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Abstract— To select optimal routes for vehicles endurance
tests, it is necessary to have a road map characterized by
events of interest. In this context, we define events as effects on
the vehicle triggered by some proprieties of the routes. Such
a characterization strongly relies on data from previous test
drives. If new road maps are to be considered, e.g., in a different
region, the route selection rather depends on the experience of
engineers, which can lead to suboptimal decisions. To overcome
this problem, we propose using the existing data from prior
test drives to train a machine learning (ML) model, which then
transfers this knowledge to unseen road maps. To this end, we
formulate a sequential problem that can be solved with state-
of-the-art ML architectures. Our experimental results based on
real-world data show the potential of the proposed approach
as we illustrate for the case of testing energy recuperation in
electric vehicles.

I. INTRODUCTION

Endurance testing is a critical part of the automotive
development process. By testing a vehicle or a vehicle’s
component during extended use under real-world condi-
tions, manufacturers can verify that their products meet
high standards of durability, reliability and performance. In
our experience, these tests can involve driving vehicles on
public roads for extended periods of time, often hundreds of
thousands of kilometers.

To ensure that a test project covers the stresses that vehi-
cles will experience over their typical lifetime, test engineers
are increasingly interested in extending the mere mileage
accumulation with aggregated statistics of relevant events. In
this context, events are defined as responses of the vehicle
to certain features of the road, such as the occurrence of
regenerative braking or kickdown (a downshift in automatic
transmission during acceleration). To detect and measure
such events, test vehicles are equipped with data loggers
that collect data from sensors covering a range of attributes
such as vehicle position, engine speed, energy recovery, etc.
The collected data can be used to track the progress of
the test project as well as to plan the route of future test
drives (on the same roads) that maximizes the progress of a
given test project. This involves solving the vehicle routing
problem (VRP), which optimizes the chance of observing
relevant event classes during the test. There is a large body
of literature on VRPs and methods for solving them [1],
e.g., using constraint programming [2]. As input, the VRP
requires a road map characterized by the events of interest.
For endurance testing, however, such data is limited to the
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roads and events covered in previous test drives. When much
of the road map is unseen, i.e. not characterized by events,
it is left up to experienced engineers to guess a suitable
route for a test drive. This can, however, lead to suboptimal
decisions that limit progress of the development project and
negatively impact on the time to market.

In contrast to relying on the engineers’ subjective judge-
ment, we introduce a data-driven approach to characterize
road maps according to events of interest. We propose to
train a machine learning (ML) model on available data from
previous test drives and then apply it to regress the intensity
of the learned events on unseen road maps. Finally, the
regression results can be used to solve the VRP, which selects
the optimal route on the given road map according to test-
relevant events.

However, applying ML to event intensity regression using
road maps is a non-trivial problem. The explicit graph struc-
ture of a road network makes this problem different from
traditional ML tasks that consider vector-like or sequential
data as input. One way to represent event intensity regression
as an ML problem is to reduce it to an edge regression
problem for graph neural networks [3]. Our work proposes
a different approach by reformulating the event regression
problem as a sequence problem. The contributions of this
paper are threefold.

First, to represent the regression of event intensities as a
sequence problem, we describe a route as a path through a
graph (i.e., the road map). This graph consists of nodes and
edges, where nodes are associated with real-world locations
and edges between nodes denote roads connecting (adjacent)
locations. In this way, a route is described by a sequence of
segments.

Second, we propose a sampling technique to extract (low-
level) features from routes, like distance or elevation, which
allows us to use state-of-the-art ML architectures that operate
on a vector-like representation. The resulting sequences of
features from adjacent segments are used to train ML models
as well as to regress their associated event intensities.

Third, we empirically evaluate our approach for the case of
regressing values of energy recuperation caused by regener-
ative braking events. This is particularly relevant for testing
electric vehicles, where the recovered energy can be used
to extend the vehicle’s range on the remaining charge. We
train the models with real-world driving data collected during
previous endurance tests. The presented experimental results
demonstrate the applicability as well as some limitations of
our approach.

The remainder of this paper is organized as follows:
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Section II provides the necessary background. Section III
introduces our approach. We report results of our experi-
ments in Section IV. Then, we discuss our findings, including
limitations and potential future work in Section V. Finally,
the paper is concluded in Section VI.

II. PRELIMINARIES

To address the challenge of regressing event intensities
when data is limited, we present an approach based on
road maps and ML techniques. The field of ML concerns
algorithms that optimize the parameters of a (mathematical)
model to fit data with respect to some cost function. This pro-
cess is called learning or training an ML model. Supervised
(machine) learning is the task of optimizing the parameters θ
of a function fθ(x) that maps input values x to a predicted
values ŷ based on sample pairs of input and ground-truth
values (x, y) such that the dissimilarity (i.e., loss) between ŷ
and y is minimized. When the goal is to predict a continuous
or numerical output value, the task is called regression.

In addition, when the input data consists of sequences
of ordered observations (e.g., repeated measurements of a
variable), and this order is crucial for finding and learning
the underlying patterns to predict the output, the task is also
referred to as a sequence problem. There are many types
of models in the literature that can be used for supervised
learning on sequence problems, including regression trees
and artificial neural network.

A regression tree [4] is a directed tree-like model that can
be constructed from data samples by recursively partitioning
the samples according to the values of some selected at-
tributes. Hence, the parameters θ of a regression tree model
include the selection of attributes and their split points.
Extremely randomized trees [5], for instance, randomize
both attribute selection and split points in a strong manner.
A regression tree model is applied to an unseen input by
recursively following the partitioning (i.e., branches) that
corresponds to the input’s attribute values. The prediction
made by the model is then the mean value of the partition
where the recursion stops. A better generalization to unseen
data can be achieved by combining multiple regression
trees [6].

An artificial neural network is a directed acyclic graph-
like model consisting of multiple layers of (computational)
units called neurons. Each neuron in a layer has connections
only to neurons in subsequent layers, providing information
flow along the network. In the case of the first layer, each
neuron takes one value of the input vector and gives it
directly as output. The outputs of the neurons from all other
layers (hidden layers and the last layer) are computed by a
linear combination of their inputs passed through a nonlinear
activation function. Finally, the outputs of the last layer
provide the predicted values associated with the input data.
The parameters θ of an artificial neural network include all
the coefficients of the linear combinations computed by each
neuron.

An artificial neural network can be trained by first defining
its topology (or architecture), initializing θ with random

Fig. 1. Illustration of a road map: Nodes correspond to geographic
locations. Edges between nodes represent route segments and have varying
distances or travel times associated.

values, and then adjusting θ based on pairs of sample inputs
and their corresponding ground-truth values using a process
called backpropagation [7]. Architectures that have been
proven suitable for sequence problems often consider more
specialized layers, including long short-term memory lay-
ers [8], time-dilated convolution layers [9], or self-attention
layers [10].

In this work, the input data for the ML algorithms is
extracted from road maps. Road maps encode unstructured
data closely related to graphs. In practice, a road map
is a visual representation of a real-world geographic area,
showing the layout and arrangement of roads and landmarks,
and other relevant data. We study road maps in terms of
graphs representing a network of interconnected locations,
as shown in Fig. 1. To this end, we apply basic definitions
from graph theory, where a finite and directed graph with no
loops or multiple edges is defined by finite sets of nodes and
edges. A pair of consecutive connected nodes defines an edge
and a sequence of successive connected nodes defines a path.
In other words, a path provides a way to traverse the graph by
moving from one node to another through connecting edges.

In summary, a road map can be conceptualized as a graph,
where geographic locations are represented by nodes and
route segments between locations are represented by edges
with associated attributes (such as distance or travel time).
Finally, a route is represented by a path in the graph.

In our application domain, the corresponding ground-truth
values are obtained from previous test drives on some routes
of a given road map. This means that the intensity of some
event classes is only known for a few route segments in the
road map and remains unknown for the others.
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III. EVENT INTENSITY REGRESSION AS A SEQUENCE
PROBLEM

The goal of our work is to associate the route segments
in a road map with intensity values of events of interest.
To this end, we define a regression problem for supervised
learning. Our work is based on the assumption that the
intensity of events can be derived from structural features
contained in road maps. For example, regenerative braking
is typically observed when the speed limit is reduced or when
approaching a sharp turn or an intersection. These low-level
features can be extracted from the route data and an ML
algorithm can abstract them to higher-level concepts such as
energy recuperation.

However, state-of-the-art ML techniques are not directly
applicable to network-like road maps. In fact, most models
consider as input individual observations arranged in vec-
torial or sequential structures. For this reason, we propose
first to fix the length of the explored routes according to
the expected motion of the vehicle. These routes consist of
sequences of nodes connected by route segments. Nodes are
associated with attributes like geographic location including
elevation and route segments with distance and travel time
estimates.

These route attributes are the input of the regression model
that estimates the event intensities as output. Many ML
models are suitable for regression problems, but to generalize
well to supervised learning tasks, the input data must be
invariant to irrelevant transformations. In our application
domain, road map data is invariant to translation and rotation.
Thus, instead of using geographic locations of nodes to
describe the motion of vehicles, we rather consider changes
in absolute bearing and in elevation between nodes.

Since our regression problem involves data with inherent
temporal dependencies, e.g., segments of a route are visited
in a certain order, representing it as a sequence can better
describe its nature. In turn, we can take advantage of ML
architectures that are well suited for sequence problems,
such as long short-term memory networks [8] or transform-
ers [10].

Route segments have different lengths, which implies that
their attributes are heterogeneous in terms of distance and
travel time. However, ML models often require input data
to be equidistant. For this reason, we resample the nodes
along a route such that route segments represent fixed-length
time intervals. Resampling involves interpolating the attribute
values as well as the ground-truth values of consecutive route
segments. Fig. 2 illustrates the resampling of a route, which
results in a sequence of consecutive fixed-length segments.
The resulting route features are then fed into the ML model
in blocks, called perceptive fields, which are defined by
a subset of consecutive route segments. The size of the
perceptive field defines the portion of the route that is
considered to regress the event intensity of one segment,
which we call target segment.

The selection of the target segment within a perceptive
field determines how much of the previous and the following

Fig. 2. Illustration of a route on a road map with a resampled mid-section.
Square markers represent original nodes from the road map, while circular
marker represent nodes resulting from resampling. Dashed edges represent
original route segments, whereas solid edges represent resampled ones. In
the depicted example, the perceptive field consists of 10 segments, where
the target segment is the first segment in the perceptive field (thicker edge).

route segments is included in the ML input data. The optimal
ratio between previous and following route segments may
vary depending on the event class to be regressed.

The routes on the road map are explored using a sliding
window with the length of the perceptive field. Shifting
this sliding window along the route results on sequences
of regular segments. For each sequence the corresponding
features are extracted and the event intensity of its target
segment is estimated (with the possible exception of the
segments at the beginning and at the end of the route, unless
padding is applied).

The resampling frequency, the size of the perceptive field,
and the position of the target segment within the perceptive
field are hyperparameters of our regression sequence prob-
lem. An empirical analysis to derive their values is presented
in the next section.

IV. EXPERIMENTS

In this section, we report the results of our experiments
to demonstrate the applicability and effectiveness of our
proposed approach for the case of regressing energy recu-
peration derived from regenerative braking events. Our work
is based on publicly available road maps and data collected
from previous endurance test drives from the automotive
domain. The data considered in our experiments stems from
GPS traces and regenerative braking events of 512 hours of
driving, day and night, on public roads, collected from three
units of an electric vehicle model, recently introduced to the
market.

Energy recovery has become a critical area of improve-
ment, especially for energy-efficient electric motors, as the
world transitions to sustainable mobility solutions. With
the proliferation of energy recovery systems, regenerative
braking events are growing in importance for electric vehicle
endurance testing. These systems allow recovering energy
that would normally be lost during deceleration or braking
by converting the kinetic energy into electrical energy and
storing it in a battery. This recovered energy can then be
used to increase the range an electric vehicle can travel on
the remaining charge.

2499

Authorized licensed use limited to: UNIVERSITAETSBIBLIOTHEK CHEMNITZ. Downloaded on November 19,2024 at 11:59:08 UTC from IEEE Xplore.  Restrictions apply. 



Basically, our approach is based on the premise that the
likelihood of regenerative braking events and the associated
amount of energy recuperation is influenced by (static) route
characteristics/attributes such as road profile (i.e., elevation
changes), sharp turns, speed limit transitions, etc. as well
dynamic attributes such as traffic and weather.

To consistently match GPS traces and regenerative brak-
ing events (from previous test drives) to route data, we
used the match service from the Open Source Routing
Machine (OSRM) project [11], which works on publicly
available data from OpenStreetMap [12].

Further, to assign attributes to the route segments, we
extracted travel time and distance data from OSRM. Ad-
ditionally, we interpolated earth’s surface elevation using
publicly available data from Mapzen1 [13]. Note that the
elevation of the earth’s surface and the elevation of the road
are not always the same and may differ at tunnels and bridges
where roads overcome geographical obstacles like rivers,
mountains, etc. However, this can be compensated to some
extent by preprocessing elevation data.2 This is, however, out
of the scope of this paper.

Route segments are then annotated with five low-level
features: degrees turned left and right, elevation gained and
lost, and driving speed. These features describe a three-
dimensional motion and are invariant to absolute direction
and absolute elevation.

Based on this, we applied state-of-the-art ML techniques
to solve the sequence problem, which takes the five described
features from the perceptive fields and outputs an estimate of
the energy recuperation for each target segment. For training
the model, the features are standardized to have a mean
value of zero and a standard deviation of one, where we
obtained ground-truth values from the energy recuperation
measurements performed during the test drives.

Based on our initial tests, we define a baseline config-
uration consisting in resampling route data at one-second
intervals, limiting the perceptive field to 20 seconds (at
the expected speed of the vehicle), and predicting energy
recuperation for the first route segment in the perceptive field
(i.e., this is the target segment) yield satisfactory results.

We consider different perceptive field lengths of 5, 10, 20,
30, and 40 seconds (at the expected speed of the vehicle)
to evaluate the impact on results. Then, to study the effect
of the ratio between previous and following route segments
on the regression results, we consider different locations of
the target segment within the perceptive field. In particular,
we divide the perceptive field in four same-length portions
and select as target segment the first route segment (see
again Fig. 2), the 1

4n
th segment, the 1

2n
th segment, the 3

4n
th

segment, and the last segment of the perceptive field, where
n denotes the size/length of the perceptive field, this time,
given by the number of route segments in contains.

1https://mapzen.com/data/metro-extracts/
2For example, if there is an unbreachable elevation change for a vehicle

on a particular road, it can be assumed that a tunnel or bridge has been
built to keep elevation at an acceptable level.

Our experiments considered artificial neural networks
using bi-directional long short-term memory layers (BiL-
STM; [14]), time-dilated convolution layers (TCN: [9]), and
multi-head self-attention layers (Transformer; [10]) as well
as extremely randomized trees (ExtraTrees; [5]).

The BiLSTM setting considers an artificial neural network
with two consecutive bidirectional long short-term memory
layers, each producing sequences of 8-dimensional latent
variables. The TCN setting uses eight time-dilated filters
using dilations of 1, 2, 4, and 8 with no padding, and dropout
of 50 percent on their output. The Transformer setting uses a
learnable embedding and positional encoding of four dimen-
sions, and stacks four transformer-style blocks of multi-head
self-attention using four heads and two 1D-convolutions with
eight/four dimensions each, applying layer normalization and
dropout of 10 percent before adding residual connections
between layers as described in [10]. BiLSTM, TCN, and
Transformer were run for 10 epochs and a batch size of 256,
using the Adam optimizer with the learning rate set to 0.001
and minimizing the mean squared error.

The ExtraTrees setting considers an ensemble of 100 ex-
tremely randomized trees, limiting tree-depth to 10, and
using bootstrap-sampling.

The models are optimized to accurately estimate the value
of energy recuperation during training. Our goal is to achieve
sufficient generalization on the results, such that these serve
as input to solve the VRP, which select the optimal route
for testing energy recovery on an unseen road map. For this
reason the evaluation of model effectiveness does not rely on
the magnitude of prediction errors, but on the coefficient of
determination R2. R2 represents the proportion of the total
variability in the event data that is explained by the regression
model by using only the proposed low-level features from the
road map.

In order to assess how well a model generalizes to unseen
road maps, we implemented our experiments using 10-fold
cross-validation. To this end, we have divided the parts of the
road map, in which there are at least 10 observations of the
energy recuperation value into 10 subgraphs of roughly equal
size. The route data extracted from each subgraph forms a
cross-validation set. The distribution of energy recuperation
values and route features will naturally vary between these
road map partitions because they cover different geographic
regions with different terrains, road types, and topologies.
Therefore, we report predictive performance by collecting
individual predictions from all cross-validation sets (as if pre-
dictions stem from a single experiment) instead of averaging
performance metrics.

A summary of our experimental results is given in Fig. 3
and Fig. 4. In our baseline (hyperparameter) configuration
(i.e., resampling route data at one second intervals, limiting
the perceptive field to 20 seconds, and predicting energy
recuperation value for the first route segment in the per-
ceptive field), as well as in most of the other considered
configurations, Transformer (43.6%) and TCN (42.5%) per-
form better than BiLSTM (36.7%) and ExtraTrees (32.6%).
Although we have by far not exhausted the vast space of
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alternative settings and model-specific optimizations known
in the literature, our results reflect the common understanding
in the scientific community that TCN and Transformer are
better suited for modeling sequence problems, even over
LSTM, when there are long-range dependencies (due to the
vanishing gradient problem inherent in LSTM).

A detailed analysis of model performance with varying
perceptive field length (Fig. 3) shows that any performance
gains saturate at 20 seconds for most models, with only
negligible gains when using a larger perceptive field in the
Transformer setting. Fixing the perceptive field size at 20
seconds and varying the target segment position within the
sequence (Fig. 4) also yields no gains.

The best setting in our experiments is given by Trans-
former using a perceptive field length of 40 seconds when
fixing the target segment to, i.e., predicting energy recu-
peration for, the first route segment within perceptive field.
According to our results, this can explain 44.3% of the
variability in energy recuperation by only using the proposed
low-level features extracted from road map data.

Albeit of limited importance to our application scenario,
we can identify the most relevant attributes contributing
to predicting energy recuperation, e.g., by studying the
mean impurity decrease of the low-level features within
each regression tree in the ExtraTree setting. Using our
baseline configuration, we observe that (1) bearing-changes
during the route segments 4-10s beyond the target segment,
and (2) driving speeds near the beginning and the end of the
perceptive field appear indicative of energy recuperation at
the target segment (Fig. 5).

Finally, there are also dynamic attributes that depend on
traffic and weather, which cannot be predicted from the road
map data alone. However, as mentioned before, our models
were trained with road maps annotated with real-world mea-
surement data from previous test drives. Such annotations
implicitly contain traffic and weather information and, hence,
the trained models learn to correlate this information with the
low-level features we defined before. Even though a separate
modeling of traffic and weather would certainly improve
results, it can be expected that similar roads are affected
by traffic and weather in a similar way, which the proposed
approach accounts for to some extent.

V. DISCUSSION

The experiments conducted in our study yield several key
findings. First, our approach can predict energy recuperation
on unseen routes to a reasonable extent, demonstrating ap-
plicability and practical relevance.While a relatively modest
R2 value of slightly above 40% suggests that the prediction
model does not explain a large portion of the variability in
the data, it is a quite reasonable result in our application
scenario. Moreover, these results can be further improved as
more data becomes available with future test drives.

Even now, regression results can be used as decision aid
when selecting route segments based on events of interest,
i.e., for which no data is available from previous test drives
yet. This way, a considerable amount of engineering work
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can be saved, reducing testing costs. We illustrated this
for the case of energy recovery during endurance tests. In
particular, those route segments that are estimated to have
significant event intensity may be relevant for VRP.

On the other hand, there are several factors that can
cause regression errors. Some of these can potentially be
included in related future work, but are beyond the scope of
our benchmark application. First, as already mentioned, our
approach does not directly account for dynamic attributes
such as traffic (including traffic signals) and weather, but
only indirectly. For individual test drives and some route
segments, this can lead to significant differences between
the observed and predicted event intensity.

Further, human factors such as the driving style were also
neglected in this work. For example, a more dynamic driving
style typically results in a higher number of regenerative
braking events and higher energy recovery. Event intensity
regressions may, hence, differ depending on the driver.

Data quality may also have affected model performance.
Recall that our study considered the elevation of the earth’s
surface, but not the elevation of the road. While we assume
that the data is consistent for most route segments, bridges
or tunnels are exceptions. Even though this can be solved by
preprocessing elevation data, there may still be a deviation
from reality. A potential solution is to let test vehicles collect
elevation data as well.

Another challenge is matching GPS data to the road
map due to GPS inaccuracies caused by signal obstructions,
atmospheric conditions, and receiver noise. In some cases,
this can result in event measurements being assigned to the
wrong route segments. Equipping test vehicle with more
accurate positioning systems may solve this issue, however,
it will again take a considerable amount of time to collect
suitable data.

Finally, in addition to feature selection and data qual-
ity, the choice of hyperparameters can also affect model
performance. For sequential problems, changes in sampling
frequency can have a significant impact on the performance
of an ML model. This has been demonstrated, for example,
for crowd movement prediction using LSTMs [15] and for
motor imagery classification [16] among others.

VI. CONCLUSIONS

The optimal routing of endurance tests drives is a laborious
and time-consuming task that can in principle be automated
by vehicle routing problem (VRP) solvers. In practice, how-
ever, much of the road map is not characterized by relevant
data. In this work, we have presented a novel, data-driven
method to characterize a road maps according to events of
interest. Such a road map can then be used to solve the
VRP, which selects the route that maximizes the observation
of relevant events for the purpose of endurance test drives.

We propose the use of machine learning (ML) to abstract
event intensity values from (low-level) route features. Using
graph theory, we rearrange the information extracted from
a road map and represent it as a sequence problem, so that

state-of-the-art ML models (such as BiLSTM, TCN, Trans-
former, and ExtraTrees) can handle it directly. Experimental
results for the case of regressing energy recuperation values
demonstrate the practical applicability of the proposed ap-
proach. Moreover, our approach can be applied to other event
classes, e.g., kickdown (downshifts in automatic transmission
triggered by pressing down the throttle pedal), provided that
sufficient training data is available.

As future work we propose to reformulate our approach
for graph neural networks [3], including graph convolutional
networks [17] and graph attention networks [18], which
could provide a better alternative to learn graph structures.
Future work could also include more low-level features like
traffic signals from OpenStreetMap.

REFERENCES

[1] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and
Applications. SIAM, 2014.

[2] P. Shaw, “Using Constraint Programming and Local Search Methods
to Solve Vehicle Routing Problems,” in International Conference on
the Principles and Practice of Constraint Programming CP, 1998, pp.
417–431.

[3] M. Gori, G. Monfardini, and F. Scarselli, “A New Model for Learning
in Graph Domains,” in Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., vol. 2. IEEE, 2005, pp.
729–734.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees. Wadsworth and Brooks, 1984.

[5] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely Randomized Trees,”
Machine Learning, vol. 36, no. 1, pp. 3–42, 2006.

[6] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Chap-
man & Hall/CRC, 2012.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-propagating Errors,” Nature, vol. 323, no.
6088, pp. 533–536, 198.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neu-
ral computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“WaveNet:A Generative Model for Raw Audio,” in The 9th ISCA
Speech Synthesis Workshop, 2016, p. 125.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is All You Need,”
in 31st International Conference on Neural Information Processing
Systems NIPS, 2017, pp. 6000–6010.

[11] D. Luxen and C. Vetter, “Real-Time Routing with OpenStreetMap
Data,” in 19th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems GIS. ACM, 2011, pp.
513–516.

[12] OpenStreetMap contributors, “Planet Dump Retrieved from
https://planet.osm.org,” https://www.openstreetmap.org, 2017.

[13] Mapzen, “Terrain tiles on AWS,” accessed on June 2nd 2023 from
https://registry.opendata.aws/terrain-tiles.

[14] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition,” in
15th International Conference on Artificial Neural Networks ICANN.
Springer, 2005, pp. 799–804.

[15] J. Casals, M. Jerez, and S. Sotoca, “Modelling and Forecasting Time
Series Sampled at Different Frequencies,” Journal of Forecasting,
vol. 28, pp. 316–342, 2009.

[16] T.-J. Luo, C.-L. Zhou, and F. Chao, “Exploring Spatial-Frequency-
Sequential Relationships for Motor Imagery Classification with Re-
current Neural Network,” BMC Bioinformatics, vol. 19, p. 344, 2018.

[17] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in 5th International Conference on
Learning Representations ICLR, 2017.
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