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Abstract—While commonly used for communication, recently,
WiFi is increasingly being used for sensing. In particular, wireless
signals are altered (i.e., absorbed, reflected, and attenuated) by
the human body and objects in the environment. This can be
perceived by an observer to infer information on the environment
and hence, to “see” over WiFi. So far, works in this area have
led to a variety of custom software tools – each designed for a
specific purpose. Moreover, given how scattered the literature is,
it is difficult to even identify all processing steps or functionalities
necessary for WiFi sensing. To the best of our knowledge, there
has been no effort towards a generic solution that helps promote
further research and boost new applications in the area. With
this as a motivation, we propose WirelessEye, a freely available,
generic software framework that allows bootstrapping WiFi
sensing systems on low-cost hardware, such as a Raspberry Pi.
WirelessEye consolidates all necessary processing steps in a single
framework, from collecting and visualizing data to executing
different machine learning models in real-time for the purpose
of comparison. This way, researchers and practitioners can focus
on aspects of their research/applications rather than dealing with
the many implementation hurdles of WiFi sensing.

Index Terms—WiFi Sensing, Channel State Information, Ac-
tivity Recognition, Pattern Recognition

I. INTRODUCTION

WiFi Sensing: WiFi is widely used for communication, e.g.,
for connecting smartphones and laptops with each other and
to the Internet. This has catapulted WiFi to ubiquity over the
last decade and, hence, WiFi signals are almost everywhere.
While propagating from a sender to a receiver, WiFi signals
are altered by the human body and objects in the environment.
These alterations in the received signals can be analyzed,
e.g., using machine learning (ML) methods, for recognizing
activities [1], [2], the number of people in a room [3], their in-
door [4] and outdoor positions [5], spoken words [6], people’s
identity [7] and whether they are smoking [8] or eating [9].
Further, it is also possible to measure the heart rate [10],
[11], respiratory rate [12], [13], body temperature [14], sleep
quality [15] and the emotional status [16], as well as to
perform gait analysis [17], pose estimation [18], and gesture
recognition [19]. In other words, besides communication, WiFi
networks can actually be used to “see”. Moreover, recently, the
IEEE 802.11bf Task Group has been created with the goal
of standardizing WiFi sensing in the future, which further
underpins the growing importance of this area.

Compared to other technologies, WiFi sensing has a number
of decisive advantages. First, no sensors need to be worn
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Fig. 1. A typical WirelessEye-based sensing scenario.

on the body. Second, WiFi networks are already deployed
for communication purposes and, thus, WiFi sensing is more
economical than most other wireless approaches, e.g., Ultra-
Wideband (UWB) or radar-based ones. Third, WiFi sensing is
intrinsically privacy-preserving, since it reveals significantly
less personal data than, e.g., camera-based approaches [20].

A typical scenario involving WiFi sensing is shown in
Figure 1. It consists of one or more access points (APs) that
are already installed in a room or environment, a passive
observer, and one or more human subjects performing different
activities. The observer extracts the channel state information
(CSI) from WiFi signals in the environment and analyzes
it to infer information on human activity or changes in the
environment. This is typically done using ML methods, such
as support vector machines (SVMs), decision trees (DTs), or
more complex deep learning models. These techniques need
to be first trained using labeled CSI data to learn how the
signal is affected by different events of interest. Once the ML
model has been trained, it can classify previously unseen CSI
data [21]–[23].

Setting up a base system: There is a significant effort
associated with setting up a base system for WiFi sensing,
which – in our opinion – is slowing down the progress in
this area. In particular, prior to any research on the actual
classification, e.g., training ML methods, CSI data needs
to be collected, formatted, pre-processed, visualized, and
stored. In particular, the following steps are necessary for
creating a WiFi-based sensing system. First, since most
off-the-shelf radios do not grant their host computer access
to CSI data, a custom firmware needs to be flashed onto the
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WiFi radio, which is provided by open-source projects such
as Nexmon [24], [25], PicoScenes [26], the Linux 802.11n
CSI Tool [27], or the Atheros CSI Tool [28]. Second, CSI
data cannot be fed directly into an ML framework such as
Tensorflow or PyTorch. However, multiple parameterizable,
application-specific preprocessing, filtering, and data format
conversion steps must be applied before the data becomes
usable. These steps are generally implemented separately
from each other and require different tools, programming
languages, and frameworks. Third, after implementing an
ML method, its performance needs to be evaluated in a
real-world setting. Rather than analyzing offline data, such an
evaluation requires a workflow that streams the preprocessed
CSI data to the ML-based classifier and records classification
results in real-time. This typically requires combining and
adjusting different software tools and frameworks, leading to
a significant effort. To the best of our knowledge, no software
framework covers all of these steps together.

Contributions: This work aims to substantially reduce the ini-
tial effort in developing a WiFi sensing system. To this end, we
introduce a software tool called WirelessEye and make it avail-
able to the public domain under an open-source license1. It
provides a ready-to-use base workflow, such that downstream
WiFi sensing applications can focus on the machine learning
aspects. Unlike most existing tools, WirelessEye is optimized
for simplicity. Therefore, the entire workflow is interactive,
intuitive, fully supported by a graphical user interface (GUI),
and works “out of the box.” Because WirelessEye provides
immediate feedback on different design choices and options,
it can also be used for educational purposes. Figure 2 provides
an overview of the WirelessEye GUI, which will be explained
in detail later.

WirelessEye supports interactively optimizing WiFi sensing
setups, which is crucial for the proper functioning of the
system. In particular, determining the positions of the senders
(i.e., APs) and the observer that best suit the intended applica-
tion significantly impacts the performance of a WiFi sensing
system. Typically, this optimization is carried out iteratively by
repeatedly modifying the setup, recording a sequence of CSI
data and analyzing the impact of these modifications on the
captured CSI data, e.g., using multiple plots. Multiple such
iterations are often necessary until a suitable configuration
is found, which can be a time-consuming and cumbersome
procedure.

Using WirelessEye, the preprocessed CSI data is visualized
in real-time and hence, the impact of every change can
therefore be observed immediately. Further, WirelessEye can
help optimize a setup interactively, leading to better results
with a reduced effort. Also, WiFi sensing systems often fail
to generalize to environments different from those in which
they were trained [1]. By offering the possibility of visualizing
classifier outputs in real-time, WirelessEye helps in detecting
situations in which classification algorithms fail.

1Available at https://github.com/pkindt/WirelessEye

WirelessEye works together with a Raspberry Pi using a
Nexmon-based firmware [24], [25], as well as literally any ML
framework, e.g., Tensorflow, Keras, or PyTorch. WirelessEye
provides all required steps for WiFi sensing, including data
recording, format conversion, preprocessing, and visualization
in a ready-to-use manner. The entire workflow can be param-
eterized and optimized online, while visualizing the effects of
every adjustment in real-time.

In this paper, we make the following contributions:
1) We compile available knowledge from the literature into

a ready-to-use software framework with real-time data
visualization capabilities, viz., WirelessEye, which eases
the design and optimization of WiFi sensing systems.

2) Further, by providing WirelessEye as an open-source
tool, we make this topic accessible to a broader public
beyond the wireless communications community.

3) Finally, we illustrate the proper functioning and ad-
vantages of WirelessEye using a case study related to
activity recognition at a kitchen sink.

Results of 
ML model 1

Results of 
ML model 2

Results of 
ML model 3

Threshold 
sliders

Select AP or 
set of APs

WirelessEye Studio

Fig. 2. Screenshot of WirelessEye’s GUI.

We next provide a brief background on WiFi sensing using
CSI and then present an overview of WirelessEye.

II. BACKGROUND: SENSING BASED ON CSI DATA

When a wireless signal X is sent, the signal Y received by
another device is given by

Y = H ◦X+N. (1)

Here, ◦ represents an element-wise multiplication. The term
N describes the impact of noise. H is called the channel
state information (CSI). It describes how the wireless signal is
altered when propagating through the environment. WiFi (i.e.,
the IEEE 802.11ac protocol) supports channels of 20MHz to
160MHz bandwidth. Using Orthogonal Frequency Division
Multiplexing (OFDM), each channel is subdivided into N =
64 (for 20MHz channels) to N = 512 (for 160MHz chan-
nels) subcarriers, with data being transmitted simultaneously
on all of them, except for a few guard subcarriers. Due to the
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small bandwidth, the channel for each subcarrier is assumed
to be flat, i.e., all frequencies of a subcarrier undergo approx-
imately the same perturbations. Hence, H = [h1, h2, ..., hN ]
from a received WiFi frame is a vector of complex values hi,
where the index i identifies the subcarrier. The magnitude of
every complex number hi represents the signal’s attenuation,
whereas the phase expresses the phase change induced, e.g.,
by human motion in the environment.

Using automatic gain control (AGC), every WiFi receiver
continuously adjusts the CSI magnitude on average over all
subcarriers to lie within a certain range. Hence, the measured
CSI data relates to momentary changes in attenuation, while
persistent changes are canceled out by AGC. In contrast, the
received signal strength indicator (RSSI) accounts for the
average received power over all subcarriers after antenna and
cable loss, but before AGC takes effect. The RSSI is usually
an integer that indicates the (average) received power in dBm.
A WiFi-based sensing system typically evaluates the progress
of the CSI and/or RSSI data over time. We next describe how
this is done in WirelessEye.

III. THE WIRELESSEYE FRAMEWORK

In this section, we first provide an overview of WirelessEye
and then describe its components in more detail.

A. Overview

Figure 3 shows a WiFi sensing setup involving WirelessEye.
The green block on the left represents multiple access points
(APs) that emit WiFi signals. The yellow block in the middle
represents a CSI observer, e.g., a Raspberry Pi board, which
captures WiFi signals and extracts CSI and RSSI data. The
gray block on the right represents a laptop/PC or the Raspberry
Pi itself, which performs signal processing, classification, and
visualization through WirelessEye. CSI data, which has been
recorded into files, is used to train ML models for pattern
recognition, which can also be queried in real-time using
WirelessEye’s live export feature, as shown in Figure 2 under
Classifier Output.

B. WirelessEye’s Components

WirelessEye mainly consists of two software packages.
The CSI Server is deployed on the Raspberry Pi and an
intuitive GUI called WirelessEye Studio is executed on a PC or
laptop (cf. Figure 3), although it can also be executed on the
Raspberry Pi, if desired. The CSI server collects data from a
Nexmon-based [24] radio firmware and makes it available via
a TCP socket. After receiving the data from the CSI Server,
the WirelessEye Studio GUI mainly carries out the following 3
tasks: a) data management, b) CSI preprocessing, and c) CSI
visualization.

Figure 4 summarizes the steps that need to be carried out to
implement an arbitrary, CSI-based pattern recognition scenario
using WirelessEye, based on a previously prepared Raspberry
Pi. After downloading (1st block), compiling, and running
WirelessEye (2nd block), one can collect data by using
WirelessEye (3rd block). To facilitate setting up an initial ML
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Fig. 3. Illustration of WirelessEye’s workflow.

model, WirelessEye additionally provides two preconfigured
Python scripts. These scripts interface TensorFlow [29] as one
of the most popular ML frameworks in a ready-to-use manner.
In particular, a generic, CNN-based pattern recognition model
is generated through the train model.py script. This model
can be trained for different purposes using previously
recorded CSI data. The classify.py script can be executed
from within WirelessEye Studio to query the designed ML
models in real-time. The classification results are visualized
in real-time in WirelessEye Studio – see Classifier Output in
Figure 2. We next describe these functionalities in more detail.

1) Data Management: As mentioned above, CSI data
can be recorded into data files, exported to a classifier,
and visualized in real-time. WirelessEye provides different
preprocessing steps and data formats for each of these
possibilities. For example, it might be beneficial to visualize
only data belonging to certain transmitters of interest while
simultaneously exporting data belonging to all transmitters
into a .csv file. WirelessEye internally converts data into
the required format and allows filtering for one or multiple
transmitter/MAC addresses, which can be chosen interactively
at runtime. WirelessEye supports recording files in three
different formats, i.e., one comma-separated value (.csv)
format optimized for simplicity, one .csv format optimized
for size, and a binary format for minimalistic memory
requirements. These files can be read by different standard
tools, e.g., MATLAB, as well as the scrips for ML model
generation discussed above. In addition to exporting data to
a file, WirelessEye can launch an arbitrary executable, e.g.,
one or more ML models, from its GUI. The CSI data is then
streamed directly to the selected executable by writing to its
standard input, while classification results are read from its
standard output and visualized along with the CSI data in
real-time, as depicted in Figure 2 under Classifier Output.

2) CSI Preprocessing: Data received from the patched
WiFi radio needs to be preprocessed before being stored or
exported to the classification model. WirelessEye provides an
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Fig. 4. Steps required to create a new CSI-based recognition system using WirelessEye.

Fig. 5. Parameterization of preprocessing plugins.

extensible architecture for this purpose. In particular, each
preprocessing step is realized by a plugin. Plugins are linked
dynamically during runtime, can be compiled independently
from WirelessEye, and are easy to implement.

As shown in Figure 5, WirelessEye provides control over
the CSI sensing pipeline through a set of GUI tabs. In
particular, through the tab shown in Figure 5, WirelessEye
allows the selection of a group of active plugins and
determines their execution order by assigning individual
priorities. Furthermore, every plugin can expose multiple
adjustable parameters to the GUI, and the parameterization
can be tuned interactively during runtime. Other tabs offer
functionalities for specifying the connection to the CSI Server,
selecting the CSI bandwidth for analysis, determining storage
and file format options, and configuring visualization settings.
WirelessEye supports a generic preprocessing workflow by
default, whose individual steps are described next.
MAC filtering: When capturing WiFi frames, data from all
APs in range is received, of which only a few are relevant.
WirelessEye allows selecting a set of APs during runtime.
Amplitude/phase extraction: From the complex values hi,
i = 1...n, WirelessEye extracts the amplitudes ai and phases
Φi, which can then be processed separately.
Bandwidth narrowing: WiFi uses channels with different
bandwidths, and the BCM43455c0 WiFi radio on the
Raspberry Pi 4B can monitor channels from 20 MHz to
80 MHz. When a transmitter only uses, e.g., 20 MHz, whereas
the radio captures using 80 MHz, most of the data does not

contain any usable information. WirelessEye supports suitably
narrowing the bandwidth of its input data to avoid problems
in this case.
Subcarrier removal: WirelessEye can set the data related
to subcarriers that do not carry any valid information, e.g.,
guard subcarriers, to zero.
Subcarrier reordering: CSI values from different subcarriers
received by the WiFi radio are sometimes not ordered in a
linear manner. WirelessEye reorders them if needed.
AGC compensation: As mentioned above, WiFi radios use
AGC to bring the signal amplitude and, hence, CSI into a
desired range. WirelessEye reverses the impact of AGC using
the method described in [30].
Denoising RSSI: WirelessEye provides an exponential
smoothing method to denoise RSSI and, thereby, also
improve the AGC compensation.
Phase unwrapping and cleansing: The resulting phase
information from the WiFi radio contains multiple
discontinuities caused by the phase “wrapping around”
for values greater than 2 · π or lower than 0. WirelessEye
provides a heuristic to remove such phase discontinuities.

3) CSI Visualization: Visualizing CSI data in real-time is
crucial for optimizing any WiFi sensing setup. WirelessEye
can simultaneously visualize the CSI amplitude, phase, RSSI,
and the classification results of multiple ML models in real-
time, as shown in Figure 2. It is challenging to meaningfully
visualize CSI data in real-time since it has three dimensions
(i.e., time, subcarrier, and the actual, complex value). Most
available tools do not provide satisfactory plots, since they
either depict CSI values (i.e., amplitudes/phases) of a few
(selected) subcarriers over time, or all subcarriers at a single
point in time. On the other hand, with packet rates of 100
Hz or higher, it is also not practical to repeatedly plot the
entire CSI data for every single frame, since most information
on human activity is encoded in rather slow variations over
time. Further, CSI amplitude typically exhibits a large dynamic
range, and the visualization needs to focus on those ranges of
values that represent the events of interest. However, which
range of values contains information related to the events of
interest is not known a priori. As a result, the visualization
itself needs to be adjustable to magnify such ranges of values
on demand.

In WirelessEye, CSI amplitude and phase are displayed
using two independent, synchronized, 3-dimensional plots, of
which one depicts the amplitude, whereas the other one depicts
the phase (see Figure 2). The first dimension (i.e., the x-
axis) is given by the reception time of the frame. The second
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dimension (i.e., the y-axis) represents the subcarrier index,
and the third dimension is formed by the CSI amplitude or
phase. This third dimension is encoded by the color: low
amplitudes/phases are plotted in blue, high ones in red, while
shadings between blue and red are used for intermediate
values. The visualized CSI data is updated in real-time from
right to left, thereby, depicting the progression of CSI data
over time.

On the right-hand side of the CSI visualization (cf. Fig-
ure 2), there are two sliders, which can be used to select two
thresholds that restrict the range of CSI amplitudes or phases
to be visualized. All values that lie outside of the selected
range are omitted, whereas the values in range are re-scaled
to cover all possible colors. Hence, the sliders can be used to
selectively visualize the ranges of values that are most sensitive
to a certain event or activity.

WirelessEye allows visualizing classification results on in-
coming CSI data in real-time. To this end, horizontal bars
are drawn synchronously to the CSI data. The height of each
bar represents the model output to which the corresponding
sequence of CSI data has been assigned, whereas the bar’s
color depicts the classification confidence (i.e., red means low
and green means high confidence). This allows examining how
a classifier reacts to particular environmental inputs (e.g., the
number of people present in a room, their motion, etc.) in real-
time and helps to evaluate, debug and optimize the designed
WiFi sensing system.

IV. CASE STUDY

This section presents a practical experiment utilizing Wire-
lessEye. The goal is to demonstrate WirelessEye’s functioning
and that WiFi-based sensing systems built using it can achieve
high accuracy. Furthermore, our study shows the impact of
optimizing the sensing setup by selecting different positions of
the sender and the receiver. As already described, WirelessEye
supports this optimization using its real-time visualization
capability. The case study consists of recognizing activities
carried out in a kitchen near the sink.

A. Experimental Setup

Figure 6 illustrates the CSI amplitude of two different
setups. In the first setup, as depicted in Figure 6 (a), the WiFi
router/AP is placed on the left side of the kitchen sink, while
the Raspberry Pi 4B is placed on the right side. In the second
setup, as shown in Figure 6 (b), both the WiFi router/AP and
the Raspberry Pi 4B are positioned on the same side of the
sink. The goal is to recognize different human activities using
these setups, i.e., washing, drying and soaping hands, as well
as whether the sink is not being used.

By comparing the two setups, it can be observed that CSI
data is highly sensitive to hand-washing gestures when the
sink is situated between the WiFi router/AP and the Raspberry
Pi 4B. This sensitivity can already be observed in the real-
time visualization of WirelessEye (cf. Figure 6). When both
devices are on the same side of the sink, CSI data becomes
less sensitive to the hand-washing gestures, resulting in a

ab
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Fig. 6. Real-time visualization and evaluation results: On the left of the
image, sender and receiver are on the same side of the sink, whereas the sink
is between them on the right of the image.

relatively constant CSI amplitude. This demonstrates that the
sensing setup can be effectively optimized prior to training an
ML model. In particular, by analyzing the real-time visualiza-
tion and optimizing the preprocessing capabilities provided
by WirelessEye, users are able to observe and understand
the behavior of the CSI data during different activities. For
example, they can systematically optimize the positions of the
AP and the Raspberry Pi to maximize the sensitivity of the
CSI data to the considered activity, without needing to train
and analyze a ML model. This leads to a higher quality of the
input data.

B. Evaluation

To numerically demonstrate the effectivity of optimizing
a setup using WirelessEye, we collected data from both
mentioned setups and used 75% of the recorded data to train
our model and 25% to evaluate the accuracy of the resulting
classification, based on 1-second time windows. For each win-
dow, we compared the classification results of the model with
the actually performed activity. We assessed the performance
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in terms of the F1-score, which is a standard metric that
combines precision and recall. When both devices were on the
same side of the sink, the classifier was unable to distinguish
well between the different activities, with an overall F1-score
of only 0.5. When the sink was between both devices, the
F1-score drastically improved to 0.97. In this case, the model
could correctly classify the sink as being idle in 97 % of all
windows, soaping hands in 97 %, washing hands in 99 %, and
drying hands in 96 % of all windows. Figure 6 presents the
detailed results for each of the tested activities and setups. Our
results show that accurate WiFi sensing systems can be created
with negligible effort using WirelessEye. In particular, with
WirelessEye’s real-time visualization, it is, in fact, possible to
optimize the WiFi sensing setup’s performance before actually
training any ML model.

V. CONCLUDING REMARKS

Implementing a WiFi-based sensing system involves a sig-
nificant effort, which goes beyond designing the ML models
for the actual recognition task. Furthermore, detailed knowl-
edge from different fields is required for developing such
a system. In this paper, we presented WirelessEye, which
significantly reduces this effort by providing all necessary
steps for recording, processing and visualizing CSI data “out-
of-the-box.” Furthermore, through an intuitive user interface
and real-time visualization, WirelessEye supports interactively
optimizing a WiFi sensing setup, which is essential for
achieving high recognition accuracies. By making WirelessEye
publicly available, we intend to motivate more participation
from other domains, for example, from the machine learning
community. In this manner we expect to foster more innovation
and help develop new applications of WiFi sensing.
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