Theoretische Informatik II

11. Übung

1. Aufgabe:

a) Zeigen Sie: Eine Sprache L ist genau dann rekursiv aufzählbar, wenn es ein entscheidbares Prädikat P gibt mit

$$\omega \in L \iff \exists x_1, \dots, x_k \cdot P(x_1, \dots, x_k, \omega).$$

- b) Charakterisieren die Sprachen, deren Komplement rekursiv aufzählbar ist, analog.
- c) Visualisieren Sie die Lage der rekursiv aufzählbaren Sprachen und der Sprachen aus b) zueinander.

2. Aufgabe:

Seien L_1 und L_2 rekursiv aufzählbare Sprachen. Ist $L_1 \setminus L_2$ ebenfalls rekursiv aufzählbar?

3. Aufgabe:

Betrachten Sie die Sprache

$$L = \{w_1 \# w_2 : M_{w_1} \text{ und } M_{w_2} \text{ berechnen die gleiche Funktion}\}.$$

Ist L entscheidbar, semi-entscheidbar oder keins von beiden? Welche der Eigenschaften besitzt \overline{L} ?