
Artifact: WirelessEye – Seeing over
WiFi Made Accessible

Philipp H. Kindt†, Cristian Turetta¶, Florenc Demrozi§,
Alejandro Masrur†, Graziano Pravadelli∗, and Samarjit Chakraborty‡

∗Dept. of Engineering for Innovation Medicine, University of Verona, Italy, name.surname@univr.it
¶Dept. of Computer Science, University of Verona, Italy, name.surname@univr.it

†Faculty of Computer Science, TU Chemnitz, Germany, name.surname@informatik.tu-chemnitz.de
‡Dept. of Computer Science, University of North Carolina at Chapel Hill, USA, samarjit@cs.unc.edu

§Dept. of Electrical Engineering and Computer Science, University of Stavanger, Norway, name.surname@uis.no

I. SCOPE

WirelessEye is a framework for developing WiFi-based
sensing systems [1]. It serves as a link between a (patched)
radio firmware and a classifier for detecting, e.g., human activ-
ity. In brief, WirelessEye supports the following functionality
related to a WiFi’s channel state information (CSI) in an “out-
of-the-box” manner:

• Visualizing CSI data in real-time
• Recording CSI data using different file formats
• Customizable preprocessing of CSI data
• Streaming of the preprocessed data to a classifier
• Visualizing machine and deep learning classification re-

sults in real-time
WirelessEye can be extended and enhanced using plugins. Ad-
ditional documentation, including additional details on setting
up and running a WiFi sensing system, is available in the
WirelessEye repository [2].

II. HARDWARE AND SOFTWARE PREREQUISITES

To perform WiFi-based sensing using WirelessEye, the
following hardware or software is needed.

• A Raspberry PI 4B
• A Nexmon-patched firmware (see Section III-B)
• A Linux PC or Laptop (e.g., Linux Mint)
• The GNU C Compiler (GCC) on a PC and Raspberry Pi
• GNU Make on a PC and Raspberry Pi
• QT library version 5 on a PC or Raspberry Pi
• A WiFi AP to create WiFi signals to capture

III. GETTING STARTED

This section describes how WirelessEye is installed and run.
All commands mentioned in this description are to be entered
into a Linux terminal. A more detailed explanation can be
found in the WirelessEye Repository [2].

A. Software Components

WirelessEye consists of the following two components:
1) CSIServer ng: A simple TCP server to be run on the
Raspberry PI. It will receive local UDP broadcasts from
Nexmon and make them available over the network via TCP
Port 5501.
2) WirelessEye Studio: A GUI to display, record, and export

CSI data in real-time. To be run on any Linux PC or lap-
top from which the Raspberry Pi that runs CSIServer ng is
reachable over the network.

B. Preparing the Raspberry Pi

Before WirelessEye can be used, the Raspberry Pi needs
to be prepared. We next describe this preparation and then
present the steps needed to install WirelessEye.

WirelessEye receives CSI data from a patched radio
firmware. This firmware patch is provided by the Nexmon
framework [3] [4]. Hence, before using WirelessEye, the
Raspberry Pi has to be prepared by installing the Nexmon
firmware patches. For this purpose, Nexmon CSI needs to
be installed and configured as described in the WirelessEye
repository [2], or, in a more generic fashion, in the Nexmon
CSI Repository [5].
Using some firmware variants, no received signal strength
indicator (RSSI) is obtained. WirelessEye expects RSSI data
by default and will fail if none is received. Therefore, one op-
tion is to deactivate RSSI processing in networkThread.h
by setting the CSI_CONTAINS_RSSI marco to false. To
choose this option, the corresponding line must be modified
as follows: #define CSI_CONTAINS_RSSI false.
Alternatively, a modified version of Nexmon that supports
RSSI can be installed. A tutorial on how this is done can
be found in the WirelessEye repository [2].

C. Compiling and Running CSIServer ng

WirelessEye repository contains a TCP server to access
the CSI data from a different computer, which is called
CSIServer_ng. It needs to be compiled and run on the
Raspberry Pi. For this purpose, the following steps need to be
carried out on the Raspberry Pi:

1) Copy the CSIServer ng folder from the downloaded code
to the Raspberry Pi.

2) Type cd CSIServer_ng and make.
3) Run the server with ./CSIServer.
4) It is recommended to configure Nexmon and run CSIS-

erver ng automatically at every startup of the Raspberry
Pi. Additional details on how this is done can be found
in the WirelessEye repository.

2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops): PerCom Artifacts 2024

979-8-3503-0436-7/24/$31.00 ©2024 IEEE 15

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

er
va

si
ve

 C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ff
ili

at
ed

 E
ve

nt
s (

Pe
rC

om
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
04

36
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

Pe
rC

om
W

or
ks

ho
ps

59
98

3.
20

24
.1

05
02

53
9

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on November 19,2024 at 11:51:17 UTC from IEEE Xplore. Restrictions apply.

D. Compiling and Running WirelessEye Studio

Next, WirelessEye Studio, the software running on a PC or
laptop, needs to be compiled. This works as follows.

1) In the WirelessEye folder, type make.
2) Run WirelessEye Studio by typing ./WirelessEye.

IV. USING WIRELESSEYE STUDIO

We next briefly describe how WirelessEye can be used. Our
related paper [1] provides a good overview of WirelessEye’s
functionality beyond this description.

WirelessEye Studio provides a graphical user interface de-
signed to be intuitive and self-explanatory. To support the user,
it offers interactive help: When the mouse hovers over an
object or option, a quick description of this is shown in the
status bar.

A. WiFi Sensing using WirelessEye

Here is a quick how-to on using WirelessEye:
1) In the settings-tab, under connection, the IP address or

the hostname of the Raspberry Pi running CSIServer ng
needs to be entered. Also the remaining settings provided
in this tab (e.g., channel bandwidth, etc.) should be
adjusted to match the settings on the Raspberry Pi.

2) In the visualization tab, a click on the connect button
establishes a connection to the Raspberry Pi. Upon suc-
cess, the text in the button will change to connected, and
streaming data from the Raspberry Pi starts. The CSI data
of every received WiFi frame is now plotted in real-time.

3) In the visualization tab, the range of CSI amplitudes that
are displayed can be adjusted, such that events of interest
can be identified in the CSI data.

4) A click on the record button initiates storing all further
received CSI data into a file. The filename can either
be selected in the settings tab or is automatically as-
signed based on the current time and date. The actual
filename is shown in the console when the recording
starts. WirelessEye supports three different formats for
recording, which can be chosen in the settings tab.
These file formats are documented in the document
doc/fileFormats.pdf, which is available along
with the downloaded code.

5) In the Preprocessing tab, all options related to the pre-
processing of the CSI data (e.g., gain compensation, etc.)
can be controlled.

6) In the Display Signals menu, the live visualization of
other data, e.g., the RSSI, can be activated.

7) A real-time export of the CSI data, e.g., to a classifier,
can be initiated in the Real-Time Classification tab. More
on this is described below.

V. REAL-TIME EXPORT

WirelessEye can stream the preprocessed CSI data to any
external program, e.g., a classifier that uses machine learning
techniques. This is controlled using the Real-Time Classifica-
tion tab. Here, any external program can be executed from
WirelessEye Studio. The command to be executed and its

command line parameters can be specified by the options
provided.

The preprocessed CSI data is written to the standard input of
the launched executable. The Simple CSV data format is used
for this, which is documented in doc/fileFormats.pdf.
The classifier can write its classification results to its standard
output, which are read back by WirelessEye. WirelessEye
can annotate these results synchronously to the real-time
visualization of the CSI data. It also supports displaying the
results of multiple classifiers. Since WirelessEye can only
launch one executable at a time, the launched executable itself
needs to launch additional classifiers if needed, or needs to
implement multiple of them in a single executable. The data
format for importing results back into WirelessEye is also
documented in doc/fileFormats.pdf.

A pair of scripts for accessing Tensorflow to 1) train a
classifier using previously recorded data, and 2) perform a
live classification using the real-time export mechanism are
distributed along with WirelessEye. They are outlined below.

VI. USING REAL-TIME CLASSIFICATION

WirelessEye comes with a pair of scripts to access Ten-
sorFlow [6] for generating a machine-learning model. Based
on a recorded and labeled set of CSI data, a model can
be trained, which can be used both for real-time and of-
fline classification. In order to generate a model, a custom
solution to access a machine learning framework needs to
be developed. To make this task more accessible, the script
scripts/model_generation.py can be used as a tem-
plate or guideline for generating a Tensorflow-based model.
This script needs to be adjusted to set the proper parame-
terization (e.g., sampling frequency of the CSI data, size of a
time-window for classification, etc.). After the model has been
generated, it is ready to be used for real-time classification.
For querying this model, WirelessEye comes with the script
scripts/realtime_classification.py. This script
needs to be modified, e.g., by adding the filename of the gen-
erated model (e.g., model.h5) and matching the settings used
in the learning phase. To execute the model from WirelessEye
in real-time, the Real-Time Classification tab can be used to
launch this script.

REFERENCES

[1] P. Kindt, C. Turetta, F. Demrozi, A. Masrur, G. Pravadell, and
S. Chakraborty, “Wirelesseye: - seeing over wifi made accessible,” in
2024 IEEE International Conference on Pervasive Computing and Com-
munications Workshops and other Affiliated Events (PerCom Workshops),
2024.

[2] “Wirelesseye repository,” https://github.com/pkindt/WirelessEye, ac-
cessed October 2021.

[3] F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your CSI: A
channel state information extraction platform for modern Wi-Fi chipsets,”
in International Workshop on Wireless Network Testbeds, Experimental
Evaluation& Characterization (WiNTECH), 2019, p. 21–28.

[4] M. Schulz, D. Wegemer, and M. Hollick. (2017) Nexmon: The C-based
firmware patching framework. [Online]. Available: https://nexmon.org

[5] “Nexmon csi repository,” https://github.com/seemoo-lab/nexmon csi, ac-
cessed October 2021.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro et al.,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops): PerCom Artifacts 2024

16
Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on November 19,2024 at 11:51:17 UTC from IEEE Xplore. Restrictions apply.

