
Knowledge Transfer and False Friends: Insights on
Transitioning from C to Java

Yifan Du
University of Technology Chemnitz

Belinda Schantong
University of Technology Chemnitz

Janet Siegmund
University of Technology Chemnitz

Abstract—Background: When acquiring new programming
languages, learners typically transfer their knowledge from
previous languages to the new one. Recent studies demonstrate
that this transfer is similar to the process of learning a second
language, so learning can be more efficient, but also interference
can take place, similar to false friends. While these studies
demonstrate the existence of transfer, they have focused on
programming languages with rather larger differences, such as
Python versus Java.

Objective: Our goal is to understand how students transfer
between two similar programming languages, that is, from C to
Java, adding a different angle to how transfer takes place.

Method and Results: To this end, we gave students a Java
comprehension test in the first week of a CS2 course, after they
have completed a CS1 course based on C. We could confirm
that students transfer knowledge from C to Java, including false
friends. We repeated this study a year later, but included a ded-
icated Java tutorial before conducting the Java comprehension
test. With these explicit instructions, students experienced less
interference when learning Java, demonstrating that they profit
from being made explicitly aware of the syntactical intricacies of
Java. However, we also observed persistent interference for some
concepts, indicating the need for more in-depth instructions.

Index Terms—Programming language transfer, Program com-
prehension, Novice programmers, Java, Syntax and semantics.

I. INTRODUCTION

Programming learning is becoming more ubiquitous as a
growing number of countries are integrating programming
into their school curricula [3], [5], [19]. When transitioning
between schools, school levels, or into higher education,
students will most likely not only learn one, but several pro-
gramming languages over time. Thus, transitioning between
programming languages is essential.

Just as with learning natural languages, learning a new
programming language builds on existing knowledge of pre-
viously learned programming languages, such that knowledge
from one language is transferred to the new one. And just as
for natural languages, this works well sometimes, for example,
when there are similarities in vocabulary, such as from German
Fisch to English fish, or from French manger and Italian
mangiare (both mean ’to eat’). Sometimes, however, it is
difficult and interference takes place, for example, in the form
of ’false friends’, such as English actually and Spanish
actualmente, where the latter means ’at present/currently’,
so it is actually very different from the similar looking English
word.

A language learner who is able to assume what the German
word Fisch means based on their knowledge in English is
experiencing positive transfer, where knowledge learned in
one context has a positive effect on performance in another
context. By contrast, a Spanish learner that falls for the trap of
the false friend actualmente experiences negative transfer,
such that the knowledge learned in one context causes negative
influence on performance in other contexts [25].

Recent studies have demonstrated how transfer affects learn-
ing a new programming language, which is described in the
Model of Programming Learning Transfer [38]. According to
the model, when learning a second or subsequent programming
language, three different kinds of transfer can occur:

1) Positive transfer can occur for True Carryover Concepts.
These are concepts that, in the new programming language,
are similar in syntax and semantics compared to already
known programming languages. For example, the syntax of
declaring a variable of the type int is a concept shared by the
languages C and Java with consistent underlying semantics.
The expression int number = 2; is syntactically correct
in both languages and has the same meaning.

2) Negative transfer is expected for False Carryover Con-
cepts, which are syntactically similar in the new programming
language, but not semantically. These “false friends” cause
interference. For example, we can declare an integer variable
and initialize it with the value 1 in Java and C. Then, we assign
the value 10.5 to this variable. At this point, the syntax remains
consistent in both languages, but the underlying semantics are
different. In C, the number is truncated to 10 with a compiler
warning. In Java, such an assignment leads to a compiler error.

3) No transfer occurs for Abstract True Carryover Con-
cepts. These are semantically similar in the new programming
language, but not syntactically. Since learners are unfamiliar
with the new syntax, they cannot recognize that they already
know the concept, just with a different look. One example
are structures in C and classes in Java. Although C has no
syntax to define classes, structures can be used to present
simple classes, making the semantics similar in this context.
For example, the structure struct Point{int x; int
y;} can represent a point, similar to a class Point {int
x; int y;} in Java.

The Model of Programming Learning Transfer has been
evaluated regarding transfer from Python to Java [38], and has
been successfully applied in other contexts [14], [20], [27].
However, there is currently a gap on how transfer between



more similar languages takes place, specifically, with compa-
rable type systems. To address this gap, we have conducted
a study to understand how students who are starting to learn
Java in a CS2 course after having learned C in a CS1 course
transfer their knowledge. To this end, students completed a
Java comprehension test, in which they determined what a
snippet of Java code would do based on their prior knowledge.
To understand to what extent an explicit introduction to Java
helps to support transfer and avoid interference, we have
run the study twice in two separate years (2023, 2024), and
have incorporated a dedicated Java tutorial in the 2024 before
conducting the Java comprehension test. This is a replication
of the study by Tshukudu and Cutts [38], in which we have
adapted the Java questions and expected transfer from C as
the previous programming language.

In a nutshell, we found evidence for all three kinds of
transfer, indicating that students transfer concepts, leading to
either (expected) correct responses, indicating positive transfer,
or (expected) incorrect responses, indicating no and nega-
tive transfer. However, how students transfer their knowledge
seems tightly coupled to the concrete concept (e.g., variable
scope, type (in)compatibility), not whether positive or nega-
tive/no transfer is expected. To understand the effect of the
concepts on how students transfer their knowledge to Java,
we explored the responses of students in detail. We found
that especially scoping and comparison of complex data types
are difficult to get right, even after a dedicated Java tutorial.
Furthermore, object assignment, string concatenation with the
+ operator, using attributes for arrays, and basics of classes
are difficult to get right without introduction, but can profit
considerably from a dedicated Java tutorial.

To summarize, we make the following contribution:
• Empirical evidence to describe transfer to a new program-

ming language, strengthening the view that programming
language learning is close to learning a second natural
language.

• A nuanced picture of how transfer does and does not take
place.

• Details on the relationship between concrete concepts,
transfer, and dedicated instructions in the context of
programming learning.

• A publicly available replication package:
https://doi.org/10.5281/zenodo.14762835

II. RELATED WORK

Most studies on transfer between text-based programming
languages have focused on transfer from Python to Java [11],
[33], [37], [39], but also the transfer from Matlab to C [6],
from object-oriented to functional languages [32], and between
different database languages [18] have been studied. One study
focused on the comparison of transfer between languages
that were either different in semantics but similar in syntax,
or different in syntax but then similar in semantics [20].
Most of them fall in line with the Model of Programming
Learning Transfer and support the call for explicitly lever-
aging the concepts of transfer in the teaching of subsequent

programming languages [36]. Only the results of Lu and
others [20] differ from the expectations set by the Model of
Programming Learning Transfer, in that students had little
trouble transferring between the syntactically different, but
semantically similar languages. While all of these studies have
a focus on learning transfer between text-based programming
languages, none of the studies has focused on the transfer
between syntactically similar languages with comparable type
systems.

Visual programming languages are often used to ease novice
programmers into programming, but transferring skills to text-
based programming languages seems to be difficult [1], [24],
[26], [34], [40]. However, addressing transfer explicitly might
help mitigate common misconceptions from learners [23],
[27]. Other dedicated approaches exist to foster transfer, such
as frame-based editing [16] or facets of meaning [2], showing
a visual programming language and a text-based programming
language side by side [9], [17], while focusing explicitly on
the underlying concepts and computational thinking [9], or
using additional tools and gamification [4], [22], or bridging
languages [15]. These studies investigate the transfer of knowl-
edge in programming language learning and propose methods
to alleviate the difficulties of students when transitioning from
visual to text-based programming languages. Their goal is
to improve teaching methods by leveraging learning transfer,
similar to that of our research.

Transfer has been studied in other aspects of programming
learning, such as transferring knowledge from training tasks
to later assessment [13], which is difficult for most learners,
even for very basic problems [35] and across all aspects of
transfer [8]. Approaches to alleviate these difficulties exist,
such as explicit instructions and bridging techniques [7]. For
example, the programming language Hedy [10] uses these
techniques to leverage transfer from natural language learn-
ing to programming language learning. For transfer between
programming languages, approaches are also currently being
developed [27], [39], but concrete studies to evaluate their
effects are sparse. Our study will contribute empirical data for
fostering transfer between programming languages.

Transfer has also been observed in programming experts.
Typically, they struggle less than novices with questions of
syntax and semantics [28]. However, existing tutorials for ex-
perts often do not leverage prior knowledge from experts [29],
and dedicated tools to avoid negative transfer are missing [30].
Studies have also stressed the importance of not only under-
standing differences in concepts and syntax, but also in idioms
and conventions of different languages [21].

III. EXPERIMENTAL DESIGN

In this section, we describe the experimental design of the
study including the research questions, materials, participants,
and the experiment procedure. All material is available on the
project’s Web site: https://doi.org/10.5281/zenodo.14762835.



TABLE I
QUESTIONS AND EXPECTED ANSWERS FROM THE JAVA COMPREHENSION TEST. THE EXPECTED TYPE OF TRANSFER IS INDICATED BY THE COLOR.

POSITIVE TRANSFER IS IN TEAL , NEGATIVE TRANSFER IN RED AND NO TRANSFER IN BLUE

Question Description Core Concept Correct Answer Expectation C Expectation Python

Q1 Assigns the float number “10.5” to an int variable
with initial value 1.

Type compatibility Error 10 / 11 10.5

Q2 Declares a variable “Hello” inside a loop, prints it
twice, then accesses it outside the loop.

Variable scope Error Error Hello
Hello
Hello

Q3 A while loop prints the values of i from 0 to 1
before the loop terminates when i reaches 2.

While-loop 0 0 0
1 1 1

Q4 Two objects of type String (2023)/Array(2024) with
the same value are created with the new keyword,
then compared with ==, which checks for the
reference equality.

Object comparison false true true

Q5 A method that multiplies integers is called in the
main method.

Methods 14 (2023) 14 (2023) 14 (2023)
21 (2024) 21 (2024) 21 (2024)

Q6 Two objects (n1, n2) are created with attribute
values (“51”). The attribute of n1 is printed; then,
n1 is assigned to n2 (n2=n1), so both refer to the
same object. The attribute value of n1 is changed
to “53” after which the attribute value of n2 is
printed.

Object assignment 51 51 51
53 53 53
53 51 53

Q7 A method uses nested for-loops to find two
numbers in an array whose sum equals a specified
target value, and an array with the indices of the
numbers is returned, using the keyword “new” to
allocate memory space for the array.

Declaring arrays 4 Error / Confusion Error / Confusion
(2023 only) 5

Q8 String concatenation using “+”: Two strings
(“hello” + “there”), and a string and a number
(“exec” + 3) are concatenated and printed.

String concatenation hellothere Error hellothere
exec3 Error

Q9 Initializes a two-dimensional array and prints its
contents with nested loops, using “.length” to
access the length of the array.

Array length 1 2 3 Error Error / Confusion
4 5 6
7 8 9

Q10 A class “Student Info” represents a student with
three private attributes: num, name, and age. It
provides getter methods for all and a setter method
to modify age. In the main method, an object is
created with the values “001”, “Max”, and “25”.
These values get printed. Then, the age gets
updated to “23” and printed.

Classes 001,Max,25 Confusion 001,Max,25
23 23

A. Research Questions

Our study investigated how novices transfer their knowledge
of previous programming languages to learning Java in a CS2
course. Our focus is how students who learned C in a CS1
course transition to Java in a subsequent CS2 course. Both
programming languages have a static type system (different
from Python), so possibly we can observe positive transfer
for concepts related to types. Furthermore, the sample in our
course is diverse regarding previous experience. Most students
have learned C, but we cannot exclude that they have also
learned other programming languages. It is quite common that
students are familiar with both, C and Python, and few students
joined our CS2 course from a different course that did not
teach C, but Python or other programming languages. Thus, we
can also observe transfer from other programming languages
to Java. We phrase the first group of research questions:

RQ1: What transfer can we observe when students transition

to Java...
• RQ1.1: ...from C?
• RQ1.2: ...from other programming languages?
To answer these research questions, we repeat the study of

Tshukudu and Cutts [38] in our courses.
Having understood how students transition to Java, we can

integrate dedicated training to support students in transferring
their knowledge to Java. This way, we can improve current
teaching approaches and build on students’ previous knowl-
edge. We define the second group of research questions:

RQ2: What is the effect of explicit Java grammar instruction
on transfer ...

• RQ2.1: ... from C to Java?
• RQ2.2: ... from other programming languages to Java?
To answer these research questions, we conduct the study

twice in our courses, first in 2023, and second, in 2024, in
which we start with a dedicated Java tutorial.



B. Material
For our study, we adapted the code comprehension snippets

from the study by Tshukudu [39]. They contain basic Java
concepts, such as declaration of variables, declaration of
objects, usage of methods, and so on. An overview of the
questions and the targeted concepts can be found in Table I.
The full code snippets are available on the project’s Web site.

To observe transfer, each snippet was designed to reflect one
of the three transfer types: positive transfer, negative transfer,
and no transfer. Thus, each snippet contains a programming
concept that is expected to lead to exactly one type of transfer,
which depends also on the previously known programming
language(s) of students.

1 for (int i=0; i<2; i++) {
2 String var="Hello";
3 System.out.println(var);
4 }
5 System.out.println(var);

Listing 1. Java Code Snippet Example

As an example of positive (from C) and negative (from
Python) transfer, we show the code of Question 2 in Listing 1.
This code will lead to an error, because the variable var is
accessed outside the loop in which it is defined, violating the
variable’s scope. Since C has similar scoping rules to Java, we
assume that students coming from C correctly respond that this
code produces an error. By contrast, Python has less restricted
rules of scoping, so accessing the variable outside the loop is
syntactically correct Python code. Thus, we expect that, when
students transfer their Python knowledge to this Java code,
they respond with three times “Hello”.

As an example for no transfer (from C), Question 10
includes the definition of a small class and the use of the
keyword new. Since there is no syntactic similarity in C, we
expect that students cannot transfer their knowledge from C,
even though there are comparable concepts with the definition
of struct and the function malloc.

The task for the participants was to comprehend Java
snippets and determine the output of the code, either with no
introduction to Java (2023) or a dedicated (2024) tutorial to
Java. This way, we ensure that participants needed to base their
answers on their prior programming knowledge (2023). The
snippets could also lead to errors, which we told participants
before they started the Java comprehension test, and instructed
them to shortly describe an error if they thought there was one.

In the 2024 instance, we removed Q7 after observing that
it tended to cause confusion. We did not replace it, because
many participants lost interest after completing six tasks. We
also made some slight adjustments to Q4, Q5 and Q10 to
reduce confusion that was caused by details in the snippets,
not intricacies of the concepts, such as unused parameters or
the format of the output.

To assess the background of participants, we used our ques-
tionnaire to measure programming experience, which is based
on self-estimation [31]. Participants were asked to estimate
their experience with different programming languages on a
five-point Likert scale.

TABLE II
PROGRAMMING EXPERIENCE DISTRIBUTION OF PARTICIPANTS

Year C Python C & Python None Other Sum

2023 45 4 19 7 9 84
2024 16 2 15 13 4 50

C. Participants
The participants are students from the TU Chemnitz who

attended a CS2 course. They usually have completed a preced-
ing CS1 course, but since that was not a necessary prerequisite,
we assessed students’ previous programming experience using
our programming experience questionnaire. We present an
overview of the sample in Table II. In total, 104 students
participated in the experiment in 2023. Before data analysis,
we removed 13 invalid responses and 7 students who had
previous experience in Java, leaving 84 participants. Most
students had learned C in the preceding CS1 course, and some
had prior experience with Python and/or other languages. We
considered a student to have a background in a programming
language if they had at least a medium level of experience in
that language.

In the 2024 instance, 69 students participated, of which we
removed 6 invalid responses and 13 students with previous
Java experience, leaving 50 participants.

D. Conduct
The experience questionnaire and the comprehension test

were implemented in LimeSurvey and distributed by giving
the students the link to the online survey during the lecture. We
also provided a paper-based version to students who preferred
it. The students were not obligated to participate in the survey,
but the survey was part of the lecture.

In 2023, the survey was conducted during the first lecture
of the semester. In 2024, the survey was conducted in the
second week of the semester, after the students had received
a dedicated Java tutorial in week one. The tutorial provided
an overview of the fundamental components of Java, which
we noticed were especially difficult in the 2023 instance. It
included control structures, primitive and complex data types,
and the operations that can be executed on them. Additionally,
the tutorial covered the use of one- and two-dimensional arrays
and introduced the basics of classes. We used live coding,
during which students could ask questions to explore Java
constructs.

In 2023, the order of the questions was fixed to ensure
an even distribution of questions containing different types of
concepts. However, as participants grew fatigued, the number
of responses decreased considerably for the later tasks. To have
a more evenly distributed number of answers per question, we
pseudo-randomized the order in 2024.

IV. RESULTS

A. Data Preprocessing
Before analyzing the data, we removed blank answers and

duplicated submissions. In the latter case, we kept the final



TABLE III
PERCENTAGE OF CORRECT ANSWERS PER QUESTION AND KNOWLEDGE BACKGROUND IN 2023 AND 2024. POSITIVE TRANSFER IS IN TEAL , NEGATIVE

TRANSFER IN RED , AND NO TRANSFER IN BLUE .

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Nmin to Nmax

2023

Average 14.61% 14.61% 67.42% 5.68% 78.82% 15.38% 3.28% 39.39% 31.91% 38.64%

C 11.63% 16.28% 62.79% 4.65% 74.42% 7.14% 0.00% 36.11% 20.83% 29.17% 24 to 43
Python 25.00% 0.00% 75.00% 0.00% 100.00% 0.00% 0.00% 50.00% 50.00% - 0 to 4
C & Python 15.79% 15.79% 78.95% 5.26% 77.78% 33.33% 7.69% 46.15% 40.00% 44.44% 10 to 19
None 14.29% 0.00% 57.14% 0.00% 57.14% 14.29% 0.00% 14.29% 0.00% 28.57% 4 to 7
Other 0.00% 0.00% 44.44% 0.00% 77.78% 0.00% 0.00% 11.11% 22.22% 11.11% 3 to 9

Valid Answers 82 82 82 81 78 71 56 60 43 40

2024

Average 25.81% 21.67% 80.00% 15.25% 91.80% 32.76% 52.46% 69.49% 71.19%

C 18.75% 14.29% 93.33% 6.67% 93.75% 26.67% 50.00% 80.00% 68.75% 14 to 16
Python 0.00% 0.00% 50.00% 0.00% 100.00% 0.00% 100.00% 0.00% 0.00% 1 to 2
C & Python 40.00% 33.33% 78.57% 7.69% 85.71% 35.71% 42.86% 71.43% 78.57% 13 to 15
None 7.69% 15.38% 61.54% 15.38% 100.00% 7.69% 61.54% 53.85% 53.85% 12 to 13
Other 50.00% 25.00% 75.00% 25.00% 75.00% 50.00% 50.00% 50.00% 75.00% 4 to 4

Valid Answers 50 48 48 46 48 47 48 47 47

submission. We kept the data of participants who skipped some
questions, but removed their blank answers. This leaves us
with a variable number of valid answers per questions, which
we present in Table III. The range of valid answers given by
students of a specific programming background is indicated in
the last column of Table III. Exact numbers per question are
available on the project’s Web site. Since after the division of
students by background, the numbers for some conditions are
rather low, we do not rely on statistical tests and focus the
discussion on the effect size, instead.

B. RQ1: What transfer can we observe when students transi-
tion to Java?

To answer RQ1, we evaluated the correctness of answers,
illustrated in Table III for both instances.

1) RQ1.1: Transfer from C to Java: For the questions in
which we expect positive transfer, we see comparable results
in both instances: Q3 and Q5 have high correctness rates,
especially in the 2024 instance. Q2 has a low correctness rates
in both instances. Thus, we can observe positive transfer, as
expected, but also hints that expected positive transfer does not
occur, which might be linked to idiosyncrasies of the tasks.
We dive deeper into this insight in Section V-B.

For the questions where we expected negative transfer, we
see low (Q1, Q4, Q6) to medium (Q8, Q9) correctness rates in
the 2023 instance. This is similar in the 2024 instance, but with
slight improvements on the correctness rates. Thus, negative
transfer also occurred.

Interestingly, for questions in which we expected no trans-
fer, the correctness rate for Q7 is close to 0. For Q10, some
students could still infer the correct response, even though we
did not expect that they can apply their previous knowledge.

2) RQ1.2: Transfer from Other Languages to Java: Now,
we describe the observations of transfer from students with

a background in Python, in both Python and C, or with no
previous programming knowledge.

For students transitioning from Python, we found mixed
results. For questions where we expected positive transfer,
either transfer occurred (Q3, Q5) or it did not (Q6, Q10, in
which all Python students in the 2023 instance eventually gave
up). In questions with negative transfer, the picture is also
mixed, with low correctness rates in Q1, Q2, and Q4, but
medium to high correctness in Q8. The questions where we
expected no transfer showed a low (Q7) or medium to low
correctness rate (Q9).

For students transitioning from a mixed background of C
and Python, we found high correctness rates in Q3 and Q5,
where positive transfer was expected from both C and Python.
For questions in which we expected negative transfer, we
found low (Q4) and medium (Q8) correctness rates in both
instances. For Q1, we observed an increase in correctness in
the 2024 instance from low to medium. For the remaining
questions, we expected different kinds of transfer for different
programming languages, and there is a mixed picture. For
some questions, these students outperformed students who are
familiar with only one language (e.g., Q6 and Q10), and for
others, being familiar with only one language seems to be
better for transfer (Q9). One interesting observation is that
the performance of these students was better for most tasks
compared to students who are familiar with C only. This is
especially surprising for the tasks in which we expected a
negative transfer from both, Python and C.

For the students who had no programming background, we
assume that no transfer should happen during their snippet
comprehension. This is also reflected in the correctness rates,
which are mostly lower than average.

To summarize, we could observe all kinds of transfer when
students transition to Java. However, the transfer seems to be



less driven by the expected type of transfer, and more by the
specifics of the task.

C. RQ2: What is the effect of explicit Java grammar instruc-
tion on transfer?

To answer RQ2, we compared data from the 2023 instance
with that from the 2024 instance. On average, there was an
increase in correctness rate for all tasks in the 2024 instance.

1) RQ2.1: Effect on Transfer from C to Java: For the
questions in which we expected positive transfer, we observed
improvements in the correctness rates of two questions (Q3,
Q5), which were already relatively high in the 2023 instance.
The correctness rate of Q2 remained low in both instances.

For all questions in which we expected negative transfer,
we found increases in the correctness rates, with considerable
increases in Q6, Q8, and Q9, but only marginal increases for
Q1 and Q4.

In the question where we expected no transfer (Q10), the
correctness rate improved from low to medium.

2) RQ2.2: Effect on Transfer from other Languages to
Java: Unfortunately, the number of students with only Python
background is rather low to reason about the effect of a Java
tutorial. But one interesting observation is that the difficult
questions (i.e., with low correctness rates) Q2, Q4, and Q6
remain difficult in the 2024 instance.

For students with both C and Python backgrounds, we
observed improvements on the correctness rates in most ques-
tions (Q1, Q2, Q4, Q5, Q6, Q9, Q10) and particularly consid-
erable improvements in Q1 and Q2, in which the correctness
rates more than doubled. The correctness rate of Q3, where
we expected positive transfer from both languages, remained
almost the same. In Q8, where we expected negative transfer
from both languages, the correctness rate decreased slightly.

For students with no programming background, we found
improvements on the correctness rates in most questions (Q2,
Q3, Q4, Q5, Q8, Q9, Q10) and decreases in two questions
(Q1, Q6). Interestingly, the correctness rates increased from 0
to low or medium in three questions (Q2, Q4, Q9), while the
correctness rate for Q5 improved from medium to 100 %.

To summarize, not surprisingly, there is a general benefit of
introducing basic Java concepts when learning Java. However,
there are some concepts that are more susceptible to improve
with a tutorial than others. We dive into this into more detail
when looking at the errors in more detail in Section V-B.

V. DISCUSSION AND EXPLORATION

In general, we could replicate the findings by Tshukudu
and Cutts [38] that transfer occurs during the learning of a
second programming language, similar to natural language
learning. We now discuss these findings in detail, starting with
a comparison to the original study, followed by a closer look
at how transfer is connected to specific concepts.

A. Comparison with Tshukudu

By analyzing our results, we observed the behavior of
students regarding programming language transfer, which led
us to findings consistent with Tshukudu and Cutts [38].

For the tasks in which we expected positive transfer from
both C and Python (Q3, Q5), we found high correctness
rates which are similar to the performance of students in the
work of Tshukudu [36]. In the 2024 instance, after the Java
tutorial, the performance of students improved considerably,
indicating that students could benefit from the tutorial when
explicitly learning how loops and methods work in Java.
However, for the concepts scoping (Q2, C background) and
object assignment (Q6, Python background), we found low
correctness rates before and after the tutorial, suggesting that
these are especially difficult for students to learn and require
more than an introduction of these concepts. This is also in
line with the results by Tshukudu and Cutts [38].

We observed low correctness rates and no improvement in
Q4, in which we expected negative transfer. This is consistent
with Tshukudu, who found that 77 % of the students (Python)
still struggled with the comparison operator == [36]. There
is a similar situation in Q1, which was related to type
compatibility. Even though both, Java and C, have a static type
system, we observed little improvement after the Java tutorial
in the 2024 instance, indicating that students struggled to pick
up nuanced differences between type systems. Thus, it might
be helpful to dedicate more time to explicitly explain nuanced
differences and similarities between type systems.

By contrast, there was a considerable increase in the cor-
rectness rate of Q9 (two-dimensional arrays) after the Java
tutorial, as well as in Q6 (attributes of objects) and Q10
(classes) for students with C background, and Q8 (string
concatenation), indicating that students could easily improve
their understanding in object assignment, string concatenation,
and classes. This is in contrast to findings of Tshukudu and
Cutts [36], [38]. One explanation could be that these concepts
are more similar in C and Java, so C students can more easily
grasp them after dedicated explanations.

Students from C profit differently from dedicated instruc-
tions than students from Python. Especially concepts of
classes, object assignment, and string concatenation can
be more easily grasped after dedicated training. However,
the transfer between the type system from C to Java seems
to pose troubles for students.

B. Exploring Kinds of Errors per Task

Since the transfer appears to be tightly connected to the
specific tasks, we dive deeper into the kinds of errors per
task. To this end, we conducted an open card sorting and
identified categories of errors that students made [12]. Based
on these categories, we can get more insights into how transfer
took place or failed. We omit Q3 and Q5 because of the high
correctness rates. In Table IV and Table V, we included the
error categorization for Q1 and Q8 as examples. Due to the
page limit, we cannot include the tables for all questions, but
they are available on our Web site.

1) Q1: In Q1 (assigning a float number “10.5” to an
integer variable whose initial value is 1), we expected neg-
ative transfer, because C and Python handle type mismatches



TABLE IV
CATEGORIZATION OF ERRORS IN Q1 IN THE TWO INSTANCES

2023 Type
Incompati-
bility

Type Casting
Misconcep-
tion (1)

Type Casting
Misconcep-
tion (10.5)

Other Sum 2024 Type
Incompati-
bility

Type Casting
Misconcep-
tion (1)

Type Casting
Misconcep-
tion (10.5)

Other Sum

C 8 3 25 2 38 3 1 9 0 13
Python 2 0 1 0 3 0 1 1 0 2
C & P 5 1 10 0 16 2 0 6 1 9
None 2 1 3 0 6 3 1 7 1 12
Other 3 0 5 1 9 0 0 1 1 2

Sum 20 5 44 3 72 8 3 24 3 38

differently than Java. For students coming from C, we would
have expected the responses “10” or “11”, because this would
be closer to the behavior in C, in which an implicit conversion
of the floating point number 10.5 occurs, transforming it to
the integer number 10, which is assigned to the variable. For
students coming from Python, we would expect the response
“10.5” because of the dynamic typing in Python.

However, most students with C background responded with
“10.5”, so they assumed that it was possible to assign a floating
point value to an integer variable without causing an error in
Java. Thus, there was no transfer of their knowledge of the
C type system to Java. Similarly, students who are familiar
with both, C and Python, mostly applied their knowledge of
Python’s type system (10), less so of the C type system (5).

We also observed students responding “10” or “11”, indi-
cating that they noticed the type incompatibility and assumed
a behavior close to C. Interestingly, these errors persisted
even with dedicated Java instructions. Thus, type systems
seem to be something that is not straight forward to learn,
even when students already are familiar with static typing.
A more detailed introduction to the type system of Java and
the differences to C, no matter how small they might appear,
might help to support transfer, even when students transfer
from another statically typed language.

Interestingly, some students seem to have ignored the as-
signment statement and responded that “1” is the output. They
might have noticed the problem with the assignment, ignoring
it, and only considered the assignments of which they know
the behavior.

2) Q2: We identified cases where the expected transfer did
not occur in Q2 (declaring a variable “Hello” inside a for-
loop, printing it twice, and accessing it outside the loop).
For students coming from C, we expected positive transfer,
because C and Java treat the scope of variables similarly.
However, only few students correctly identified a compiler
error, which persisted also after a dedicated introduction to
Java. Instead, most students responded three times “Hello” or
two times “Hello”. This indicates that they have an incorrect
assumption about scoping, but the concrete assumptions and
their incompatibility with the scoping in Java would require
dedicated studies, for example, using a think-aloud protocol.

For students coming from Python, we expected negative
transfer, so the response three times of “Hello”, since variables

defined within a loop are accessible outside the loop. This is
also what we observed in both instances.

For students with both C and Python backgrounds, a larger
number applied their Python knowledge (9) compared to
those who applied their C knowledge (3). These students
seem to profit from a Java tutorial, as do the students who
have no programming experience or experience with other
programming languages.

Interestingly, we found a few students with a C background
(2) or with both a C and a Python background (1) in the 2023
instance responded “He” or “hel”, which is a part of the string
“Hello”. They seemed to treat the string character by character,
which is how they are usually processed in C. This indicates
that these students transferred their C knowledge to Java, but
had misconceptions about the string representation, which also
seems to be easily fixed with the tutorial.

3) Q4: In Q4 (using the “==” operator to check the refer-
ence equality of a and b) on object comparison, we expected
negative transfer from C and Python, because these languages
handle objects differently than Java.

For students coming from C and/or Python, we expected
the response “true”1, which is what most of the students
responded. Thus, all these students assumed that the content
of the strings was compared, indicating that they transferred
their knowledge.

Interestingly, some other students with a C background did
not think the comparison operator could compare strings and
answered “No output” or “Error”. They seemed to assume that
the goal of the Java snippet was to compare the content of both
strings. C does not allow one to use the comparison operator
“==” to compare two strings, instead the strcmp() function
should be used. Thus, we can assume that these students also
transferred their C knowledge to Java.

Some students responded with the string’s content as the
answer. They seemed to have a misunderstanding of the
return value of the comparison operator “==”. One possible
explanation for their answer is that they compared the content
of both strings, determined them to be equal, and output the
result of the comparison in the form of the equal content.

4) Q6: In Q6 (one object was assigned to another so they
point to the same space in memory, and then the attributes

1In the preceding CS1 course, students used the library stdbool.h, so
are familiar with true and false for the type bool.



of the objects were accessed), we expected negative transfer
from C, such that students would respond “51 53 51”. Most
students coming from C answered that they did not know
the answer. Some (8) responded with the expected incorrect
answer, demonstrating the negative transfer. This type of
question seems to profit from dedicated instructions, as in the
2024 instance, there is a considerable increase in correctness
rate for the students coming from C. Thus, demonstrating the
similarity of references in C and Java seems to be helpful for
students to better transfer their knowledge.

For students coming from Python, we expected the response
“51 53 53” since the assignment acts similarly in Python
compared to that in Java. Surprisingly, most students coming
from Python provided the same answer as the C students: “51
53 51”. In this case, they did not apply the knowledge from
Python, instead assumed that only the values were copied.

For students with a background in both, C and Python, one
third of them correctly answered the question, indicating that
they used their Python knowledge. Some (3) also used their
C knowledge and responded with “51 53 51”. Interestingly,
dedicated instructions do not seem to help with better under-
standing how variables with complex data types work in Java,
but still, students seem to better grasp this concept compared
to students with solely knowledge in C.

Interestingly, some students answered “51 51” or “51 51 (I
do not know what .agga does)”, indicating that the method call
confused them. However, they also could correctly answer a
question about method calling (Q5). Thus, the combination
of method calling and object use seems to be confusing,
so explicitly explaining how both work together might help
students to combine their existing knowledge.

5) Q7: Q7 focused on the usage of keyword new in Java
to allocate new memory space for an array. We expected no
transfer from C and Python, because no syntax similar to
“new” exists to manage the memory space in these languages
compared to Java. However, ways of managing the memory
exist in both languages. We assumed that students coming
from C would point out the problem with new, since the
malloc function is often used to manually manage the mem-
ory. For students coming from Python, we expected similar
cases: although Python has automatic memory management
similar to Java, the keyword new does not have a match.

From the categorization, we found that most students from
all kinds of background answered that they did not know the
answer. This indicates that they were not able to apply their
previous knowledge to Java, in line with our expectation.

We observed that some students also had difficulties in array
indices, array length, for-loops, and increment (++i). Thus,
with all the different concepts that this question contains, it
might be too difficult for students at such an early point in
transition, so we removed it in the 2024 instance.

6) Q8: Q8 focused on the string concatenation using the
“+” operator: two strings were connected (“hello”+“there”),
and a string and a number were connected (“exec”+3). We
expected negative transfer from both, C and Python, because
of the differences in usage of “+”.

For students coming from C, we would have expected the re-
sponse “error” or “compiler error”, because C does not support
concatenating two strings with “+”; instead, the strcat()
function is often used. Contrary to this expectation, about a
third of the students answered this question correctly, so they
assumed that “+” can be used for string concatenation. Only
one student responded “Error” as expected. Some (9) students
provided “hellothere, error”, which is the expected response
for students coming from Python, indicating that they did
not transfer their C knowledge. Some students (10) answered
“hellothere exe” or “hellothere c”, suggesting that they had
a misconception about what “+3” does and assumed that it
interacted with the amount of characters that would be printed.
Similar to our observation in Q2, these students transferred
their C knowledge in an unexpected way to Java.

For students coming from Python, the expected response
is “hellothere, error”, since concatenating two strings in this
way is allowed in Python, but not a string and a number. The
students either responded as expected, thus transferring their
Python knowledge, or got the answer correct. The same was
the case for students with mixed C and Python background.

We also found that some students responded “hellothere
exec”, thus ignoring the “+3”, and only considering the
part they were familiar with. This is similar to the case in
discussion of Q1.

Interestingly, even though we expected negative transfer, we
have relatively high correctness rates. One possible explana-
tion for this is that, since the snippet was relatively simple
and short, students could easily infer the meaning of it and
arrived at the correct solution. In this way, the influence of
negative transfer was mitigated, leading to a high correctness
rate. Regarding explicit instructions, most students seem to
profit, especially those who have no experience with previous
languages, in quickly understanding how the “+” operator
works. Interestingly, for students who are familiar with C and
Python, the dedicated tutorial does not seem to help. Thus,
these students might benefit from more attention to the details
of how the “+” operator works in Java.

7) Q9: The snippet in Q9 initialized a two-dimensional
array and printed its contents using nested for-loops, and the
focus was using “.length” to access the length of the array.
We expected negative transfer from C because of the different
use of the dot operator (“.”). We expected no transfer from
Python, because Python has a distinct way of accessing the
length of an array with the len() function.

Independent of their background, most students responded
“I do not know”, indicating that they cannot find any similarity
between their familiar syntax and Java syntax. Some students
with both C and Python backgrounds stated more specifically
in their responses that they did not know whether “.length”
was available in Java, which is coherent with our expectation.

Also, some students from different backgrounds answered
Q9 correctly. They seemed to have been able to infer that
accessing the length of the array could be achieved using
“.length” in Java. The correctness rates also drastically im-
proved in the 2024 instance, especially for students with



TABLE V
CATEGORIZATION OF ERRORS IN Q8 IN THE TWO INSTANCES

2023 + Con-
catenation
Knowledge
Missing

Strings and
Numbers
Connection
Misconception

“+3” misun-
derstanding

Other Sum 2024 + Con-
catenation
Knowledge
Missing

Strings and
Numbers
Connection
Misconception

“+3” misun-
derstanding

Other Sum

C 1 9 10 3 23 0 3 5 0 8
Python 0 2 0 0 2 0 0 0 0 0
C & P 0 6 0 1 7 0 3 2 3 8
None 0 0 2 1 3 1 0 2 1 4
Other 0 2 0 0 2 0 1 0 1 2

Sum 1 19 12 5 37 1 7 9 5 22

a background in C, but not for those with a background
in Python. Dedicated Java instructions seemed to help most
students in understanding the usage of “.length” and applying
their knowledge to a new programming language.

Moreover, we observed that some students understood the
snippet’s goal of printing each element of the array. However,
they struggled with the nested for-loops and arrived at incor-
rect answers, suggesting that nested loops in combination with
array access poses difficulties when transferring to Java.

8) Q10: Q10 focused on the basic concepts of classes, and
information was printed using getter methods. We expected no
transfer from C, because C does not have classes, so students
would express confusion. We expected positive transfer from
Python, since Python has classes, and similar keywords (class,
get, set) are also used.

Most students with a C background said they did not
know the answer, indicating that they did not find related
knowledge in C, as we expected. Surprisingly, none of the
Python students provided a correct solution in either instance,
so somehow, classes pose an obstacle for students coming from
Python. Interestingly, some students with both C and Python
backgrounds also did not know the answer, indicating that they
failed to transfer their Python knowledge in this case.

We observed that some students with a C background
arrived at the correct answer, especially after receiving ded-
icated Java instructions. They seem to have transferred their
knowledge of struct in C to the unfamiliar but equivalent
representation in Java. All students (except those coming from
Python) profit considerably from explicitly introducing classes.

In a few instances, students with a background in C or
mixed backgrounds responded with a part of the correct output,
for example “Max25” or “001 Max 25 001 Max 23”. These
students might have had trouble with method calls, similarly
to question Q6, or they might have ignored parts of the code
they were not familiar with, similarly to what happened in Q1
and Q8.

Task-specific effects affect transfer differently than ex-
pected and cannot be mitigated by dedicated instructions.
Especially type incompatibility, variable scoping, and ob-
ject comparison seem difficult for students, while string
concatenation and classes seem to be easier to grasp once

we explicitly demonstrated similarities. This counts also
for students who have no programming experience, which
might also indicate some kind of transfer, for example,
based on previous language learning or real-world objects.

C. Interpreting Unexpected Errors

Our deep-dive into the specific answers shows that transfer
does not always occur as expected. Instead, our data paint a
diverse, nuanced picture about how transfer touches on dif-
ferent concepts from different programming backgrounds. In
Q1, we expected negative transfer from C and the correctness
rates were low, as expected, but the specific answers reveal
that students often answered incorrectly in a way that is not
explainable with the background in C. This implies that there
was, in fact, not negative transfer from C, but no transfer.

In other questions, the influence from C is evident, il-
lustrated well by Q2 and Q8, where strings were involved.
Some answers indicate that the students tried to handle strings
character by character, demonstrating negative transfer from C.
Thus, transfer from previously known languages does occur,
but depends on further factors.

One possible factor affecting transfer is a mix of several
concepts within the same code snippet. Even the seemingly
simple snippets sometimes contain more than one concept. Q2
is a good example: The question focuses on variable scope,
and we expected positive transfer. However, the students who
thought that the code would print characters of the string
clearly did not transfer their knowledge on scoping from C, but
they did transfer their knowledge on strings. In other words,
they did not transfer their knowledge on the expected concept,
but they did on another concept that was also contained
within the snippet. Another example is Q6: We expected
negative transfer on the concept of object assignment, and
the correctness rate was appropriately low. However, many
students stated that they did not know the answer, as opposed
to the answer we expected due to negative transfer from C.
This also looks like there was no transfer, and some answers
indicate that the concept of methods could have been an issue.
This is especially interesting, because in Q5, most students
demonstrated that they can correctly identify a method call in
Java. However, they could not repeat this in Q6, when it was
combined with other concepts.



Another phenomenon that we observed is students appar-
ently skipping ‘problematic’ statements (Q1, Q2, Q6, Q8,
Q10). These examples could indicate a tendency in the be-
havior of students to strive for the most meaningful or most
complete answer, even if they do not understand every part
of the code. Students could also avoid providing “error” as
an answer, which might be one reason for some concepts not
being transferred as expected, such that a concept would be
ignored when it leads to an error. Future studies could investi-
gate whether erroneous code snippets lead to different behavior
when answering comprehension questions, and whether the
phenomenon is tied to transfer or more ubiquitous.

To summarize, the analysis revealed that students often did
not answer the way we predicted based on the Model of
Programming Language Transfer [38]. The concrete answers
hint at further possible factors that are at play here, such as
several different concepts being contained in one code snippet.
Thus, transfer does take place, but it is unclear why some
concepts transfer while others do not, or which concept or
knowledge source takes precedence.

Tshukudu also suspected that the “distance” between the
concepts in different languages could be an influence, that
is, some concepts are more different between the compared
languages than others. Thus, explicitly bridging this distance,
for example, by explaining how structures map to classes,
might reduce it for some concepts, while for others, the
distance might simply be too big to close in one tutorial.
This distance could also be perceived differently by different
persons: While instructors see that type handling is very
similar, students might experience a larger difference and
cannot see the similarity. [36]

VI. IMPLICATIONS FOR TEACHING

These insights help us to tailor programming teaching in
more advanced programming courses, as we can better under-
stand the obstacles students face, on which we can put special
focus. Explicit instructions that focus on the differences of the
new programming language compared to the previously known
language can foster positive transfer and mitigate negative
transfer. However, special attention should be given to the
learning materials: a code snippet which is used to demonstrate
one concept can contain additional concepts which are not
relevant, but still affected by transfer. Also, students with
different or mixed backgrounds of programming language
knowledge can have different responses to a new concept
compared to their peers. Thus, viewing concepts from different
angles can help students of different backgrounds come to the
same level of understanding.

VII. THREATS TO VALIDITY

Like every empirical study, there were threats to validity that
we could not entirely exclude. A threat to construct validity
is whether we truly observed transfer or other effects. To
mitigate this threat, we stuck as closely as possible to the
established snippets and carefully examined each snippet for
the expected kind of transfer. The existence of the expected

incorrect responses shows that the snippets indeed let students
transfer their knowledge, but the unexpected incorrect re-
sponses demonstrate that there might be something more. Still,
the results provide interesting insights into how students learn
a new programming language. Furthermore, the dedicated Java
tutorial might have omitted concepts of Java or not went
into too much depth. To mitigate this threat, we focused on
concepts of the snippets, and we discussed the results per
task, identifying specific problems. Thus, our results provide
relevant avenues on how future work could address especially
problematic concepts.

Regarding internal validity, the snippets could lead to either
an error or a certain output. To ensure that participants feel
confident to give these two kinds of responses, we explicitly
told participants that an error is also a possible response.
Furthermore, we anonymized the responses of participants, so
that they would not feel evaluation apprehension. Additionally,
students might have different experience levels. To take this
into account, we assessed it with our programming-experience
questionnaire and discussed the results separately by different
programming languages.

For external validity, we focused on students of a Java CS2
course. Thus, the results are not very general, but they are a
piece in the puzzle on understanding learning transfer. Since
participating in the questionnaire was not mandatory for the
students, this could lead to the risk of self-selection bias. To
minimize this risk, we incorporated the questionnaire into the
in-person lecture, so it felt like part of the normal workflow.

VIII. CONCLUSION

Being able to quickly learn new programming languages
is an essential skill for software developers. In our study, we
have evaluated the difficulties students face when transitioning
from the C programming language to Java, thereby providing
further empirical evidence that transfer in programming learn-
ing is similar to that in learning a second natural language.
Explicit instructions about differences and similarities between
programming languages can foster transfer, but some concepts
require a deeper reflection.

DATA AVAILABILITY

All data and supplementary material is available at: https:
//doi.org/10.5281/zenodo.14762835.

ACKNOWLEDGMENT

We thank Ethel Tshukudu for initial support on the repli-
cation study. We also thank our participants. This work was
inspired by Dagstuhl Seminar 22302.

REFERENCES

[1] C. V. Alejandro Espinal and V. Guerrero-Bequis, “Student ability and
difficulties with transfer from a block-based programming language into
other programming languages: a case study in colombia,” Computer
Science Education, vol. 33, no. 4, pp. 567–599, 2023. [Online].
Available: https://doi.org/10.1080/08993408.2022.2079867



[2] P. E. C. Barata, J. a. V. P. Corrêa, and M. P. Mota, “A study
on knowledge transfer between programming languages by programs
meanings facets,” in Proceedings of the XVI Brazilian Symposium on
Human Factors in Computing Systems, ser. IHC ’17. New York, NY,
USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3160504.3160530

[3] H. Belmar, “Review on the teaching of programming and
computational thinking in the world,” Frontiers in Computer Science,
vol. 4, 2022. [Online]. Available: https://www.frontiersin.org/journals/
computer-science/articles/10.3389/fcomp.2022.997222

[4] M. Branthôme, “Pyrates: A serious game designed to support the
transition from block-based to text-based programming,” in Educating
for a New Future: Making Sense of Technology-Enhanced Learning
Adoption, I. Hilliger, P. J. Muñoz-Merino, T. De Laet, A. Ortega-Arranz,
and T. Farrell, Eds. Cham: Springer International Publishing, 2022, pp.
31–44.

[5] E. Commission, E. Education, and C. E. Agency, Informatics education
at school in Europe. Publications Office of the European Union, 2022.
[Online]. Available: https://data.europa.eu/doi/10.2797/268406

[6] P. Denny, B. A. Becker, N. Bosch, J. Prather, B. Reeves, and J. Whalley,
“Novice reflections during the transition to a new programming
language,” in Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education - Volume 1, ser. SIGCSE 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p.
948–954. [Online]. Available: https://doi.org/10.1145/3478431.3499314

[7] S. Garcia-Martinez and D. Zingaro, “Teaching for transfer of learning
in computer science education,” Journal for Computing Teachers, pp.
1–6, 2011.

[8] D. Ginat, E. Shifroni, and E. Menashe, “Transfer, cognitive load, and
program design difficulties,” in International Conference on Informatics
in Schools: Situation, Evolution, and Perspectives. Springer, 2011, pp.
165–176.

[9] S. Grover, “Teaching and Assessing for Transfer from Block-to-Text
Programming in Middle School Computer Science,” in Transfer
of Learning: Progressive Perspectives for Mathematics Education
and Related Fields, C. Hohensee and J. Lobato, Eds. Springer
International Publishing, 2021, pp. 251–276. [Online]. Available:
https://doi.org/10.1007/978-3-030-65632-4 11

[10] F. Hermans, “Hedy: A gradual language for programming education,” in
Proceedings of the 2020 ACM Conference on International Computing
Education Research, ser. ICER ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 259–270. [Online]. Available:
https://doi.org/10.1145/3372782.3406262

[11] J. Holvitie, T. Rajala, R. Haavisto, E. Kaila, M.-J. Laakso, and
T. Salakoski, “Breaking the programming language barrier: Using pro-
gram visualizations to transfer programming knowledge in one program-
ming language to another,” in 2012 IEEE 12th International Conference
on Advanced Learning Technologies, 2012, pp. 116–120.

[12] W. Hudson, “Card Sorting,” in The Encyclopedia of Human-Computer
Interaction, I. D. Foundation, Ed. Interaction Design Foundation, 2013.

[13] C. Izu and C. Mirolo, “Learning transfer in novice programmers: A
preliminary study,” in Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V. 1, 2021,
pp. 178–184.

[14] O. Karnalim, M. Ayub, M. C. Wijanto, and F. Hermans, “Does hedy, the
gradual programming language help computing undergraduates to learn
programming?” in Towards a Hybrid, Flexible and Socially Engaged
Higher Education, M. E. Auer, U. R. Cukierman, E. Vendrell Vidal,
and E. Tovar Caro, Eds. Cham: Springer Nature Switzerland, 2024,
pp. 187–198.

[15] M. Kazemitabaar, V. Chyhir, D. Weintrop, and T. Grossman,
“Codestruct: Design and evaluation of an intermediary programming
environment for novices to transition from scratch to python,” in
Proceedings of the 21st Annual ACM Interaction Design and Children
Conference, ser. IDC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 261–273. [Online]. Available:
https://doi.org/10.1145/3501712.3529733

[16] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 29–38. [Online]. Available:
https://doi.org/10.1145/2818314.2818331

[17] D. Krpan, S. Mladenović, and G. Zaharija, “Mediated transfer from
visual to high-level programming language,” in 2017 40th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), 2017, pp. 800–805.

[18] Z. Li, S. Yang, K. Cunningham, and A. Alawini, “Assessing student
learning across various database query languages,” in 2023 IEEE Fron-
tiers in Education Conference (FIE), 2023, pp. 1–9.

[19] R. S. N. Lindberg, T. H. Laine, and L. Haaranen, “Gamifying
programming education in k-12: A review of programming curricula
in seven countries and programming games,” British Journal of
Educational Technology, vol. 50, no. 4, pp. 1979–1995, 2019. [Online].
Available: https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/
bjet.12685

[20] K.-C. Lu, S. Krishnamurthi, K. Fisler, and E. Tshukudu, “What happens
when students switch (functional) languages (experience report),” Proc.
ACM Program. Lang., vol. 7, no. ICFP, aug 2023. [Online]. Available:
https://doi.org/10.1145/3607857

[21] Y. Ma and E. Tilevich, ““you have said too much”: Java-like
verbosity anti-patterns in python codebases,” in Proceedings of
the 2021 ACM SIGPLAN International Symposium on SPLASH-
E, ser. SPLASH-E 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 13–18. [Online]. Available:
https://doi.org/10.1145/3484272.3484960

[22] J. McKenna and Y. Lin, “Switch mode: A tool for transitioning students
from block-based to text-based programming,” in Proceedings of
Society for Information Technology & Teacher Education International
Conference 2024, J. Cohen and G. Solano, Eds. Las Vegas, Nevada,
United States: Association for the Advancement of Computing in
Education (AACE), March 2024, pp. 1181–1184. [Online]. Available:
https://www.learntechlib.org/p/224111

[23] M. Mladenović, Žana Žanko, and G. Zaharija, “From blocks to
text: Bridging programming misconceptions,” Journal of Educational
Computing Research, vol. 0, no. 0, p. 07356331241240047, 0. [Online].
Available: https://doi.org/10.1177/07356331241240047

[24] D. Parsons and P. Haden, “Programming osmosis: Knowledge transfer
from imperative to visual programming environments,” in Procedings of
The Twentieth Annual NACCQ Conference. Citeseer, 2007, pp. 209–
215.

[25] D. N. Perkins, G. Salomon et al., “Transfer of learning,” International
encyclopedia of education, vol. 2, pp. 6452–6457, 1992.

[26] K. Powers, S. Ecott, and L. M. Hirshfield, “Through the looking glass:
teaching cs0 with alice,” in Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’07. New
York, NY, USA: Association for Computing Machinery, 2007, p.
213–217. [Online]. Available: https://doi.org/10.1145/1227310.1227386

[27] R. K. Runde, Q. Cutts, and L. K. Skaarseth, “Exploring scratch to python
transfer in norwegian lower secondary schools,” in Norsk IKT-konferanse
for forskning og utdanning, no. 4, 2023.

[28] J. Scholtz and S. Wiedenbeck, “Learning second and subsequent
programming languages: A problem of transfer,” International Journal
of Human–Computer Interaction, vol. 2, no. 1, pp. 51–72, 1990.
[Online]. Available: https://doi.org/10.1080/10447319009525970

[29] N. Shrestha, T. Barik, and C. Parnin, “It’s like python but: Towards
supporting transfer of programming language knowledge,” in 2018
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2018, pp. 177–185.

[30] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: why
is it difficult for developers to learn another programming language?”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 691–701. [Online].
Available: https://doi.org/10.1145/3377811.3380352

[31] J. Siegmund, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring and modeling programming experience,” Empirical Software
Engineering, vol. 19, pp. 1299–1334, 2014.

[32] J. Spilling, “Investigating intermediate student transfer to functional
programming,” Master’s thesis, University of Oslo, 2023.

[33] J. Strømmen, “How to provide automated feedback helping students
with negative semantic transfer when learning a second programming
language,” Master’s thesis, The University of Bergen, Jun. 2022,
accepted: 2022-07-07T23:41:10Z. [Online]. Available: https://bora.uib.
no/bora-xmlui/handle/11250/3003710

[34] D. Sun, C. Zhu, F. Xu, Y. Li, F. Ouyang, and M. Cheng,
“Transitioning from introductory to professional programming in



secondary education: Comparing learners’ computational thinking
skills, behaviors, and attitudes,” Journal of Educational Computing
Research, vol. 62, no. 3, pp. 647–674, 2024. [Online]. Available:
https://doi.org/10.1177/07356331231204653

[35] D. Teague and R. Lister, “Manifestations of preoperational reasoning on
similar programming tasks,” in Proceedings of the Sixteenth Australasian
Computing Education Conference [Conferences in Research and Prac-
tice in Information Technology, Volume 148]. Australian Computer
Society, 2014, pp. 65–74.

[36] E. Tshukudu, “Understanding Conceptual Transfer in Students Learn-
ing a New Programming Language,” Ph.D. dissertation, University of
Glasgow, 2022.

[37] E. Tshukudu and Q. Cutts, “Semantic transfer in programming
languages: Exploratory study of relative novices,” in Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, ser. ITiCSE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 307–313. [Online]. Available:
https://doi.org/10.1145/3341525.3387406

[38] ——, “Understanding conceptual transfer for students learning new
programming languages,” in Proceedings of the 2020 ACM conference
on international computing education research, 2020, pp. 227–237.

[39] E. Tshukudu, Q. Cutts, and M. E. Foster, “Evaluating a Pedagogy
for Improving Conceptual Transfer and Understanding in a Second
Programming Language Learning Context,” in Proceedings of the
21st Koli Calling International Conference on Computing Education
Research, ser. Koli Calling ’21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.
1145/3488042.3488050

[40] D. Weintrop and U. Wilensky, “Transitioning from introductory
block-based and text-based environments to professional programming
languages in high school computer science classrooms,” Computers
& Education, vol. 142, p. 103646, Dec. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S036013151930199X


