REyeker: Remote Eye Tracker

Jonas Mucke
jonas.mucke@s2018.tu-chemnitz.de
Chemnitz University of Technology

Germany

Marc Schwarzkopf
marc.schwarzkopf@mb.tu-
chemnitz.de
Chemnitz University of Technology

Janet Siegmund
siegj@hrz.tu-chemnitz.de
Chemnitz University of Technology
Germany

Germany

ABSTRACT

Eye tracking allows us to shed light on how developers read and
understand source code and how that is linked to cognitive pro-
cesses. However, studies with eye trackers are usually tied to a
laboratory, requiring to observe participants one at a time, which
is especially challenging in the current pandemic. To allow for safe
and parallel observation, we present our tool REyeker, which allows
researchers to observe developers remotely while they understand
source code from their own computer without having to directly
interact with the experimenter. The original image is blurred to
distort text regions and disable legibility, requiring participants to
click on areas of interest to deblur them to make them readable.
While REyeker naturally can only track eye movements to a lim-
ited degree, it allows researchers to get a basic understanding of
developers’ reading behavior.

CCS CONCEPTS

« Human-centered computing — User studies.

KEYWORDS

Eye tracking, Visual attention, Comprehension, Program learning,
Mouse-contingent interface

ACM Reference Format:

Jonas Mucke, Marc Schwarzkopf, and Janet Siegmund. 2021. REyeker: Re-
mote Eye Tracker. In ETRA °21: 2021 Symposium on Eye Tracking Research
and Applications (ETRA °21 Short Papers), May 25-27, 2021, Virtual Event, Ger-
many. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3448018.
3457423

1 INTRODUCTION

Eye tracking has successfully made its way into programming re-
search, for example, to understand how code style can affect pro-
grammers’ comprehension [Bauer et al. 2019; Sharif and Maletic
2010], how expertise modulates reading behavior [Peitek et al. 2020],
or how eye movements can shed light on underlying cognitive pro-
cesses [Fakhoury et al. 2018].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ETRA °21 Short Papers, May 25-27, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8345-5/21/05...$15.00
https://doi.org/10.1145/3448018.3457423

However, eye tracking experiments are typically time-consuming
and require to measure one participant at a time, with the experi-
menter and the participant being in the same room to set everything
up. Especially in the current pandemic, it is difficult to find volun-
teers and conduct safe measurements.

To nevertheless conduct safe studies, a remote approach is nec-
essary, for example, by using a use webcam-based eye tracking or
a restricted focus viewer paradigm [Jansen et al. 2003].

First, with webcam-based eye tracking, we would use the we-
bcam of participants’ devices (e.g., personal computer or smart-
phone), but it comes with several challenges. From the technical
side, gathering reliable data is difficult, because several factors influ-
ence data quality, such as the resolution of the webcam, the lighting
conditions, the distance to the webcam, or the angle to the webcam.
Furthermore, protecting the private data of participants is a delicate
matter and can potentially lead to conflicts.

Second, a restricted focus viewer shows a participant a blurred
image that is deblurred only at the location of visual attention. Thus,
a participant can only perceive one certain area of interest at a time.
Naturally, this has less similarity to actual eye-tracking data than a
webcam-based approach, but is less intrusive for participants. Fur-
thermore, it is quicker to implement, which is an important factor
in the current pandemic situation. Thus, we decided to implement
a restricted focus viewer paradigm.

Following this approach, we decided to develop REyeker, a re-
mote eye tracking tool for conducting safe research with a larger
group of participants. It is a cursor-based technique, which relates
visual focus and cursor position by using a viewing-window, blur-
ring all areas around this viewing window. The restricted focus
viewer was the first system to use this method [Jansen et al. 2003].
It blurs visual stimuli, and only a small area is clear and can be
perceived by participants. Participants can move this area in the
image by moving the mouse to deblur other image sections. An
extension of the restricted focus viewer is the BubbleView [Kim
et al. 2017]. Instead of deblurring visual information by moving
the mouse, the BubbleView deblurs only a section on which was
clicked. This process more accurately represents the way visual
information is received, as the background tends to be blocked out
by peripheral vision and only points of visual focus are viewed
more closely, which in this case is achieved by deblurring. This
approach can reasonably approximate fixations, compared to eye
tracking system [Kim et al. 2017].

However, these alternatives have their limits when tracking the
eye movements of programmers when reading the source code,
because the BubbleView only supports a circular deblurred area.
For reading source code, programmers typically read entire lines,
which can be better approximated with an oval deblurred area.

https://doi.org/10.1145/3448018.3457423
https://doi.org/10.1145/3448018.3457423
https://doi.org/10.1145/3448018.3457423

ETRA 21 Short Papers, May 25-27, 2021, Virtual Event, Germany

To let us remotely observe the reading behavior of programmers,
we adapted the underlying idea of the BubbleView in our tool
REyeker, which is available at the project’s Web site !. Specifically,
we offer different shapes for the deblurred area and a customizable
blur, which both can be adjusted depending a concrete study.

In this paper, we give an overview of how REyeker works, in-
cluding important details from the implementation and how exper-
imenters can adjust settings according to their needs.

2 REYEKER - AN OVERVIEW

In Figure 1, we show an example of how participants view source
code. The deblurred area in Figure 1(a) almost entails one entire
line of source code, which approximates where the participant is
looking at. By clicking on another area, the current area will be
blurred, and the clicked area will be deblurred.

The source code snippet is shown as an image, so REyeker cur-
rently does not support experiments in which participants need to
change source code. The main reason is that, as an image, we had
the best experience with fast load time and tracking accuracy, so
that we can have the best approximation to an on-site eye tracker.

To adapt the deblurred area to a concrete study, experimenters
can make several adjustments to REyeker. Specifically, the following
parameters for the deblurred area can be adjusted:

e Shape of the deblurred area: rectangle, circle, or ellipse.

o Size of the shape: The shape can have the size 0 (i.e., every-
thing is blurred) or up to the size of the image (i.e., nothing
is blurred).

o Transition: the transition between the blurred and deblurred
area can be adjusted to be rather abrupt or smooth.

o Filter: the kernel can also be adjusted as needed in either the
x or y dimension, adding a smear to the blurred areas.

In Figure 1, we illustrate different uses of the tool with different
parameters. In Figure 1(a), a weak but even blur is used. The de-
blurred area is a rectangle, showing almost the entire line. This is
particularly suitable for understanding program comprehension,
as the code structure and the instructions are the key focus. By
contrast, the settings in Figure 1(b) allow participants to read only a
rough code structure due to the strong blur. Furthermore, the shape
is a small circle with a transition area, which collects data that is
more similar to that of an on-site eye trackers. An intermediate
solution can be achieved by parameters as defined in Figure 1(c),
where code instructions can still be displayed within a small ellipse,
which, however, does not reveal as much of the code as the rec-
tangle in Figure 1(a). Another adjustment is the strong blur in the
x-axis. This can be particularly interesting when the structure of a
block or the syntax highlighting of a line should be recognizable.

2.1 Data

The data of the reading behavior of a participant are stored as x/y
coordinates with the according time stamps in ms (e.g., 187-27, 1604).
The origin of the coordinates (i.e., 0-0) are defined to be the upper
left corner. The maximum x and y values depend on the resolution
of the image that participants see (e.g., the source code). Thus, for
an image of resolution 900x1000, the maximum values are 900x1000,

!https://github.com/brains-on-code/REyeker

Jonas Mucke, Marc Schwarzkopf, and Janet Siegmund

ate static void sort(int i, int[] unsc
for (int j = i; § > 8; j--) {
int

(@)

oid sort
=i; j> @

(b)

for (dnt 4 = i; 3> @; 3--) {

(©

Figure 1: Illustration of different settings for REyeker. (a) A
rectangle, with a medium-soft transition. (b) A circle with
smooth transitions. (c) An ellipse, with abrupt transition.

depending on the resolution of the monitor, and scrolling might
be required. The time starts with the beginning of the experiment,

https://github.com/brains-on-code/REyeker

REyeker: Remote Eye Tracker

r-
public class InsertSort {
public static int[] sort(int[] unsort:

for (int i = 1; i < unsorted.lengthj

sort(i, unsorted);

return unsorted;

}

private static void sort(int i, int[] un:
for (int j =1i; § > @; §--) {

int jth

int jMinusOneElement

unsorted[§] = jMinusOneE lement;
} else {

public static veid main(String[] args)
int[] unsorted = { 3, 7, 4, 5 };
int[] result = sort(unsorted);
for (int i = @; i < result.length; i
System.out.print(result[i]);

()
~——— -
ic class InsertSort {
public static int[] sort(int[] unsort

for (int i = 1; 1 < unsorted.lengtl
sort(i, unsorted);

}
return unsorted;

private static void sort(int i,
for (int j = i; j > @; j--) {

unsorted) {

int jthelement = unsorted[j];
int jMinug lement = unsorted(j - 1
if (jthelement > jMinusOneElement)
unsorted[j - 1] = jthElement,

unsorted[§] = jMinu:

public static void main(String[] a
d={3,7

te

public class InsertSort {
c static int[] sort(int[] ume® A
for (int i = 1; i < unsorted.length; i
sort(i, unsorted);

return unsorted;

private static void sort(int i, int[] unsorted)
for (int j = i; j > @; j--) {
int jthElement = unsorted[j];
int jMinusOnetlement = unsorted[j -
(jthElement > jMinusOneElement)
unsorted[j - 1] = jthElement;
unsorted[{] = jMinusOneElement;:

int[] unsorted = { 3, 7, 4, 5
int[] r&sOIT Flunsorted)
o t

Figure 2: Heatmaps based on the click data and on the se-
lected parameter values. Each heat map is based on the set-
tings illustrated in Figure 1.

so the data describes that, after 1604 milli seconds, the participant
clicked at the position 187-27.

ETRA °21 Short Papers, May 25-27, 2021, Virtual Event, Germany

Based on these data, REyeker can produce several visualizations.
First, REyeker can create heat maps (Figure 2). In contrast to on-site
eye trackers, the heat maps have a coarser approximation at which a
participant looked at, which depends on the adjustable parameters.
For example, the heat map in Figure 2(a) corresponds to the setting
in Figure 1(a), so the shape of the areas of interest are rectangular
(size: x: 134, y: 6) and cover almost an entire line, with medium-soft
transitions (transition range: 34) between the areas of interest. This
map illustrates that a participant often looked at one specific line,
but it cannot show what within that line was of interest. For smaller
areas of interest, different shapes need to be selected and adjusted.
The elliptical shape in Figure 2(c) (size: x: 146, y: 13, transition:1)
gives us more detail what part of a line was interesting, and the
circle in Figure 2(b) (size: radius: 10, transition:77) resembles most
closely the heat map of on-site eye trackers.

A suitable setting of the parameters is important, because the
parameter settings also affect the reading behavior of participants.
Specifically, a small circle requires more clicks than a large ellipse,
because only a smaller part surrounding the center of the click
gets deblurred and is readable for participants. However, smaller
readable areas for participants also make it more difficult for par-
ticipants to read source code, because they may need to keep more
source code in their working memory (or click more often). Thus,
experimenters need to select a suitable trade off between detailed
areas of interest and resemblance to natural reading behavior of
participants. To thoroughly understand how the settings affect
the behavior of participants, comparative studies with on-site eye
trackers are necessary, which we will conduct once the corona
regulations at our institution allow it.

In addition to heat maps, REyeker can also visualize the chrono-
logical sequence of the click data, shown in Figure 3. These visu-
alizations do not depend on any of the adjustable parameters, but
only on the behavior of participants. In conjunction with the heat
maps, it can give a useful approximation of participants’ reading
behavior.

For example, in Figure 3, a participant searched all methods from
top to bottom, jumping quickly between the methods. As soon as
they found the "main" method, their behavior changed. Clicking
was done more frequently in this method. Finally, the participant
left this method and briefly looked at all other methods. Thus, we
get a basic understanding of participants’ strategy to understand
source code.

Further options for data analysis are also possible with REyeker.
For example, we are currently exploring how to define areas of
interest and transitions between these areas.

2.2 Integration into Survey Tools

To be flexible, REyeker can be integrated into different survey tools
or be run on stand-alone web servers. We have integrated it into
SoSciSurvey? to run it with our surveys. This happened by adjust-
ing small parts of the code of REyeker and by setting up some
boilerplate code in SoSciSurvey.

For adjusting the code in REyeker, we made three changes:

Zhttps://www.soscisurvey.de/

https://www.soscisurvey.de/

ETRA °21 Short Papers, May 25-27, 2021, Virtual Event, Germany

public class Student {
private String name;
200 private int age;

public Student(String name, int age) {
this.name = name;
this.age = age;

}

public int getAge() {
return age;

}

public int hadBirthday() {
o return age = age + 1;

}

public static void main(String[] args) {
Student willi = new Student("Willi", 25);
willi.hadBirthday();
System.out.print(willi.getAge());

}
}

Figure 3: Chronological sequence of click data. The black,
stepped vertical line illustrates the click sequence, starting
from top left. With each click, the vertical line moves one
step to the right.

o We defined a use case by creating a new variable in the class
UseCases. This acts as a flag to indicate which code frag-
ments need to be executed, which depends on the concrete
integration.

e We defined an adapter to connect REyeker to SoSciSurvey.
The adapter retrieves HTML elements that are defined in
SoSciSurvey, which refers to the HTML elements as internal
variables, relative paths of media files, or parameters.

o Last, the click data that are stored during runtime in REyeker
need to be serialized to be stored permanently. To this end,
we need another adapter as connection that stores the data
of the previously retrieved HTML elements. On the project’s
Web site, we provide an example of all the adjustments and
its according effects.

On the SoSciSurvey page, we made the following changes:

e We uploaded the compiled code of REyeker and media files
(e.g., images of the source code).

e When creating the questionnaire, HTML variables must be
created to store the click data of participants.

e These HTML variables then are accessed to store the click
data permanently.

In order to integrate REyeker into other tools, similar steps must
be carried out. Certain concepts, such as the SoSciSurvey variables,
differ from tool to tool, but it is also possible not to use these
variables at all and instead send the data to a separate server with
a database API. On the project’s Web site, there are more details on
integrating REyeker or running it on a stand-alone server.

3 PROGRAMMING LANGUAGE

Originally, we planned to use JavaScript, so that REyeker can be ex-
ecuted natively in browsers. However, since different web browsers
do not always implement the latest JavaScript features specified by
ECMAScript standard, writing compatible source code is difficult.
In a first version of REyeker, we implemented a work-around by

Jonas Mucke, Marc Schwarzkopf, and Janet Siegmund

using WebAssembly compiled from Rust, which also runs natively
in most browsers. This had the advantage of writing type-safe code,
but the disadvantage that a JavaScript implementation was still
needed, at least for loading the code.

Eventually, the choice fell on TypeScript. TypeScript can be
compiled into different versions of JavaScript, which makes it easy
to ensure versatile support. Furthermore, it is a statically typed
language, so supports writing type-safe code. Additionally, the
code can easily be split into different files and later compiled into
one. This supports modularization in development, so that writing
maintainable code is more straightforward than with JavaScript.

4 EVALUATION

e T = ST R e -
if (n <= 1)
return n;
J o Ry T v o -

(b)

Figure 4: Figure (a) visualizes the user view of the ongoing
evaluation study, using the following parameters: The se-
lected shape is a rectangle with a width of 200 pixels and
a height of 1 pixel. The transition range amounts to 30 pix-
els. The filter was set to 8 pixels in the x and y axis. Figure
(b) shows a heatmap of the same code snippet. It illustrates
the weighted average of all participants’ data.

Currently, we are conducting a study with REyeker to evaluate
the data that it collects and whether participants feel comfortable
enough with it during the studies. So far, the data themselves look
promising, as illustrated in Figure 4. We used the following param-
eters for this study:

e Shape of the deblurred area: rectangle

e Size of shape: [width: 200px, height: 1px]
e Transition: 30px

e Filter: [x: 8px, y: 8px]

The heatmap shows that participants concentrate on parts of the
source code that appear relevant for the computation of Fibonacci

REyeker: Remote Eye Tracker

numbers, that is, the conditions and computations of the for loop,
the starting condition, and the call with the actual value. Further-
more, none of the participants mentioned to be too much disturbed
by the blurred areas and the necessity to click on certain spots
for deblurring. Thus, we are confident that REyeker is a safe and
reliable way to conduct remote eye tracking studies.

5 CONCLUSION AND FUTURE WORK

To allow us to continue our research in a safe and efficient way,
we have developed REyeker, a tool that simulates an eye tracking
environment by restricting the readable area for participants. It can
be adjusted to provide a compromise between fine-grained data
and undisturbed reading behavior of participants.

Currently, we can only conduct remote studies with REyeker to
evaluate the robustness of the data. Once possible, we will compare
the data that REyeker collects with that of an on-site eye tracker.
Although the motivation to implement REyeker was strongly driven
by the pandemic, we hope that in the future, REyeker will become
a useful tool to conduct large-scale, remote eye tracking studies.

ETRA ’21 Short Papers, May 25-27, 2021, Virtual Event, Germany

ACKNOWLEDGMENTS
This work is supported by DFG grant SI 2045/2/2.

REFERENCES

J. Bauer, J. Siegmund, N. Peitek, J. C. Hofmeister, and S. Apel. 2019. Indentation:
Simply a Matter of Style or Support for Program Comprehension?. In Proc. Int’l
Conf. Program Comprehension (ICPC). IEEE CS, 154-164.

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018. The
Effect of Poor Source Code Lexicon and Readability on Developers’ Cognitive Load.
In Proc. Int’l Conf. Program Comprehension (ICPC).

Anthony R. Jansen, Alan F. Blackwell, and Kim Marriott. 2003. A Tool for Track-
ing Visual Attention: The Restricted Focus Viewer. Behavior Research Methods,
Instruments, & Computers (2003), 57-69.

Nam Wook Kim, Zoya Bylinskii, Michelle A Borkin, Krzysztof Z Gajos, Aude Oliva,
Fredo Durand, and Hanspeter Pfister. 2017. BubbleView: An Interface for Crowd-
sourcing Image Importance Maps and Tracking Visual Attention. ACM Transactions
on Computer-Human Interaction (TOCHI) (2017), 36.

Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the Reading Order
of Programmers? An Eye Tracking Study. In Proc. Int’l Conf. Program Comprehension
(ICPC). ACM, 342-353.

Bonita Sharif and Johnathon Maletic. 2010. An Eye Tracking Study on camelCase and
under_score Identifier Styles. In Proc. Int’l Conf. Program Comprehension (ICPC).
IEEE CS, 196-205.

	Abstract
	1 Introduction
	2 REyeker - An Overview
	2.1 Data
	2.2 Integration into Survey Tools

	3 Programming Language
	4 Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

