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Abstract

A core cognitive ability of humans is the creation of and rea-
soning with mental models based on given information. When
confronted with indeterminate information, allowing for the
existence of multiple mental models, humans seem to recur-
rently report specific models - so-called preferred mental mod-
els. In this paper, we revisit this within the context of syllogis-
tic reasoning, which involves statements about quantified as-
sertions. We present an experiment designed to investigate the
verification process of preferred mental models. Our analysis
centers on two primary research questions: Is model verifica-
tion generally straightforward for reasoners? And does a pref-
erence effect for specific models exist in syllogistic reasoning?
Furthermore, employing modeling techniques, we analyze the
structural complexity of mental models, based on the types of
instances they consist of. We discuss our findings and their
implications on the differences between reasoning with syllo-
gisms and spatial statements.
Keywords: Mental Model Theory; Preferred Mental Models;
Syllogistic Reasoning; Individual Differences.

Introduction
Consider the following reasoning example:

All blue shapes are circles.
All blue shapes have a diamond mark.

What, if anything, follows?

This problem is a so-called syllogism. The task at hand is
to determine what kind of relation, if any, exists between the
two end-terms, circles and diamond (mark), also called sub-
ject and predicate, respectively. In general, a syllogism is
defined by its quantifiers (mood) and term order (figure). We
take into consideration these four first-order logic quantifiers:
All (A), Some (I), Some...not (O) and None (E). The figure
is determined by the order of the subject, middle term and
predicate of the syllogism, represented by A, B and C, re-
spectively, in the following notation (adopted from Khemlani
& Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

A syllogism can be denoted using the given mood abbrevi-
ations and figure, for example the syllogism above is AA4
Conclusions are denoted in a similar fashion using the quan-
tifier’s abbreviation and the order of the end-terms (ac or

ca), e.g. Eca denotes ‘No C are A’. Finally, ‘No valid con-
clusion’ is abbreviated by NVC. There exist at least twelve
theories that aim to explain and model the processes behind
human syllogistic reasoning (for an overview, see Khemlani
& Johnson-Laird, 2012). One of the most prominent theo-
ries among them is the Mental Model Theory (MMT; e.g.,
Johnson-Laird, 1975, 2010). MMT postulates that given
some observations, individuals create iconic representations
– mental models – of possibilities. They create their own sub-
jective mental representation of the information presented in
a reasoning task. Considering the example above, one possi-
ble representation would be:

circles [blue] [diamond]
circles

The square brackets around an instance denote that the set
of entities described by it is exhaustively represented. An-
other possible mental model representation is:

circles
circles [blue] diamond

¬circles ¬blue diamond
where ¬ denotes negation. Both mental representations sup-
port the conclusion “Some circles have a diamond mark” -
the logically valid conclusion to this syllogism. However, in
order to confirm the validity, an individual should think of all
possible premise interpretations and check if they hold. The
expansion of the interpretation search space can make solving
such problems difficult for humans (Johnson-Laird, 2008).

Preferred Mental Models
An empirical phenomenon has been reported in the literature
concerning problem descriptions allowing for multiple possi-
ble models. Specifically, some models are preferred over oth-
ers – such models are called preferred mental models (PMM).

Spatial Reasoning Spatial relational reasoning problems
which can evoke multiple mental models, are not all created
equally (Knauff, Rauh, & Schlieder, 1995; Ragni & Knauff,
2013). This has been demonstrated through model accep-
tance tasks, where participants were asked to decide whether
a presented spatial arrangement matches a given set of in-
determinate premises. Both the patterns of acceptance re-
sponses and the reaction times clearly show that some mod-
els are preferred over others and these models adhere to some
simple construction principles.
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Table 1: Canonical and non-canonical instances for a syllo-
gistic premise with terms X and Y according to mReasoner
(Khemlani et al., 2015), presented in Todorovikj et al. (2023)

Quantifier Canonical Non-canonical

All X Y ¬X Y
¬X ¬Y

Some X Y ¬X Y
X ¬Y ¬X ¬Y

No ¬X Y ¬X ¬YX ¬Y

Some not
X Y

¬X ¬YX ¬Y
¬X Y

Syllogistic reasoning Todorovikj et al. (2023) investigated
the model building process in syllogistic reasoning by em-
pirically testing what kind of models individuals create when
presented with syllogistic premises. They designed an experi-
mental domain of objects described by their shape, colour and
mark. The experiment they conducted presented participants
with a syllogism describing such objects and prompted them
to provide a visual representation of the premises by selecting
and creating objects with their desired attributes. They found
that 82% of the models were correct representations of the
syllogism. After analyzing the response patterns and identi-
fying the most frequent ones, the authors reported finding pre-
ferred mental models for 46 out of 64 syllogisms. Addition-
ally, they examined whether the observed model building be-
havior is in line with the model building processes of mRea-

soner
1, a LISP-based implementation of the MMT (Khemlani

& Johnson-Laird, 2013). During that analysis they did not
find significant results that would confirm the relevance of the
initially constructed models for the final conclusion, allowing
for the possibility that the built models are not necessarily the
ones used when reasoning.

Canonicality of Mental Models
In mathematical and computer sciences, canonicality refers to
minimal representations that avoid redundancy and ambigu-
ity while capturing the essential properties of an expression.
Within the domain of mental models in syllogistic reason-
ing canonicality describes the necessity of possible instances
(Khemlani et al., 2015). Specifically, which entities are abso-
lutely necessary to represent a syllogism correctly (canonical

set of instances), and which ones do not have to be present,
but do not falsify the premises and therefore could possibly
be included in a model (non-canonical set of instances). The
canonical and non-canonical instances that can be used for
building a model based on the LISP implementation of mRea-

1https://github.com/skhemlani/mReasoner

soner are displayed in Table 1. When building a model in
mReasoner, the e parameter is used to describe the likeli-
hood that an instance is drawn from the full set of possible
instances in contrast to only the canonical one (Khemlani et
al., 2015). When fitting the model to their data, Todorovikj et
al. (2023) used the proportions of non-canonical instances in
the model to approximate the respective e value.

In this article, we reinforce the first definition of canonical-
ity when we describe syllogistic models. We define a canoni-

cal model as the minimal representation of a syllogism and a
non-canonical model as the opposite extreme, i.e., a maximal
representation. For example, consider the syllogism AA1:

All squares are blue.
All blue shapes have a star mark.

Its canonical model would only consist of entities of the fol-
lowing instance:

[square] [blue] [star]

The non-canonical model on the other hand, would consist of
all these instances (examples of negations in red):

[square] blue star
triangle blue star
triangle red star
triangle red cross

Analogously, we define an incorrect canonical model as
the minimal incorrect representation and an incorrect non-

canonical model as the maximal one. In the following exper-
iment and analysis we will use these definitions of canonical
and non-canonical models as lower and upper bounds of a
model’s complexity and heterogeneity.

Ultimately, we pose the following two research questions
that we aim to answer in this paper:

[RQ1] Is the verification of models generally easy for rea-
soners? How fast and accurate is that process?

[RQ2] Do preference effects for accepting models in syl-
logistic reasoning exist? Are certain models more likely to be
accepted or rejected correctly and faster than others?

The remainder of the paper is structured as follows: We
first describe our experimental design, followed by an analy-
sis of the participants’ data. Afterwards, we go in-depth with
respect to the structural properties of the models and outline
a regression model based on them. We conclude with a dis-
cussion of our results.

Experiment
In the experiment we conducted, participants were shown a
set of syllogistic premises, followed by a visual description
of a model corresponding to the syllogism, which they were
asked to accept or reject. Following Todorovikj et al. (2023),
the syllogistic contents were object descriptions in terms of
their shape (circle, triangle, square), color (red, yellow, blue)
and mark (plus, star, diamond). We take into consideration
only the 46 syllogisms for which a preferred mental model
was found. For each one of them we created six tasks by
deriving the preferred mental model (PMM), the canonical
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Figure 1: Illustrative example of the six models for the syllo-
gism AA4 with contents circle, blue and diamond. A task in
the experiment consists of two syllogistic premises describ-
ing properties of shapes and a visual representation of a spe-
cific model, as depicted here. Participants are asked to decide
whether the model contradicts the premises.

model, the non-canonical model and an incorrect counterpart
for each one of them, as control.

The PMMs were directly obtained from the experimental
data of Todorovikj et al. (2023). For the other two models
we obtained the (non-)canonical instances for both quanti-
fiers, following Table 1, merged them based on the middle
term when possible, while ensuring that they do not falsify
the premises. If a merge is not possible when deriving the
canonical model, then a non-canonical instance is introduced.
In the case of multiple potential merges, one that minimizes
negativity is chosen. That is motivated by the principle of

truth (Johnson-Laird, 1983, 2008) which states that mental
models are constructed to represent what is true according to
the reasoner. We illustrate this process taking the syllogism
AI2 and its canonical model as an example:

All B are A. Some C are B.

The canonical instances for each premise are:

A B B C
¬B C

The instance AB can be immediately merged with BC into
ABC, which does not falsify the premises. For ¬BC, we look
into the non-canonical set of the first premise, which contains
A¬B and ¬A¬B, both eligible to merge with ¬BC, making
A¬BC and ¬A¬BC potential instances to be added to the
model. Since neither falsifies the model, we pick the one that
minimizes negativity, in this case, A¬BC. Finally, the canon-
ical model for the syllogism AI2 consists of the instances:

A B C
A ¬B C

Regarding the incorrect canonical and non-canonical mod-
els, we first derive all possible incorrect models for each syl-
logism. We then pick the one with the least amount of unique

instances as the incorrect canonical model, and the one with
the most as the incorrect non-canonical model. Similarly to
above, if there are more than one possible choices, the one
that minimizes negativity is chosen. For completeness, we
also derive incorrect counterparts for the PMMs, by going
through all possible incorrect models for a syllogism and em-
ploy a simple distance metric that measures the amount of
different instances between two models. The most similar in-
correct model is then chosen as an “incorrect PMM”.

Every visual representation of a model consists of eight
instances, since that is the maximum number of instances,
should each one of them be different. If a derived model has
less than eight instances, then some of them are repeated. In
that case, we repeat the instances uniformly, while minimiz-
ing negativity, so that no bias is introduced because one in-
stance appeared more than another. For the PMMs, we ob-
tained the observed proportions by Todorovikj et al. (2023)
and scaled them to our scenario of eight instances.

We found that three syllogisms have equal PMMs and
canonical models (AA3, AI4 and EI3), so they have five cor-
responding tasks instead of six2. In total, we ultimately have
43⇥6+3⇥5 = 278 tasks for 46 syllogisms. The participants
are divided in five groups based on which syllogisms they are
presented with. Following Todorovikj et al. (2023), we main-
tain a similar experience between participants by dividing the
syllogisms in five groups based on their “preferedness”, i.e.
the construction frequency of the PMM. The final sets were
then created by selecting one syllogism from each preference
group, while ensuring that two syllogisms with a same quanti-
fier order do not appear in the same set. That leads to four sets
with nine syllogisms (two with 53 and two with 54 tasks) and
one set with ten syllogisms and 59 tasks. The presented con-
tents of the tasks were randomized per syllogism, per model.
The resulting data and all materials are available on GitHub3.

Table 2: Mean individual relative response time for each
model and correctness. The full set consists of all tasks in
the experiment, the reduced set eliminates the four syllogisms
with less than 6 unique experimental tasks (AA3, AI4, EI3
and AA2).

Model Full Set Reduced Set
Correct Incorrect Correct Incorrect

PMM 1.09 0.99 1.11 1.00
Canonical 1.03 0.80 1.04 0.82
Non-Canonical 1.19 0.89 1.19 0.90

2Due to a coding error in the experiment regarding the syllo-
gisms AA2 and AA3, participants that answered for AA2 were not
presented with its PMM and participants that answered for AA3
were presented with the same model twice (PMM = canonical). We
include AA2’s remaining responses when reporting response times
and modeling, but not in the statistical analysis. For AA3 we only
take into consideration the first appearance of the repeated task, to
avoid potential, though unlikely, learning effects.

3https://github.com/saratdr/iccm-2024-SyllogisticPMMs
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Participants
100 participants took part in our online web-experiment
on the platform Prolific4. For the following analysis we
performed a binomial test to determine an answer correct-
ness percentage threshold (64-65%, depending on participant
group, p = .05). We eliminated three participants whose cor-
rectness percentage was below the threshold, and two more
due to technical issues. Ultimately, we have N = 95 partic-
ipants (age 20-63, M = 36.63, SD = 10.48; 69% male). All
of them were native English speakers. After completing the
experiment, they received compensation of 6.75 GBP.

Procedure
At first participants are given an introductory task, where it’s
explained that they will be given two statements describing
properties of shapes and are instructed to assume they are
true. When they have read the statements, they are shown a
visual representation of a set of shapes and are instructed that
they will have to decide as quickly as possible if the set is in
line with the statements or is contradicting them. Afterwards,
the experiment starts, and participants are always presented
with only the syllogistic premises at first. The experiment is
self-paced, so once they decide to proceed, the visual repre-
sentation of the model is shown as well, which they then have
to accept that it corresponds to the premises or reject it. An
example of a task is shown in Fig. 1.

Analysis
First, we analyzed to which extent the participants’ responses
were correct. Given a noteworthy correctness average of
91.61% with errors spread across all tasks, the verification
task itself seemed to be so easy for all participants that errors
can likely be accounted inattentiveness instead of a system-
atic mistake. Thus, we proceed with analyzing only correct
answers. Note that because of that, throughout the analysis,
the terms correct and incorrect always denote the properties
of the respective model and do not refer to participants’ re-
sponse correctness. For our analysis, we rely on the response
time between presentation of the model visualization and the
participants’ responses.

Table 3: Comparison of response times between correct and
incorrect models in the reduced set using the Mann-Whitney
U test. Significant p-values are marked in bold (corrected
with Bonferroni-Holm method).

Model Med. Corr. Med. Incorr. U p

PMM 0.90 1.02 207562.5 <.001
Can 0.96 0.71 182432.5 <.001
NCan 1.05 0.79 180508.5 <.001

Annotation. Med. - Median; Corr. - Correct; Incorr. - Incor-
rect; Can - Canonical; NCan - Non-canonical.

4https://www.prolific.co/

Table 4: Comparison of response times between types of cor-
rect models in the reduced set using the Mann-Whitney U
test. Significant p-values are marked in bold (corrected with
Bonferroni-Holm method).

Models Med. 1 Med. 2 U p

PMM vs. Can 1.02 0.96 250408.0 .034
PMM vs. NCan 1.02 1.05 250798.5 .034
Can vs. NCan 0.96 1.05 237565.0 <.001

Annotation. Med. - Median; Can - Canonical; NCan - Non-
canonical.

Since inter-individual differences can be substantial for re-
sponse times and not necessarily reflecting the cognitive pro-
cesses (i.e., the time needed to actually click on a response
button), especially in online experiments, where the setup
is non uniform, we standardized the recorded times for our
analysis: For each task, we calculated the ratio between the
respective response time and the overall mean response time
of an individual. In the subsequent analysis we work with
two sets of responses - the full set of all responses and a re-
duced set that does not contain responses for syllogisms with
less than 6 unique tasks – AA3, AI4, EI3 and AA2. The first
three have an equal PMM and canonical model, so a statistical
comparison between those two models is generally impossi-
ble, whereas AA2 was affected by a coding error. Table 2
shows the mean individual relative response times for each
correct and incorrect model, for both sets. Note that the im-
pact of the elimination of the above mentioned syllogisms on
the average times is negligible.

Focusing on the reduced set, we first examine the differ-
ence between correct and incorrect models. We can imme-
diately notice that the incorrect canonical and non-canonical
models were dismissed faster than the respective correct ones
were accepted (0.82 vs. 1.04 for canonical; 0.90 vs. 1.19
for non-canonical). In the case of PMMs, though, there is a
smaller difference (1.00 vs. 1.11), however, the increasing
trend is still present. We tested for statistical significance in
the changes using the Mann-Whitney U test and found that
all differences are significant (p < .001), as shown in Table 3,
along with the respective median values, for reference. This
indicates that individuals are able to identify incorrect models
faster than correct ones. This is plausible given that, for tasks
with a universal quantifier involved (which are 40 out of the
46 tasks), participants can immediately reject the model once
they recognize only one instance that contradicts the premises
without even checking the rest, in contrast to correct models,
where the whole model needs to be checked.

Next, we look into the response time differences between
the three (correct) models. As intended, the canonical mod-
els represent the lower bound with 1.04 and the non-canonical
ones the upper bound, with 1.19. The average response time
for the PMMs lays in the middle with 1.11. Once again,
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Table 5: Spearman correlation analysis between each type of
instance and the mean response time for each model. Signifi-
cant p-values are marked in bold (corrected with Bonferroni-
Holm method). Note that instances that do not appear in a
model or have a constant amount among all syllogisms lack a
correlation value.

Inst. PMM Can NCan IPMM ICan INcan

U
ni

qu
e M 3.25 2.56 5.93 2.90 1 7.72

r .15 .15 -.08 .03 – -.26
p .003 .001 .559 1 – <.001

N
ec

. M 3.73 8 4.17 2.68 2.19 2.58
r -.05 – .06 -.09 .06 .17
p 1 – 1 .328 1 <.001

U
.N

ec
.

M 1.57 2.56 2.56 0.86 0.27 2.37
r .07 .15 .04 -.07 .06 .01
p 1 .001 1 1 1 1

Po
ss

. M 4.27 0 3.83 3.99 0.59 3.32
r .05 – -.06 .18 .11 .18
p 1 – 1 <.001 .075 <.001

U
.P

os
s. M 1.68 0 3.37 1.53 0.07 3.25

r .11 – -.13 .15 .11 .18
p .056 – .013 .004 .075 < .001

In
c.

M 0 0 0 1.34 5.22 2.10
r – – – -.13 -.11 -.31
p – – – .024 .056 <.001

U
.I

nc
. M 0 0 0 0.52 0.65 2.10

r – – – -.10 -.11 -.31
p – – – .192 .056 <.001

Annotation. Inst. - Instance (type); Can - Canonical (model);
NCan - Non-canonical (model); IPMM/Ican/INcan - Incor-
rect versions of the models; U. - Unique; Nec. - Necessary;
Poss. - Possible; Inc. - Incorrect.

we performed a Mann-Whitney U test and determined that
the difference in response times between the models is sta-
tistically significant. Individuals needed more time to ver-
ify PMMs than canonical models (p = .034), but less than
non-canonical ones (p = .034). Clearly, canonical models
were evaluated faster than non-canonical ones (p < .001).
All test results, along with the medians are displayed in Ta-
ble 4. Note that all p-values reported in the two tables are cor-
rected after the Bonferroni-Holm method for multiple com-
parisons. These results indicate that even though the PMMs
are models that were the most frequently constructed ones,
the time needed to verify such a model is not exceptionally
short or long, falling between the two extreme bounds. In
other words, in the domain of syllogistic reasoning, we can-
not conclude that the preference for creating a model is re-
lated to the verification time or even its correctness, given the
accuracy of above 90% across all models reported above.

Modeling
In this section we look into the structure of the given mod-
els, specifically, the type of their instances. We differentiate
between: a) instances that are necessary for a correct model
representation of a syllogism; b) instances that are possible

to be added, i.e. do not contradict the premises, but aren’t
necessary and c) incorrect instances. Moreover we also look
into unique instances, disregarding repetition. We analyzed
the relationship between these descriptors and the mean rel-
ative response times. Table 5 shows the correlation results.
We observe how different types of instances are significantly
correlated with response times of different model, e.g. the
canonical models correlate with the number of unique and
unique necessary instances, whereas the non-canonical ones
with the amount of unique possible instances. That is co-
herent with the definitions of the models relying heavily on
necessary and possible instances, respectively.

As a next step, we investigate whether a model of the types
of instances as descriptive features can successfully represent
response times for each syllogistic model. To that end, we
fit 127 linear regression models with ridge regularization, us-
ing all possible combinations of features of all lengths. We
selected the best one based on the lowest Akaike Informa-
tion Criterion (AIC; Akaike, 1974) and Bayesian Informa-
tion Criterion (BIC; Schwarz, 1978) values. Using these two
metrics on a full set of models, we can determine a thresh-
old after which the addition of parameters does not lead to
a significant fit improvement, while increasing the tendency
of the models to overfit, and therefore select an appropriate
model. Finally, we select the linear regression model con-
sidering the amount of unique necessary (b = 0.06), unique
incorrect (b =�0.11) and possible (b = 0.04) instances, with
AIC =�854.71 and BIC =�843.86, achieving a mean abso-
lute error of MAE = 0.16. For a more detailed comparison,
we reconstructed the mean relative response times based on
the times predicted by the model, as displayed in Table 6.
We observe results nearly matching the true values, while
preserving the increase and decrease trends among different
types of models and correctness. Thus, the model highlights
how the time required by individuals for model verification
is heavily based on its structure. This, again, corroborates
our finding that potential preferences have little effect on par-
ticipants’ ability to verify models. Instead, the determining
factor seems to be structural complexity of the model.

Table 6: Mean predicted relative response time for each
model and correctness in the full set using a linear regression
model with the number of unique necessary, unique incorrect

and possible instances as features.

Model Correct Incorrect

PMM 1.11 1.00
Canonical 1.02 0.83
Non-canonical 1.16 0.91
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Discussion
In this article, we continue the investigation of preferred men-
tal models in the domain of syllogistic reasoning (Todorovikj 
et al., 2023) by posing two research questions. Analogous to 
PMM evaluation in the spatial domain (Ragni & Knauff, 
2013), we first examine how trivial model verification is for 
individuals (RQ1). Thereby, we designed and conducted an 
experiment in the same world of marked, colourful shapes. 
This time, participants were presented with a syllogism and a 
corresponding model and asked to verify whether it is in line 
with the premises or contradicts them. We created six tasks 
per syllogism by deriving their canonical and non-canonical 
models as lower and upper bounds, respectively, using the al-
ready determined PMMs by Todorovikj et al. (2023), and de-
riving incorrect versions of all three model types, as control 
tasks. We found that individuals accept correct models and 
rejected incorrect ones with an average success of 91.61%, 
indicating that they do, in fact, verify models with ease, re-
gardless of their structure.

For mReasoner (Khemlani & Johnson-Laird, 2013) and the 
Mental Model Theory in syllogistic reasoning, these findings 
have two implications: First, since models seem to be eas-
ily built and verified by human reasoners, the assumption that 
these processes do not involve errors is confirmed by our find-
ings. Second, however, the fact that participants don’t seem to 
need much effort for verification and construction, also raises 
the question, if the model manipulation during the search for 
counterexamples proposed by mReasoner is plausible: After 
all, an alternative solution could be to repeatedly rebuild dif-
ferent models instead.

Furthermore, we investigated whether a preference effect 
exists for accepting models in syllogistic reasoning (RQ2) 
by examining the response times for each model type and 
correctness. We found that the canonical and non-canonical 
models significantly represent the lower and upper bounds, 
as intended, while the mean response time for PMMs is in 
between them. Additionally, individuals needed significantly 
less time for rejecting incorrect models, respective to their 
counterparts, following the same trend of PMMs being in the 
middle of canonical and non-canonical models. This does 
not necessarily express any sort of preference, but seems to 
largely depend on the structural components of the models. 
Therefore, we analyzed the behavior further by describing the 
models using the types of instances they contain – necessary, 
possible, incorrect and unique – and finding significant cor-
relations between them and the individuals’ response times. 
Following that trace, we fit a set of 127 regression models, 
capturing all feature combinations, and found that the best 
representation uses the amount of unique necessary, unique 
incorrect and possible instances in a syllogistic model. Fur-
thermore, the model was able to replicate the patterns in the 
data accurately, indicating that the selected structural proper-
ties are in fact sufficient.

In the empirical analysis of PMMs in spatial reasoning, 
Ragni and Knauff (2013) identified that the acceptance cor-

rectness of models constructed according to a preferred strat-
egy is typically higher than for (correct) models built follow-
ing a different one (92% vs. 81% and 44%). They report
analog tendencies in the respective required response times
as well (3.8ms vs. 4.36ms and 6.41ms). Similar findings are
made by Rauh et al. (2005), who examined acceptance of con-
clusions following from the respective PMMs in spatial rea-
soning. Ultimately, we can conclude that individuals strug-
gle with identifying and veryfing models that do not coincide
with a preferred model/strategy in the spatial relational do-
main, but a similar conclusion can certainly not be made for
syllogisms. In fact, we showed that the difference in required
verification time depends on how “chaotic” a given model is
and is not related to what was found to be preferred models.
Logically, given a model with at least one instance contra-
dicting the premises, the faster it’s identified, the faster it will
be rejected. The more frequent an instance is repeated in a
model, the less time is necessary to verify all instances. Fi-
nally, a major difference between spatial reasoning tasks and
syllogistic reasoning is in their typical experimental designs:
During the whole duration of syllogistic reasoning tasks, both
premises are usually visible, while they are only shown for a
short duration (and one after the other) in many spatial rea-
soning experiments. It is plausible, that strategies allowing
to quickly integrate new premises and without much load on
working memory cause a preference for certain models to
be built in spatial reasoning tasks, while the necessity is not
present for typical syllogistic reasoning tasks.

So, what does this mean about preferred mental models in
syllogistic reasoning? A few questions for future research
and investigation arise: Why are most of the found PMMs
not equal to the canonical models? It points to a tendency
of individuals adding instances that are not directly observed
in the premises, but also not to the extent that they reach a
full fleshed-out non-canonical representation. There is a po-
tential to interpret this as a way of communicating other pos-
sibilities exist and ensuring that this knowledge is accounted
for. Though, is this a trend only among “simpler” syllogisms
that by default do not require a large amount of necessary in-
stances to represent them? Ultimately, an important point to
consider is whether the reported preferred mental models are
in fact the mental models individuals use to reason about a
syllogism in the first place. Todorovikj et al. (2023) fit mRea-
soner to their data to show a lack of relevance of the mental
models provided by the participants for the conclusions they
provided later on. We can interpret the found preferred mod-
els as “prototypes” for a syllogistic model, however, cannot
conclude that they are preferred models when reasoning, as
it’s done in the spatial domain.
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