

MathPsych / ICCM 2024 mathpsych.org July 2024

# Predicting complex problem solving performance in the tailorshop scenario

<ロ> <問> < 回> < 回> < 回>

Marco Ragni ~ TU Chemnitz



### Complex systems are present in our everyday lives

- Societal, economic, environmental ...
- Complex Problem Solving (CPS) behavior studied with Dynamic Decision-Making (DDM) tasks

<ロ> (四) (四) (三) (三) (三)

- Computer simulations Microworlds
  - More realistic environments
  - More complex dependencies between variables



- Microworld simulating a tailorshop [1-5]
- Role of a tailorshop manager for 12 months
  - Purchasing raw materials, managing production capacity, maximizing profit by selling shirts
- 24 interconnected variables 21 visible to participants, 12 directly manipulable
- Used to explore problem-solving processes, intelligence and professional performance
- Success defined as consistent increase in company value over months (first month excluded)



#### Tailorshop

| Indicator               | Value       | Planning | Action | Info |
|-------------------------|-------------|----------|--------|------|
| Account balance 💧       | 169528 1    |          |        | Ó    |
| Shirts sold 👕           | 439 1       |          |        | 0    |
| Shirts in stock 🌾       | 64          |          |        | Ō    |
| Shirt price             | 52          |          | - +    | 0    |
| Sales outlets 🔡         | 1           |          | - +    | Ō    |
| Outlet location 🔳       | City        |          | - +    | Ó    |
| Workers 50 🚊            | 10 1        |          | • •    | 0    |
| Workers 100 💄           | 0           |          | - +    | Ó    |
| Salary 💶                | 1080        |          | • •    | 0    |
| Social costs / worker 🚆 | 50          |          | - +    | Ó    |
| Worker satisfaction % 😊 | <b>59</b> 1 |          |        | (i)  |

| Indicator                | Value  |   | Planning | Act | ion | Info |
|--------------------------|--------|---|----------|-----|-----|------|
| Company value 📈          | 269785 | î |          |     |     | 0    |
| Customer interest 🎔      | 703    | Ļ |          |     |     | 0    |
| Raw materials in stock 重 | 244    | î |          |     |     | 0    |
| Raw material price       | 8      | t |          |     |     | 0    |
| Raw materials order 🍺    | 650    | î |          | -   | +   | 0    |
| Advertising expenses 剩   | 2800   |   |          | -   | +   | 0    |
| 50-machines 🔅            | 10     |   |          | -   | +   | 0    |
| 100-machines 🏭           | 0      |   |          | -   | +   | 0    |
| Repair & Service 🦴       | 1200   |   |          | -   | +   | ١    |
| Machine damage % 🧚       | 12     | t |          |     |     | 0    |
| Production downtime % 🔺  | 0      |   |          |     |     | 0    |

・ロト ・四ト ・ヨト ・ヨト

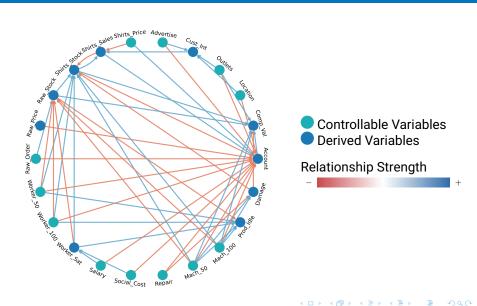
Continue

ICCM · 21.07.2024 · Brand, Todorovikj & Ragni 3 / 22

#### Month 2 of 12

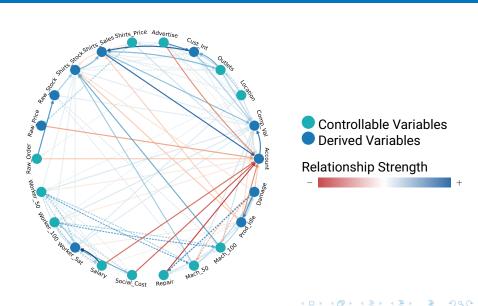


- "One-item-testing" of one large, complicated scenario is not good for CPS research [6]
  - More difficult to detect individual differences
- Predictive Modeling Perspective:
  - How does prior knowledge and individual characteristics influence behavior?
  - Are there any action patterns that can serve as a base for modeling endeavours?
  - Is participants' performance predictable and how suitable is the Tailorshop for predictive modeling of CPS in general?



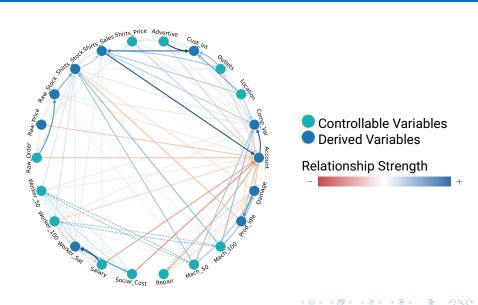

- 52 students at TUC
- Participants were asked to draw a causal-map before and after the TS simulation
- TS simulation had a 6-month (rounds) exploration phase and a 12-month test phase
- Participants completed Need for Cognition (NFC) and Cognitive Reflection Task (CRT) [7, 8]
- They were also asked which variables they deem important after finishing TS




イロン イヨン イヨン イヨン








Causal Map Analysis Before playing the scenario





Causal Map Analysis After playing the scenario





- Similarity of causal map to the actual simulation could indicate "correct" understanding
- Did participants adjust their assumptions after experiencing the tailorshop simulation?
- Node similarity calculation: Cosine similarities between adjacency vectors

Not significant: Before = .247; After = .255 (p = 0.781)



- Importance of a variable w.r.t. company value
- # occurrences in all (cycle-free) paths leading to company value
- Average relevance reported by participants

|                     | Var. Importance |         |       | Rel. |
|---------------------|-----------------|---------|-------|------|
|                     | Before          | After   | TS    |      |
| Company Value       | (40.58)         | (38.35) | (111) | -    |
| Bank Account        | 24.19           | 25.31   | 67    | -    |
| Customer Interest   | 9.06            | 8.69    | 9     | 4.27 |
| Shirts Sales        | 15.58           | 15.62   | 36    | 4.69 |
| Shirts in Stock     | 7.19            | 9.77    | 72    | 3.79 |
| Raw Material Price  | 0.46            | 1.46    | 0     | 3.56 |
| Raw Material Stock  | 0.96            | 4.23    | 32    | 3.98 |
| Worker Satisfaction | 11.0            | 7.15    | 14    | 2.85 |
| Production Idle     | 2.9             | 3.83    | 0     | 3.30 |
| Damage              | 3.33            | 3.1     | 12    | 3.25 |



- Does a more "correct" understanding lead to better performance?
- Tailorshop performance was measured using the total difference in company value after 11 months
- One-sided Spearman correlation between similarity of Before graph to tailorshop graph showed a significant moderate correlation (r = .264; p = .035)

► Causal map correctness correlated with success → Potential for a predictive model?



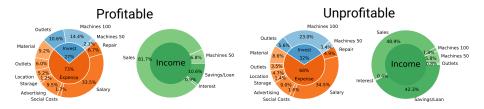
- Support vector regression (SVR) was trained to predict the tailorshop performance based on the knowledge graph
- SVR was fitted using a leave-one-out cross-validation and had to predict individual results
- Knowledge graph was represented as an adjacency matrix

| Predictor          | MAE   | RMSE  | $R^2$  |
|--------------------|-------|-------|--------|
| Performance Mean   | 0.298 | 0.378 | 0      |
| Performance Median | 0.295 | 0.381 | -0.018 |
| SVR (Before graph) | 0.293 | 0.379 | -0.007 |

Model at baseline level, not suited to predict tailorshop performance

Including individual traits (NFC, CRT) did not improve model performance

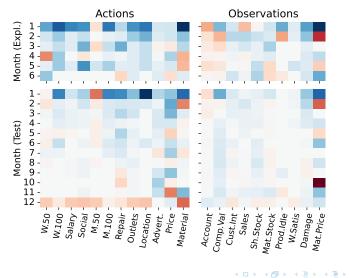



- Causal map was not sufficient to predict success in the tailorshop simulation
  - Is the causal map too limited?
  - Is the tailorshop too dynamic and complex to be predicted?
- We analyzed the relation between action patterns and success

<ロ> (四) (四) (三) (三) (三)



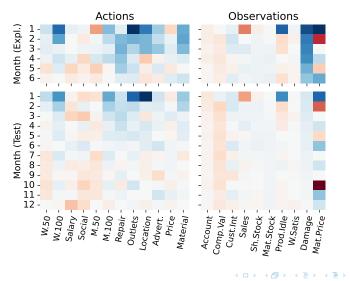
# ▶ 79.17% were unprofitable (31.25% ended in debt)


- Only 20.83% were profitable
- What is the difference between them?



イロト イヨト イヨト イヨト

- Profitable TS rarely needed loans or savings
- Overall, investments and expenses are rather similar
- Problem seems to be finding the right moment in time






Э

#### Profitable





Э

#### Unprofitable



- Simple heuristic strategies as metrics:
- 1. Upgrade machines

 $\rightarrow$  Buy better machines, hire respective workers, and sell old machines

 $strategy1 = sign(\Delta M100 + \Delta W100) * sign(-\Delta M50)$ 

# 2. Avoid production loss

 $\rightarrow$  buy raw material and invest in repair/maintenance

strategy2 = Material + Repair

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Both metrics correlate significantly with performance (S1: r = .310, p = .016; S2: r = .656, p < .001)
- The simulation heavily depends on the first month



- Similarly to before: SVR used to predict tailorshop performance
- This time based on the first month actions

| Predictor                  | MAE   | RMSE  | $\mathbb{R}^2$ |
|----------------------------|-------|-------|----------------|
| Performance Mean           | 0.298 | 0.378 | 0              |
| Performance Median         | 0.295 | 0.381 | -0.018         |
| SVR ( <i>Before</i> graph) | 0.293 | 0.379 | -0.007         |
| SVR (First Month Actions)  | 0.255 | 0.328 | 0.247          |

The SVR now outperforms the baseline models with a positive coefficient of determination



# Causal Map was not sufficient

- Participants did not seem to update their knowledge
- Causal Maps did not allow to predict TS performance
- > Tailorshop performance depends a lot on decisions in the first month

- $\blacktriangleright\,$  Can make other factors irrelevant  $\rightarrow$  problematic for modeling
- Reduces meaning of the actual management task
- Even simple strategies and models are successful



- Complexity and dynamic environment makes the tailorshop prone to snowball effects
- Despite having several intermediate steps, the general state is remarkably determined by the initial actions
- Although CPS is important for cognitive modeling, the tailorshop simulation seems not to be well suited

Needed: easily repeatable or only weakly self-reinforcing tasks



- 1. Putz-Osterloh, W. (1981). Über die Beziehung zwischen Testintelligenz und Problemlöseerfolg [The relation between test intelligence and problem solving success]. Zeitschrift für Psychologie mit Zeitschrift für angewandte Psychologie, 189(1), 79-100.
- Putz-Osterloh, W. (1983). Über Determinanten komplexer Problemlöseleistungen und Möglichkeiten zu ihrer Erfassung [On factors for complex problem solving and possibilities of their diagnosis]. Sprache & Kognition, 2, 100–116.
- 3. Funke, J. (1988). Using simulation to study complex problem solving: A review of studies in the FRG. *Simulation & Games*, *19*(3), 277–303.
- Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., & Funke, J. (2011). Measuring performance in dynamic decision making. *Journal of individual differences*, 32, 225-233.



- 5. Greiff, S., Stadler, M., Sonnleitner, P., Wolff, C., & Martin, R. (2015). Sometimes less is more: Comparing the validity of complex problem solving measures. *Intelligence*, *50*, 100-113.
- Greiff, S., & Funke, J. (2009). Measuring complex problem solving: The microdyn approach. Office for Official Publications of the European Communities
- Beißert, H., Köhler, M., Rempel, M., & Beierlein, C. (2015). Deutschsprachige Kurzskala zur Messung des Konstrukts Need for Cognition NFC-K [German short scale for measuring the construct Need for Cognition NFCK]. Zusammenstellung sozialwissenschaftlicher Items und Skalen (ZIS).
- 8. Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). Assessing miserly information processing: An expansion of the cognitive reflection test. *Thinking & Reasoning, 20*(2), 147-168.