The Funk-Radon transform and spherical tomography

Michael Quellmalz
Chemnitz University of Technology
Faculty of Mathematics

2nd IMA Conference On Inverse Problems From Theory To Application University College London 5 September 2019

Content

1. Funk-Radon transform
2. Circular means on the sphere
3. Examples

Circles with fixed radius
Vertical slices
Circles through the North Pole

Funk-Radon transform

- Sphere $\mathbb{S}^{d-1}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{d}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Funk-Radon transform

Funk-Radon transform

- Sphere $\mathbb{S}^{d-1}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{d}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
$$

(integrals of f along all great circles)

Goal
 Reconstruct the function f from integrals $\mathcal{F} f$
 - Possible for even functions $f(\xi)=f(-\xi)$

Funk-Radon transform

- Sphere $\mathbb{S}^{d-1}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{d}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
$$

(integrals of f along all great circles)

Goal

Reconstruct the function f from integrals $\mathcal{F} f$

- Possible for even functions $f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$

Funk-Radon transform

- Sphere $\mathbb{S}^{d-1}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{d}:\|\boldsymbol{\xi}\|=1\right\}$
- Function $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Funk-Radon transform

$$
\mathcal{F} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=0} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})
$$

(integrals of f along all great circles)

Goal

Reconstruct the function f from integrals $\mathcal{F} f$

- Possible for even functions $f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$

Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

- integral $\mathrm{d} \lambda$ is normalized to one
- The inversion of \mathcal{M} is overdetermined e.g. $\mathcal{M} f(\boldsymbol{\xi}, 1)=f(\boldsymbol{\xi})$
- Reconstruct f knowing $\mathcal{M} f$ on a submanifold of $\mathbb{S}^{d-1} \times[-1,1]$

Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

- integral $\mathrm{d} \lambda$ is normalized to one
- The inversion of \mathcal{M} is overdetermined e.g. $\mathcal{M} f(\boldsymbol{\xi}, 1)=f(\boldsymbol{\xi})$
- Reconstruct f knowing $\mathcal{M} f$ on a submanifold of $\mathbb{S}^{d-1} \times[-1,1]$

Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

Singular value decomposition

- Y_{n}^{k} spherical harmonic of degree n
$P_{n, d}$ Legendre (ultraspherical) polynomial of degree n in dimension d, orthogonal polynomial on $[-1,1]$ w.r.t. the weight $\left(1-t^{2}\right)^{\frac{d-3}{2}}$

Then

Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

Singular value decomposition

- Y_{n}^{k} spherical harmonic of degree n
- $P_{n, d}$ Legendre (ultraspherical) polynomial of degree n in dimension d, orthogonal polynomial on $[-1,1]$ w.r.t. the weight $\left(1-t^{2}\right)^{\frac{d-3}{2}}$

[^0]
Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

Singular value decomposition

- Y_{n}^{k} spherical harmonic of degree n
- $P_{n, d}$ Legendre (ultraspherical) polynomial of degree n in dimension d, orthogonal polynomial on $[-1,1]$ w.r.t. the weight $\left(1-t^{2}\right)^{\frac{d-3}{2}}$
Then

$$
\mathcal{M} Y_{n}^{k}(\boldsymbol{\xi}, t)=Y_{n}^{k}(\boldsymbol{\xi}) P_{n, d}(t)
$$

Circular means on the sphere

- $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$
- Mean operator integrates f along all hyperplane sections:

$$
\mathcal{M} f(\boldsymbol{\xi}, t)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=t} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta}), \quad \boldsymbol{\xi} \in \mathbb{S}^{d-1}, t \in[-1,1]
$$

Theorem "Euler-Poisson-Darboux equation"

Let $f \in C^{2}\left(\mathbb{S}^{d-1}\right)$. Denote by $\Delta_{\boldsymbol{\xi}}^{\bullet}$ the Laplace-Beltrami operator w.r.t. $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$. Then, for $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$ and $t \in(-1,1)$, the mean operator $\mathcal{M} f$ satisfies

$$
\Delta_{\boldsymbol{\xi}}^{\bullet} \mathcal{M} f(\boldsymbol{\xi}, t)=\left(\left(1-t^{2}\right) \frac{\partial^{2}}{\partial t^{2}}-(d-1) t \frac{\partial}{\partial t}\right) \mathcal{M} f(\boldsymbol{\xi}, t)
$$

Sobolev spaces

- Sobolev space $H^{s}\left(\mathbb{S}^{d-1}\right)$ of order $s \in \mathbb{R}$ is the completion of the space of smooth functions $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{H^{s}\left(\mathbb{S}^{d-1}\right)}^{2}=\sum_{n=0}^{\infty} \sum_{k=1}^{N_{n, d}}\left|\left\langle f, Y_{n}^{k}\right\rangle\right|^{2}\left(n+\frac{d-2}{2}\right)^{2 s}
$$

- Sobolev norm in $H^{s, r}\left(\mathbb{S}^{d-1} \times[-1,1]\right)$ for $s, r \in \mathbb{R}$

Sobolev spaces

- Sobolev space $H^{s}\left(\mathbb{S}^{d-1}\right)$ of order $s \in \mathbb{R}$ is the completion of the space of smooth functions $f: \mathbb{S}^{d-1} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{H^{s}\left(\mathbb{S}^{d-1}\right)}^{2}=\sum_{n=0}^{\infty} \sum_{k=1}^{N_{n, d}}\left|\left\langle f, Y_{n}^{k}\right\rangle\right|^{2}\left(n+\frac{d-2}{2}\right)^{2 s}
$$

- Sobolev norm in $H^{s, r}\left(\mathbb{S}^{d-1} \times[-1,1]\right)$ for $s, r \in \mathbb{R}$

$$
\|g\|_{H^{s, r}\left(\mathbb{S}^{d-1} \times[-1,1] ; w_{d}\right)}^{2}=\sum_{n, l=0}^{\infty} \sum_{k=1}^{N_{n, d}}\left|\left\langle g, Y_{n}^{k} \widetilde{P}_{l, d}\right\rangle\right|^{2}\left(n+\frac{d-2}{2}\right)^{2 s}\left(l+\frac{d-2}{2}\right)^{2 r}
$$

$Y_{n}^{k}(\boldsymbol{\xi}) \widetilde{P}_{l, d}(t)$ form orthonormal basis in $L^{2}\left(\mathbb{S}^{d-1} \times[-1,1] ; w_{d}\right)$ with weight

$$
w_{d}(\boldsymbol{\xi}, t)=\left(1-t^{2}\right)^{\frac{d-3}{2}}
$$

Sobolev estimate of \mathcal{M}

Theorem

Let $s \in \mathbb{R}$. The mean operator \mathcal{M} on the sphere \mathbb{S}^{d-1} extends to a bounded linear operator

$$
\mathcal{M}: H^{s}\left(\mathbb{S}^{d-1}\right) \rightarrow H^{s+\frac{d-2}{2}, 0}\left(\mathbb{S}^{d-1} \times[-1,1] ; w_{d}\right)
$$

Injectivity sets of the mean operator \mathcal{M}

Theorem

Let $D \subset \mathbb{S}^{d-1} \times[-1,1], g_{0}: D \rightarrow \mathbb{C}$, and let $s>\frac{d-1}{2}$. The following are equivalent:

1. The problem

$$
\left.\mathcal{M}\right|_{D} f=g_{0}
$$

has a unique solution $f \in H^{s}\left(\mathbb{S}^{d-1}\right)$.
2. The Euler-Poisson-Darboux differential equation

$$
\Delta_{\boldsymbol{\xi}}^{\bullet} g(\boldsymbol{\xi}, t)=\left(\left(1-t^{2}\right) \frac{\partial^{2}}{\partial t^{2}}-(d-1) t \frac{\partial}{\partial t}\right) g(\boldsymbol{\xi}, t)
$$

with boundary condition $\left.g\right|_{D}=g_{0}$ has a unique solution

$$
g \in H^{s+\frac{d-2}{2}, 0}\left(\mathbb{S}^{d-1} \times[-1,1] ; w_{d}\right)
$$

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

"Freak theorem"

The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1]$
This is because \mathcal{T}_{z} is injective if and only if $P_{n, d}(z)=0 \forall n \in \mathbb{N}_{0}$.
Explicit algorithm to determine if \mathcal{T}_{z} is injective for given

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{T}_{z} Y_{n}^{k}=P_{n, d}(z) Y_{n}^{k}
$$

"Freak theorem"

The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1$
This is because \mathcal{T}_{z} is injective if and only if $P_{n, d}(z)=0 \forall n \in \mathbb{N}_{0}$.
Explicit algorithm to determine if \mathcal{T}_{z} is injective for given

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{T}_{z} Y_{n}^{k}=P_{n, d}(z) Y_{n}^{k}
$$

"Freak theorem"

[Schneider 1969]
The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1]$.

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{T}_{z} Y_{n}^{k}=P_{n, d}(z) Y_{n}^{k}
$$

"Freak theorem"

[Schneider 1969]
The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1]$.
This is because \mathcal{T}_{z} is injective if and only if $P_{n, d}(z)=0 \forall n \in \mathbb{N}_{0}$.
Explicit algorithm to determine if \mathcal{T}_{z} is injective for given

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{T}_{z} Y_{n}^{k}=P_{n, d}(z) Y_{n}^{k}
$$

"Freak theorem"

The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1]$.
This is because \mathcal{T}_{z} is injective if and only if $P_{n, d}(z)=0 \forall n \in \mathbb{N}_{0}$. Explicit algorithm to determine if \mathcal{T}_{z} is injective for given z

Circles with fixed radius

For fixed $z \in[-1,1]$, compute

$$
\mathcal{T}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z} f(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}
$$

Eigenvalue decomposition

$$
\mathcal{T}_{z} Y_{n}^{k}=P_{n, d}(z) Y_{n}^{k}
$$

"Freak theorem"

[Schneider 1969]
The set of values z for which \mathcal{T}_{z} is not injective is countable and dense in $[-1,1]$.
This is because \mathcal{T}_{z} is injective if and only if $P_{n, d}(z)=0 \forall n \in \mathbb{N}_{0}$.
Explicit algorithm to determine if \mathcal{T}_{z} is injective for given z
[Rubin 2000] Applications in Compton tomography [Moon 2016] [Palamodov 2017]

Vertical slices

$$
\mathcal{M}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{d}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane \nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp 1994]
- Application in photoacoustic tomography [Zangerl \& Scherzer 2010]
- Singular value decomposition [Hielscher \& Q. 2016] [Rubin 2018] [Q. 2019]

Vertical slices

$$
\mathcal{M}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{d}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions $f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)$
- Orthogonal projection onto equatorial plane \nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp 1994.
- Application in photoacoustic tomography [Zangerl \& Scherzer 2010]
- Singular value decomposition [Hielscher \& Q. 2016] [Rubin 2018] [Q. 2019]

Vertical slices

$$
\mathcal{M}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{d}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions

$$
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)
$$

- Orthogonal projection onto equatorial plane \nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp 1994]
\rightarrow Application in photoacoustic tomography
[Zangerl \& Scherzer 2010]
- Singular value decomposition
[Hielscher \& Q. 2016] [Rubin 2018] [Q. 2019]

Vertical slices

$$
\mathcal{M}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{d}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions

$$
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)
$$

- Orthogonal projection onto equatorial plane \nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp 1994]
- Application in photoacoustic tomography
[Zangerl \& Scherzer 2010]
\rightarrow Singular value decomposition
[Hielscher \& Q. 2016] [Rubin 2018] [Q. 2019]

Vertical slices

$$
\mathcal{M}(\boldsymbol{\xi}, x)=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=x} f(\boldsymbol{\eta}) \mathrm{d} s(\boldsymbol{\eta}), \quad \xi_{d}=0
$$

- Circles perpendicular to the equator
- Injective for symmetric functions

$$
f\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=f\left(\xi_{1}, \xi_{2},-\xi_{3}\right)
$$

- Orthogonal projection onto equatorial plane \nearrow Radon transform in \mathbb{R}^{2}
[Gindikin, Reeds \& Shepp 1994]
- Application in photoacoustic tomography
[Zangerl \& Scherzer 2010]
- Singular value decomposition
[Hielscher \& Q. 2016] [Rubin 2018] [Q. 2019]

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0, \ldots, 0, z), \quad 0 \leq z<1
$$

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0, \ldots, 0, z), \quad 0 \leq z<1
$$

Plane section through $(0, \ldots, 0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{d-1}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d}\right\} .
$$

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0, \ldots, 0, z), \quad 0 \leq z<1
$$

Plane section through $(0, \ldots, 0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{d-1}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d}\right\} .
$$

Definition

$\mathcal{U}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$

Planes through a fixed point

Consider an arbitrary point inside the sphere:

$$
(0, \ldots, 0, z), \quad 0 \leq z<1
$$

Plane section through $(0, \ldots, 0, z)$ is

$$
\left\{\boldsymbol{\eta} \in \mathbb{S}^{d-1}:\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d}\right\} .
$$

Definition

$\mathcal{U}_{z} f(\boldsymbol{\xi})=\int_{\langle\boldsymbol{\xi}, \boldsymbol{\eta}\rangle=z \xi_{d}} f(\boldsymbol{\eta}) \mathrm{d} \lambda(\boldsymbol{\eta})$
$z=0$: Funk-Radon transform

Nullspace of \mathcal{U}_{z}

For $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$, we define $\xi^{*} \in \mathbb{S}^{d-1}$ as the point reflection of the sphere about the point $(0, \ldots, 0, z)$.

if and only if for almost every $\xi \in \mathbb{S}^{d-1}$

Reconstruction is unique for two center points

Nullspace of \mathcal{U}_{z}

For $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$, we define $\boldsymbol{\xi}^{*} \in \mathbb{S}^{d-1}$ as the point reflection of the sphere about the point $(0, \ldots, 0, z)$.

Let $f \in L^{2}\left(\mathbb{S}^{d-1}\right)$. Then

$$
\mathcal{U}_{z} f=0
$$

if and only if for almost every $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$

$$
f(\boldsymbol{\xi})=-\frac{1-z^{2}}{1+z^{2}-2 z \eta_{d}} f\left(\boldsymbol{\xi}^{*}\right)
$$

Reconstruction is unique for two center points

Nullspace of \mathcal{U}_{z}

For $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$, we define $\boldsymbol{\xi}^{*} \in \mathbb{S}^{d-1}$ as the point reflection of the sphere about the point $(0, \ldots, 0, z)$.

Let $f \in L^{2}\left(\mathbb{S}^{d-1}\right)$. Then

$$
\mathcal{U}_{z} f=0
$$

if and only if for almost every $\boldsymbol{\xi} \in \mathbb{S}^{d-1}$

$$
f(\boldsymbol{\xi})=-\frac{1-z^{2}}{1+z^{2}-2 z \eta_{d}} f\left(\boldsymbol{\xi}^{*}\right)
$$

Reconstruction is unique for two center points

Circles through the North Pole

- Stereographic projection turns circles into lines in the plane

Radon transform in equatorial plane \mathbb{R}^{d-1}

- Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1)$
[Helgason, 1999]
- Injective for functions
vanishing around the North Pole
[Daher 2005] Injective for bounded functions $f \in L^{\infty}\left(\mathbb{S}^{d-1}\right)$
[Rubin 2017] Continuity result with \mathcal{U}_{z} for $z<1$ [0. 2018]

Circles through the North Pole

- Stereographic projection turns circles into
 lines in the plane \nearrow Radon transform in equatorial plane \mathbb{R}^{d-1}

Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1$
[Helgason, 1999
Injective for functions $L^{2}\left(\mathbb{S}^{d-1}\right)$ vanishing around the North Pole
[Daher 2005]
Injective for bounded functions

Continuity result with \mathcal{U}_{z} for $z<1$ [Q. 2018]

Circles through the North Pole

- Stereographic projection turns circles into
 lines in the plane
\nearrow Radon transform in equatorial plane \mathbb{R}^{d-1}
- Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1)$ [Helgason, 1999]
- Injective for functions
vanishing around the North Pole

Injective for bounded functions

Continuity result with \mathcal{U}_{z} for $z<1$ [Q. 2018]

Circles through the North Pole

- Stereographic projection turns circles into
 lines in the plane
\nearrow Radon transform in equatorial plane \mathbb{R}^{d-1}
- Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1)$ [Helgason, 1999]
- Injective for functions $L^{2}\left(\mathbb{S}^{d-1}\right)$ vanishing around the North Pole [Daher 2005]
- Injective for bounded functions
$f \in L^{\infty}\left(\mathbb{S}^{d-1}\right) \quad$ [Rubin 2017] Continuity result with \mathcal{U}_{z} for $z<1$ [Q. 2018]

Circles through the North Pole

- Stereographic projection turns circles into
 lines in the plane
\nearrow Radon transform in equatorial plane \mathbb{R}^{d-1}
- Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1)$ [Helgason, 1999]
- Injective for functions $L^{2}\left(\mathbb{S}^{d-1}\right)$ vanishing around the North Pole [Daher 2005]
- Injective for bounded functions $f \in L^{\infty}\left(\mathbb{S}^{d-1}\right)$
[Rubin 2017]
- Continuity result with \mathcal{U}_{z} for $z<1$ [Q. 2018]

Circles through the North Pole

- Stereographic projection turns circles into
 lines in the plane
\nearrow Radon transform in equatorial plane \mathbb{R}^{d-1}
- Injective if f is differentiable and vanishes at the North Pole $(0, \ldots, 0,1)$ [Helgason, 1999]
- Injective for functions $L^{2}\left(\mathbb{S}^{d-1}\right)$ vanishing around the North Pole [Daher 2005]
- Injective for bounded functions $f \in L^{\infty}\left(\mathbb{S}^{d-1}\right)$
[Rubin 2017]
- Continuity result with \mathcal{U}_{z} for $z<1$ [Q. 2018]

Name	Definition	Injectivity	Range	SVD
mean operator	$\mathcal{M} f(\boldsymbol{\xi}, t)$	\checkmark	$\subset H_{\text {even }}^{d / 2-1,0}$	\checkmark
Funk-Radon	$\mathcal{M} f(\boldsymbol{\xi}, 0)$	$f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$	$=H_{\text {even }}^{\frac{d-2}{2}}$	\checkmark

$\left.\begin{array}{lllll}\hline \text { spherical section } & \mathcal{M} f(\boldsymbol{\xi}, z), & \checkmark \text { if } P_{n, d}(z) \neq 0 & \subset H^{\frac{d-2}{2}} & \checkmark \\ \text { transform } & z \in[-1,1] \text { fixed } & \forall n \in \mathbb{N}_{0} & \\ \hline \text { vertical slice } & \mathcal{M} f\left(\binom{\boldsymbol{\sigma}}{0}, t\right), & f\left(\boldsymbol{\xi}^{\prime}, \xi_{d}\right)=f\left(\boldsymbol{\xi}^{\prime},-\xi_{d}\right) & \subset H_{\text {even }}^{0, \frac{d-2}{2}-\frac{1}{4}} & \boldsymbol{\checkmark} \\ \text { transform } & \boldsymbol{\sigma} \in \mathbb{S}^{d-2}\end{array}\right]$

Name	Definition	Injectivity	Range	SVD
mean operator	$\mathcal{M} f(\boldsymbol{\xi}, t)$	\checkmark	$\subset H_{\text {even }}^{d / 2-1,0}$	\checkmark
Funk-Radon	$\mathcal{M} f(\boldsymbol{\xi}, 0)$	$f(\boldsymbol{\xi})=f(-\boldsymbol{\xi})$	$=H_{\text {even }}^{\frac{d-2}{2}}$	\checkmark

spherical section	$\mathcal{M} f(\boldsymbol{\xi}, z)$,	\boldsymbol{J} if $P_{n, d}(z) \neq 0$	$\subset H^{\frac{d-2}{2}}$	$\boldsymbol{\checkmark}$
transform	$z \in[-1,1]$ fixed	$\forall n \in \mathbb{N}_{0}$		
vertical slice	$\mathcal{M} f((\boldsymbol{\sigma} 0), t)$,	$f\left(\boldsymbol{\xi}^{\prime}, \xi_{d}\right)=f\left(\boldsymbol{\xi}^{\prime},-\xi_{d}\right)$	$\subset H_{\text {even }}^{0, \frac{d-2}{2}-\frac{1}{4}}$	$\boldsymbol{\checkmark}$
transform	$\boldsymbol{\sigma} \in \mathbb{S}^{d-2}$			
sections through	$\mathcal{M} f\left(\boldsymbol{\xi}, z \xi_{d}\right)$,	f even w.r.t. some	$=\widetilde{H}_{z}^{\frac{d-2}{2}}$	\boldsymbol{x}
fixed point	$z \in(-1,1)$ fixed	reflection in $z \boldsymbol{\epsilon}^{d}$		\boldsymbol{x}

North Pole

Thank you for your attention

[^0]: Then

