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Abstract

Stereo vision is a key technology for 3D scene reconstruction from image pairs. Most approaches process perspective images
from commodity cameras. These images, however, have a very limited field of view and only picture a small portion of the
scene. In contrast, omnidirectional images, also known as fisheye images, exhibit a much larger field of view and allow a full
3D scene reconstruction with a small amount of cameras if placed carefully. However, omnidirectional images are strongly
distorted which make the 3D reconstruction much more sophisticated. Nowadays, a lot of research is conducted on CNNs for
omnidirectional stereo vision. Nevertheless, a significant gap between estimation accuracy and throughput can be observed in
the literature. This work aims to bridge this gap by introducing a novel set of transformations, namely OmniGlasses. These are
incorporated into the architecture of a fast network, i.e., AnyNet, originally designed for scene reconstruction on perspective
images. Our network, Omni-AnyNet, produces accurate omnidirectional distance maps with a mean absolute error of around

13 cm at 48.4 fps and is therefore real-time capable.

Keywords Epipolar geometry - Fisheye - Omnidirectional - Look up table - Stereo vision - View synthesis

1 Introduction

3D image processing is an important research area, that has
gained a lot of attention in the past decades. It is essential
for spatial reconstruction of a scene and therefore for many
applications in the fields of robotics, autonomous driving
and scene understanding. Such 3D reconstruction techniques
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even reached medicine, human pose estimation and human
action recognition.

One prominent 3D reconstruction technique is stereo
vision. Inspired by human 3D perception, stereo vision aims
to recover the depth of a scene by aggregating the informa-
tion of multiple cameras. Matching algorithms constitute the
core of stereo vision. These algorithms look for correspond-
ing points in the different images, that is, those points in the
images that result from the projection of the same point in
the real world. Finally, the difference in the position of these
points allows the stereo methods to retrieve their distance.

Most of the research in this area is based on images
that underlie the perspective camera model and are mainly
free of distortion artifacts. For performance reasons, these
approaches rectified the input images. Rectified images
correspond to multi-camera setups with aligned viewing
directions and collinear x-axes. As result, in all rectified
images, the corresponding points are found on horizontal
and collinear lines called epipolar lines. This represents an
advantage for the matching algorithms whose search space
is reduced to a one dimension given by this epipolar line.

Perspective images have a field of view (FOV) of usu-
ally less than 65°. In many applications, this limited FOV
represents a big drawback by requiring the use of multiple
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calibrated cameras to cover the region of interest. For this
reason, omnidirectional images from so-called fisheye cam-
eras have gained a lot of attention in the last years. These
cameras exhibit a much higher FOV of around 180° and
therefore show much more content of the scene with only one
sensor. However, the higher FOV of these cameras is asso-
ciated with a high distortion in the omnidirectional images.
For the stereo vision, this distortion results in a new and
more complex search space for corresponding points. The
same holds true for the so-called normalized omnidirectional
images, which are, broadly speaking, a scaled version of the
non-normalized counterparts. As shown in Fig. 1, the search
space for stereo correspondences on (normalized) omnidi-
rectional images is not more a horizontal line, as in the case
of perspective images, but a curve. This curve is known as
epipolar curve. In order to be able to use perspective matching
algorithms, many stereo methods for omnidirectional images
unwarp the images to cylindrical images [1-3] to recover the
epipolar lines. However, these transformations reduce the
FOV as well as the efficiency of the methods.

Neural networks have also reached stereo vision. Net-
works for perspective images, like AnyNet [4], reach excel-
lent results and allow more than 30 fps on high resolution
images. Also for omnidirectional stereo vision different net-
works has been proposed by Won et al. [5—7]. These networks
use spherical sweeping in which the omnidirectional images
are first projected on spherical images with high FOV, also
known as equirectangular projection (ERP) images, and then
mapped on concentric global spheres surrounding the cam-
eras’ rig center. Although this strategy gives high precision
results, its structure and transformations make it computa-

tionally intensive and prevent it from achieving real-time
performance.

In this work, we aim to bridge the gap between accuracy
and fast processing time in omnidirectional stereo vision.
This is accomplished with the following contributions:

e We propose OmniGlasses, a set of look up tables (LUTs)
carefully designed for fast and incremental stereo corre-
spondence search on omnidirectional images.

e We integrate OmniGlasses into AnyNet as part of our
new network Omni-AnyNet. This demonstrates how fast
networks can be modified to process omnidirectional
images.

e We proof the efficiency of Omni-AnyNet and therefore
OmniGlasses experimentally. We show that the integra-
tion of OmniGlasses comes with only low cost in terms
of throughput while producing accurate scene reconstruc-
tions.

e All results are compared to the state-of-the-art network
OmniMVS*.

2 Related work

Depth estimation from omnidirectional images using neu-
ral networks was pioneered by Won et al. [5-7]. The input
images of these networks come from a wide-baseline multi-
view (four cameras) omnidirectional setup. The first of these
works introduces SweepNet [5], a CNN that computes the
matching costs of ERP image pairs warped from the omni-
directional images. The resulting cost volume is refined by
applying a semi global matching (SGM) algorithm [9] and

(a) left normalized omnidirectional image

Fig. 1 Search space and parametrization of images points. A point of
interest is annotated with the triangle in (a) and with a filled circle in (b).
Furthermore the triangle can also be found in (b) as a yellow triangle to
see the different locations more clearly. Given an image point on the left
omnidirectional image, the corresponding right point has to be searched
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(b) right normalized omnidirectional image

along a so-called epipolar curve for 3D reconstruction purposes. These
image points can be parameterized by the azimuth ¢ € {¢1, ¢} and the
elevation 6 € {0y, 6;} (See Sect.3.1.2). The images in this figure rely on
a sample of the THEOStereo dataset [8]
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finally the depth map is estimated. SweepNet presents a
problem to manage occlusions, which are typical for the
proposed wide-baseline omnidirectional setup. To overcome
this problem, Won et al. propose OmniMVS [6], an end-to-
end deep neural network consisting of three blocks: feature
extractor, spherical sweeping and cost volume computation.
OmniMVS was then extended to OmniMVS™ [7] by incor-
porating an entropy boundary loss for a better regularization
of the cost volume computation. Furthermore, OmniMVS™
improves the efficiency of its predecessor in terms of mem-
ory consumption and run time. This is achieved by merging
opposite camera views into the same ERP image.

Almost parallel to OmniMVS, Wang et al. [10] developed
360SD-Net. This network takes as input a pair of ERP images
from two cameras aligned in a top-bottom manner. The fea-
tures extracted from the images are concatenated with those
extracted from a polar angle map, in order to introduce the
geometry information in the model. Atrous-Spatial Pyra-
mid Pooling (ASPP) modules are proposed to enlarge the
receptive field followed by a learnable cost volume (LCV).
The final disparity is regressed by using a Stacked-Hourglass
module.

Komatsuetal. [11] present IcoSweepNet for depth estima-
tion from four omnidirectional images. IcoSweepNet based
on an icosahedron representation, spherical sweeping and a
2D/3D CNN architecture called CrownConv, which is spe-
cially designed for extracting features of icosahedrons. By
considering the extrinsic camera parameters, this network
achieves more robust results against camera misalignments
than OmniMVS.

Cérdova-Espaza et al. [12] combine a deep learning
matching algorithm and stereo epipolar constraints to recon-
struct 3D scenes from a stereo catadioptric system. After
converting the images to panoramic ones, the matching points
pairs proposed by a DeepMatching algorithm [13] are filtered
according to the defined epipolar constraints. This method
requires a tradeoff between 3D-point sparsity and reconstruc-
tion error, which is achieved by adjusting a threshold on the
distance between the proposed points and their correspond-
ing epipolar curves.

In [14], Lee et al. propose a semi-supervised learning
method by expanding OmniMVS™ with a second loss func-
tion. The pixel-level loss selects a supervised loss or a
unsupervised re-projection loss according to the availabil-
ity or not of ground truth information. This combination of
loss functions allows to consider the common sparsity of real
depth ground truth generated by LIDAR. This work achieves
better results than OmniMVS™ in presence of sparsity and
calibration errors, making the network more robust to work
with real data.

Lietal. [15] introduce the Spherical Convolution Residual
Network (SCRN) for omnidirectional depth estimation. This
network processes ERP images as inputs, which are sam-

pled in spherical meshes. In this way, the non-linear epipolar
constrains in the plain are converted to linear constraints in
the sphere. The SCRN is then followed by a planar refine-
ment network (PRN) to go back to a 2D representation. The
full architecture is called Cascade Spherical Depth Network
(CSDNet).

While the architectures intended to estimate depth maps
from perspective images have reached real-time conditions
[4], the analogous architectures developed for omnidirec-
tional images are still far from these levels of efficiency.
Outside the field of neural networks and machine learning,
Meuleman et al. [16] present a deterministic real-time sphere-
sweeping stereo method. This work was developed for a 360°
field of view setup consisting of 4 omnidirectional cameras.
The proposed adaptive spherical matching runs directly on
the input images but it considers only the best cameras pairs
for each correspondence, which allows to reduce the compu-
tation time. A fast inter-scale bilateral cost volume filtering
allows the method to reach 29 fps. This method performs
better and faster than OmniMVS and CrownConv, however,
it lacks the generalization power of the learning methods that
makes the results robust to changes in the input data. Our
work adapts the sweeping method from [16] making it part
of the learning process of a neural network. As part of this
integration, we also present an optimization process in order
to save computational time without loosing depth resolution.
Moreover, as explain in Sect. 3, the matching process in our
approach is performed on features instead on intensity values
and the considered setup is a stereo one.

3 Omnidirectional stereo vision

In perspective stereo vision, one common way to retrieve the
depth (z-distance) of a scene is to determine the so-called
disparity map between two images I} and I; captured by two
cameras at different positions. In the case of horizontally
aligned cameras, the subindexes / and r denote left and right,
respectively. For performance reasons, the images I} and I,
are usually rectified. This means they do not present any dis-
tortion and their corresponding x- and y-axes are respectively
parallel. Moreover, the x-axes are collinear. Under these con-
ditions, a real world point P captured by both cameras is
projected on the rectified images at pixels with the same y-
coordinate on collinear horizontal lines, called epipolar lines.
The difference between the x-coordinates x; and x; of this
projected point on the left and the right image gives the dis-
parity value dpersp (x1, y) = x1—x;. The xj- and x;-coordinates
of corresponding points are extracted along the epipolar lines
using stereo matching techniques, e.g., Block Matching [17].
Finally, a disparity map Dpersp(x1, y) = X1 — Xx; is gener-
ated, where each disparity value is inverse proportional to
the searched depth value z(xi, y).

@ Springer
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(a) projection on image hemispheres

Fig.2 Epipolar Geometry. In (a), the projection points P and P; of P
on the image hemispheres are located in the so-called epipolar plane
spanned by the camera centers O} and O, and the world point P. (b)
shows the parametrization of the epipolar plane by the angle «. (¢)

Nowadays stereo vision networks for perspective images
[4, 18-20] perform stereo matching on feature maps rather
than on the original input images. These maps are computed
from both rectified input images by using a feature extractor,
e.g., U-Net [21]. Then one of the feature maps is horizon-
tally shifted and compared with the other camera’s feature
map for each shift. This shift in x-direction (along the epipo-
lar line) for a value dpersp € [0, dmax] generates a pixel-wise
cost volume of size H x W x D, where H and W describe
the height and width of the feature map and D the number of
considered disparity values between 0 and dmax. This way,
networks like AnyNet [4] summarize the costs for all possi-
ble disparity assumptions. Finally from this cost volume a
regression module retrieves the optimal disparity value for
each pixel.

However, this method of disparity estimation by horizon-
tally shifting feature maps along the epipolar lines is not valid
for omnidirectional images. In the case of using omnidirec-
tional cameras, the world point P is projected onto an image
hemisphere rather than an image plane [1-3] as shown in
Fig.2a. As aresult, corresponding points on omnidirectional
images are located along a so-called epipolar curve instead of
along a line, as in the case of perspective images (See Fig. 1).
Therefore, the disparity cannot be considered anymore as an
offset in x-direction since two corresponding pixels in the left
and right images may also differ in the y-coordinate. In this
case, the correspondence search and the following dispar-
ity calculation should be based on an epipolar geometry for
canonical stereo configurations, which follows an omnidirec-
tional camera model. As described in the next subsection, our
work describes omnidirectional cameras using the equiangu-
lar camera model.

@ Springer

(b) pitch angle o

(c) relationship between 8 and domni

depicts Somni and the yaw angles B and f; of v and v;. These are used
together with « to triangulate P. Unlike (a) and (c), the system in (b)
is not camera-specific and applies to any camera coordinate system at
0 € {0y, O;}

3.1 Epipolar geometry for omnidirectional stereo
vision

We first describe, in Sect.3.1.1, the search space for stereo
correspondences along the epipolar curves on the image
hemispheres (See Fig.2a). Then we link this search space
to its corresponding search space on the omnidirectional
images in Sect.3.1.2. Finally, in Sect.3.1.3, we propose
OmniGlasses, a set of LUTs designed for searching stereo
correspondences in omnidirectional image pairs.

3.1.1 Relationship of world points and their projection on
the image hemisphere

Let P and P; be the projection points of a world point P
on the left and right image hemisphere of a canonical stereo
setup, as shown in Fig.2a. After bringing them into a joint
coordinate system, both projection points, the camera centers
0O) and O; and the world point P itself sit on a so-called
epipolar plane. As a consequence, given a reference point P
on the left image hemisphere, the orientation of the epipolar
plane determines the valid search space for P; on the right
image hemisphere. The orientation of the epipolar plane can
be described through the pitch angle o between the epipolar
plane and the plane spanned by the camera’s x- and z-axis
(See Fig.2b):

a = arctan 2(py, p;), (D)
where p, and p, are the components in y- and z-direction

of a point P € (P, P.). Furthermore, the position of P
and P; is determined by their corresponding light rays. Each
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light ray can be described with the help of the unit vector
v = f’/||f’||, where v € {v], v;} (See Fig.2c) points in the
opposite direction to the given light ray. Finally, scaling v by
the value of the focal length f results in the projection point
P= f .

The angle §omn; between the light rays described by v} and
v is denoted as normalized disparity by Li et al. [22, 23]. This
angle can also be defined in relation to the angles g and f;
between the vectors v and v, and the unit vector —e, pointing
in the negative direction of the x-axis (See Fig.2c):

Somni = 1 — Br @)

Finally, by expressing the vector v in terms of the angles
B € {B1, B:} and «, a projection point P can be defined as
follows:

P(a.B)=fRi(—a) Ry(B) (—ex)
—cos f
sin & sin B
cos o sin B

=f- =f-v, 3)

where R, and R, denote rotation matrices around x- and y-
axis, respectively. Equation 3 describes the rotation of —e,
around the camera’s y-axis (on the xz-plane) to account for
the yaw angle 8. Then, the introduction of the pitch « by
rotating around the x-axis by —«. The result is the unit vector
v, which is finally scaled by f to obtain the projection point
P.

The goal of stereo matching is to find the projection point
P, in the right image hemisphere, that corresponds to a given
projection point Py in the left one. As both points belong
to the same epipolar plane, the value of o can be calcu-
lated from Py (Conf. Equation 1). According to Eq.3, given
a, the search space for P; is defined by all possible val-
ues of B, or, what is the same, by all possible values of
Somni (Conf. Equation 2). Iterating over all possible dispar-

ity values Somni e |0, Somni,max] results in a set of angles

Br(gomni) =p— Somni (Eq.2), which together with « define
all possible correspondence points ﬁr(gomni) for 131 (Eq.3).

The purpose of stereo matching is then to find from all
candidates Isr(gomni), which one best represents the observed
projection f’r and with it the best value of Somni. This disparity
value is then the last key to spatially reconstruct the scene as
described in the next section.

3.1.2 Relationship of world points and their projection on
the omnidirectional image

A projection point P € { Py, P} onanimage hemisphere cor-
responds to a point on the resulting omnidirectional image.
In order to avoid the conversion between omnidirectional

image and image hemisphere during runtime, the search of
stereo correspondences is performed directly on the omni-
directional images according to the restrictions derived in
Sect.3.1.1. Cameras following the equiangular projection
model project an incoming light ray onto the omnidirectional
image depending on the elevation 6 and azimuth ¢ angles
of the corresponding vector v [24]. The elevation angle 6
describes the angle between v and the optical axis e;:

6 = arccos(v,) = arccos(cos « sin ) 4)

The azimuth angle ¢ stands for the angle between the x-axis
and the projection of v onto the xy-plane:

¢ = arctan 2(vy, vx) mod 27

= arctan 2(sin « sin 8, — cos 8) mod 27 5)

The modulo operator ensures that ¢ € [0, 27| and avoids
negative values. By equiangular projection, r = 6, where
r is the distance between the projected point and the image
distortion center as show in Fig. 1. With the help of these
polar coordinates, the light ray can be projected onto the
normalized omnidirectional image at

Xnorm | __ cosg\ cos ¢
<yn0rm) =0 (Sin ¢> = (sin¢> (©)

and on the omnidirectional image itself at:

X Xnorm Cx
= f. + 7
()=7-Com)+ () ®
Here we assume equal focal length f for x- and y-direction.
The vector (cx, cy)T describes the coordinates of the image
distortion center.
Now 6, ¢ and finally v can be restored from the pixel

locations in the normalized image itself. The elevation 6 is
calculated as:

<xnorm) H (8)
Ynorm

Note that an explicit conversion of radians to pixels an vice
versa is not necessary in Eqs.6 and 8 as both pixels and

radians are dimensionless. The azimuth ¢ can be retrieved
from the normalized image as:

9:]‘:‘

¢ = arctan 2(Ynorm» Xnorm) mod 27 9

The relationship between image points on normalized image
pairs and their parameters ¢ € {¢y, ¢;} and r € {r|, ri} are
visualized in Fig. 1 for both left and right image.

@ Springer
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Finally, the vector v that links the omnidirectional images
with the search space on the image hemispheres can be
restored:

cos ¢ sin 6
sin ¢ sin 6 (10)
cosf

vV = Rz(¢)Ry(9)eZ =

Note that the equations in this section are based on the
equidistant camera model and may differ for real world
omnidirectional dioptric lenses. However, adapting these
equations to other similar camera models is straightforward.

3.1.3 Searching strategy on omnidirectional images

By applying Egs. 8 and 9, the polar coordinates (r1, ¢)”
for each pixel in the left omnidirectional image I can be
calculated. Then the vector v and the angles « and fj can be
derived for each pixel in I} by using Egs. 10, 1 and 3.

As mentioned before, during the correspondence search,
a set of plausible disparity values Somni € [0 Somni max]
and their corresponding B are assumed for each projec-
tion point P1 The omnidirectional disparity 50mm of Li et
al. [22, 23] describes an angle represented by a floating-
point number. For sake of implementation, Somni needs to
be redefined as a discrete variable by sampling its valid
range with step size § = (SOmm max/D. This results in
30mm S {80, .. (Ss,.. BD 1}, withO <s < D — 1, where
D is the number of considered disparities values.

Each value of 35 results in an angle Br(gs) (Conf. Equa-
tion2). Given a pixel (6, ¢)7 in the left image, its corre-
spondence candidates (br, pr)7 in the right image can then
be found by substituting 8 by ,f}r(gs) in Egs.4 and 5. Finally,
the coordinates of the correspondence candidates (fcr, fzr)T
on the right image can be obtained by using Eqgs. 6 and 7 for
each disparity hypothesis 5.

In order to implement a stereo matching process, the coor-
dinates (%, jzr)T derived from each hypothetical disparity
value 8 are used to project the righAt image on the left one.

The resulting transformed image IAr‘s *(x1, y1) can be defined
as follows:

I (1, ) = I (%, ) (11)

This view transformation can be easily implemented as
a backward-projection with look up tables (LUTs). These
LUTs store for each pixel location (xj, yl)T in the left image
and each value of 8 the resulting location of the correspon-
dence point ()?r, flr) " inthe right image. We name the volume
comprising all LUTs for all disparity hypothesis Full Omni-
Glasses. These LUTs have the size D x H x W x 2, where
D is the number of hypothetical disparity values, H x W is

@ Springer

given by the size of the picture and the 2 refers to the two
coordinates X; and y;. A sparse version of OmniGlasses will
be introduced in Sect. 3.2.

By app}ying these LUTSs to the right image, D transformed

images I? *(x1, y1) are obtained. The optimal value of 8, for
each coordinate (x, y;) in the left image is the one that max-

imizes the similarity between the intensity fr's“ (x1, y1) and
Li(x1, y1). In order to determine this value, a measurement
of the similarity between both images, the left one and the
transformed right one, is performed. In our work, we used
the L norm, for similarity measurements, which is the cost
metric used by AnyNet, as explain in the next section. A cost
volume C, of size D x H x W stores all resulting C* (x1, y;)
with:

C* () = [hi(xr, ) — 15 (x1, ) (12)

The final disparity value can be determined with the help
of the softargmin on the cost values for each pixel sep-
arately [19] and refined by a disparity refinement module
[4]. The softargmin function gives the index of the optimal
disparity value. Moreover, this function allows to obtain a
subindex precision by weighting and integrating the cost vol-
ume results. This local oversampling results in a subindex s’
between two given indexes s < s < s + 1 and a final esti-
mated disparity 8’ = s’ - S, with SLX/J <§ < Srsﬂ- Finally,
following [22, 23], the Euclidean distance p; bewteen world
point P and left camera O is given by

. 2 . —S/
ﬁlzb.%zb.w’ (13)
sin &’ sin &’

with b being the baseline of the stereo camera, i.e., the dis-
tance between O; and O;.

3.2 Integration of OmniGlasses into AnyNet

AnyNet [4] is a network for disparity estimation with state-
of-the-art results on perspective images. Unlike what is
described in the previous sections, AnyNet does not perform
stereo matching on the input image but rather on feature maps
extracted from them. Designed to achieve a good computing
time, AnyNet estimates the disparity in a hierarchical way.
The network is organized into four stages, where each stage
increases the resolution of the disparity map generated in the
previous one. Stage 1, takes feature maps of 1/16 of the full
image resolution. Stages 2 and 3 increase this resolution to
1/8 and 1/4 of the original resolution respectively. Finally,
the last stage estimates the full resolution disparity map.

In the first stage, D = 12 values are considered for the
disparity estimation. In stages 2 and 3, AnyNet takes the dis-
parity estimation of the preceding stage (rounded to integer)
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as initial value and predicts a residual disparity instead of
undertaking a full estimation. Here it is assumed that, the
disparity ﬁéersp estimated for a pixel (x, y) instagei € {2, 3}
does not differ by more than two pixels from the previous pre-
diction, i.e., c?l’;ersp € [23{;;51, -2, Zﬁégrép + 2]. This means
that the new stage needs to consider only 5 values of dispar-
ity at maximum: The one received by the previous stage, two
values higher and two lower. This incremental improvement
per stage saves much computational time and enables the
real-time capability of AnyNet. In this work, i refers to the
stage of AnyNet or its adaptions always. However, its range
can be refined individually to make more specific statements.

AnyNet is designed for perspective images captured from
a canonical camera setup. Therefore, it takes advantage of
the parallelism and collinearity of the epipolar lines on
the left and right rectified images. Hence, the disparity

dpersp(x1, ¥) = x1 — x; results from an offset only in x-

direction. Therefore, the cost volume C%persp (x1, y1) can be
generated by overlapping the right feature map on the left one
and horizontally shifting it for each considered value ﬁéersp.
For this purpose, the L| norm serves as cost measure to eval-
uate each assumed disparities value. The final disparities for
stages 1-3 are then estimated as a weighted softargmin on
the cost volume and refined through a network. Stage 4 has
the task of refining the disparity maps of stage 3 and upsam-
pling it to the original resolution. For this, it uses an SPNet
module [25] together with the left image as a guide.

As shown in [8], the displacement in x-direction cannot
adequately model perspective disparity arranged in an omni-
directional manner. In this case, the subsequent disparity
refinement module can only partially correct the dispar-
ity estimates. In this work, the original AnyNet process for
generating the cost volume is replaced by the proposed Omni-
Glasses.

By considering the 2D displacement in the x- and y-
directions, OmniGlasses can follow epipolar curves (as
shown in Fig. 1) during the stereo matching process. Mod-
elling this 2D displacement, which describes the distortion
in omnidirectional images, is the main challenge for depth
estimation. We will show in Sect.5 that OmniGlasses suc-
cessfully overcome this challenge and significantly reduces
the error compared to applying stereo matching along epipo-
lar lines.

In this way, an appropriate omnidirectional view synthe-
sis, as described in Sects. 3.1.1, 3.1.2, 3.1.3, is incorporated
into AnyNet. Each stage from 1 to 3 has its own parameters
D;, S; and therefore its own valid set of assumed disparities
Somni S {go, cey SS,., cey (§Di_1}, with0 <s; < D; — 1 and
iefl,2,3}.

Analogous to the original AnyNet, D1 = 12 is selected
for the first stage. The resulting disparity map is then refined
in each successive stage by estimating a residual value for

the upsampled version. In the same way as with perspec-
tive images, the residual calculation reduces the number of
view synthesis transformations to the predefined number of
residual values. We conserve the original number of residual
values by considering a disparity range between two dispar-
ity indexes lower and two higher than the one received from
previous stage. This results in five transformations for each
feature vector given by Sémni € {36, cee, Sé, . ,32}, with
i e {2,3}, 3‘2 is the estimated disparity from the previous
stage, Sgl = 3’2 + Si(si — 2).

As a consequence, we first generated three OmniGlasses
of shape D; x H; x W; x 2, referred to as Full OmniGlasses,
for the first three stages before runtime and further reduced
the shape of the LUT of stage i € {2,3}to 5 x H; x W; x 2
during runtime. The reduced versions of OmniGlasses are
hereinafter denoted as Sparse OmniGlasses. The values
inside the Sparse OmniGlasses depend on the predictions
of the previous stage for each feature vector independently,
as shown in Fig. 3.

Analogously to AnyNet, the resulting disparity values
from one stage are rounded to integers and upscaled in order
to incorporate them into the next stage. The shapes of all
OmniGlasses are documented in Table 1. We hereinafter refer
to this version of AnyNet leveraging OmniGlasses as Omni-
AnyNet.

4 Experiments

We propose three groups of experiments to demonstrate the
effectiveness of our approach. First, we show qualitative
results of OmniGlasses as a standalone module. This exper-
iment aims to prove the correctness of the proposed LUTs
in the generation of transformed omnidirectional images for
different disparity values. Furthermore, we determine a set
of measurements of different error metrics to show the accu-
racy of OmniGlasses as part of Omni-AnyNet. The second
group of experiments presents an ablation study to compare
the performance of AnyNetr with and without the proposed
adaptation. Moreover, this study shows the importance of
choosing the right disparity metric. Finally, we compare
Omni-AnyNet with the state-of-the-art network OmniMVS™
[7].

There are few datasets for omnidirectional stereo vision.
Won et al. [6] published the datasets OmniThings and Omni-
House for training the inverse distance of a scene. These
datasets present images from a system of four cameras with
not aligned viewing directions. In contrast, our system is
based on a canonical stereo setup (aligned viewing direc-
tions). To the best of our knowledge, THEOStereo [8] is
the only dataset with rendered samples for depth estimation
with an canonical omnidirectional stereo setup. Therefore, all
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upsampled
disparity index
map of stage 1 — 1

H;

determine residual
' 4

disparity
indexes in Full
OmniGlasses

w,

Fig. 3 Shape reduction of OmniGlasses. The disparity index maps of
the stages 1 and 2 are upsampled to H; x W;, with i € {2, 3}. Each
disparity index is used to determine five residual disparity indexes s;.
These indexes constitute the color-coded positions of five small cubes
per pixel along the s;-axis in a Full OmniGlasses LUT. Note that the

Full OmniGlasses

Sparse OmniGlasses

center cube of each sequence in Full OmniGlasses has the same color
as the disparity map value of the corresponding pixel. Each small cube
denotes a look up tuple (X, Jr). In Sparse OmniGlasses, only these five
cubes / look up tuples are stored for each pixel

Table 1 Shapes of OmniGlasses and disparity index mapping for stages 1-3 in Omni-AnyNet

Stage i Hi/H = W; /W Index for Somni’max Highest index Shape of Full OmniGlasses Shape of Sparse OmniGlasses
1/16 11 11 12 x Hy x W1 x2 not necessary
1/8 11-2=22 11-242=24 25 x Hy x Wy x 2 S5x Hy x Wy x2
1/4 22.2 =44 24.242=150 51 x H3 x -W3 x2 5x Hy x Wz x2

The index reflecting the maximum disparity gomni.max in stages 1-3 is twice times as big as the corresponding index of the previous stage. However,
a maximum residual value of +2 can theoretically further increase the estimable disparity as the index is higher than that of the omni.max. In AnyNet,

no LUTs and hence no OmniGlasses are required in the last stage

evaluated networks in this work are trained and tested with
THEOStereo. THEOStereo comprises 31,250 stereo image
pairs together with their ground truth depth maps (distance in
z-direction). Images and depth maps were rendered using the
Unity3D game engine. As Unity3D does not provide shaders
for omnidirectional camera models, the authors of [8] used
the handcrafted shaders of [26], which merge four perspec-
tive images or depth maps according to the fusion method
of Bourke et al. [27, 28]. In addition to RGB images, the
shaders generated relative depth values between zero and
one, which were then scaled to the given absolute distance
(z-direction). For the experiments on (Omni-)AnyNet and
OmniMVS™, these depth maps are used as ground truth by
first converting them to point clouds and then to Euclidean
distance and disparity maps. Training, validation and test-
ing subsets are partitioned in a ratio of 80%/10%/10%. We
downsampled THEOStereo’s images and ground truth to
H x W = 1024 x 1024 pixels.

For a proof of concept of the LUT as a standalone module
(without CNN layers), we first built up a Full OmniGlasses
LUT of shape 201 x H x W x 2, with H x W given by the full
image resolution. We reduced the shape to 1 x H x W x 2 by
using the ground truth disparity. The transformations for each

@ Springer

pixel of the right image given by this optimal version of the
LUT are based in the correct disparity value. The right image
is then transformed with the help of this LUT and compared
with the left image. A high agreement by this comparison
indicates that the transformation proposed by Full Omni-
Glasses as described in Sect. 3 is correct.

The quantitative evaluation involves error measurements
on both disparity and Euclidean distance. All the output maps
(Li’s disparity, perspective disparity or inverse distance) of
the considered approaches were converted into Euclidean
distance maps to facilitate a comparison between them. The
mean absolute error (MAE) is calculated by averaging the
L1 norm of each error. For perspective images, the bad-e
error (abbreviated by A > e) describes the ratio of dis-
parity errors greater than e pixels along the epipolar line
[29]. This error metric is, however, not directly applica-
ble on omnidirectional images. In this case, we defined the
bad-e error in relation to the disparity index. For omnidirec-
tional images, A > e describes the ratio of disparities errors
€(x, n) = S%_HS”' (x1, y1) — 8(x1, yp)|| that exceeds e dispar-
ity indices, where 8 (x1, y1) is the final estimated disparity
of stage i (Conf. Sect.3.1.3) and §(xy, y;) is the ground truth
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disparity. Here, we upsampled 8" (x1, y1) to match the resolu-
tion of 8 (x1, y1). The use of the disparity index (given by the
division of the disparity values by the sampling step size S;)
by the error calculation allows to evaluate the performance of
the network regardless of the predefined sampling rate given
by S;. The three pixel error (3PE) adds a new constraint to the
bad-3 error, considering that also the relative error between
the estimated disparity and the ground truth should exceed a
certain threshold, in this case 5%. We used a 3PE analogous
to Wang et al. [4] which is similar to that of KITTI Stereo
Dataset 2015 [30, 31]. Our 3PE for omnidirectional images
is defined as follows:

1
Espe; =~ D fin, »), (14)
b

with:
1, ife(x,n) >3&
e (xi, ) /20 > 5% (15)

0 , otherwise

filx, ) =

For all considered metrics, 3PE, bad-e and mean abso-
lute error (MAE), only valid regions are considered, which
reduced the pixel number from H; - W; to N;. For sake of com-
parability between approaches and stages of Omni-AnyNet,
some pixels of the results are discarded in the evaluation of
disparity maps. This is the case, for example, for those pixels
whose final disparity exceeds the index H;/H; - (D1 — 1).
This allows to ignore those estimated disparities values that,
because of the residual strategy of AnyNet, exceed the max-
imum disparity value Somni,max defined for the setup. Unlike
the evaluation strategy followed by the original version of
AnyNet, those pixels that do not belong to regions captured
by both cameras (and therefore do not present valid values
for stereo methods) are also discarded in the whole quanti-
tative evaluation. This causes pixels to be ignored, mostly
along the border of the FOV, but avoids including monocu-
larly estimated values in the evaluation.

We integrate OmniGlasses into AnyNet as described in
Sect. 3.2 and train Omni-AnyNet for 300 epochs on the train-
ing set of THEOStereo. As THEOStereo provides depth maps
as ground truth, we convert them to disparity maps. Adam
[32] with default parameters (81 = 0.9 and 8, = 0.999)
is chosen as an optimizer. The training is carried out with a
learning rate of 1 - 10~ that decays to zero at the end of the
training following the cosine annealing strategy [33] with a
single decay period (no warm restarts). A smooth L1 loss
with a threshold of 2.0 serves as training loss function for
each stage. The final loss constitutes a weighted sum of the
loss values of all stages with the same weights used for the
original AnyNet implementation: 0.25 for the first, 0.5 for
the second and 1 for the third and fourth stage.

For the ablation study, we train AnyNet without Omni-
Glasses using the same described hyperparameters. Here,
we distinguish between AnyNet trained on omnidirectional
disparities after [22, 23] and AnyNet trained on perspective
disparities arranged in an omnidirectional manner analog
to [8]. Both experiments use the original architecture of
AnyNet, but with different ground truth arrangements. We
refer to the first model as AnyNet(Li) and the second one
as AnyNet(Persp.). The number of evaluated pixels N; may
slightly vary for the different approaches: AnyNet(Persp.),
AnyNet(Li) and Omni-AnyNet. For sake of comparability a
joint mask is applied during the evaluation to calculate the
error maps only on that regions that are valid for all three
approaches.

OmniMVS™ was designed to reconstruct a 3D scene
from four cameras with four different viewing directions.
The number of cameras can hardly be changed in the
official implementation without changing the architecture
significantly. Therefore, we fed the stereo image pair from
THEOStereo into OmniMVS™ and kept the images of the
remaining two cameras black. As the training routine was
not provided by the authors!, we built up a standard train-
ing pipeline on PyTorch. We excluded the entropy loss as no
such training code was provided by the authors. However,
it turned out that OmniMVS™ still produces accurate results
without this optimization as demonstrated in the next section.
We split the network into two parts after Layer conv4-11
of the Unary Feature Extractor (See Table 1 of [7]) and run
the network on two GPUs in sequence. The first part was
executed by an NVIDIA GeForce GTX 1080, the remaining
part was processed on an NVIDIA Quardo P6000. The high
GPU-RAM utilization (29132 MiB / 32768 MiB) did not
allow to train the network on only one of our training GPUs
nor to increase batch size or the resolution of the inverse
distance maps. Hence, we kept a batch size of one and the
original resolution of 160 x 640 of the distance maps. How-
ever, the same input images with resolution 1024 x 1024
were fed into OmniMVS™. We used OmniMVS™ with inter-
leaved spheres which was essential to reduce the memory
consumption and allows training on the mentioned GPUs.
Furthermore, we chose the default number of channels, i.e.,
32. We used the weights obtained from the pretraining on
OmniThings [7] to initialize the network. The minimum dis-
tance parameter of OmniMVS™ was adjusted to the minimal
observable distance in THEOStereo, i.e.,0.78 AU. The infer-
ence and training times obtained for OmniMVS™ are approx.
0.8 — 2.0 fps (See Table 5) and 0.3 fps, respectively. As
a result, it was not feasible to train the network for 300
epochs like for Omni-AnyNet. Our learning rate schedule for
OmniMVS™ therefore imitates the original schedule depend-
ing on the number of processed samples rather then the

! https://github.com/hyu-cvlab/omnimvs-pytorch.
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(c) transformed right

(d) superposition left and right (e) superposition left and trans- (f) occlusion artifacts, excerpt of (c)

image

Fig. 4 Proof of concept: View synthesis on RGB images via Omni-
Glasses. The right image of a sample of THEOStereo is transformed
using the proposed LUT and the disparity values of the ground truth.
A superposition of the original left (a) and right image (b) shows the
presence of disparity as a blurred effect (d). In contrast, by superposing
the left image (a) and transformed right image (c) the location of the

formed right image

objects in both image coincides and the results looks sharper (e). This
evidences that the coordinate transformations for the given disparities
in the proposed LUTs are correct. As shown in (f), occlusion artifacts
cannot be avoided. Here, part of the person’s shape appears twice. The
images in this figure rely on a sample of the THEOStereo dataset [8]

Table 2 Full Evaluation of

. . . Network A>1 A>2 A >4 3PE MAE disp. index MAE Euc. dist.
Omni-AnyNet. Metrics relying abs rel abs rel
on the Euclidean distance are : . - :
given in arbitrary units of the Omni-AnyNet  1372%  377%  1.02%  1.68% 059  327% 025 325%

THEOStereo dataset whereas 1

AU =~ 50 cm. Disparity values
are given in radians

processed epochs. In [7], OmniMVS™t was trained for 20
epochs on OmniThings with a learning rate of 3 - 1073 and
for further 10 epochs with a learning rate of 3 - 1074, A
training for 20 or 30 epochs on OmniThings roughly pro-
cesses as much training samples as in seven or 11 epochs
on THEOStereo. Hence, we trained OmniMVS™ for seven
epochs with the initial learning rate of 3 - 10~ and for fur-
ther four epochs with the reduced learning rate of 3 - 1074
In order to compare the results of Omni-AnyNet and Omn-
iMVS™, the error maps should coincide in their projection

@ Springer

model as well as in their resolution. With this objective,
the error maps of Omni-AnyNet were converted to the ERP
model with the same resolution as in OmniMVS™. Analogue
to our ablation study, we masked out regions in the error
maps of Omni-AnyNet and OmniMVS + that are not valid in
both approaches. Due to the high memory footprint, it was
not feasible to train both networks Omni-AnyNet and Omn-
iMVS™ under equal conditions. Hence, the juxtaposition of
both approaches can only be seen as a coarse comparison.
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Table 3 Comparison of Omni-AnyNet and AnyNet. Absolute metrics
are given in arbitrary units of THEOStereo (1 AU = 50 cm)

Network MAE Euc. dist.
disp. abs. rel. (%)
Omni-AnyNet omni 0.25 3.16
AnyNet(Li) omni 0.33 4.38
AnyNet(Persp.) persp 0.46 6.34

Table4 Comparison of Omni-AnyNet and OmniMVS™. Absolute met-
rics are given in arbitrary units of THEOStereo (1 AU ~ 50 cm)

MAE Euc. dist.

Network abs. rel. (%)
Omni-AnyNet 0.24 2.98
OmniMVS™ 0.12 0.56

5 Results

Figure 4 depicts our proof of concept. In contrast to a simple
superposition of left and right image (See Fig. 4d), the super-

0.0
(d) error map for AnyNet(Persp.)

Fig.5 Comparison of Omni-AnyNet with AnyNet(Li), AnyNet(Persp.)
and OmniMVS™ showing the absolute error maps that correspond to the
Euclidean distance for a sample of THEOStereo [8] (a). Figures (b—d)
show qualitative results of our ablation study. AnyNet(Li) produces bet-

position of the left and transformed right image (See Fig. 4e)
appears significantly sharper. This indicates that both the
left and the transformed right image mainly coincide, which
signalizes that the view synthesis was successful. However,
some occlusion artifacts are visible in the transformed right
image, which cannot be diminished by OmniGlasses as a
standalone module without CNN layers. Figure 4f zooms one
of this artifacts, where a part of the person’s shape appears
a second time on the left side of the person. For this partic-
ular image area, the left camera captures a part of the floor
and wall shelves. However, this part of the background is
occluded by the person for the right camera. This occluding
texture is then copied instead of the floor or wall shelves tex-
ture from the right image to the transformed version where
the mainly the floor texture has been expected. As a conse-
quence, the person partially appears a second time.

Table 2 shows the result of Omni-AnyNet on the testing
partition of THEOStereo. The bad-e error is remarkably low.
The MAE for the disparity index as well as the MAE for
the Euclidean distance give very satisfying results, that are
inside the tolerance ranges for many applications. It can be

0.0
(c) error map for AnyNet(Li)

2.0

0.0

(e) ERP error map for Omni-AnyNet (f) ERP error map for OmniMVS™

ter results on omnidirectional disparity values (c¢) than AnyNet(Persp.)
(d). However, Omni-AnyNet (b) produces more promising results. On
the other hand, the high throughput of Omni-AnyNet comes with the
cost of accuracy if compared with OmniMVS* (Conf. (e) and (f))
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Table 5 Throughput measurements on THEOStereo during inference
(batch size 1). All measurements are given in frames per second

Quad. Titan GTX

P6000 RTX 1080
Omni-AnyNet 37.6 48.4 324
AnyNet(Li) 40.0 484 377
AnyNet(Persp.) 40.8 49.0 40.6
OmniMVS™ 1.2 2.0 0.8

seen that the estimated disparity index does not differ more
than one step from the ground truth in average. An MAE
for the Euclidean distance of 0.25 AU represents an error of
around 12.5 cm in THEOStereo.

Table 3 summarizes our ablation study. As the disparity
metrics differ between the proposed algorithms, only the
absolute and the relative MAE of the Euclidean distance
have been chosen for comparison. The errors are averaged
over the dataset. As aforementioned, in each output sam-
ple we mask out regions that are not valid for all the three
approaches. It can be seen that the incorporation of Li’s dis-
parity into AnyNet (AnyNet(Li)) considerably increases the
performance in comparison with AnyNet using perspective
disparity values arranged in an omnidirectional geometry
(AnyNet(Persp.)). Moreover, Omni-AnyNet, which replaces
the original AnyNet s look up tables with the proposed Omni-
Glasses, significantly reduced the absolute MAE by around
0.08 AU to 0.25 AU. In order to visualize these results,
Fig.5b—d present maps of the absolute errors by measur-
ing the Euclidean distance, where the brighter the color the
higher the error. It can be seen that Omni-AnyNet produces an
error map with only a few bright spots indicating high MAEs
(See Fig. 5b). Moreover, these bright spots are located nearby
edges or fine objects like the wheeled walker, which might
be explained by (self) occlusion artifacts. AnyNet(Li) has a
lower performance than Omni-AnyNet, which is specially
visible by the standing human’s shape in the image. Finally,
AnyNet(Persp.) results in larger high-error spots.

To complete our comparison, we present the results of
OmniMVS™. As this network uses the EPR model to present
their results, Therefore, in order to facilitate the comparison,
Figs. Se and 5f show the outputs of Omni-AnyNet and Omn-
iMVS™ under ERP, respectively. OmniMVS™ produces more
accurate Euclidean distance maps than Omni-AnyNet (See
Table 4), however, at the price of much more computational
time (See Table 5). The pixelated borders of the estimation
of Omni-AnyNet in Figs.5b and 5e stem from intentionally
deactivating monocular disparity estimation as mentioned in
Sect. 4.

The throughput measurements for all discussed networks
are documented in Table 5. Omni-AnyNet exhibits high
frame rates of up to 48.4 fps. In contrast, OmniMVS™, with

@ Springer

maximum 2 fps, is an order of magnitude slower than Omni-
AnyNet.

Experiments on the NVIDIA GTX 1080 as well as the
NVIDIA Quadro P6000 were conducted on a deep learning
machine with an Intel® Core™ i7-6900K CPU @ 3.20GHz (8
cores, 16 threads). The experiments on the NVIDIA TITAN
X were performed on a second deep learning workstation
with an Intel® Core™ 19-9960X CPU @ 3.10GHz (16 cores,
32 threads). Both machines have 128 GiB of RAM. It should
be noted that the original version of AnyNet [4] achieved
10 fps on images with a resolution of 1242 x 375 on an
NVIDIA Jetson TX2. This, together with the moderate RAM,
GPURAM and CPU utilization of Omni-AnyNet, indicates
that it is also suitable for real-time inference in embedded
systems, delivering high quality results.

6 Conclusion and future work

In this work, we derive a search space for stereo correspon-
dences in omnidirectional image pairs captured by canonical
stereo cameras. We plan to extend OmniGlasses to consider
other projection models for real-world lenses by refining the
constraints for epipolar geometry, in particular Eq. 8. More-
over a corresponding search strategy, similar to Meuleman
et al. [16], is proposed. These derive in a set of LUTs named
OmniGlasses, which can be easily combined with machine
learning methods, like neural netowrks. In contrast to [7]
and [16], OmniGlasses search for the disparity instead of a
distance or inverse distance. It is therefore, to some extent,
reminiscent of classical stereo vision retrieving disparity
values rather than estimating properties of the scene (the
distance of 3D points to the camera) directly. We concen-
trated on a canonical camera system. This system maximizes
the area of the scene that is visible by both cameras and
is therefore optimal for binocular stereo setup. We inte-
grated OmniGlasses into AnyNet and proved the efficiency of
our approach. We call the resulting network Omni-AnyNet.
This achieves remarkable reconstruction results with a low
MAE of around 13 cm (Euclidean distance) at up to 48.4
fps and outperforms OmniMVS™, a state-of-the-art CNN
for depth reconstruction with omnidirectional images, in
terms of speed. As a consequence, OmniGlasses success-
fully diminish the gap between reconstruction accuracy and
high throughput rates. As a large number of networks for
perspective stereo vision like AnyNet exist, we believe that
OmniGlasses can open up many opportunities to develop
fast networks for omnidirectional vision. We derived Omni-
Glasses for the equiangular projection model. This model
could be replaced by camera models more suitable for real-
world images in the future.
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