
Noname manuscript No.
(will be inserted by the editor)

Toward a Theory on Programmer’s Block Inspired by
Writer’s Block

Belinda Schantong · Norbert Siegmund ·
Janet Siegmund

Received: date / Accepted: date

Abstract Context: Programmer’s block, akin to writer’s block, is a phe-
nomenon where capable programmers struggle to create code. Despite anec-
dotal evidence, no scientific studies have explored the relationship between
programmer’s block and writer’s block.

Objective: The primary objective of this study is to study the presence of
blocks during programming and their potential causes.

Method: We conducted semi-structured interviews with experienced program-
mers to capture their processes, the problems they face, and potential causes.
Subsequently, we analyzed the responses through the lens of writing.

Results: We found that among the programmer’s problems during program-
ming, several display strong similarities to writer’s block. Moreover, when
investigating possible causes of such blocks, we found a strong relationship be-
tween programming and writing activities as well as typical writing strategies
employed by programmers.

Conclusions: Strong similarities between programming and writing challenges,
processes, and strategies confirm the existence of programmer’s block with
similar causes to writer’s block. Thus, strategies from writing used to resolve
blocks should be applicable in programming, helping developers to overcome

Belinda Schantong
Chemnitz University of Technology
Germany
E-mail: belinda.schantong@informatik.tu-chemnitz.de

Norbert Siegmund
Leipzig University
Germany
E-mail: norbert.siegmund@cs.uni-leipzig.de

Janet Siegmund
Chemnitz University of Technology
Germany
E-mail: siegj@hrz.tu-chemnitz.de



2 Belinda Schantong et al.

phases of being stuck. Research at the intersection of both areas could lead to
productivity gains through reduced developer downtimes.

Keywords Writer’s block, programmer’s block, qualitative study, profes-
sional programmers



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 3

1 Introduction

Software development is an inherently creative process (Groeneveld et al.,
2021; Amin et al., 2018; Mohanani et al., 2017; Crawford et al., 2012) and
similar to other creative processes, there is anecdotal evidence that program-
mers experience ‘blocks’, as illustrated in Figure 1: Programmers report lack
of inspiration, frustration over their ‘brain not doing its thing’, and lack of
meaningful progress. They appear to be capable programmers, too, indicated
by them stating that they know ways to achieve their goal. They ‘just can’t
write the code’. That implies that they are accustomed to being able to write
code, and so that their condition cannot be attributed to a lack of basic pro-
gramming skills.

Fig. 1 Anecdotal evidence of blocked programmers.

The anecdotal evidence shows that programmers can get stuck on a task,
which is often accompanied by negative emotions. Such reported times of
reduced programming activity are supported by a large body of work on
software developers’ perceived productivity and their emotional states dur-
ing work (Müller and Fritz, 2015; Graziotin et al., 2018, 2017b; Girardi et al.,
2022; Sadowski and Zimmermann, 2019; Forsgren et al., 2021).

These blocks in programming seem to be common and taken seriously in
practice, as professional developers share not only their experience, but also
actively look to other creative disciplines for help, specifically to writing. Grey
literature on the topic frequently draws the comparison to writer’s block (Lee,
2015; Joury, 2020; Software, 2021; Kovacevic, 2021; Pasqualis, 2017), or even
derives tips for programmers from literature on writing (Knight, 2017).



4 Belinda Schantong et al.

The instinctively perceived similarity of writing and programming is no
coincidence: Already in the 1980s, Dijkstra suggested that good programmers
also need good language skills (Dijkstra, 1982). Recent studies support this
idea. For example, programming learning benefits from higher language apti-
tude (Prat et al., 2020) and technical reading training (Endres et al., 2021).
Even in elementary school, language skills can help to acquire programming
skills (Hassenfeld et al., 2020). Such results have been backed up by neuroimag-
ing studies suggesting a link between programming and language skills, such
that a continuous participation of language-processing areas has been demon-
strated when programmers worked with source code (Siegmund et al., 2014a,
2017; Peitek et al., 2021; Floyd et al., 2017; Castelhano et al., 2019; Huang
et al., 2019; Liu et al., 2020; Hongo et al., 2022; Lee et al., 2016; Medeiros
et al., 2019).

Given the increasing amount of empirical evidence substantiating a link
between language skills and programming skills, we explore whether the per-
ceived programming blocks exist and can be related to writer’s block. Since
there is a rich body of scientific work on the diagnosis, analysis, treatment,
and prevention of writer’s block (Rose, 1984; Hjortshoj, 2001, 2019; Flaherty,
2005; Adams-Tukiendorf, 2008; Bastug et al., 2017; Rose and McClafferty,
2001; Wymann, 2021), and since blocks have been a subject of discussion in
other creative disciplines, such as music (Scott, 2016) or visual art (Saraste,
2021; Gallay, 2013), we study whether similar conditions exist during program-
ming, so that software-engineering practice may draw from this research on
writing. Specifically, our goal is to find empirical evidence whether blocks exist
and if so, what may be potential causes of these blocks.

1.1 Study Design

To study programmer’s block, we derived a working definition of what we
understand a block to be from existing definitions of writer’s block in writing
research, which we explain in depth in our background (section 2.1). We define
programmer’s block as follows:

Programmer’s Block. It expresses the inability of writing or changing
code despite being objectively able to do so:

– The programming task is known or given.
– Programming skills are sufficiently available (i.e., the programmer is

profound in the current language).
– Programming infrastructure (i.e., IDEs, hardware, tools) is available

and running.
– The programmer is willing and motivated to work on the programming

task.

We then conducted interviews with 15 programming experts from several
industrial contexts and analyzed the interviews based on this definition. One



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 5

goal of our research was to critically evaluate whether our working definition
is appropriate to capture this phenomenon.

1.2 Contributions

In a nutshell, we were successfully able to validate our working definition of
programmer’s block. Nearly all of the interviewed programming experts have
reported that they have experienced blocks during their working processes.
More importantly, they also reported that causes of such blocks often have
their origin not during the activity of writing code, but in other phases of
the development process, such as requirements specification or testing. This
observation matches with causes of writers’ blocks, because they can similarly
originate from, for example, pre-writing activities, such as insufficient litera-
ture search. Thus, an investigation of programmer’s block cannot be limited
to the actual physical activity of writing code, but should entail the entire
software development process.

We also found that the programming experts apply typical strategies from
writing that help avoiding or resolving blocks. These results strengthen the
connection of natural language processing and programming, giving more con-
fidence to us and other researchers to use established strategies to overcome or
avoid blocks. By drawing from guidelines and insights of writing research, we
can train (beginning) programmers to apply useful strategies to avoid blocks
and have an efficient programming process.

Next, we give an introduction to the state of the art of writing research and
the definition of writer’s block. We contribute a mapping of multiple writing
processes, which we later use to align with software development activities
to identify causes of programmer’s block. Afterward, we provide an overview
of related work in the context of software engineering, before explaining the
conduct of our study (Section 3) and the results (Section 4).

2 Writing Research and Related Programming Research

Any writing is embedded in a rhetorical situation (Flower and Hayes, 1981;
Hayes, 1996), and writers need to figure out how to communicate what they
want to communicate within its constraints. The rhetorical situation describes
the entire context of the writing process, including the social, physical, and
individual situation, which all influence the writing process. For example, the
process of writing differs between writing an application letter for a dream job
and writing a birthday card to a friend. The social situation describes any per-
sons related to the process, most notably the audience of the text. For example,
writing a text for children is different than for a board of experts. In addition,
the social situation includes the wider establishments in which the rhetorical
situation is embedded, such as the institutional context within a university.
Notably, a lot of writing research is done within universities and thus centers



6 Belinda Schantong et al.

around academic and scientific writing. We consider this a benefit for our com-
parison, since scientific writing uses clear and explicit language, where each
paragraph follows logically from the one before (Lindsay, 2020; Gustavii, 2017),
and the goal of scientific writing is to inform the reader, so it should avoid
using “flowery, ornate or obscure prose” (Lindsay, 2020). Similarly, program-
ming naturally requires that information and the goals are explicitly expressed
such that a computer can process it as well as a human reader can understand
it, which is relevant, for example, when choosing identifier names (Hofmeister
et al., 2017; Schankin et al., 2018; Beniamini et al., 2017). Thus, there are
some parallels between programming and scientific writing, making scientific
writing a good base to relate it to programming, even if one might think of
prose first when the keyword ’writing’ comes up.

The physical situation then consists of the workplace, the already written
text, and the medium used for writing. For example, handwriting is differ-
ent from writing on a computer. Last, the individual situation is relevant, as
the writer’s goals, motivation, knowledge, and physical capabilities affect the
writing process. For example, writing the book they have always dreamed of
is different than writing a mandatory report they find boring. All these parts
of the rhetorical situation influence how writers engage with the writing pro-
cess (Flower and Hayes, 1981; Hayes, 1996), and problems in any of these
contexts can decrease a writer’s productivity. Some of the problems can be so
severe that they lead to a writer’s block, which we discuss next.

2.1 Writer’s Block

Writer’s block describes a situation in which writers who are motivated and
capable of producing a text, for some reason cannot access their skill (Rose,
1984). In other words, the actions of these writers do not lead to satisfying
progress in the writing task (Hjortshoj, 2001).

This definition does raise the question of what ’capable’ means. Rose is
specifically excluding writing problems from his definition of writer’s block
which occur due to a ”lack of fundamental writing skills” (Rose, 1984). This
refers to so called ’basic writers’, a term which historically denotes students
whose writing skills were not considered ’college-ready’ (Shaughnessy, 1977).
Hjortshoj keeps this part of the definition and explains that ”if I tried, without
years of preparation, to write a publishable article in a field I know little about,
such as biochemistry or astrophysics, I would struggle and fail, but the under-
lying problem would be my lack of ability, not a writing block.” (Hjortshoj,
2019) ’Capable’, thus, would mean that the writer has, or is at least perceived
to have, the skills necessary to complete the writing task at hand. They might,
however, misapply their knowledge and react with an inadequate strategy to
a writing problem (Hjortshoj, 2001), or they might lack the adequate strategy
to deal with a specific problem (Rose, 1984). One could say that they lack
’meta-skills’, or some knowledge about the writing process, while problems



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 7

that hinder not-yet-capable writers concern grammar, syntax, or the contents
they write about.

Thus, the root cause of blocks are misconceptions about the writing pro-
cess (Rose, 1984): Writers try to adhere too rigidly to rules or methods they
have learned about writing, for example, that ‘all essays need to divide a thesis
into three parts’, or that ‘each sentence needs to be perfectly crafted before
moving on to the next’ (Hjortshoj, 2019). Such misconceptions can relate to
any part of the rhetorical situation, which means that there is not the writer’s
block, but that every case is unique (Rose, 1984). Nevertheless, some common
patterns exist (Hjortshoj, 2019):

Conceptual problems Some blocks arise from faulty, incomplete, misunder-
stood, or non-existent concepts. Often, writers that suffer from blocks rely on
strategies and plans that have worked for past projects, but which are not
universally applicable and might be unsuitable for a new project. This often
occurs when writers are transitioning to a new environment, for example, from
high school to university (Wymann, 2021). Changing programming languages,
frameworks, or architectural styles may be aligned to this kind of problem.

Some writers with blocks have conceptually unbalanced plans, where the
concept does not support the actual content, for example, when writers think
they are developing a theoretical framework, but actually conduct a case
study (Hjortshoj, 2019). We can draw similarities when going from the de-
sign to the implementation phase during software development.

A further problem leading to conceptual blocks are misconceptions about a
text’s purpose: Writers with blocks might have misunderstood the purpose of
the text which they are writing. For example, students often struggle with lit-
erature reviews, because they think their goal is to demonstrate their breadth
of knowledge on the topic, when it is instead to explain and illuminate the
significance of the following study (Hjortshoj, 2019). In software development,
we see a lot of reports from failed, skipped, or insufficient requirements en-
gineering, such that assumptions about the software are often incorrect or
incomplete.

Performative problems When writers cannot use their full potential for com-
pleting a writing task, they can run into a performative block (Hjortshoj, 2019;
Wymann, 2021). It may be caused by the misconception that the text, as it
is being written, needs to meet expectations immediately that should only be
set for the final product. This leads to a condition that is comparable to stage
fright, where writers ‘freeze up’ in fear of their (imagined) audience. Although
programmers are inclined to submit and refine code iteratively with the advent
of continuous integration and agile development, we nevertheless operate un-
der code and style guidelines, code reviews, and pressure towards high quality
software, which could put programmers in a similar mindset.

Both types of blocks, conceptual and performative, are caused by a di-
verse set of misconceptions, and thus the solution to resolve blocks lies in
uncovering and correcting these misconceptions (Rose, 1984; Hjortshoj, 2001,



8 Belinda Schantong et al.

Table 1 Comparison of writing activities separated by pre-writing, writing, and post-
writing.

Grieshammer
et al. (2019)

Tompkins (1994) Williams (2003)
Hermans and

Aldewereld (2017)
Hassenfeld

and Bers (2020

P
re
-W

ri
ti
n
g Orientation

Pre-Writing Pre-Writing Info gathering Pre-Writing
Collect materials

Structuring Planning
Info selecting

Info structuring

W
ri
ti
n
g

Drafting Drafting

Drafting

Translating DraftingPausing

Reading

P
o
st
-W

ri
ti
n
g

Revising Revising Revising Stylizing Revising

Editing Editing Editing Formatting Editing

Reflecting Evaluating

Publishing Publishing

2019). This requires thorough analysis of the blocked writer’s writing process
and needs to take into account the considerable inter-individual variance in
writing strategies (Dengscherz, 2021; Sennewald, 2021; Wymann, 2021). This
is why we need a thorough and sound qualitative design to identify whether
such writing processes and writing strategies also exist for programming. This
motivates how we designed our interview study (e.g., by not directly asking
the participants about blocks).

2.2 The Writing Process and Writing Strategies

The writing process revolves around generating written output through re-
flection on input in the form of written media, sensual input, or one’s own
ideas (Hayes, 1996). It can be broken down roughly into pre-writing activi-
ties, the writing itself, and post-writing activities (Grieshammer et al., 2019;
Tompkins, 1994; Williams, 2003; Hermans and Aldewereld, 2017; Hassenfeld
and Bers, 2020), as shown in Table 1. The concrete activities mentioned vary
slightly from author to author, depending on the focus of the description of
the writing process, which often entails a didactic use, but with a focus on
different writing situations.

Pre-writing activities are done before the actual writing. These can be di-
vided in several ways. Grieshammer and others (Grieshammer et al., 2019)
distinguish orientation (getting to know the rhetorical situation and choosing
a topic accordingly) and collecting materials, since they focus on academic
writing, where an adequate topic and the following research are of particular
importance. Most authors (Grieshammer et al., 2019; Williams, 2003; Her-
mans and Aldewereld, 2017) recognize an activity where the gathered ideas
and material are structured to plan their integration in the text. Hermans



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 9

and Aldewereld (Hermans and Aldewereld, 2017) further distinguish between
selecting the relevant information first before structuring it.

Writing activities revolve around producing text, that is, translating thoughts
into written words. They are often referred to as drafting to differentiate them
from the writing process as a whole (Grieshammer et al., 2019; Tompkins, 1994;
Williams, 2003; Hassenfeld and Bers, 2020). It can be further subdivided and
may contain drafting, or pausing and reading the text. So, not every pause
is due to a block, but pauses are used to reflect on the current state of the
text (Williams, 2003).

Post-writing activities entail working on the draft until it is finalized. They
are usually subdivided into revising and editing. Revising means working on
the clarity and style of the content. Editing means working on more mechan-
ical criteria, such as grammar and spelling. These activities require writers
to reflect on their work, taking the audience’s perspective, possibly getting
feedback from readers (Hermans and Aldewereld, 2017; Hassenfeld and Bers,
2020). Some authors also include publishing as a post-writing activity, as in
sharing the text with its audience (Tompkins, 1994; Williams, 2003).

Although these activities roughly have an order, writing typically is not
a linear process (similar to software development). Any of the activities can
prompt almost any other activity. For example, while revising a chapter, writ-
ers might find that they still need to do more research, which might lead to
re-structuring parts of the text. Some researchers also consider planning and
revising to be their own applications of the writing process (Hayes, 2012).

How writers engage with these activities is referred to as their writing strat-
egy. Most writers have a preferred strategy which they default to, and they
might refer to themselves as plotters (starting with a structure) or pantsers
(starting with drafting) (Hermans and Aldewereld, 2017). Between these two
extremes, more strategies exist, such as multiple-version writing (creating mul-
tiple drafts instead of revising one), writing by editing (characterized by a
short drafting process which quickly transitions into revising) and syncretistic
writing (characterized by a particularly pronounced non-linearity of the pro-
cess) (Sennewald, 2021; Wymann, 2021). Although we may easily find similar
strategies for professional programmers in our own environment, we conduct
an evaluation about the prevalence of such strategies in our interviews.

2.3 Related Work

Dedicated research to evaluate the existence of writer’s block in the context
of programming is sparse. To the best of our knowledge, only Hermans and
Aldewereld evaluate the programming process through the lens of writing (Her-
mans and Aldewereld, 2017). By comparing writing and programming, they
conclude that there are indeed similarities between both processes, for exam-
ple, that gathering information in writing corresponds to defining the program
objective, or that reflecting on the written text corresponds to compiling, test-
ing, and debugging code. However, the authors did not conduct an empirical



10 Belinda Schantong et al.

study, and do not mention writer’s block. Moreover, the writing activities foun-
dational to their mapping are based on a single resource, and the programming
activities are based on a learning resource for basic programming that does
not consider the wider software development process.

In a more philosophical line, Ciancarini and others describe software de-
velopment as a story telling process (Ciancarini et al., 2020). In a systematic
literature review (Ciancarini et al., 2023), they found that this idea has sev-
eral applications, for example, as a tool for software engineers to describe and
understand what a software system should do or to describe bugs in soft-
ware (Devaney and Johnson, 2017), especially when the software development
process is understood as a collaborative writing project (Bussell and Taylor,
2006). Other work focuses on programming as writing process. For example,
Hassenfeld and Bers compared writing and programming as creative processes
in the context of elementary school (Hassenfeld and Bers, 2020). Similar stud-
ies suggest teaching programming in school as language learning (Bers, 2019;
Bers et al., 2023).

Already in 1989, Gantenbein suggested teaching programming as a pro-
cess, since this approach had seen a lot of success in the teaching of writ-
ing (Gantenbein, 1989). Instead of viewing writing as simply putting words
on paper, focusing on the process meant understanding writing as a “logi-
cal sequence of activities” (Gantenbein, 1989) that starts before any words
are put on paper at all. Thus, Gantenbein suggested using a simplified ver-
sion of the software life cycle as basic model for the programming process,
to enable students to more easily understand problems during program de-
velopment and to introduce strategies that help with different parts of the
process. Similar ideas have been developed to reveal and teach the program-
ming process more explicitly (de Raadt et al., 2009; Bennedsen and Caspersen,
2005). For example, LaToza and others developed a notation system to record
explicit strategies in programming, to be used by learners and professionals
alike (LaToza et al., 2020). Finally, there have been some studies observing the
programming strategies used by novices, which have found differences in their
approaches to planning that were independent of their performance (Whalley
and Kasto, 2014). While we also examine programming as a process and what
strategies programmers are using, we focus on the comparison to the writing
process and how this helps us to identify and understand blocks.

Related to our work is program comprehension. Here, the link to writ-
ing research is within reading and writing a text to, for example, create an
internal representation of a text (Hayes, 1996), much like an internal repre-
sentation of the program (Schulte et al., 2010). While such internal processes
of programmers and writers can be a promising further direction, we focus
in this study on a very precise construct: the writer’s or programmer’s block.
Moreover, aligning writing strategies and processes with software development
and programming allows us to explore causes of blocks. Whether internal rep-
resentations and the process of their creation of both fields actually align is
another research question.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 11

Another group of related approaches focuses on developer productivity,
what it entails, and how it can be measured (Sadowski and Zimmermann,
2019). Sarkar and Parnin observe programmer fatigue, leading to decrease
in productivity. Several indicators could hint at fatigue, such as error rates or
warnings regarding software quality, which could be used to hint respective de-
velopers to take a break or switch to a different task (Sarkar and Parnin, 2017).
Also, a bad night’s sleep has been shown to decrease in performance (Fucci
et al., 2018). The (un-)happiness of developers has also moved into focus of
research, for example, when they do not have agency on how they complete
their task (Meyer et al., 2021), or when they are stuck on a task (Graziotin
et al., 2017b,a,c, 2018; Graziotin and Fagerholm, 2019). There is also work
to determine whether developers are stuck. Müller and Fritz found that bio-
metric sensors could detect whether developers were in flow or stuck (Müller
and Fritz, 2015). Based on that, approaches to keep developers in the flow
have been developed and found their way into practice (Züger et al., 2017).
While this line of research also evaluates how productivity of developers is
decreased, we are looking at one concrete aspect of reduced productivity, that
is, the block, its causes, and its similarity to writer’s block.

3 Study Design

We have outlined in Section 2 that problems in any part of the rhetorical situa-
tion can hinder the writing process. However, only a subset of these problems
can be attributed to writer’s block. This observation has consequences for
designing a sound methodology for studying blocks in programming. First,
we cannot simply ask whether the participants have experienced a block to
avoid biasing the answers towards a certain outcome. Moreover, there is no
clear definition of a block (yet), and asking for blocks without a clear defini-
tion could make participants think of scenarios that not necessarily resemble
blocks (e.g., motivational problems). Second, a sound methodology should be
able to explain or provide hints for causes of blocks, such that theories and
actionables can be inferred and tested in future studies. Thus, we follow a
qualitative approach by designing an interview following the processes of writ-
ing research, aligned to development activities. We use the integrated views of
writing activities, summarized in Table 1 to map writing activities to devel-
opment activities.

Our aim is to gain reliable, valid, and actionable insights from aligning
writing research with development activities. To this end, we defined open-
ended questions in a semi-structured interview to assess possible causes of
problems during the development process (including blocks). This way, we
aim to establish a relationship between writing processes and development
processes to pin down the origin of a block’s cause.

In summary, we state the following research questions:
RQ1: Are there blocks during code writing and editing that resemble writer’s

blocks?



12 Belinda Schantong et al.

We aim to collect a large variety of problems during programming activities
that possibly relate to writer’s block. If our subsequent qualitative analysis
can align these problems, we can find clear evidence for programmer’s block.

RQ2: Do development activities map to activities of writing?
To better understand the similarities and differences of writing and software
development, we aim to identify a mapping of writing activities and software
development activities. This enables us to pin down the root cause of previously
identified blocks, if they exist.

RQ3: Do programmers use writing strategies?
Writing research provides guidance for avoiding and resolving a writer’s block.
However, these guidelines are built on the current writing process (RQ2) and
the writer’s strategy (e.g., pantsing or plotting, cf. Section 2). To make a stance
toward future reliable and tailor-made guidelines for programmers, we aim to
determine whether these strategies also exist for programmers.

Next, we present the details of the study design. All material, including
questions, participant data, and analysis procedure, is available at the project’s
web page (https://anonymous.4open.science/r/WritersBlock-8C92).

Philosophical Stance Our study design is driven by a constructivist epistemi-
ological stance (Hoda, 2022), meaning that the knowledge that will be gained
from our research is influenced by our existing knowledge, for example, on
writing research and software engineering. This guides our design from the
research questions we ask to the way we construct the materials, conduct the
analysis, and interpret the results.

Material To answer our research questions, we constructed a semi-structured
interview. We defined 33 questions, categorized into three parts. The first part
contained 15 quick questions about the personal background of developers and
their programming experience, which were taken directly from Siegmund et al.
(2014b).

The second part consisted of up to 10 questions concerning the typical
processes of the developers, to understand their programming strategies. The
first question asked them to walk us through the process of a recent project
of theirs, with potential follow-up questions to clarify the process, such as
“What kind of project was it?”, “How did you proceed at [a certain] part?”,
or “Is the process you described comparable to your other projects?”. Not all
of these questions needed to be asked if the initial description provided by the
participant already contained these informations.

The third part contained up to 8 questions about problems that developers
face in their processes. To explore the problems that might hint at or lead
to a block, we first posed the question, whether the participants had ever
discontinued a project. Such an event to us represents the most severe possible
consequence of a block and is an outcome that we assumed the participants
would have wanted to avoid, especially in a professional setting. Moreover, due
to the severity of the event, we expect that participants can better recall it
and according causes leading to the discontinuation. This sets the stage for



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 13

less severe, but more frequent consequences of problems, from delays within
projects to situations where the participants would simply feel ‘stuck’. Such
occurrences are likely more prevalent and provide insights into the diverse
causes of blocks, leading to a more general picture of problems and blocks.
Further questions were about the participants’ strategies to overcome such
problems. The final question was whether they think having ever experienced
a programmer’s block. We waited until the end of the interview to use this
term in order to avoid any bias in the discussions beforehand, such that we
are able to distinguish blocks from other problems.

Conduct We recruited participants using a mixture of strategies. We person-
ally invited programming experts from our circles of acquaintances, some of
whom offered to share the invitation with their own colleagues. Additionally,
we sent out a call for participants via social media, specifically Twitter/X, and
our university’s mailing lists. If potential participants agreed to the interview,
they were sent the participant information, which specified (i) the conduct and
contents of the interview, (ii) our privacy policy, which contained all necessary
legal information of how their personal data would be processed and protected
, as well as (iii) the information about audio recordings. All participants gave
written consent for all three parts (according to guidelines of our institution;
no ethics approval is required for this type of study at our institution).

Table 2 Descriptive data of our participants.
PY: Professional years; PE: Programming ex-
perience self evaluation (1: no experience; 10:
master); PL: Programming languages.

ID PY PE (1-10) # PL

P1 11 6 3
P2 3 5 3
P3 5 9 4
P4 1 9 11
P5 12 9 11
P6 12 9 5
P7 3 7 6
P8 7 5 2
P9 25 9 10
P10 4 6 4
P11 3 7 4
P12 8 8 3
P13 8 8 5
P14 19 8 6
P15 10 7 4

Ø 8,73 7,46 5,4

The interview took place either in
a virtual, password-protected meet-
ing room, or in an office at the uni-
versity. The interviewer again asked
for verbal consent to the audio be-
ing recorded during the interview be-
fore and after the start of the record-
ing. The interview began with the
questionnaire on programming expe-
rience, before moving to the semi-
structured parts. Once all questions
were answered, the participants were
informed about the research goals, in-
cluding that we are evaluating the
existence of programmer’s block and
comparing it to writing and writer’s
block. The participants could then
add additional thoughts if they wished
to do so. The interview lasted between
18 and 56 minutes (mean: 33 minutes).

Participants We selected participants
with an above average level of pro-
gramming experience, so we could
avoid problems that, according to the



14 Belinda Schantong et al.

definition of writer’s block, would not
be considered a block when they rather originate from a lack of basic program-
ming skill. A considerable level of programming experience was also important
so that the participants would have sufficiently experienced problems during
the development process that they could recount. To this end, we recruited 15
professional developers with considerable practical experience, resulting in a
sample with an average of 8.7 years (median: 8 years) of professional program-
ming experience. Table 2 gives an overview of our participants. With a mean
self-estimated programming experience of 7.4 (on a scale of 1 to 10) and an av-
erage of over 5 programming languages that participants consider themselves
proficient in, we have gathered an experienced group of participants that likely
have experienced problems during the development process.

Analysis The interviews were transcribed, and the transcripts were then an-
alyzed using open card sorting (Hudson, 2013). For each interview, we went
over the responses of participants in a chronological order. We coded each
statement belonging to a certain software development activity, for example,
the statements “I say, okay, we can do this and this, we can’t do that” (P8)
and “we had a meeting where we thought about, okay, what do we want to
implement”(P10) refer to the activity of defining objectives, and “I test all the
time on the side” (P2) and “[I] look if it works the way it should” (P8) refer
to testing and debugging.

We started with the three rough labels ‘planning’, ‘implementing’ and ‘test-
ing’, which were refined during the analysis process into the more detailed la-
bels ‘defining objectives’, ‘research and preparation’, ‘design’, ‘writing code’,
‘testing and debugging’, ‘refactoring’, and ‘review’. The first and last author
coded the first four interviews jointly, and once common ground on how state-
ments can be categorized was established, the first author continued on her
own, with the last author checking the assignment of codes to statements on
a random subset. Statements that were unclear were discussed until reaching
interpersonal consensus. In addition to the development activities, we marked
statements that described a problem during the working process, such as lack
of ideas, diversions, conflicts in the team, or technical problems.

To ensure that our sample size was sufficient, we calculated the saturation
ratio according to Guest and others, determining a ‘new information thresh-
old’, at which point no new information is provided by the interviewees (Guest
et al., 2020). We started with a base of 4 interviews (as recommended), which
covered 17 themes in total. We then used batches of 3 interviews in a sliding
window approach of 1 interview to calculate the saturation ratio, that is, the
ratio between new and already known themes. For our case, we had reached
the new information threshold of 0% after 12 out of the 15 interviews we con-
ducted. Thus, with 15 interviews, we have a good base to capture the most
relevant aspects of the programming experts’ working processes and related
problems.

This analysis formed the basis to answer the research questions. Each ques-
tion required different steps of analysis going forward, which we explain next.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 15

For RQ1, we conducted a second iteration of tagging, focusing on the prob-
lem statements, grouping similar statements into categories. That is, we iden-
tified

(i) problems related to the working environment, for example, technical prob-
lems: “it has happened that my pc crashed the next day and for some
reason windows completely decrypted this one source code file.” (P3)

(ii) problems related to programmers’ motivation, for example, lack of interest
in a project: “Some projects I canceled, mainly in the domain of graphics,
because I found them to be too time-consuming and too far away from
actual programming.” (P4)

(iii) problems related to the physical and cognitive resources, for example, tired-
ness (“after 16 hours in front of the code, there’s a greater- or a less-than
sign the wrong way around and you sit there and don’t know why this
isn’t working”(P8)), or lack of domain knowledge (“when I didn’t have the
domain-specific knowledge, for example, in the beginning of working with
an EEG.”(P4))

(iv) problems related to the processes during software development, such as un-
clear requirements: “It was a pricing system and we were going to improve
pricing, whatever that meant. (laughs) And we could never define what
that meant, right?”(P9)

In a final iteration, we mapped the statements to the development activities,
so that we can understand what causes of problems occur in which parts of
the development process.

For RQ2, we mapped the activities stated by the programmers to the activ-
ities of the writing process (cf. Table 1). To this end, we used the descriptions
of the development activity provided in the interviews and decided within the
author team whether a mapping can be established, is out of scope of the
study context, or has no counterpart in a writing activity. For example, the
development activity of defining objectives was described by statements, such
as P10’s: “We had a meeting where we thought about, okay, what do we want
to implement.” This bears similarity to the pre-writing activity ‘orientation’
(in which the writer chooses the topic to write about; cf. chapter 2.2), so we
will map it to the pre-writing activity of orientation. Based on such compar-
isons, the first author prepared a first mapping, including markings for unclear
cases. The third author evaluated this mapping. In case of disagreement (less
than 10%) or unclear cases, the entire team discussed each case in detail until
reaching interpersonal consensus.

In a similar vein, for RQ3, we mapped the processes described by the
programmers onto the writing strategies introduced in Section 2.2, namely
spontaneous (the ‘pantser’), planning (the ‘plotter’), multiple versions, edito-
rial (writing by editing), and chaotic (syncretistic writing). Similarly to RQ2,
the first author provided an initial mapping that was evaluated and refined by
the entire team in discussions.



16 Belinda Schantong et al.

4 Results and Discussion

Next, we review our results and discuss possible implications.

4.1 RQ1: Are there blocks during code writing and editing that resemble
writer’s blocks?

To answer RQ1, we examine the problems that programmers encounter in their
working processes and compare them to the different kinds of writer’s block
introduced in Section 2.1. To identify problems, we asked the programmers
whether they have ever discontinued a project and what lead to that decision,
or whether they have encountered significant delays in their working processes
and what lead to those delays.

In total, we evaluated 76 stated problems, which are caused by external
factors, such as technology, people, the physical working environment, and
existing code, as well as internal factors, such as motivation and knowledge.
We followed a conservative approach to identify blocks. Problems that can be
attributed to a lack of motivation or a lack of skill are not considered blocks
according to the definition of writer’s block (Rose, 1984) (cf. Section 2.1). Ad-
ditionally, we do not consider a problem as a block that occurred due to a
temporary state of tiredness, for example, a lack of concentration at the end
of a long day. Finally, we do not consider problems with a clear tangible cause
in the working environment as blocks, for example, technical problems, such as
a computer failing to work, or a delay due to a different component not being
finished yet. Note that all of these factors could still interact with a block, for
example, a block could lead to a lack of motivation, which in turn could aggra-
vate a block. Following this logic, we excluded problem statements related to
the working environment (29 statements, 38%), the programmers’ motivation
(4 statements, 5%), and the programmers’ physical or cognitive resources (12
statements 16%) from further analysis. The remaining 31 statements (41%)
could be related to blocks. Upon further investigation of these 31 statements,
we were able to identify potential causes for 29 of them.

Figure 2 provides an overview of reported problems (blue) as well as iden-
tified blocks (red). We align both to the development activities in which the
causes of such problems have been reported in the interviews. In essence, we
found concrete blocks as well as other sources of delay throughout different de-
velopment activities. Interestingly, we observed that (i) most causes of blocks
have been reported at the intersection of activities, and (ii) there are only few
causes of reported blocks during actual code writing. In the following, we will
qualitatively evaluate the results and provide a first interpretation for these
observations.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 17

Fig. 2 Reported causes of problems related to blocks and delays with respect to the devel-
opment activities where they originate from. Red areas indicate the number of participants
who reported problems related to blocks, including the participant IDs. Blue areas depict
further problems related to delays that are not associated with blocks. The percentage de-
picts how many interviewees out of our 15 have encountered causes of blocks and other
productivity problems in the respective development activities.

4.1.1 Causes at the intersection of design and code writing

80% of the participants reported cause of programmer’s blocks at the inter-
section of requirements engineering/design and code writing. The cause that
has been described most often is unclear and/or repeatedly changing require-
ments. As P10 puts it: “What I always found most challenging is when clients
themselves were not sure about what they wanted exactly, and it turned out
during the development process that they actually wanted something differ-
ent.” Statements like these were made by P3, P5, P8, P9, P10, P12, and P13.
Programmers, like writers, need to develop a concept of the software they
are working on (Petre, 2010; Robins, 2019), and unclear requirements or re-
peated changes can hinder the development of a concept, causing blocks in the
subsequent development activities.

Similarly, we interpret statements in which the participants describe that
requirements can be too big or too complex, or that a project can grow much
bigger than initially anticipated (P2, P3, P6, P13, P14). The problem and
its consequences are explained well by P3: “Sometimes, there is a really big
requirement or a giant idea, but I just don’t ... I know what I want to do, but
how to represent that in code? I have been stuck on that sometimes and have
even discarded projects, because I could not come up with an implementation
in my head.” Similar problems have been observed in writing, where writers
are blocked because their topic is too broad or reveals itself to be too broad in
implementation, even if it seemed to be focused when presented as a coherent
outline (Hjortshoj, 2019).

Other problems at this intersection of activities include solutions or con-
cepts that do not work, either due to some unknown reason or explicitly due
to bad design (P2, P6, P9, P10, P11 P14), as well as programmers not being
able to create a solution at all (P6, P15).

4.1.2 Causes at the intersection of code writing and testing

Seven participants (46%) reported problems that were related to the activi-
ties of testing and debugging (P2, P4, P5, P7, P10, P12, P13). Interestingly, the



18 Belinda Schantong et al.

programmers do not seem to think of bugs themselves as causes that actively
hinder the process; only when their established strategies at handling them
fail, developers start seeing bugs as problems. Exemplary in this regard is a
case from P5, where their software crashes “right in that phase of the booting
process, where you get no information from the firmware anymore, but do
not have a driver yet. There, I am just blocked, because I have no idea how
to get in there, to find out what is going wrong.” In line with the idea of a
conceptual block, this could mean that, in the case of such difficult bugs, the
programmer’s concept of the program is flawed or incomplete: P5’s concept is
not extensive enough to completely understand how their software and hard-
ware are interacting. P5’s statement also illustrates one possible strategy to
counteract such situations: Using the assistance of technology to expand the
mental model. Tools, such as debuggers and other visualizations, can assist
programmers in developing mental models (Petre, 2010), however in the case
of P5, this strategy does not suffice, causing the block.

Statements from other participants further cement the idea that a lacking
concept could cause blocks during debugging. P14 states: “It can be difficult
to tell, is this a bug or is it intended behavior that just does not fit my use
case.” P10 describes a somewhat different, yet similar situation: “You think, it
[a function] should be doing X, but it does XY.” In these cases, programmers
expect the code to do something which it does not actually do, meaning their
concept of the code does not match reality, making it a flawed concept. The
programmers must then correct their concept, but if their strategies to do so
fail, they might run into a block.

4.1.3 Unknown causes

Only two participants, P3 and P13, describe blocks that are constrained to the
activity of writing code. P3 describes a situation where what they are doing is
just not working: “It often happens that I try to implement things, it doesn’t
work, it doesn’t work, it doesn’t work, it doesn’t work, and then at some
point, I will have introduced an error.” The fact that they specify towards the
end that this state will inadvertently lead to errors suggests that what is ‘not
working’ is not yet referring to errors in the code. Thus, the problem lies in
the process itself. P13 describes that there are instances where they simply do
not know how to translate their thoughts into code: “I sit in front of [the task]
for a day, knowing what the end result should be and having a rough idea
of what should happen, but I experience a real block and don’t know how to
formulate it in source code.” Both statements mirror descriptions of behavior
of writer’s with blocks, with P13 directly mentioning blocks. However, they do
not provide any further hints towards possible causes of the blocks, which still
might be hidden in a different activity of the development process. Thus, we
consider these statements to be symptoms of blocks, but cannot know what
their causes are without further research.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 19

4.1.4 Performative causes

Notably, we did not find concrete evidence of performative causes for blocks.
However, performative causes might exist as the statement of P6 indicates: “It
is important to see that [...] having no fear of change and of revising a decision
and to review and draw conclusions from that, that you are not afraid of
that.” P6 explains the importance of not being afraid of making changes to
the code, thus implying that they might have encountered such fear in the
past. A fear or unwillingness to change code would force a programmer to
write perfect code on the first try, which could lead to a similar destructive
perfectionism that occurs during writing in the form of performative blocks.
However, the lack of statements describing such problems suggests that they
are less prevalent in software development compared to writing, at least for
our participants. Already this insight demands further research: Is fear of
making changes a thing or not? If so, does it spawn at large companies with
heavy code reviews, in open-source systems with social pressure, or only for
development methodologies that hinder refactoring, such as when deployed in
avionics systems or embedded in physical devices?

4.1.5 Summary of discussion and answer to RQ1

In section 1.1, we defined programmer’s block as the inability of writing or
changing code, even though there is a given task, the programmer has sufficient
skills in the programming language, the infrastructure needed for programming
is available, and the programmer is motivated to work on the task. This was
derived from Rose’s definition of writer’s block introduced in section 2.1, who
defined writer’s block as the inability to start or continue writing, but not due
to the lack of basic writing skills or motivation.

Through analyzing the problem statements from our participants with this
definition in mind, we were able to distinguish between problems that were
not related to blocks, and problems that were potentially related to blocks
and could not be ascribed to any other category of problems. Thus, nearly
all participants (14 out of 15) reported incidents that clearly fall under our
definition of programmer’s block, meaning our analysis shows strong empirical
evidence for the existence of programmer’s block based on our definition.

Moreover, when further analyzing the statements that were potentially
related to blocks, we found hints that blocks likely originate in similar places,
namely at the intersection of the development activities that make up the
software development process, and that they have similar causes. We especially
found hints towards conceptual causes.

Answer RQ1: Yes, programmers encounter blocks that resemble writer’s
block. Most cases originate at the intersection of different development
activities. We found that most causes can be related to conceptual blocks,
but found little indication of performative blocks.



20 Belinda Schantong et al.

4.2 RQ2: Do development activities map to activities of writing?

To answer RQ2, we analyzed the activities during the working processes that
developers described, and compare each of them with the definition of the
writing activities (cf. Section 2.2). In essence, the participants talked about
different activities during development, including requirements analysis, de-
sign, code writing, testing, and refactoring, which we mapped through analysis
to the writing activities (cf. Section 2.2). To this end, we use the mapping
of writing activities across the literature from Table 1 as a basis, and then
complement it with the development activities recounted by the participants.
We present the mapping in Table 3. Next, we discuss the development ac-
tivities as the developers described them in the interviews, the mapping to
the writing activities, and the process of how we arrived at this mapping. We
use the partition of the activities into pre-writing activities, writing activities,
and post-writing activities, as used in writing research (cf. Section 2.2), to
structure the discussion. However, this does not mean that either writing or
developing software are linear processes.

4.2.1 Pre-writing Activities

Orientation → Defining Objectives Most participants begin their program-
ming projects by defining their objectives. They describe how they talk to
clients and define the task and requirements (P1, P3, P5, P8, P11, P13). P8

summarizes their process as follows: “I say [to the customer], okay, we can do
this and this, we can’t do that.” This also entails estimating time and effort a
task will take and planning the workflow (P1, P3, P6, P9). In private projects,
the processes are less specified, such that the activity is more about having an
idea and defining objectives on how to implement it (P4 P9, P10). We sum-
marize these activities under the term ‘defining objectives’, to be inclusive of
these processes that go beyond just requirement engineering

We map the activity of defining objectives to the writing activity of ‘orien-
tation’, during which writers figure out what they want or need to write about
(cf. Section 2.2). To this end, they generate ideas (Williams, 2003; Tompkins,
1994) or choose a topic within the requirements of their context (Grieshammer
et al., 2019; Tompkins, 1994). To do this, they need to analyze and understand
said context and requirements (Hermans and Aldewereld, 2017; Tompkins,
1994).

Thus, both processes have the same function of setting the basic condi-
tions for the project (even though they might look different on the surface).
The rhetorical situation of writing tasks can vary greatly, including writing
in a team or receiving the writing task from a third party. Similarly, a single
programmer working on a passion project alone undergoes a complete devel-
opment process just as much as professional developers in a team, which was
also demonstrated by our participants (e.g., P3, P4, P14). For similar rea-
sons, Hermans and Aldewereld (2017) map the writing activity of ‘gathering



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 21
T
a
b
le

3
M
a
p
p
in
g
b
et
w
ee
n
th

e
w
ri
ti
n
g
a
ct
iv
it
ie
s
in
tr
o
d
u
ce
d
in

T
a
b
le

1
a
n
d
th

e
d
ev

el
o
p
m
en

t
a
ct
iv
it
ie
s.

T
h
e
ID

s
in

th
e
‘M

a
p
p
in
g
’
co

lu
m
n
in
d
ic
a
te

w
h
ic
h
p
a
rt
ic
ip
a
n
ts

d
es
cr
ib
ed

th
e
co

rr
es
p
o
n
d
in
g
p
ro
g
ra
m
m
in
g
a
ct
iv
it
y.

G
ri
es
h
a
m
m
er

et
a
l.

(2
0
1
9
)

T
o
m
p
k
in
s

(1
9
9
4
)

W
il
li
a
m
s

(2
0
0
3
)

H
er
m
a
n
s
a
n
d

A
ld
ew

er
el
d

(2
0
1
7
)

H
a
ss
en

fe
ld

a
n
d
B
er
s

(2
0
2
0
)

M
a
p
p
in
g

A
ct
iv
it
y

Pre-WritingO
ri
en

ta
ti
o
n

P
re
-W

ri
ti
n
g

P
re
-W

ri
ti
n
g

In
fo
rm

a
ti
o
n

g
a
th

er
in
g

P
re
-W

ri
ti
n
g

P
1
,P

2
,P

3
,P

4
,

P
5
,P

6
,P

8
,P

9
,

P
1
0
,P

1
1
,P

1
2
,

P
1
3

D
efi

n
in
g

o
b
je
c-

ti
v
es

C
o
ll
ec
t
m
a
te
ri
a
ls

P
2
,P

3
,P

4
,P

5
,

P
6
,P

7
,P

8
,P

9
,

P
1
3
,P

1
4

R
es
ea

rc
h
,

co
d
e
re
a
d
in
g

S
tr
u
ct
u
ri
n
g

P
la
n
n
in
g

In
fo
rm

a
ti
o
n

se
le
ct
-

in
g

P
1
,P

2
,P

3
,P

4
,

P
7
,P

1
0
,P

1
1
,

P
1
2
,P

1
3
,P

1
4
,

P
1
5

D
es
ig
n

In
fo
rm

a
ti
o
n

st
ru

c-
tu

ri
n
g

Writing D
ra
ft
in
g

D
ra
ft
in
g

D
ra
ft
in
g

T
ra
n
sl
a
ti
n
g

D
ra
ft
in
g

P
1
,P

2
,P

3
,P

4
,

P
5
,P

6
,P

7
,P

8
,

P
9
,P

1
0
,P

1
1
,

P
1
2
,P

1
3
,P

1
4
,

P
1
5

W
ri
ti
n
g
co

d
e

P
a
u
si
n
g

R
ea

d
in
g

Post-Writing R
ev

is
in
g

R
ev

is
in
g

R
ev

is
in
g

S
ty
li
zi
n
g

R
ev

is
in
g

P
3
,P

5
,P

6
,

P
1
1
,P

1
4

R
ef
a
ct
o
ri
n
g

P
1
,P

2
,P

3
,P

5
,

P
6
,P

7
,P

8
,

P
1
0
,P

1
1
,P

1
2

T
es
ti
n
g

(&
d
eb

u
g
g
in
g
)

E
d
it
in
g

E
d
it
in
g

E
d
it
in
g

F
o
rm

a
tt
in
g

E
d
it
in
g

P
u
b
li
sh

in
g

P
u
b
li
sh

in
g

P
1
,P

2
,P

3
,P

5
,

P
6
,P

8
,P

9
,

P
1
0
,P

1
2
,P

1
3
,

P
1
4

R
ev

ie
w



22 Belinda Schantong et al.

information’1 with the development activity of ‘defining program objectives’:
“When starting a new project, assignment, or exercise in writing or program-
ming, the first step is setting of the goals.” (Hermans and Aldewereld, 2017).
Thus, our data is in line with their mapping.

Gather Information/Collect materials → Research and Code reading A no-
table activity in the working processes described by our participants was re-
search. For example, they research how to accomplish certain tasks, such as
P4: “I just started programming by looking at how to create an app frontend,
how to do things with it. So, I first looked and clicked around a bit, explored
until I had a design principle that looked good.” They also need to figure out
the tech-stack they want to use (P6, P7), or even compare the approaches of
business competitors (P13). This includes a lot of code-reading, as P7 explains:
“Since you cannot dictate a complete architecture yourself, you usually spend
a significant amount of time initially examining how existing code is struc-
tured. [...] This currently takes up a considerable part of the ‘research time’.”
Understanding the code they want to expand is only one scenario where re-
searching existing code is necessary. The participants also look at prior work
they might want to reuse (P8, P9), or search for existing sample programs
online (P14).

The mapping of researching activities of our participants to the writing ac-
tivity of ‘gathering information’ Hermans and Aldewereld (2017) or ‘collecting
materials’ (Grieshammer et al., 2019) is straight forward. This writing activ-
ity is necessary for writers to inform their developing text (cf. Section 2.2).
It can overlap with the activity of orientation, if the information the writ-
ers seek is about the context of a writing project (Hermans and Aldewereld,
2017), but it often entails more than that. Writers need to do research on their
topic (Hassenfeld and Bers, 2020) and gather their own data (Grieshammer
et al., 2019).

These activities are comparable, because both, writers and programmers,
usually do not work with an empty canvas, but use available information, which
will considerably inform their further process. As P7 explains: “The further
preparatory process mostly depends on the framework, because each of them
has its peculiarities and dictates its own structure to some extent.” Just as the
framework dictates the structure of the software, the collected research and
data informs the structure of a scientific thesis (Grieshammer et al., 2019) and
even fiction writers derive structure from outside information. For example,
when writing a detective story, writers might research how detective work is
done in the real world to give the story a realistic framework.

Interestingly, the researching activities described by our participants have
mostly been absent from the existing models of the programming or software
development processes, such as the ones used by Hermans and Aldewereld

1 It should be noted that (Hermans and Aldewereld, 2017) use the term ‘gathering infor-
mation’ both for the activity of setting goals and the activity of collecting materials and
discuss them together.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 23

(2017) and Hassenfeld and Bers (2020). The suggested processes by Benned-
sen and Caspersen (2005) merely allude to the idea by mentioning the existence
of online documentation, while Gantenbein (1989) at least recognizes that a
programmer needs to ask themselves the question of ’what tools are available’
and that this could include looking into predefined library routines. Addition-
ally, the importance of the process of reading programs as a part of the process
of writing programs is often addressed (see for example Schulte et al. (2010)),
but not necessarily how it pertains to this researching process and its wider
influences on the entire development process. Overall, however, the wider ac-
tivity of researching during software development remains quite understated
in the literature, and is mostly just implied.

Structuring and Planning → Design Participants think a lot about the struc-
ture of their software, though they call it ‘design’ (P4) or ‘architecture’ (P11).
The programmers need to think of how exactly features will look and how
they interact with each other (P10). P13 explains how discussing a feature re-
sults in precise plans, up to already thinking in pseudocode: “It is often the
case that, during these appointments, it is already very, very deeply discussed,
and the feature is, I would say, already implemented a little bit in imaginary
pseudocode.” Similarly, P5 describes that they devise a plan for the implemen-
tation already when they formulate a ticket: “I usually make the plan while
I’m working on the ticket[...]. And thus, I only get assigned the tickets when I
already know how I’m going to do it.” Some programmers take notes or create
checklists (P7, P12, P15), whereas for others, these processes are mostly in
their head, and they only reluctantly externalize their thoughts if necessary:
“Sometimes, if it is really complicated [...], then one sketches it down some-
times for oneself a bit stepmotherly.” (P2). This activity is closely interlinked
with the previously mentioned activities of defining objectives and research
and preparation. P4 directly derives their design from their research, and P5

explains that, to create a plan, they need to do a lot of code reading first.
P1 also mentions how designs can be developed during the meetings in which
requirements are discussed.

In writing, once information and ideas have been gathered, they are orga-
nized to develop the structure of the text. (Grieshammer et al., 2019; Hermans
and Aldewereld, 2017). The plans writers make range from rough outlines down
to the words which they want to write (Hassenfeld and Bers, 2020).

Where the programmers structure features and the software’s architecture,
writers structure arguments or storylines (Hermans and Aldewereld, 2017).
The level of plans has a similar range, as well. Where some writers create
outlines, some programmers create class diagrams (e.g., P4), and where some
writers formulate sentences in their head (Hassenfeld and Bers, 2020; Sen-
newald, 2021), programmers formulate imaginary pseudocode (P4, P13).

There is also a similar divergence where sometimes programmers like to
keep it all in their head and externalize their plans only if really necessary
(P2, P7), whereas other times, they write themselves clear plans and to-do
lists (P7, P12, P15). The same can be observed with writers (Sennewald, 2021).



24 Belinda Schantong et al.

Thus, not only are the activities of structuring and design similar, writers and
programmers also do it in similar ways.

4.2.2 Writing Activities

Drafting/Translating → Writing Code Our participants need to implement
their designs into a programming language. Interestingly, writing code is men-
tioned only briefly in the interviews. The participants all imply it: They ‘build’
something (P9, P12, P14), ‘implement’ what they have described before (P1,
P6, P10), simply ‘program’ (P2), ‘write (code)’ (P5, P7, P11), or ‘add func-
tionality’ (P3, P8), but they do not elaborate how. The process seems to come
naturally to them, as P5 describes: “At the end of the day, when it comes to
implementation, it’s really just [...] I have to write a bit of code here, a bit of
code there, but that’s all it is.”

In writing research, the activity of translating abstract concepts into natu-
ral language and externalizing them as words on the page is defined under the
terms ‘drafting’ Williams (2003) or ‘translating’ (Hermans and Aldewereld,
2017) to distinguish it from the overall writing process. For our purposes, we
chose the term ‘writing code’ for this development activity, since the term does
not lead to the same ambiguity in the context of software development.

That experienced programmers hardly consider worth mentioning the part
of the process that outsiders would identify as the actual ‘programming’ is
somewhat surprising. However, it might well be that experienced program-
mers hardly notice the transcription process as a significant part of the work
anymore. This was also believed in early work on writing research, such that
experienced writers have automated this transcription process to a degree
where it could be safely ignored (Hayes, 2012). However, later studies in writ-
ing research revealed that transcription indeed still does compete with other
activities for cognitive resources, which is why it is part of state-of-the-art
models (Hayes, 2012). While cognitive load theory has been applied to soft-
ware development as well, especially in the context of programming educa-
tion (Robins et al., 2019), it would be interesting to dig deeper into this
phenomenon in relation to programming experts. For example, it would be
interesting to investigate whether the process of translation into a program-
ming language can be mostly ignored for experienced programmers, as our
interviews would somewhat imply, or whether the translation process requires
more cognitive resources from less experienced programmers by comparison.

4.2.3 Post-writing Activities

While for the first four activities, the mappings of development activities to
writing activities was rather straightforward, for the post-writing activities,
the picture is fuzzier. What we are able to unquestionably identify from our
interviews is that there are several ‘post-code-writing activities’, that is activ-
ities that continue working with code that has been written beforehand. As



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 25

P11 puts it in their description of their workflow: “It’s basically always pro-
gramming, writing a test, and then refactoring.” However, a clear mapping of
these development activities to the post-writing activities is difficult to estab-
lish. In our discussion of these activities, we address the reasons for this and
the parallels we still encountered.

Revising & Editing → Testing (and Debugging) & Refactoring Our partici-
pants mention testing often in conjunction with writing the code(P3, P7, P11).
P2 explains: “I program that [...] and just test all the time on the side [...] and
see if what is happening is what should be happening”. Similar statements
were made by P3, P7 and P11.

Some make an explicit difference between formal and informal testing, such
as P10: ”I write the code, informally test it for myself, so in that case maybe I
click through it, and then I write proper test cases, so unit tests or something
like that, which then cover all cases.” Some of the developers who work in
companies also explain that they are supposed to use a test-first approach,
but in practice often prefer writing code first (P7, P10, P11).

Notably, none of the participants explicitly mentioned debugging the code
when they described their usual process, they all only spoke of testing. We
only assume that they would also debug their code, should their tests find any
errors.

It could be argued that, through this close connection between writing code
and testing it, and through the clear distinction that is made between formal
and informal testing in some cases, that at least the informal part of testing
does not need to be interpreted as its own development activity. Instead, it
could be interpreted as being a part of the ‘code writing’ activity. However,
since writing code and testing are usually explicitly called out as two separate
activities (e.g., P2 and P10), we also treat them as such.

Even if not considered one and the same activity, it could still be argued
that the most optimal mapping between testing and any writing activity would
be between testing and ‘drafting/translating’, arguing that there is no testing
activity in text writing. However, there is a clear temporal separation between
writing the code and testing it, since, in order to test code, code must have
been written2.

Looking at the post-writing activities then, it could be argued that testing,
or maybe more clearly debugging, could be mapped to the activity of ‘editing’
(editing in writing means working on mechanical concerns of the text, such as
grammar and spelling). In writing instruction, this is usually recommended at
the very end of the process, since the draft of a text can still be understood
even with some errors; thus, it is not productive to edit early (Grieshammer
et al., 2019). However, the fact that it is a known problem that writers tend
to edit too early (Rose, 1984) means that in practice, it is often done at other
points in the writing process.

2 It is possible to write tests before writing the code to be tested, but not to do the actual
activity of testing the code.



26 Belinda Schantong et al.

The argument for mapping testing and debugging to the editing activity
is that both activities entail correcting mechanical errors, which is the rea-
son why Hassenfeld and Bers (2020) map ‘debugging mechanical errors’ and
‘editing’. However, our participants do not actually talk about debugging, let
alone about debugging mechanical errors. They test “if what is happening is
what should be happening”(P2), or “if it works the way I imagined it”(P8).
Thus, the activity of testing described by our participants does not map to the
activity of editing, and while developers might still be fixing mechanical errors
during either code writing or testing (so there is no data against the mapping
from Hassenfeld and Bers), this is not the activity which our participants are
describing.

The most appropriate mapping might then be to the activity of ‘revis-
ing’. Revising the text means working on high-level concerns, so that the text
matches the plan (Grieshammer et al., 2019; Williams, 2003) and meets the
needs of the audience (Tompkins, 1994).

The goal of ‘matching the text with the plan’, or in this case the code with
the plan, has clearly been expressed by the descriptions of our participants.
This does, however, leave us with the question where refactoring comes into
play here.

P11, describes refactoring as the third part of their core workflow of ‘pro-
gramming, testing, refactoring’. They do not explain further what they mean
by refactoring, but refactoring is also mentioned by other participants, though
it is less present compared to the other activities. P6 explains that they under-
stand refactoring as “changing architectural decisions”, thus re-designing the
program. P3 defines refactoring as “you look at a piece of code a second time
and improve it”. P5 describes a project where they had to do a lot of refactor-
ing, because the code “looked all topsy-turvy”. P14 does not call it refactoring,
but states that they rewrite the code once the functionality is accomplished:
“Once it’s working, I try to redo it properly.” P3 also talks a lot about ‘bad’
code and about tools that help to alarm the developer if code is ‘unreadable’.
Thus, there does seem to be a development activity aimed at making the code
‘better’ or ‘more readable’, and it is sometimes explicitly called refactoring,
which is why we also use the term to describe this activity.

‘More readable’ entails the question of more readable for whom? This would
have to be a human audience, because a computer does not care about read-
ability. This dichotomy has been discussed by Videla (2018) and has led them
to the conclusion that code essentially has two distinct audiences: The machine
readers and the human readers. Since one of the goals of the revising activity
in writing is to have the text meet audience needs (which would include read-
ability), this would lead us to the conclusion that the activity of ‘refactoring’
is also best mapped to the activity of revising.

This means that there are two distinct revising activities in software devel-
opment, depending on which audience the revision is targeting: The activity
of testing and debugging matches the code with the plan and thus targets the
machine audience, while the activity of refactoring targets the human audience
of the code.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 27

Evaluating/Reflecting → Review When explaining how they ‘test’ what they
have programmed, some of the participants did not refer to testing as men-
tioned in the paragraph above, but to code reviews, where they give the code
to other people for feedback. P8, for example, explains: “When the basic frame-
work is completed, we move on to the initial tests, where I let my colleagues try
it out and ask, ‘Here, do you like this, does it work like this?’ ” P10 separates
testing and review more clearly: “So, I have implemented my feature, tested
it, and was satisfied. Then it went to one of the other two. They conducted a
review, focusing on code quality, whether the code is understandable, as well
as overall testing with the entire system.” Thus, even though P8 calls what
they do an ‘initial test’, it seems to be closer to what P10 describes as review.
The fact that P8 jumps directly from implementing the code to the step of
review underlines again how closely connected writing the code and testing
are, but it also reveals the overlap between testing and reviews.

The writing activity that maps best to this activity of reviewing would be
‘evaluating’ (Hassenfeld and Bers, 2020) or ‘reflecting’ (Hermans and Aldew-
ereld, 2017). Writers reflect on and evaluate their text to see whether what
they have produced matches what they had planned and whether it meets all
objectives (Williams, 2003; Hermans and Aldewereld, 2017; Hassenfeld and
Bers, 2020).

In a review, the program is inspected from the audience’s point of view,
but the participants reveal that there can be several audiences to a program.
On the one hand, the audience are code reviewers in the classical sense of
‘code quality’, for example, whether code is ‘understandable’ (P1, P2, P9, P10,
and P14). On the other hand, the audience can be customers or users, as
P3 explains: “In this review, the guy who originally set the requirements is
present. He examines the implementation of the user story, and if something
is not right, we have to discuss it thoroughly.” Similarly, P1, P2, P9, and P14

report that they get feedback from users or take the users’ point of view when
they review code within the team.

The existence of these two audiences is also reflected in the participants’
answers to the question of whom they are thinking of when working on their
project, which was specifically included to reveal whether coding has an au-
dience, and which some participants also answered with the user and some
with other programmers who have to maintain the code later on. Apart from
revealing that there are several different audiences to programs, we also see
that there are several layers to review in the software development process.
This can also be found in writing: While some researchers put the activity of
reflection towards the very end of the writing process within the post-writing
activities, others include reflective activities within the writing activities (no-
tably Williams (2003), cf. 2.2). And of course, writers also have the possibility
to get feedback from collaborators or test audiences.

Thus, there is some nuance to this comparison, especially when it comes
to the post-writing activities: In writing, the activities of reflection, revision,
and editing all strive for the same goal of making the text understandable for



28 Belinda Schantong et al.

Table 4 Overview of found writing strategies and the scenarios in which they have been
reported.

Strategy Participants Contexts

Spontaneous P2, P3, P6,
P9, P11,
P13, P14

private projects, exploration
of frameworks, exploration of
ideas and solutions

Planning P2, P3, P4,
P5, P7, P8,
P10, P12,
P13, P15

traditional software develop-
ment, user-story based, ticket
systems

Multiple versions P2, P3, P4,
P9, P13,
P14

prototyping, exploration of al-
ternative approaches, rework-
ing broken approaches

Editorial P3, P5, P6,
P7, P8, P9,
P13, P14

iterative development, refac-
toring

Chaotic P4, P11 parallel development of mul-
tiple projects, freedom to try
new things

the audience. In software development, on the other hand, programmers have
to keep in mind the needs of at least three distinct audiences: The machine
who interprets the code, the programmer who maintains the code, and the
user who runs the code.

Answer RQ2: Yes, development activities can be mapped to writing ac-
tivities.

4.3 RQ3: Do programmers use writing strategies?

To answer RQ3, we analyzed the interviews for indicators of writing strategies
(cf. Section 2). We found that the strategies that exist for writing are also used
in software development, and that the participants switch strategies to adjust
to different problems and environments. In Table 4, we present the writing
strategies that participants described, including the scenarios in which they
are used. In the following, we explain each strategy in detail.

4.3.1 Spontaneous

The spontaneous strategy is often mentioned in context of private program-
ming projects, as P9 describes: “If I’m building something just for myself, it
tends to be very unstructured. Because usually I’m doing it for my enjoyment,
right? [...] Usually that’s not in architectural diagrams.” P9 derives joy from
the process of coding itself and is less interested in careful planning. P11 de-
scribes similar differences between their development process at work and in
private: “[In private] I take it less seriously (laughs). [...] I don’t think through
the architecture that much, but just sit down and start. [...] The deeper you



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 29

are inside the project, the more of the architecture shows itself.” The notion
that the structure of the project reveals itself to the writer instead of being
carefully crafted is typical for the spontaneous strategy (Sennewald, 2021).

Interestingly, this also occurs in professional projects: “Decisions about the
architecture unfold themselves once you start writing” (P6). P14 also describes
their project similarly: “It gradually developed itself into a simple object-
oriented design. Nothing too complex and I didn’t plan it beforehand, but it
just so happened that that approach worked best.”

P13 uses the spontaneous strategy for exploration: “If you want to try some-
thing out, I think that jumping right into it is the only right approach, because
it takes away a lot of blocks. So if you just want to look at a new framework,
then go! On with it!” Thus, also in professional contexts, the spontaneous
strategy has its place.

4.3.2 Planning

The planning strategy often occurs in the context of classical software engi-
neering projects, in which programmers work in a team with a clearly defined
workflow, be it sequential or agile. P5 and P13 both talk about how they al-
ready have very clear plans in their mind, down to the level of ‘imaginary
pseudocode’ (P13), before they even get a task assigned. P7 and P10 like to lay
out a plan in comments before they start coding. P8 explains their planning
as follows: “I think about that beforehand, what sub-functions I need to have
that main functionality, and then, well, it’s four or five lines of code per sub-
function.” P15 also explains how they create their plans: “I look at the feature:
What should happen next? What is the basic idea? With that, I build a road
map, and then I just have to implement that.” Thus, the planning strategy
also exists, and it seems to best fit a well-defined workflow.

4.3.3 Multiple Versions

P14 explains that their projects often contain complete rewrites, sometimes up
to four versions. P14 prefers creating a minimal viable product for the first idea,
because “if it turns out to be garbage, it is easy to discard such a throwaway-
prototype”. Thus, the idea that early versions are disposable is an advantage,
which P3 describes as well: “I can just start and write dirtily, but productively.
And once I see that the idea has some substance and could become a great
project, I start over.” P13 also applies this strategy in a professional setting: “It
is very much possible that, once you test your very early mega-alpha-version,
you realize that the way data is handled is completely wrong or does not fit
the use case, and then it can happen that you tear it all down and start over.”
Here, the strategy might not be the most desired path, but is still applied to
avoid more severe problems.

However, there are also cases in which this strategy is explicitly forbidden.
P2 mentions that “[w]e program in a way that has to work on the first try. If
anything goes wrong, well, then we didn’t have enough time.” P7 states on a



30 Belinda Schantong et al.

similar case: “The motto at the time was: ‘There have already been millions
invested in development time. It needs to be further developed; it must not
be rewritten!’ ” In the end, the entire project was cancelled due to the poor
quality of the codebase. It might be that in these cases, allowing multiple
versions could actually be beneficial to decrease development time. Thus, the
multiple versions strategy exists, but is not always preferred.

4.3.4 Editorial

This strategy is similar to iterative development, which we found in the in-
terviews. P9 works explicitly with a ‘minimum viable product’: “Once [...] we
knew that it could work, [...] we iterated and added features.” P14 also creates
a ‘smallest possible prototype’ for a feature, focusing on getting it to work
before expanding on it step by step. P8 too describes their process as creating
the rough core structure of the program, before editing, reworking and adding
functionality to that core. In contrast to the multiple versions strategy, the
participants here do not ‘tear it all down’ or ‘start over’, but they gradually
add to their rough first draft.

P5 describes an editorial process from a case which was rather unusual
for them: “I inherited that code, which was a mess. And thus, there basically
arose a big refactoring, where a lot of new code was produced without much
of a plan beforehand, but was really put together piece by piece.” Here, they
use an editorial approach, developing the code ‘piece by piece’, ‘without much
of a plan’, even though planning would usually be the strategy they prefer.
Thus, programmers can adjust their strategy to the task at hand.

4.3.5 Chaotic

This strategy is quite pronounced with P4. At an early point in the interview,
they described their process as ‘back and forth programming’. When asked
what that meant, they explained that they did not really undergo a design
process, but thought of a feature they found interesting, went to research how
to do such a feature and then implemented it, before thinking of the next
thing. When they ran into trouble, they just skipped that part for the time
being and worked on something else.

P11 also tends to do several things in parallel, but with a more focused
strategy to avoid task switching too often: “It’s a phenomenon when working
on several projects at once, that you, for example, focus on one thing, then
you have to wait for tests, and then you need to flip that switch in your head,
to get into the other project with a completely different problem at hand,
where you need to immerse yourself in that again”, they explain. Thus, we
find some evidence that the chaotic strategy exists, but it might also be seen
as a necessity to increase productivity.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 31

4.3.6 Summary

We found that programmers use strategies that correspond to five major writ-
ing strategies. Their usage depends on different factors, such as working en-
vironment (e.g., planning is favored in larger teams), project goals (e.g., the
spontaneous strategy is used to explore new frameworks), whether a project is
seen by other people (e.g., the multiple versions approach for private projects),
and the size of a project (e.g., small projects can more easily be written with
the spontaneous strategy). This matches with the results of Whalley and
Kasto (2014), who observed that beginner programmers use different plan-
ning strategies based on their personal preferences, but that especially higher
performing students were also able to adjust their strategy based on the com-
plexity of the task. With our sample of more experienced developers, we found
a higher variance of viable strategies and how they were applied. Therefore, our
results show that experienced developers can adapt their strategy to changes
in the development process, thereby avoiding loss of productivity caused by
inefficient strategies.

Answer RQ3: Yes, programmers use known writing strategies in their
development process and adapt their strategy to the context of the devel-
opment task.

5 Implications

Our interviews revealed that (i) programmer’s block exists and has similar
causes as writer’s block, (ii) writing processes and software development share
common activities, (iii) writing strategies are also applicable for software de-
velopment, and (iv) programmers can select a suitable strategy depending on
their needs. This allows us to infer recommendations to prevent and resolve
programmer’s block from writing research.

Education and Writing Strategies Programmers use established writing strate-
gies, but the same is not necessarily true for less experienced programmers.
Writing researchers found that preventive instruction ameliorates many writ-
ing problems (Hjortshoj, 2019), and the same might also count for program-
ming learning. Preventive instruction would mean to teach realistic processes
and strategies to programming learners that leave room for the variance of
working situations that developers might encounter later. Contrasting this to
current software-engineering education, we are not aware that similar strate-
gies are taught or even the presence of programmers’ block is discussed (not to
mention how to resolve one). Writing strategies can also benefit programming
instructors. As Whalley and Kasto (2014) point out, planning is usually seen
as the preferred strategy. But it can be difficult to account for students who
are reluctant to do that. Knowledge about writing strategies enables writ-
ing instructors to better understand those students and help them broaden



32 Belinda Schantong et al.

their range of strategies (Sennewald, 2021), which could also be relevant for
programming.

Thus, we recommend further studies to carve out explicit writing strategies
to teach them early on in undergraduate curricula. This may well integrate to
the software life cycle, as we found that blocks occur at intersections of phases.
Hence, we see large potential for productivity gains with proper teaching.

We have also found some insights about the software development process
which are mostly absent from current models suggested for teaching, espe-
cially that researching activities are important during software development.
It might be beneficial for programming novices to learn more explicitly that
researching is a relevant and normal part of the process.

(Automated) Early Detection of Programmer’s Block The existence of blocks
that we identified motivates new methods and tools for reliably detecting them
early on to reduce unproductive time. Since each block is different, we need
to analyze the current situation of the development process. Once a developer
recognizes a productivity drop, guiding questions to the developer might be
helpful to clarify the situation for deriving the kind of block. Here, we can
draw again from writing research, for example (Hjortshoj, 2019): When did the
block first occur, in what stage of the project? What kinds of projects could you
complete more easily, and what makes this one more difficult? Do you have a
central goal and a viable plan for the structure? With more dedicated research
on programmer’s block, these questions could be better tailored to the exact
blocks that programmers encounter. A long term goal of this research could
be to detect and address programmer’s block early with tool support (e.g.,
by analyzing code contributions or keystrokes). With the advent of coding
assistants, such as ChatGPT or CoPilot, AI-assistance may not solely focus
on code generation, but may be used to state such questions to the programmer
to quickly detect blocks and collect information about the cause.

Resolution guidelines for detected programmer’s block Once a programmer’s
block has been detected, different options may resolve this non-productive
phase. First, encouraging programmers to switch to a different strategy rep-
resents an adaption of a successfully proved resolution in writing (Hjortshoj,
2019; Sennewald, 2021). Programmers already do that, and explicitly remind-
ing them to switch strategies may have a huge impact on productivity.

Second, providing ample opportunity to talk to other developers about
one’s projects and potential issues may help, as writing research found that
it can be difficult to identify and revise one’s own habitual strategies that are
not working (Hjortshoj, 2019). Although such advice does not sound surprising
at first, strongly encouraging it (rather than having an incidental successful
coffee break) might prove to be especially effective in case of blocks.

Third, tackling the root cause of a block is also a suggested resolution
strategy (Rose, 1984). The aforementioned guiding questions are key to analyze
the cause of a block and to select a suitable strategy to resolve it. For instance,
the conversation with an AI stating such questions could quickly point to an



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 33

unclear or too large user story, preventing the programmer from implementing
it. The suggested resolution may then be revising the story first instead of
forcing the implementation of it.

6 Threats to Validity

Like for all empirical studies, there are threats to validity. First, external
validity is naturally limited by our sample. To mitigate this threat, we com-
puted an information threshold to identify whether our sample saturated in
the identified problems during software development. However, since we are
using a constructivist approach, our results are naturally limited to similar
contexts in which they were conducted (Hoda, 2022). With regard to our
sample, this means that the selection of participants is influenced by our ex-
periences and our means of recruitment. While we did achieve some diversity
in the backgrounds of our participants regarding their experience and work-
ing environments, and while we made sure to achieve a saturated sample, this
study is not able to cover all possible perspectives. Nevertheless, since we focus
on creating new knowledge to develop a theory of programmer’s block, this
does not diminish our results. Finally, our insights are currently constrained
to programming experts. We can also imagine a follow up study, widening the
external validity to programming beginners: It would be interesting to evalu-
ate the take of beginning programmers on the actual translation process, and
whether they simply lack experience to run into an actual block.

To ensure internal validity without biasing participants, we defined the
questions for a semi-structured interview beforehand, starting from general
to specific questions. We carefully designed the questions according to the
state-of-the-art in writing research regarding writer’s block and writing ac-
tivities. The interviewers followed these questions for each interview to avoid
influencing the participants by mentioning blocks. Since neither of the terms
’block’, ’programmer’s block’, ’writer’s block’, or ’writing text’ at all were
mentioned during the interviews until the very last question (unless the par-
ticipants brought them up themselves), it is unlikely that the interviews were
influenced by the participants potentially knowing about discussions of pro-
grammer’s block or comparisons between programming and writing.

Since our method of qualitative data analysis is inherently subjective, we
cannot just get rid of it completely, so our conclusions are influenced by our
knowledge of writing research and the software development process. With our
constructivist epistemological stance (cf. Section 3), the results are a product
of said influences. In this case, the first author who did the majority of the
initial coding for the analysis already had a background in writing counselling
and was viewing the data through that lens. We see this background, however,
as a strength rather than as a possible threat to validity. We did, however,
reduce subjectivity as far as possible, by following a structured approach. We
regularly exchanged our understanding of the data within the author group,
and compared and adjusted our mappings accordingly.



34 Belinda Schantong et al.

7 Conclusion

Programmer’s block indeed exists beyond anecdotal reports. Experienced pro-
grammers can get stuck on their task and are unable to complete it, even
though they have everything they need. This is comparable to the concept
of writer’s block. But even beyond that, we found comparable processes and
strategies in writing and software development. From these similarities, we can
draw actionables on how to detect and resolve blocks, as well as better educate
developers to learn proper coping strategies in case of unproductivity. In the
future, it is interesting to further compare writing and software development,
for example, to identify whether a developer is currently experiencing a block
and if so whether tailored strategies help in solving or avoiding blocks.

Declarations

Conflict of Interest

No funding was received to assist with the preparation of this manuscript and
the authors do not have any financial interests to declare. Janet Siegmund is
part of the journal’s editorial board. Norbert Siegmund has published work
with advisory board member Tim Menzies within the past three years.

Data Availability

All data is available at the project’s Web site: https://anonymous.4open.
science/r/WritersBlock-8C92. Once the manuscript is published, we pro-
vide a persistent link on Zenodo.

Consent and Ethics Approval

All participants were received a participant information detailing the contents,
conduct and purpose of the interview, a privacy policy detailing how their
personal data would be processed and protected, as well as information on
how the audio of the interviews would be recorded. All participants gave their
written consent by signing these three documents before participating in the
interview, and again gave verbal consent immediately before the interview
started. All of our proceedings are in line with the GDPR and guidelines from
the German Research Foundation. No ethics approval is required for this type
of study at our institution.

Acknowledgements Special thanks to all the participants in the interviews.



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 35

References

Adams-Tukiendorf M (2008) Overcoming Writer’s Block in an MA Seminar.
Zeitschrift Schreiben (8):1–10, URL https://zeitschrift-schreiben.

ch/2008/#adams

Amin A, Basri S, Hassan MF, Rehman M (2018) A Snapshot of 26 Years of
Research on Creativity in Software Engineering - A Systematic Literature
Review. In: Kim KJ, Joukov N (eds) Mobile and Wireless Technologies 2017,
Springer, Singapore, Lecture Notes in Electrical Engineering, pp 430–438,
DOI 10.1007/978-981-10-5281-1 47

Bastug M, Ertem IS, Keskin HK (2017) A phenomenological research study
on writer’s block: causes, processes, and results. Education + Training
59(6):605–618, DOI 10.1108/ET-11-2016-0169, URL https://doi.org/

10.1108/ET-11-2016-0169

Beniamini G, Gingichashvili S, Orbach AK, Feitelson DG (2017) Meaningful
Identifier Names: The Case of Single-Letter Variables. In: 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC), pp
45–54, DOI 10.1109/ICPC.2017.18, URL https://ieeexplore.ieee.org/

abstract/document/7961503

Bennedsen J, Caspersen ME (2005) Revealing the programming process. In:
Proceedings of the 36th SIGCSE technical symposium on Computer science
education, pp 186–190

Bers MU (2019) Coding as Another Language: A Pedagogical Approach for
Teaching Computer Science in Early Childhood. Journal of Computers in
Education 6(4):499–528, DOI 10.1007/s40692-019-00147-3, URL https://

doi.org/10.1007/s40692-019-00147-3

Bers MU, Blake-West J, Kapoor MG, Levinson T, Relkin E, Unahalekhaka
A, Yang Z (2023) Coding as another language: Research-based cur-
riculum for early childhood computer science. Early Childhood Re-
search Quarterly 64(3):394–404, DOI https://doi.org/10.1016/j.ecresq.2023.
05.002, URL https://www.sciencedirect.com/science/article/pii/

S0885200623000571

Bussell B, Taylor S (2006) Software development as a collaborative writing
project. In: Abrahamsson P, Marchesi M, Succi G (eds) Extreme Program-
ming and Agile Processes in Software Engineering, Springer-Verlag, Berlin,
Heidelberg, pp 21–31

Castelhano J, Duarte I, Ferreira C, Duraes J, Madeira H, Castelo-Branco M
(2019) The Role of the Insula in Intuitive Expert Bug Detection in Computer
Code: An fMRI Study. Brain Imaging and Behavior 13(3):623–637, DOI
https://doi.org/10.1007/s11682-018-9885-1

Ciancarini P, Masyagin S, Succi G (2020) Software design as story telling:
Reflecting on the work of italo calvino. In: Proceedings of the 2020 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, ACM Press, pp 195–208, URL
https://doi.org/10.1145/3426428.3426925



36 Belinda Schantong et al.

Ciancarini P, Farina M, Okonicha O, Smirnova M, Succi G (2023) Soft-
ware as storytelling: A systematic literature review. Computer Science Re-
view 47:100517:1 – 100517:21, URL https://doi.org/10.1016/j.cosrev.

2022.100517

Crawford B, de la Barra CL, Soto R, Monfroy E (2012) Agile software engineer-
ing as creative work. In: 2012 5th International Workshop on Co-operative
and Human Aspects of Software Engineering (CHASE), IEEE, pp 20–26,
DOI 10.1109/CHASE.2012.6223015

Dengscherz S (2021) Considering individual and situational variation in mod-
eling writing processes. In: Gustafsson M, Eriksson A (eds) Negotiating the
Intersections of Writing and Writing Instruction, The WAC Clearinghouse,
pp 165–194, URL https://doi.org/10.37514/INT-B.2022.1466.2.06

Devaney K, Johnson J (2017) Storytelling as a Key Enabler for Systems Engi-
neering. International Council on Systems Engineering 27(1):894–907, URL
https://doi.org/10.1002/j.2334-5837.2017.00401.x

Dijkstra E (1982) How do we Tell Truths that Might Hurt? In: Selected Writ-
ings on Computing: A Personal Perspective, Springer-Verlag, pp 129–131

Endres M, Fansher M, Shah P, Weimer W (2021) To Read or to Rotate?
Comparing the Effects of Technical Reading Training and Spatial Skills
Training on Novice Programming Ability. In: Proc. Europ. Software Engi-
neering Conf./Foundations of Software Engineering (ESEC/FSE), ACM, p
754–766, DOI 10.1145/3468264.3468583, URL https://doi.org/10.1145/

3468264.3468583

Flaherty AW (2005) The Midnight Disease: The Drive to Write, Writer’s Block,
and the Creative Brain. Houghton Mifflin Harcourt

Flower L, Hayes JR (1981) A cognitive process theory of writing. College
Composition and Communication 32(4):365–387

Floyd B, Santander T, Weimer W (2017) Decoding the Representation of
Code in the Brain: An fMRI Study of Code Review and Expertise. In:
Proc. Int. Conf. Software Engineering (ICSE), IEEE, pp 175–186, DOI
10.1109/ICSE.2017.24, URL https://doi.org/10.1109/ICSE.2017.24

Forsgren N, Storey MA, Maddila C, Zimmermann T, Houck B, Butler J (2021)
The SPACE of Developer Productivity: There’s more to it than you think.
Queue 19(1):Pages 10:20–Pages 10:48, DOI 10.1145/3454122.3454124, URL
https://dl.acm.org/doi/10.1145/3454122.3454124

Fucci D, Scanniello G, Romano S, Juristo N (2018) Need for Sleep: The Impact
of a Night of Sleep Deprivation on Novice Developers’ Performance. IEEE
Transactions on Software Engineering 42(42):42

Gallay LH (2013) Understanding and treating creative block in professional
artists. Alliant International University

Gantenbein RE (1989) Programming as process: a “novel” approach to teach-
ing programming. ACM SIGCSE Bulletin 21(1):22–26

Girardi D, Lanubile F, Novielli N, Serebrenik A (2022) Emotions and Perceived
Productivity of Software Developers at the Workplace. IEEE Transactions
on Software Engineering 48(9):3326–3341, DOI 10.1109/TSE.2021.3087906,
conference Name: IEEE Transactions on Software Engineering



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 37

Graziotin D, Fagerholm F (2019) Happiness and the productivity of
software engineers. In: Sadowski C, Zimmermann T (eds) Rethinking
Productivity in Software Engineering, Apress, Berkeley, CA, pp 109–
124, DOI 10.1007/978-1-4842-4221-6 10, URL https://doi.org/10.1007/

978-1-4842-4221-6_10

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2017a) Consequences
of unhappiness while developing software. In: 2017 IEEE/ACM 2nd Inter-
national Workshop on Emotion Awareness in Software Engineering (SEmo-
tion), IEEE, pp 42–47, DOI 10.1109/SEmotion.2017.5

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2017b) On the Un-
happiness of Software Developers. In: Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, ACM,
pp 324–333, URL https://doi.org/10.1145/3084226.3084242

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2017c) Unhappy devel-
opers: Bad for themselves, bad for process, and bad for software product.
In: 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), IEEE, pp 362–364, DOI 10.1109/ICSE-C.2017.104

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2018) What hap-
pens when software developers are (un)happy. Journal of Systems and
Software 140:32–47, DOI 10.1016/j.jss.2018.02.041, URL https://www.

sciencedirect.com/science/article/pii/S0164121218300323

Grieshammer E, Liebetanz F, Peters N, Lohmann B (2019) Zukunftsmod-
ell Schreibberatung: Eine Anleitung zur Begleitung von Schreibenden im
Studium. Schneider Verlag Hohengehren, Baltmannsweiler, Germany

Groeneveld W, Luyten L, Vennekens J, Aerts K (2021) Exploring the Role
of Creativity in Software Engineering. In: 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering: Software Engineering in Society
(ICSE-SEIS), IEEE, pp 1–9, DOI 10.1109/ICSE-SEIS52602.2021.00009

Guest G, Namey E, Chen M (2020) A simple method to assess and report
thematic saturation in qualitative research. PloS one 15(5):e0232076

Gustavii B (2017) How to write and illustrate a scientific paper. Cambridge
University Press, 3rd Edition

Hassenfeld ZR, Bers MU (2020) Debugging the Writing Process: Lessons From
a Comparison of Students’ Coding and Writing Practices. The Reading
Teacher 73(6):735–746, URL https://doi.org/10.1002/trtr.1885

Hassenfeld ZR, Govind M, de Ruiter LE, Bers MU (2020) If You Can Pro-
gram You Can Write: Learning Introductory Programming Across Liter-
acay Levels. J of Information Technology Education: Research 19:65–85,
DOI 10.28945/4509

Hayes JR (1996) A new framework for understanding cognition and affect in
writing. In: Levy CM, Ransdell S (eds) The Science of Writing. Theories,
Methods, Individual Differences, and Applications, Routledge, pp 1–27

Hayes JR (2012) Modeling and Remodeling Writing. Written Communication
29(3):369–388, DOI 10.1177/0741088312451260, URL https://doi.org/

10.1177/0741088312451260



38 Belinda Schantong et al.

Hermans F, Aldewereld M (2017) Programming is Writing is Programming.
In: Companion to the first International Conference on the Art, Science and
Engineering of Programming, ACM, pp 1–8, URL https://doi.org/10.

1145/3079368.3079413

Hjortshoj K (2001) Understanding Writing Blocks. Oxford University Press
on Demand

Hjortshoj K (2019) From Student to Scholar. A Guide to Writing through the
Dissertation Stage. Routledge

Hoda R (2022) Socio-technical grounded theory for software engineering. IEEE
Transactions on Software Engineering 48(10):3808–3832, DOI 10.1109/TSE.
2021.3106280

Hofmeister J, Siegmund J, Holt DV (2017) Shorter identifier names take
longer to comprehend. In: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), IEEE, Kla-
genfurt, Austria, pp 217–227, DOI 10.1109/SANER.2017.7884623, URL
http://ieeexplore.ieee.org/document/7884623/

Hongo T, Yakou T, Yoshinaga K, Kano T, Miyazaki M, Hanakawa T (2022)
Structural neuroplasticity in computer programming beginners. Cerebral
Cortex 33:5375–5381, DOI 10.1093/cercor/bhac425

Huang Y, Liu X, Krueger R, Santander T, Hu X, Leach K, Weimer W (2019)
Distilling Neural Representations of Data Structure Manipulation using
fMRI and fNIRS. In: Proc. Int. Conf. Software Engineering (ICSE), IEEE,
pp 396–407, URL https://doi.org/10.1109/ICSE.2019.00053

Hudson W (2013) Card Sorting. In: Foundation ID (ed) The Encyclopedia of
Human-Computer Interaction, Interaction Design Foundation

Joury A (2020) How to overcome coder’s block. when you’re
scared of your console. URL https://towardsdatascience.com/

how-to-overcome-coders-block-51ece9dafe00

Knight H (2017) What Writers Can Teach Program-
mers | HackerNoon. URL https://hackernoon.com/

how-to-solve-programmers-block-18363c040656

Kovacevic A (2021) How to beat coder’s block – five tips to
help you stay productive. URL https://www.freecodecamp.org/news/

how-to-beat-coders-block-and-stay-productive/

LaToza TD, Arab M, Loksa D, Ko AJ (2020) Explicit Program-
ming Strategies. Empirical Software Engineering 25(4):2416–2449, DOI
10.1007/s10664-020-09810-1, URL http://arxiv.org/abs/1911.00046,
arXiv:1911.00046 [cs]

Lee J (2015) 5 ways to beat programmer’s block right now. URL https://www.

makeuseof.com/tag/5-ways-beat-programmers-block-right-now/

Lee S, Matteson A, Hooshyar D, Kim S, Jung J, Nam G, Lim H (2016) Com-
paring Programming Language Comprehension between Novice and Expert
Programmers Using EEG Analysis. In: Proc. Int. Conf. Bioinformatics and
Bioengineering (BIBE), IEEE, pp 350–355

Lindsay D (2020) Scientific writing = thinking in words. CSIRO Publishing,
2nd Edition



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 39

Liu YF, Kim J, Wilson C, Bedny M (2020) Computer Code Comprehen-
sion Shares Neural Resources with Formal Logical Inference in the Fronto-
Parietal Network. eLive 9:e59340, URL https://doi.org/10.1101/2020.

05.24.096180

Medeiros J, Couceiro R, Castelhano J, Branco MC, Duarte G, Duarte C,
Durães J, Madeira H, Carvalho P, Teixeira C (2019) Software Code Com-
plexity Assessment Using EEG Features. In: International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp
1413–1416, DOI 10.1109/EMBC.2019.8856283

Meyer AN, Barr ET, Bird C, Zimmermann T (2021) Today Was a Good
Day: The Daily Life of Software Developers. IEEE Transactions on Software
Engineering 47(5):863–880, DOI 10.1109/TSE.2019.2904957

Mohanani R, Ram P, Lasisi A, Ralph P, Turhan B (2017) Perceptions of
Creativity in Software Engineering Research and Practice. In: 2017 43rd
Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), IEEE, pp 210–217, DOI 10.1109/SEAA.2017.21

Müller SC, Fritz T (2015) Stuck and Frustrated or in Flow and Happy: Sens-
ing Developers’ Emotions and Progress. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, IEEE, pp 688–699, URL
https://doi.org/10.1109/ICSE.2015.334

Pasqualis L (2017) Understanding and overcom-
ing coder’s block. URL https://dev.to/lpasqualis/

understanding-and-overcoming-coders-block-5m6

Peitek N, Apel S, Parnin C, Brechmann A, Siegmund J (2021) Program
Comprehension and Code Complexity Metrics: An fMRI Study. In: Proc.
Int. Conf. Software Engineering (ICSE), IEEE, pp 524–536, URL https:

//doi.org/10.1109/ICSE43902.2021.00056

Petre M (2010) Mental imagery and software visualization in high-performance
software development teams. Journal of Visual Languages & Computing
21(3):171–183, URL https://doi.org/10.1016/j.jvlc.2009.11.001

Prat CS, Madhyastha TM, Mottarella MJ, Kuo CH (2020) Relating Nat-
ural Language Aptitude to Individual Differences in Learning Program-
ming Languages. Scientific Reports 10(1):1–10, DOI https://doi.org/10.
1038/s41598-020-60661-8

de Raadt M, Watson R, Toleman M (2009) Teaching and assessing program-
ming strategies explicitly. New Zealand 95

Robins AV (2019) Novice Programmers and Introductory Programming. In:
Fincher SA, Robins AV (eds) The Cambridge Handbook of Computing Ed-
ucation Research, Cambridge University Press, pp 327–376

Robins AV, Margulieux LE, Morrison BB (2019) Cognitive Sciences for Com-
puting Education. Learning Sciences Faculty Publications 22, URL https:

//scholarworks.gsu.edu/ltd_facpub/22

Rose M (1984) Writer’s Block: The Cognitive Dimension. Carbondale (Ill.)
Rose M, McClafferty KA (2001) A Call for the Teaching of Writing in
Graduate Education. Educational Researcher 30(2):27–33, DOI 10.3102/
0013189X030002027, URL http://journals.sagepub.com/doi/10.3102/



40 Belinda Schantong et al.

0013189X030002027

Sadowski C, Zimmermann T (2019) Rethinking Productivity in Software En-
gineering. Apress Berkeley, CA

Saraste MK (2021) Playing as a Creative Tool for a Visual Artist: It’s About
Time-Teatime! Acrylic Painting as a Case Study. PhD thesis, Tampere Uni-
versity of Applied Sciences

Sarkar S, Parnin C (2017) Characterizing and Predicting Mental Fatigue dur-
ing Programming Tasks. In: 2017 IEEE/ACM 2nd International Workshop
on Emotion Awareness in Software Engineering (SEmotion), IEEE, pp 32–
37, URL https://doi.org/10.1109/SEmotion.2017.2

Schankin A, Berger A, Holt DV, Hofmeister JC, Riedel T, Beigl M (2018)
Descriptive compound identifier names improve source code comprehension.
In: Proceedings of the 26th Conference on Program Comprehension, ACM,
Gothenburg Sweden, pp 31–40, DOI 10.1145/3196321.3196332, URL https:

//dl.acm.org/doi/10.1145/3196321.3196332

Schulte C, Clear T, Taherkhani A, Busjahn T, Paterson JH (2010) An intro-
duction to program comprehension for computer science educators. In: Pro-
ceedings of the 2010 ITiCSE working group reports, ACM, Ankara Turkey,
pp 65–86, DOI 10.1145/1971681.1971687, URL https://dl.acm.org/doi/

10.1145/1971681.1971687

Scott JC (2016) Defeating the muse: Advanced songwriting pedagogy and
creative block. In: The Routledge Research Companion to Popular Music
Education, Routledge, num Pages: 13

Sennewald N (2021) Writer Types, Writing Strategies: Introducing a Non-
English Text, Schreiben und Denken, to a New Audience. The Writ-
ing Center Journal 38(3):165–178, URL https://www.jstor.org/stable/

27108280

Shaughnessy MP (1977) Errors and expectations: a guide for the teacher of
basic writing. Oxford University Press

Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake
G, Brechmann A (2014a) Understanding Understanding Source Code with
Functional Magnetic Resonance Imaging. In: Proc. Int. Conf. Software En-
gineering (ICSE), ACM, pp 378–389, URL https://doi.org/10.1145/

2568225.2568252

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014b) Measuring
and Modeling Programming Experience. Empirical Software Engineering
19(5):1299–1334, URL https://doi.org/10.1007/s10664-013-9286-4

Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Kästner C, Begel A,
Bethmann A, Brechmann A (2017) Measuring Neural Efficiency of Program
Comprehension. In: Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE), ACM, pp 140–150, URL https://

doi.org/10.1145/3106237.3106268

Software P (2021) Programmer’s block: it happens to the
best of us. URL https://www.parkersoftware.com/blog/

programmers-block-it-happens-to-the-best-of-us/



Toward a Theory on Programmer’s Block Inspired by Writer’s Block 41

Tompkins GE (1994) Teaching writing: Balancing Process and Product.
Macmillan College

Videla A (2018) Lector in Codigo or The Role of the Reader. In: Conference
Companion of the 2nd International Conference on Art, Science, and En-
gineering of Programming, ACM, pp 180–186, URL https://doi.org/10.

1145/3191697.3214326

Whalley J, Kasto N (2014) A qualitative think-aloud study of novice pro-
grammers’ code writing strategies. In: Proceedings of the 2014 Confer-
ence on Innovation & Technology in Computer Science Education, Asso-
ciation for Computing Machinery, New York, NY, USA, ITiCSE ’14, p
279–284, DOI 10.1145/2591708.2591762, URL https://doi.org/10.1145/

2591708.2591762

Williams JD (2003) Preparing to teach writing: Research, theory, and practice.
Routledge

Wymann C (2021) Mind Your Writing: How to be a Professional Academic
Writer. Verlag Barbara Budrich, DOI 10.3224/84742459, URL https://

library.oapen.org/handle/20.500.12657/60254

Züger M, Corley C, Meyer AN, Li B, Fritz T, Shepherd D, Augustine V, Francis
P, Kraft N, Snipes W (2017) Reducing Interruptions at Work: A Large-
Scale Field Study of FlowLight. In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, ACM, pp 61–72, URL https:

//doi.org/10.1145/3025453.3025662


