Parallele Algorithmen

4. Übung

1. Aufgabe:

Für den *optimalen List-ranking Algorithmus* wurde bereits gezeigt, daß sich das Gewicht der Liste in jeder Iteration um mindestens $(1-\frac{q}{4})$ verringert. Beweisen Sie damit, daß nach $O(\log n)$ Iterationen nur noch $O(\frac{n}{\log n})$ Elemente in der Liste enthalten sind. Welches PRAM Modell wird dafür benötigt.

2. Aufgabe:

Gegeben ist folgende Abbildung:

$$f: \{0,1\}^* \setminus \{e\} Z^{2 \times 2}$$
.

Zeigen Sie:

- (a) f ist injektiv.
- (b) $\det f(X) = 1$ für jedes X. Die Determinante ist gegeben durch:

$$\det \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}.$$

3. Aufgabe:

Angenommen man wählt eine konstante Anzahl c>1 von zufälligen Primzahlen im zweiten Schritt des *Monte Carlo string matching Algorithmus* der Vorlesung. Wie groß ist dann die Fehlerwahrscheinlichkeit?