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Abstract— In the context of smart buildings and smart cities,
the design of low-cost and privacy-aware solutions for recognizing
the presence of humans and their activities is becoming of great
interest. Existing solutions exploiting wearables and video-based
systems have several drawbacks, such as high cost, low usability,
poor portability, and privacy-related issues. Consequently, more
ubiquitous and accessible solutions, such as WiFi sensing, became
the focus of attention. However, at the current state-of-the-art,
WiFi sensing is subject to low accuracy and poor generalization,
primarily affected by environmental factors, such as humidity and
temperature variations, and furniture position changes. Such is-
sues are partially solved at the cost of complex data preprocessing
pipelines. In this paper, we present a highly accurate, resource-
efficient deep learning-based occupancy detection solution, which
is resilient to variations in humidity and temperature. The
approach is tested on an extensive benchmark, where people are
free to move and the furniture layout does change. In addition,
based on a consolidated algorithm of explainable AI, we quantify
the importance of the WiFi signal w.r.t. humidity and temperature
for the proposed approach. Notably, humidity and temperature
can indeed be predicted based on WiFi signals; this promotes the
expressivity of the WiFi signal and at the same time the need for
a non-linear model to properly deal with it.

Index Terms—WiFi Sensing, Channel State Information, Deep
Learning

I. INTRODUCTION

In the context of smart buildings and smart cities, the design
of remote monitoring and control systems is becoming of
paramount interest, with applications in several fields like, for
example, healthcare, ambient assisted living, and Industry 4.0
scenarios [1]. Leveraging dedicated machine learning (ML)
techniques, these systems allow observing the status of the
environment (e.g., presence and number of occupants) [2], [3],
as well as recognizing the human activities performed in it (e.g.,
walking, standing, sitting) [4]–[6]. This kind of knowledge has
practical uses in several contexts. For example, it allows to
automatically turn on/off a lighting and air-conditioning system,
if a room is occupied or found to be empty, thus optimizing the
energy consumption and the building’s security [1]. Consider-
ing safety aspects, it is exploited in industrial plants to detect
and possibly prevent workplace accidents [7].

Current systems utilize wearables, smartphones, dedicated
sensors (e.g., passive infrared sensor sensors), ambient sensors
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Fig. 1. WiFi sensing systems overview.

(e.g., temperature, humidity, brightness, pressure, CO2 level),
or video cameras to implement the mentioned recognition
scenarios [8], [9]. However, these approaches demand special
hardware to be installed/worn and, in some cases, have high
computational requirements. In addition, video-based systems
suffer from field-of-view and privacy-related issues, since it is
impossible to install video cameras in every room (e.g., toilets),
or to ensure the absence of blind spots [10].
WiFi sensing: Beyond the approaches listed above, techniques
based on WiFi sensing have become a prominent solution,
thanks to WiFi’s ubiquity, both indoor and outdoor, and the
relatively low deployment costs of such commodity off-the-
shell WiFi routers [11], [12]. As shown in Figure 1, WiFi
sensing exploits the Channel State Information (CSI) to gain an
insight of how WiFi radio signals propagate from a transmitter
(e.g., a WiFi router) to a receiver (e.g., a CSI sniffer). By
analyzing the variations of the propagation pattern through
ML techniques, different works have proposed to recognize the
environment status, the number of its occupants, their identity,
or the activities they perform [11]–[13].
WiFi sensing limitations: Even though WiFi sensing may
seem a panacea for many sensing scenarios, its practical
application is not straightforward for real-world cases. In fact,
WiFi signal propagation is strongly affected by environmental
conditions like i) changes in the furniture’s layout, ii) people’s
presence and their activities, and iii) humidity and tempera-
ture [14]. These aspects limit the applications of WiFi-based
monitoring systems, and in the current state-of-the-art, this is
solved by reducing the possibility of environmental variations.
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In particular, existing methodologies [14]–[16] present experi-
mental setups where, e.g.:

• the distance between transmitter and receiver is ≤ 2 m;
• the participant performing the activity to be recognized is

located exactly between the transmitter and the receiver;
• expensive multi-antenna hardware or software-defined ra-

dios are used;
• ad hoc, costly technologies, such as ultrawideband and

millimeter wave are used, instead of WiFi;
• computationally-demanding pre-processing pipelines are

applied to the data to enhance the performance of the
classification/regression algorithms.

Our contributions: This paper is intended to go beyond the
limitations mentioned above, for the specific scenario of occu-
pancy detection. It presents a deep learning network capable
to detect the presence of people in an indoor environment,
independently from their positions, the activities they per-
form, or the humidity level and temperature. The network is
lightweight, permitting the deployment on resource-constrained
devices (e.g., Nucleo-L432KC) for real-time utilization. Ex-
periments have been carried out on a large dataset from a
completely unconstrained environment, which constitutes a
harsh and demanding benchmark for WiFi sensing. Notably, an
overall accuracy of 97% is achieved. As a second contribution,
a consolidated algorithm of explainable AI for deep networks,
Grad-CAM [17], is applied to our approach to explain the
reasons for such efficacy. Surprisingly, we found that, given
WiFi signals, humidity and temperature variations are of low
importance for occupancy detection. Finally, encouraged by
a preliminary correlation analysis, we show that the same
network is also capable of estimating humidity and temperature
from WiFi signals, thus offering an interesting complementary
application, which is the third contribution of this paper.
Paper organization: The remaining of the paper has the
following structure: Section II provides the background on
CSI data and ML performance metrics; Section III gives an
overview of the existing literature; Section IV presents our
methodology; and Section V reports and discusses the obtained
results. Finally, Section VI draws some conclusions and illus-
trates possible future perspectives.

II. BACKGROUND

A. Channel State Information

Consider a WiFi sender and a receiver. The sender emits a
signal X(t) at time t, while the receiver gets the signal Y (t)
characterized by the following equation:

Y (t) = H(t) ·X(t) + n(t) (1)

where H(t) is the CSI vector and n(t) stands for the noise.
The dimension, dH , of H(t) depends on the bandwidth of
the communication channel according to the formula dH =
3.2 · bandwidth [14]. The IEEE 802.11ac protocol supports
channels with a bandwidth ranging from 20 MHz up to 160
MHz. For example, if we transmit the signal X(ti) at time
ti over a 20MHz channel, we obtain a CSI vector H(ti) of
dimension dH = 64. Each element in H(t) is a complex

number that describes how WiFi signals propagate from the
sender to the receiver on a given channel and its associated
subcarriers. The real part describes the amplitude, while the
imaginary part is the phase. In this paper, we use only the
information contained in the CSI amplitude.

B. Performance measurements metrics

In order to evaluate the forecasting accuracy of the model
to estimate humidity and temperature from CSI we utilize
the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) functions. In particular, if ŷi is the
predicted value of the i-th sample, and yi is the corresponding
true value, we can define the mentioned scores as follows.

On the one hand, MAE computes a risk metric corresponding
to the expected value of the absolute error loss or L1-norm loss.
MAE estimated over N samples is defined as follows:

MAE(y, ŷ) =
1

N

N∑
i=1

|y − ŷ| (2)

On the other hand, MAPE is an evaluation metric for regres-
sion problems, which is sensitive to relative errors. It is, for
example, not affected by a global scaling of the target variable.
MAPE estimated over N samples is defined as follows:

MAPE(y, ŷ) =
1

N

N∑
i=1

|y − ŷ|
max(ϵ, |yi|)

(3)

where ϵ is an arbitrarily small yet strictly positive number to
avoid undefined results when y is zero.

III. RELATED WORK

Existing techniques for CSI-based sensing are usually de-
signed under strict constraints, or they exploit costly and ad
hoc hardware due to the limitations mentioned in Section I.
In particular, existing CSI-based occupancy detection solutions
and pipelines analyzing the impact of humidity and temperature
variations on the accuracy of WiFi sensing methods are still
unsatisfactory.

Occupancy detection has been widely discussed in the lit-
erature [14]–[16]. The most promising existing solutions [2],
[3], [13], [18] perform well (achieving an accuracy over 95%)
in constraint environments, but they are unable to generalize
over time. This is related to the training/testing approaches
defined by the authors. In particular, such models are trained
and tested on temporally close data, thus presenting a high
similarity between training and testing samples. However, if
such models had been trained and tested over temporally distant
data (e.g., training data from one day and test data from another
day), their accuracy would drop significantly.

Moreover, to the best of our knowledge, there is no existing
article that studies the effect of temperature and humidity vari-
ations over CSI-based occupancy detection methods. However,
few attempts have shown that CSI can be used to estimate
the humidity level [19], or the presence of an indoor fire [20].
Despite this, in [21], authors show that radiation with wave-
lengths of millimeters leads to a higher accuracy than WiFi in
predicting humidity (i.e., 98% vs. 89%).
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TABLE I
FORMAT OF THE COLLECTED DATA.
CSI Amplitude Environment Occupancy

Timestamp a0 ... a63 Temperature Humidity status
15:38:45.550 0.027 ... 1 21.97 43 1
15:38:45.600 0.027 ... 1 21.82 43 1
15:38:45.650 0.027 ... 1 21.82 42 1

... ... ... ... ... ... ...
15:38:45.700 0.027 ... 1 23.97 36 0

All the previous approaches present the severe limitations
highlighted in Section I, thus being impracticable in uncon-
strained environments. For example, in [19] authors collected
data from an empty environment without the effect of human
presence. In [21], authors made use of costly devices that need
to be first installed. Finally, in [20], the distance between the
receiver and transmitter was set to only 40 cm without the
influence of human presence either.

IV. OUR SYSTEM

This section presents the device setup employed to collect
CSI and environmental data in an unconstrained environment,
and the machine learning model to deal with the occupancy
detection task, equipped with a strategy for the model inter-
pretability.

A. Data collection setup

Our data collection setup is shown in Figure 2. A single
large office is taken into account: it is 12 × 6 × 3 meters
large, with three (2 × 1.8 meters) windows and one entrance
door. Internal walls are made of plasterboard (12 centimeters
thick), and external walls are made of reinforced concrete (55
centimeters thick). The occupants were instructed to carry out
their office activities (e.g., walking, standing, sitting, going out,
and getting in) without any constraints.

Four devices are used for data collection: two Raspberry
Pi (RP1 and RP2 in Figure 2), one Access Point (AP), and
one Nordic Thingy 52. The AP exposes a WiFi network (over
the 2.4 GHz band) observed by the RP1. Every Raspberry
Pi device is patched using the Nexmon framework [22] and
extracts CSI amplitude data at 20 Hz. The AP and RP1 are
placed 2 meters apart at a height of 140 cm, and occupants
cannot move between them. The RP2 device communicates
over Bluetooth with a Nordic Thingy device, which serves as
a ground-truth sensor for the environmental information (i.e.,
humidity, and temperature). Both Raspberry’s are connected to
a Dell Inspiron 7559 laptop that synchronizes them and stores
the CSI amplitude together with humidity and temperature
data. An external observer manually annotated the presence
of humans1 based on recorded video data. A semiautomatic
annotation tool simplified the process considerably by avoiding
the need to explicitly annotate every single timestamp. An
overview of the final dataset format is shown in Table I. At each
timestamp, we have the CSI amplitude of the 64 subcarriers
(i.e., a0 to a63), temperature (◦C), humidity (%), and the
occupancy status.

1Label 0 if the environment is empty, and label 1 if there is at least one
person in the environment.

B. The proposed deep network

Given a subcarrier x of a CSI signal, we refer to the time
series of CSI amplitudes as S(x, t), where t refers to the t-
th time of the day and x ∈ {0, . . . , 63}. The time series
of humidity h and temperature e are defined as S(h, t) and
S(e, t), where h, e ∈ R represent the values of humidity and
temperature at time t.

The ultimate goal of our approach is to exploit the expres-
siveness of the CSI signal for the occupancy detection task. At
the same time, we want a technique that is interpretable, which
means that its decisions can be motivated in simple terms,
even by a non-expert. Finally, we are interested in presenting a
lightweight system, paving the way for real-time applications.

For these reasons, we are proposing here a memory and
computation-efficient deep learning-based solution. In detail,
we implement a lightweight multilayer perceptron (MLP) com-
prised of four layers, each except the last activated by the
rectified linear activation unit (ReLU) function. Specifically,
the first layer has 8.320 neurons, the second 33.024, the third
32.846, and the latest 129 neurons, for a total of 77.881
trainable parameters, with a forward/backward pass size of
0.01 MB. These size parameters have been chosen considering
similar problems we encountered previously, with special care
in keeping the number of parameters bounded. The MLP net-
work is trained via adaptive mini-batch gradient descent, with a
weight decay strategy [23], in order to prevent the network from
overfitting the training data as well as the exploding gradient
problem.

Since we cast an occupancy binary problem, given the input
feature set F = S(x, t) ∪ S(e, t) ∪ S(h, t) at timestep t, the
model has to predict a binary label pt ∈ {0, 1} corresponding
to an empty and non-empty (i.e., occupied) office, respectively.
The discriminant function for such a task can be learned by
minimizing binary cross-entropy (BCE), defined as follows:

BCE(y, p) = − 1

T

T∑
t=1

yt · log (pt) + (1− yt) · log (1− pt) (4)

Here, yt is the target value (either 0 or 1). The prediction pt can
be any value between zero and one, indicating the confidence in
that sample being positive. Predictions are often normalized to
match a probability via the 1-bounded logistic function, often
known as the sigmoid function.

Fig. 2. Overview of the data collection environment.
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This model is capable of learning complex, non-linear
relationships [24], it comes with powerful interpretability
tools, and is very fast, as we will see later. Importantly, the
model can be modified to be fed with a subset of signals,
for example, the CSI signal S(x, t) only. This will allow us
to make comparative experiments, and compare the relative
importance of the different features.

Interpretability of the model: As an additional contribution
of our paper, we propose the use of an XAI (Explainable
AI) technique named Grad-CAM [17], which relies on the
gradients of the loss function to compute importance weights
associated to the input features (i.e., CSI subcarriers, humidity,
or temperature). This allows us to understand what input
features the network pays the most attention to when taking
a decision for a specific class.

Intuitively, this method is a post-hoc attention mechanism,
since it works on the already-trained neural network. In particu-
lar, the Grad-CAM approach has been proved to pass the “san-
ity check” for saliency-based interpretability approaches [25],
which means that it is guaranteed to express the relationships
between input features and outputs present in the data on the
specific deep learning model that has been adopted, in our
case the MLP. Grad-CAM essentially computes the importance
weights as the average of the gradients flowing down from
a class label throughout the different layers until the input
features.

To this end, we start by computing the hidden importance
coefficient of Grad-CAM αc

k as follows:

αc
k =

1

N

∑
d

∂yc

∂A
(k)
d

(5)

where A
(k)
d is the hidden feature map at layer k (i.e., the output

of the neurons of the layer k), d represents the number of
hidden neurons at the layer k and c the class. Specifically,
the weight αc

k represents the partial linearization of the deep
network downstream from A and captures the value of the
feature map of the k-th layer for a target class c. Finally, we
perform a weighted sum between the value just calculated and
the feature maps A(k)

d , followed by a ReLU to reset the negative
values of the gradient to zero:

Lc
GradCAM = ReLU(

∑
k

αc
kA

(k)
d ) (6)

The last operation is adopted for numerical stability.

Dimensionality and speed of the model: Our network is
designed using the PyTorch Lightning framework, resulting in
a model size of 15.18 KiB, with a RAM occupancy of 23.04
KiB being easily deployable over a resource-constraint device
such as Nucleo-L432KC. Once trained, the model is capable of
an inference time of 10.781 ms for each sample with the full
amount of input features (CSI, temperature, humidity).

V. EXPERIMENTAL RESULTS

The Section is organized as follows: in Section V-A we report
the profiling of the data collected with our setup discussed in

TABLE II
SIMULTANEOUS SUBJECT’S PRESENCE DISTR. IN TERMS OF DATA SAMPLES.

Occupancy Empty = 0 Occupied = 1
Occupants Zero One Two Three Four
# Samples 3389840 986180 569480 332440 84400

(%) (63.2%) (18.4%) (10.6%) (6.2%) (1.6%)
5362340 3389840 (63.2%) 1972500 (36.8%)

Section IV-A; in Section V-B we report the results of the occu-
pancy detection problem and show how our system performs
better against three comparative approaches; in Section IV-B
we report the interpretability study and, finally, in Section V-D,
we show that CSI not only is capable of detecting the presence
of people in a room but also helps to assess humidity and
temperature, demonstrating the richness of the CSI signal and
the goodness of the proposed model.

A. Data profiling

From January 04, 2022, at 15:08:40 hs to January 07, 2022,
at 17:38:40 hs, for a total of 74 hours (i.e., 268117 seconds
with 32174040 × 66 samples) we collected a 10 GB dataset
whose format is shown in Table I. As features, we focus here
on timestamp, CSI amplitude (i.e., 64 subcarriers), humidity,
and temperature measurements. As for occupancy detection,
six subjects (two women and four men) entered and used
the office. They were made aware of the data monitoring
system and told to accomplish their office activities as usual.
Notably, the subjects worked freely in the room, moving chairs,
raising/lowering curtains, and moving without a predefined
pattern. Table II presents the distribution of (simultaneous)
subjects’ presence in the environment. Overall, 63.2% of the
dataset represents the empty environment; the remaining 36.8%
represents the environment with at least one subject in it.

The collected data undergoes a time series analysis composed
of the following steps. Initially, we control for null values or
duplicates present at the same t. Afterward, we analyze the
data distribution of S(x, t), S(h, t), and S(e, t) both visually
and numerically. As a second step, we test the time series
for stationarity using a statistical unit root test, namely the
Augmented Dickey–Fuller (ADF) test [26]. The result shows
that all the time series treated in this problem are stationary,
so the correlation analysis can be performed on the raw data,
without any other preprocessing (e.g., detrendization) [27]. To
do this, we rely on Pearson’s ρ coefficient, defined as:

ρ =
cov(X,Y )

σxσy
(7)

where, given a pair of random variables (X,Y ), cov is the
covariance, σx is the standard deviation of X , and σy is the
standard deviation of Y . Notably, we report that temperature
and humidity have a positive correlation of 0.45. The tem-
perature has a correlation of 0.44 with respect to the binary
occupancy variable, while humidity correlates at 0.35. As for
the subcarriers, they are mostly correlated with neighboring
subcarriers and the mid-to-high band carriers (i.e., a15 to a28
and a48 to a64) are somewhat correlated with temperature
and humidity (∼ 0.20 to 0.30). An obvious point is that the
time as a feature is strongly correlated (i.e., 0.77) with the
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TABLE III
START TIME, END TIME, NUMBER OF SAMPLES, MIN/MAX TEMPERATURE

AND HUMIDITY FOR THE TRAINING (0) AND TESTING (1 TO 5) FOLDS.

Fold Start End Empty Occupied T H
0 04/01 15:08 06/01 19:16 2348151 1405500 18.72/40.09 16/49
1 06/01 19:16 06/01 23:44 321742 0 20.36/23.90 20/45
2 06/01 23:44 07/01 04:12 321742 0 18.86/21.80 25/42
3 07/01 04:12 07/01 08:41 321742 0 18.68/20.80 25/43
4 07/01 08:41 07/01 13:09 56223 265519 18.38/22.10 22/43
5 07/01 13:09 07/01 19:16 0 321741 20.19/31.60 20/38

environmental data. This is because temperature and humidity
strictly depend on the heating system and on human presence.
The former, since the office presents a heating system that
activates and deactivates automatically, and the latter, since
humans modify the environment (e.g., modify the heating
system setup, open/close windows or doors, and there is also
the effect of body temperature and breathing).

B. Occupancy detection task

To evaluate the performance of our model, the dataset is
divided into train and test sets, taking particular care in the
division of the test set. In temporal order, the train set represents
70% of the collected data, and the test set the remaining 30%.
The test set is further divided into five folds, representing
different scenarios over time. This allows us to evaluate the
model for general performance and test generalization abilities
on unseen days separately. This is to stress the fact that when
evaluating over different folds, the train set never changes, and
the models are never re-trained. Table III presents the train/test
split of the collected data.

Our model is trained for 10 epochs with a learning rate of
5e−3 on an NVIDIA GeForce RTX 3090 GPU. In addition
to our model, we used two well-known ML models, Logistic
Regression and Random Forest (RF), implemented using the
Scikit-learn framework as a baseline to compare with the
MLP model results. The results for the occupancy detection
task are reported in Table IV. The tested models are trained
on three different subsets of the collected dataset: i) only
CSI data, ii) only environment (Env) data (i.e., humidity and
temperature), and iii) CSI and environment (C+E) data. In
particular, the Logistic Regressor is a linear classifier whose
results demonstrate that it is not easy to describe the intricate
relationships of data in a linear manner.

Instead, the RF is a non-linear ensemble model based on
decision trees, famous for its ability to resist overfitting, which
achieves excellent performance. The proposed MLP model also
achieves remarkable performance. These results show how the
non-linear models (RF and MLP) are capable of properly using
the CSI data, thereby reaching higher classification scores.

TABLE IV
OCCUPANCY DETECTION ACCURACY (IN %) OVER THE 5 TESTING FOLDS

COMPARING THREE DIFFERENT ML MODELS.
Logistic Regressor Random Forest MLP

Fold CSI Env C+E CSI Env C+E CSI Env C+E
1 68 99 76 99 100 99 100 99 92
2 71 100 72 100 100 100 100 100 99
3 77 100 86 99 100 100 100 100 100
4 94 18 86 88 75 88 83 54 65
5 96 31 91 100 100 100 100 99 99

Avg. 81 70 82 97 95 97 97 90 91

However, we specify that the use of the MLP model is
preferable (compared with RF) because:

• RF is computationally and space-intensive (i.e., does not
allow real-time operation and deployment on embedded
boards);

• an MLP model can be trained continuously. There is
no need to use the whole dataset again but only new
data, which can also arrive in real-time, thus doing online
training;

• an MLP can be extended easily by someone who wants
to work on top of this problem.

In turn, this shows that using only environmental data is
insufficient to optimally solve occupancy detection, while the
CSI data contains sufficient information to agglomerate the
possible impact of temperature and humidity. In addition, we
specify that, if we used only time as a feature for our analysis,
the performance in terms of accuracy does not present good
results (i.e., 89.3%) compared with those of the MPL in
Table IV.

C. Utilizing Grad-CAM to explain model outputs

The plot in Figure 3 depicts the importance of each feature
(i.e., CSI subcarriers in yellow background, environment in red)
given to the MLP classifier for the occupancy prediction as
explained in IV-B.

Interestingly, we found that temperature and humidity have
no importance (values close to 0, if not negative in the plot)
while the highest importance values locate between low fre-
quencies (subcarriers a9 to a17) and high frequencies (subcar-
riers a57 to a60), confirming that paying attention to humidity
and temperature does not help the task while paying attention
to CSI does.

D. Humidity and temperature prediction

Inspired by the previous results, we perform multiple re-
gression analyses to see if we can estimate humidity and
temperature starting from CSI data. To do this, we fit a least-
squares solution, both using linear regression (ordinary least
squares) and non-Linear regression (minimization of a squared
error objective), implemented with our neural network model.

Fig. 3. Results of the XAI method, depicting the importance over all the
features using CSI, humidity (h), and temperature (e).
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TABLE V
MAE/MAPE RESULTS OF LINEAR AND NEURAL NETWORK REGRESSION

MODELS ON THE HUMIDITY (H) AND TEMPERATURE (T) PREDICTION.

Linear Regressor Neural Network
Fold MAE (T/H) MAPE (T/H) MAE (T/H) MAPE (T/H)

1 2.72/2.47 12.65/7.11 1.04/3.74 4.18/11.26
2 1.87/1.65 9.24/4.86 0.56/7.30 2.82/21.98
3 3.57/2.84 18.17/8.25 0.73/6.08 3.72/18.55
4 6.04/6.92 29.38/20.51 3.88/3.44 18.59/10.46
5 8.08/7.51 35.94/25.89 3.81/2.55 16.94/9.54

Avg. 4.46/4.28 21.08/13.32 2.39/4.62 9.25/14.35

The goal of this analysis is to show that sufficient infor-
mation regarding the environmental factors is contained in the
feature set of CSI signals, which would therefore allow us to
gain a good understanding of the environment given only the
amplitude values of CSI. We confirm such a result in Table V.

The fact that MLP (which is a non-linear method) performs
definitely better than the linear regressor shows that the vari-
ation of temperature and humidity inside the room is mostly
reflected by CSI data in a non-linear fashion.

This result allows also understand why the non-linear classi-
fication models do not perform better when using the CSI + Env
data: the latter represents a redundant feature and redundancy
is widely known to negatively affect the performance of any
classifier [28].

VI. CONCLUSIONS

In this paper, we presented a highly accurate (i.e., 97%),
resource-efficient deep learning-based solution (i.e., model size
of 15.18 KiB, and inference time of 10.781 ms) for the
device-free occupancy detection task in an unconstrained indoor
environment. Our analysis shows that CSI amplitude data over
time is highly predictive for occupancy detection. Furthermore,
our solution uses a non-linear model capable of describing the
agglomerate impact of temperature and humidity incorporated
in the CSI signal. This aspect was further verified through a
multiple regression analysis where humidity and temperature
are estimated from CSI data, which confirms that sufficient
information regarding the environmental factors is contained
in the CSI signals. Finally, based on a consolidated algorithm
of explainable AI, we qualitatively showed the validity of our
claims.

For future work, we intend to design an ML model that si-
multaneously performs occupancy detection and activity recog-
nition, with a particular emphasis on finding those activities
which can be reliably detected.
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