)$  is

$$\{ \boldsymbol{\eta} \in \mathbb{S}^{d-1} : \langle \boldsymbol{\xi}, \boldsymbol{\eta} 
angle = z \xi_d \}.$$

#### Definition

$$\mathcal{U}_z f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

z = 0: Funk–Radon transform



[Salman 2016]



### Planes through a fixed point

Consider an arbitrary point inside the sphere:

 $(0,\ldots,0,z), \qquad 0 \le z < 1$ 

Plane section through  $(0, \ldots, 0, z)$  is

$$\{\boldsymbol{\eta} \in \mathbb{S}^{d-1} : \langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z\xi_d\}.$$

### Definition

$$\mathcal{U}_z f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = z \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}\lambda(\boldsymbol{\eta})$$

z = 0: Funk–Radon transform



[Salman 2016]



### Connection with the Funk-Radon transform

Define

$$h(\boldsymbol{\xi}) = \pi^{-1}\left(\sqrt{rac{1+z}{1-z}}\,\pi(\boldsymbol{\xi})
ight), \qquad \boldsymbol{\xi} \in \mathbb{S}^{d-1}$$

that consists of

- 1. Stereographic projection  $\pi \colon \mathbb{S}^{d-1} \to \mathbb{R}^{d-1}$
- 2. Uniform scaling  $\mathbb{R}^{d-1} o \mathbb{R}^{d-1}, \ m{x} \mapsto \sqrt{rac{1+z}{1-z}} \,m{x}$
- 3. Inverse stereographic projection  $\pi^{-1} \colon \mathbb{R}^{d-1} \to \mathbb{S}^{d-1}$

### We are going to see that

h maps great circles to small circles through (0, 0, z).





### Connection with the Funk-Radon transform

Define

$$h(\boldsymbol{\xi}) = \pi^{-1}\left(\sqrt{rac{1+z}{1-z}}\,\pi(\boldsymbol{\xi})
ight), \qquad \boldsymbol{\xi} \in \mathbb{S}^{d-1}$$

that consists of

- 1. Stereographic projection  $\pi \colon \mathbb{S}^{d-1} \to \mathbb{R}^{d-1}$
- 2. Uniform scaling  $\mathbb{R}^{d-1} o \mathbb{R}^{d-1}, \ m{x} \mapsto \sqrt{rac{1+z}{1-z}} \,m{x}$
- 3. Inverse stereographic projection  $\pi^{-1} \colon \mathbb{R}^{d-1} \to \mathbb{S}^{d-1}$

### We are going to see that

h maps great circles to small circles through (0, 0, z).



- ▶ G ... great circle of  $\mathbb{S}^2$
- ▶ E ... equator of  $\mathbb{S}^2$
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- π(G) is circle or line in ℝ<sup>2</sup> and intersects π(E) in two antipodal points



- ▶ G ... great circle of  $\mathbb{S}^2$
- ▶ E ... equator of  $\mathbb{S}^2$
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- π(G) is circle or line in ℝ<sup>2</sup> and intersects π(E) in two antipodal points



- ▶ G ... great circle of  $\mathbb{S}^2$
- ▶ E ... equator of  $\mathbb{S}^2$
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- π(G) is circle or line in ℝ<sup>2</sup> and intersects π(E) in two antipodal points



- ▶ G ... great circle of  $\mathbb{S}^2$
- ▶ E ... equator of  $\mathbb{S}^2$
- G intersects E in two antipodal points (or is identical to E)
- $\blacktriangleright \ \pi(E) = E$
- π(G) is circle or line in ℝ<sup>2</sup> and intersects π(E) in two antipodal points



## 2) Uniform scaling

- Uniform scaling with factor  $\sigma = \sqrt{\frac{1+z}{1-z}}$
- Unit circle *E* becomes circle  $\sigma(\pi(E))$  with radius  $\sigma$
- $\sigma(\pi(G))$  intersects  $\sigma(\pi(E))$ in two antipodal points



## 2) Uniform scaling

- Uniform scaling with factor  $\sigma = \sqrt{\frac{1+z}{1-z}}$
- Unit circle *E* becomes circle σ(π(*E*)) with radius σ
- $\sigma(\pi(G))$  intersects  $\sigma(\pi(E))$ in two antipodal points



## 2) Uniform scaling

- Uniform scaling with factor  $\sigma = \sqrt{\frac{1+z}{1-z}}$
- Unit circle *E* becomes circle σ(π(*E*)) with radius σ
- $\sigma(\pi(G))$  intersects  $\sigma(\pi(E))$ in two antipodal points





## 3) Inverse stereographic projection $\pi^{-1}$

- Circle with radius s becomes circle of latitude z, h(E)
- ►  $h(G) = \pi^{-1}(\sigma(\pi(G)))$ intersects h(E) in two antipodal points
- h(G) is small circle through (0,0,z)



#### tu-chemnitz.de/~qmi

## 3) Inverse stereographic projection $\pi^{-1}$

- Circle with radius s becomes circle of latitude z, h(E)
- ► h(G) = π<sup>-1</sup>(σ(π(G))) intersects h(E) in two antipodal points
- h(G) is small circle through (0,0,z)



## 3) Inverse stereographic projection $\pi^{-1}$

- Circle with radius s becomes circle of latitude z, h(E)
- $h(G) = \pi^{-1}(\sigma(\pi(G)))$ intersects h(E) in two antipodal points
- h(G) is small circle through (0,0,z)



## 3) Inverse stereographic projection $\pi^{-1}$

- Circle with radius s becomes circle of latitude z, h(E)
- $h(G) = \pi^{-1}(\sigma(\pi(G)))$ intersects h(E) in two antipodal points
- h(G) is small circle through (0, 0, z)





## Nullspace of $\mathcal{U}_z$

For  $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$ , we define  $\boldsymbol{\xi}^* \in \mathbb{S}^{d-1}$  as the point reflection of the sphere about the point  $(0, \dots, 0, z)$ .

Let  $f \in L^2(\mathbb{S}^{d-1})$ . Then

$$\mathcal{U}_z f = 0$$

if and only if for almost every  $oldsymbol{\xi} \in \mathbb{S}^{d-1}$ 

$$f(\boldsymbol{\xi}) = -\frac{1-z^2}{1+z^2-2z\eta_d}f(\boldsymbol{\xi}^*).$$



## Reconstruction is unique for two center points

## [Agranovsky & Rubin 2019]

#### 30 September 2019 · Michael Quellmalz

19 / 22

[Q. 2018]



## Nullspace of $\mathcal{U}_z$

For  $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$ , we define  $\boldsymbol{\xi}^* \in \mathbb{S}^{d-1}$  as the point reflection of the sphere about the point  $(0, \ldots, 0, z)$ . Let  $f \in L^2(\mathbb{S}^{d-1})$ . Then

$$\mathcal{U}_z f = 0$$

if and only if for almost every  $oldsymbol{\xi} \in \mathbb{S}^{d-1}$ 

$$f(\boldsymbol{\xi}) = -\frac{1-z^2}{1+z^2-2z\eta_d}f(\boldsymbol{\xi}^*).$$



#### Reconstruction is unique for two center points

#### [Agranovsky & Rubin 2019]

#### 30 September 2019 · Michael Quellmalz

19 / 22

[Q. 2018]



## Nullspace of $\mathcal{U}_z$

For  $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$ , we define  $\boldsymbol{\xi}^* \in \mathbb{S}^{d-1}$  as the point reflection of the sphere about the point  $(0, \ldots, 0, z)$ . Let  $f \in L^2(\mathbb{S}^{d-1})$ . Then

$$\mathcal{U}_z f = 0$$

if and only if for almost every  $oldsymbol{\xi} \in \mathbb{S}^{d-1}$ 

$$f(\boldsymbol{\xi}) = -\frac{1-z^2}{1+z^2-2z\eta_d}f(\boldsymbol{\xi}^*).$$



## Reconstruction is unique for two center points

## [Agranovsky & Rubin 2019]

#### 30 September 2019 · Michael Quellmalz

19 / 22

# Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$



- Stereographic projection turns circles into lines in the plane
  - earrow Radon transform in equatorial plane  $\mathbb{R}^{d-1}$
- Injective if f is differentiable and vanishes at the North Pole  $(0, \ldots, 0, 1)$  [Helgason, 1999]
- ► Injective for functions L<sup>2</sup>(S<sup>d-1</sup>) vanishing around the North Pole [Daher 2005]
- ► Injective for bounded functions  $f \in L^{\infty}(\mathbb{S}^{d-1})$ 
  - [Rubiii 2017]
- Continuity result with  $U_z$  for z < 1 [Q. 2018]

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform  $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$ 



Injective if f is differentiable and vanishes at the North Pole (0, ..., 0, 1) [Helgason, 1999]

 Injective for functions L<sup>2</sup>(S<sup>d-1</sup>) vanishing around the North Pole [Daher 2005]

Injective for bounded functions  $f \in L^{\infty}(\mathbb{S}^{d-1})$ 

Continuity result with  $U_z$  for z < 1 [Q. 2018]

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform  $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$ 



- Injective if f is differentiable and vanishes at the North Pole (0,...,0,1) [Helgason, 1999]
- Injective for functions  $L^2(\mathbb{S}^{d-1})$  vanishing around the North Pole [Daher 2005]
- Injective for bounded functions  $f \in L^{\infty}(\mathbb{S}^{d-1})$
- Continuity result with  $U_z$  for z < 1 [Q. 2018]

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform  $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$ 



- Injective if f is differentiable and vanishes at the North Pole  $(0, \ldots, 0, 1)$  [Helgason, 1999]
- Injective for functions  $L^2(\mathbb{S}^{d-1})$  vanishing around the North Pole [Daher 2005]

Injective for bounded functions  $f \in L^{\infty}(\mathbb{S}^{d-1})$ 

Continuity result with  $\mathcal{U}_z$  for z < 1 [Q. 2018]

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform  $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$ 



- ► Injective if f is differentiable and vanishes at the North Pole (0,...,0,1) [Helgason, 1999]
- Injective for functions L<sup>2</sup>(S<sup>d-1</sup>) vanishing around the North Pole [Daher 2005]
  - $f = \text{Injective for bounded functions} \\ f \in L^{\infty}(\mathbb{S}^{d-1})$  [Rubin 2017]

Continuity result with  $U_z$  for z < 1 [Q. 2018]

Case z = 1: Circles through the North Pole [Abouelaz & Daher 1993] Spherical Slice Transform  $U_1 f(\boldsymbol{\xi}) = \int_{\langle \boldsymbol{\xi}, \boldsymbol{\eta} \rangle = 1 \xi_d} f(\boldsymbol{\eta}) \, \mathrm{d}s(\boldsymbol{\eta})$ 



- ► Injective if f is differentiable and vanishes at the North Pole (0,...,0,1) [Helgason, 1999]
- Injective for functions L<sup>2</sup>(S<sup>d-1</sup>) vanishing around the North Pole [Daher 2005]
  - Injective for bounded functions  $f \in L^{\infty}(\mathbb{S}^{d-1})$  [Rubin 2017]
  - Continuity result with  $U_z$  for z < 1 [Q. 2018]

| Name                            | Definition                                                                         | Injectivity                                              | Range                                                   | SVD |
|---------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-----|
| mean operator                   | $\mathcal{M}f(oldsymbol{\xi},t)$                                                   | ✓                                                        | $\subset H^{d/2-1,0}_{\mathrm{even}}$                   | 1   |
| Funk-Radon                      | $\mathcal{M}f(oldsymbol{\xi},0)$                                                   | $f(\pmb{\xi}) = f(-\pmb{\xi})$                           | $=H_{\mathrm{even}}^{\frac{d-2}{2}}$                    | ✓   |
| spherical section<br>transform  | $\mathcal{M}f(oldsymbol{\xi},z)$ , $z\in [-1,1]$ fixed                             | ✓ if $P_{n,d}(z) \neq 0 \ \forall n \in \mathbb{N}_0$    |                                                         | 1   |
| vertical slices                 | $\mathcal{M}f((oldsymbol{\sigma}_{0}),t)$ , $oldsymbol{\sigma}\in\mathbb{S}^{d-2}$ | $f(\boldsymbol{\xi}',\xi_d)=f(\boldsymbol{\xi}',-\xi_d)$ | $\subset H^{0,rac{d-2}{2}-rac{1}{4}}_{\mathrm{even}}$ | 1   |
| sections through<br>fixed point | $\mathcal{M}f(oldsymbol{\xi},z\xi_d)$ , $z\in(-1,1)$ fixed                         | $f$ even w.r.t. some reflection in $z \epsilon^d$        | $=\widetilde{H}_{z}^{rac{d-2}{2}}$                     | X   |
| sections through<br>North Pole  | $\mathcal{M}f(oldsymbol{\xi},\xi_d)$                                               | ✓ for $f \in L^{\infty}(\mathbb{S}^{d-1})$               |                                                         | X   |

TECHNISCHE UNIVERSITÄT



# \endinput

30 September 2019 · Michael Quellmalz

tu-chemnitz.de/~qmi