Springe zum Hauptinhalt
Professur Theoretische Informatik
Publications
Professur Theoretische Informatik 

Conferences
Journals

Conferences

  1. Julian Pape-Lange.
    On Extensions of Maximal Repeats in Compressed Strings
    In: CPM 2020, LIPICS 161, 27:1-27:13.

  2. Mitsuru Funakoshi, Julian Pape-Lange.
    Non-Rectangular Convolutions and (Sub-)Cadences with Three Elements
    In: STACS 2020, LIPICS 154, 30:1-30:16.

  3. Andreas Goerdt.
    Matched Instances of Quantum Satisfiability (QSat) – Product State Solutions of Restrictions
    In: CSR 2019, LNCS 11532, 156-167.

  4. Julian Pape-Lange.
    On Maximal Repeats in Compressed Strings
    In: CPM 2019, LIPICS 128, 18:1-18:13.

  5. Andreas Goerdt, Lutz Falke.
    Satisfiability thresholds beyond k-XORSAT
    In: CSR 2012, LNCS 7353, 148-159.

  6. Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus Pagh, Michael Rink.
    Tight Thresholds for Cuckoo Hashing via XORSAT
    In: ICALP 2010, LNCS 6198, 213-225.

  7. Andreas Goerdt.
    On Random Betweenness Constraints.
    In: 17th FCT 2009, LNCS 5699, 157-168.


  8. On Random Ordering Constraints.
    In: CSR 2009, LNCS 5675, 105-116.

  9. Amin Coja-Oghlan, Andreas Goerdt and André Lanka.
    Spectral partitioning of random graphs with given expected degrees.
    In: 4th IFIP International Conference on Theoretical Computer Science - TCS 2006, 271-282.

  10. Andreas Goerdt, André; Lanka.
    On the hardness and easiness of random 4-SAT formulas.
    In: Proceedings ISAAC 2004,LNCS 3341, 470-483.

  11. Amin Coja-Oghlan, Andreas Goerdt, André Lanka.
    Strong Refutation Heuristics for Random k-SAT.
    In: Proceedings RANDOM 2004, LNCS 3122, 310-321.

  12. Amin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich.
    Certifying Unsatisfiability of Random 2k-SAT Formulas using Approximation Techniques.
    In: Proceedings FCT 2003, LNCS 2751, 15-26.

  13. Andreas Goerdt, André Lanka.
    Recognizing more Random Unsatisfiable 3-SAT Instances efficiently.
    In: Proceedings des LICS 2003 Workshops Typical Case Complexity and Phase Transitions.

  14. Andreas Goerdt, Tomasz Jurdzinski.
    Some Results on Random Unsatisfiable k-SAT Instances and Approximation Algorithms Applied to Random Structures.
    In: Proceedings MFCS 2002, LNCS 2420, 280 - 291.

  15. Joel Friedman, Andreas Goerdt.
    Recognizing more Random Unsatisfiable 3-SAT Instances efficiently.
    In: Proceedings ICALP 2001, LNCS 2076, 310 - 321.

  16. Andreas Goerdt, Michael Krivelevich.
    Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods.
    In: Proceedings STACS 2001, LNCS 2010, 294 - 304.

  17. Andreas Goerdt, Mike Molloy.
    Analysis of Edge Deletion Processes on Faulty Random Regular Graphs.
    In: Proceedings LATIN 2000, LNCS 1776, 38 - 47.

  18. Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Uwe Schöning.
    Deterministic Algorithms for k-SAT based on Covering Codes and Local Search.
    In: Proceedings ICALP 2000, LNCS 1853, 236 - 247.

  19. Andreas Goerdt.
    Random Regular Graphs with Edge Faults:Expansion through Cores.
    In: Proceedings ISAAC 1998, LNCS 1553, 219 - 228.


  20. The Giant Component Threshold for Random Regular Graphs with Edge Faults.
    In: Proceedings MFCS 1997, LNCS 1295, 279-288.

  21. Andreas Goerdt, Udo Kamps.
    On the Reasons for Average Superlinear Speedup in Parallel Backtrack Search.
    In: Proceedings CSL 1993, LNCS 832, 106 - 127.

  22. Andreas Goerdt.
    A Threshold for Unsatisfiability.
    In: Proceedings MFCS 1992, LNCS 629, 264 - 274.

  23. Andreas Goerdt.
    The Cutting Plane Proof System with Bounded Degree of Falsity.
    In: Proceedings CSL 1991, LNCS 626, 119 - 133.

  24. Andreas Goerdt, Helmut Seidl.
    Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions, Part II.
    In: Aspects and Prospects of Theoretical Computer Science, Proceedings 6th IMYCS 1990, LNCS 464, 148 - 158.

  25. Andreas Goerdt.
    Cutting Plane versus Frege Proof Systems.
    In: Proceedings CSL 1990, LNCS 533,174 - 194.


  26. Comparing the Complexity of Regular and Unrestricted Resolution.
    In: Proceedings GWAI 1990, Informatik Fachberichte 251, 181 - 185.


  27. Unrestricted Resolution versus N-Resolution.
    In: Proceedings MFCS 1990, LNCS 452, 300 - 305.

  28. Andreas Goerdt.
    Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions.
    In: Proceedings LICS 1989, 364 - 374.


  29. Davis-Putnam Resolution versus Unrestricted Resolution.
    In: Proceedings CSL 1989, LNCS 440, 143 - 162.


  30. On the Expressive Strength of the Finitely Typed Lambda-Terms.
    In: Proceedings MFCS 1988, LNCS 324, 318 - 328.


  31. Hoare Calculi for Higher Type Control Structures and their Completeness in the Sense of Cook.
    In: Proceedings MFCS 1988, LNCS 324, 329 - 338.


  32. Characterizing Complexity Classes by General Recursive Definitions in Higher Types.
    In: Proceedings CSL 1988, LNCS 385, 99 - 117.


  33. Hoare Logic for Lambda-Terms as Basis of Hoare Logic for Imperative Languages.
    In: Proceedings LICS 1987, 293 - 299.


  34. A Hoare Calculus for Functions Defined by Recursion on Higher Types.
    In: Proceedings Logic of Programs 1985, LNCS 193, 106 - 117.

Journals

  1. Amin Coja-Oghlan, Andreas Goerdt, André Lanka.
    Strong Refutation Heuristics for random k-SAT.
    Combinatorics, Probability and Computing 16, Issue 1, 2007, 5-28.

  2. Joel Friedman, Andreas Goerdt, Michael Krivelevich.
    Recognizing more Random Unsatisfiable k-SAT Instances efficiently.
    SIAM Journal on Computing 35, 2005, 408-430.

  3. Amin Coja-Oghlan, Andreas Goerdt, André Lanka, Frank Schädlich.
    Techniques from combinatorial approximation algorithms yield efficient algorithms for random 2k-SAT.
    Theoretical Computer Science 329, 2004, 1-45.

  4. Andreas Goerdt, André Lanka.
    Recognizing more Random Unsatisfiable 3-SAT Instances efficiently.
    Electronic Notes in Discrete Mathematics 16, 2003.

  5. Andreas Goerdt, Tomasz Jurdzinski.
    Some results on Random Unsatisfiable k-SAT Instances and Approximation Algorithms Applied to Random Structures.
    Combinatorics, Probability and Computing 12, 2003, 245 - 267.

  6. Andreas Goerdt, Mike Molloy.
    Analysis of Edge Deletion Processes on Faulty Random Regular Graphs.
    Theoretical Computer Science 297, 2003, 241 - 260.

  7. Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, Uwe Schöning.
    A Deterministic (2-2/(k+1))^n-Algorithm for k-SAT based on Local Search.
    Theoretical Computer Science, 289, 2002, 69 - 83.

  8. Andreas Goerdt.
    Random Regular Graphs with Edge Faults: Expansion Through Cores.
    Theoretical Computer Science 264, 2001, 91 - 125.


  9. The Giant Component Threshold for Random Regular Graphs with Edge Faults.
    Theoretical Computer Science 259, 2001, 307 - 321.


  10. A Remark on Random 2-SAT.
    Discrete Applied Mathematics 96/97, 1999, 107 - 110.


  11. A Threshold for Unsatisfiability.
    Journal of Computer and System Sciences 53(3), 1996, 469 - 486.

  12. Andreas Goerdt.
    Regular Resolution versus Unrestricted Resolution.
    SIAM Journal on Computing 22(4), 1993, 661 - 683.

  13. Andreas Goerdt.
    Characterizing Complexity Classes by Higher Type Primitive Recursive Definitions.
    Theoretical Computer Science 100(1), 1992, 45 - 66.


  14. Characterizing Complexity Classes by General Recursive Definitions in Higher Types.
    Information and Computation 101(2), 1992, 202 - 218.


  15. Davis-Putnam Resolution versus Unrestricted Resolution.
    Annals of Mathematics and Artificial Intelligence 6, 1992, 169 - 184.


  16. N-Resolution versus Unrestricted Resolution.
    Theoretical Computer Science 93(1), 1992, 159 - 167.

  17. Werner Damm, Andreas Goerdt.
    An Automata-Theoretical Characterization of the OI-Hierarchy.
    Information and Control 71(1/2), 1986, 1 - 32.