Theorie der Programmiersprachen

1. Übung

1. Aufgabe:

Geben Sie eine dreielementige Formelmenge M an, so daß jede zweielementige Teilmenge von M erfüllbar ist, M selbst jedoch nicht.

2. Aufgabe:

Ist folgende unendliche Formelmenge M erfüllbar?

$$M = \{A_1 \lor A_2, \neg A_2 \lor \neg A_3, A_3 \lor A_4, \neg A_4 \lor \neg A_5, \ldots\}$$

3. Aufgabe:

Sei $(F \to G)$ eine Tautologie, wobei F und G keine gemeinsamen atomaren Formeln haben. Man zeige dann ist entweder F unerfüllbar oder G eine Tautologie oder beides.

4. Aufgabe: (Craigscher Interpolationssatz)

Es gelte $\vDash (F \to G)$ und es gibt mindestens eine atomare Formel, die sowohl in F als auch in G vorkommt. Man beweise, daß es eine Formel H gibt, die nur aus atomaren Formeln aufgebaut ist, die sowohl in F als auch in G vorkommen, mit $\vDash (F \to H)$ und $\vDash (H \to G)$.

Hinweis: Induktion über die Anzahl der atomaren Formeln, die in F, aber nicht in G vorkommen.

Andere Möglichkeit: Konstruieren einer Wahrheitstafel für H anhand der Wahrheitstafeln von F und G.

5. Aufgabe:

Übersetzen Sie folgende aussagenlogische Formel in eine erfüllbarkeitsäquivalente 3-KNF.

$$(x \lor \neg y) \iff (y \land z)$$

6. Aufgabe:

Sei L eine beliebige unendliche Menge von natürlichen Zahlen, dargestellt als Binärzahlen. Beweisen Sie, daß es eine unendliche Folge w_1, w_2, w_3, \ldots von paarweise verschiedenen Binärzahlen gibt, so daß w_i Anfangsstück von w_{i+1} und von mindestens einem Element aus L ist $(i=1,2,3,\ldots)$.