Theorie der Programmiersprachen

10. Übung

1. Aufgabe:

Beweisen Sie mittels Grundresolution und mittels prädikatenlogischer Resolution die Unerfüllbarkeit der folgenden Formel F

$$F = \forall x \, \forall y \, ((\neg P(x) \vee \neg P(f(a)) \vee Q(y)) \wedge P(y) \wedge (\neg P(g(b,x)) \vee \neg Q(b))) \, .$$

Gegeben sei die Herbrandstruktur \mathcal{A} mit $P^{\mathcal{A}}=\{x\in D(F)|\ \text{Term }x\ \text{enthält }g\}$ und $Q^{\mathcal{A}}=\{x\in D(F)|x\neq b,x\neq a\ (x\ \text{keine Konstante})\}$. Zeigen Sie durch "Hochgehen" im Beweis, dass \mathcal{A} kein Modell für F ist.

Wiederholen Sie den Zusammenhang zur Herbrandexpansion. Geben Sie E(F) an und zeigen Sie, dass eine endliche Teilmenge von E(F) existiert, die unerfüllbar ist.

2. Aufgabe:

Geben Sie (bis auf Variablenumbenennungen) alle prädikatenlogischen Resolventen der beiden Klauseln K_1 und K_2 an.

$$K_1 = \{ \neg P(x, y), \neg P(f(a), g(u, b)), Q(x, u) \}$$

$$K_2 = \{ P(f(x), g(a, b)), \neg Q(f(a), b), \neg Q(a, b) \}$$

3. Aufgabe:

Gegeben sei folgende Grundresolution

Vollziehen Sie im Beweis des Lifting-Lemmas nach, welche prädikatenlogische Resolution hieraus entsteht.

4. Aufgabe:

Bei endlichen aussagenlogischen Klauselmengen F ist $Res^*(F)$ immer eine endliche Menge. Man gebe eine endliche prädikatenlogische Klauselmenge F an, so dass für alle n gilt:

$$Res^n(F) \neq Res^*(F)$$
.

5. Aufgabe:

Wir betrachten den mathematischen Begriff der Gruppe mit einer zweistelligen Operation \circ . Mit dem Prädikat P(x,y,z) drücken wir aus, dass $x \circ y = z$ gilt. Dann können die Gruppenaxiome durch folgende prädikatenlogische Formel dargestellt werden:

- 1. $\forall x \forall y \exists z P(x, y, z)$ (Abgeschlossenheit)
- 2. $\forall u \forall v \forall w \forall x \forall y \forall z \left((P(x,y,u) \land P(y,z,v)) \rightarrow (P(x,v,w) \leftrightarrow P(u,z,w)) \right)$ (Assoziativität)
- 3. $\exists x \, (\forall y P(x, y, y) \land \forall y \exists z P(z, y, x))$ (Existenz eines links-neutralen Elementes und Existenz von Links-Inversen)

Aus den oben prädikatenlogisch formulierten Gruppenaxiomen folgere man mittels Resolutionskalkül:

- (a) Falls G eine abelsche Grupppe ist (d. h. es gilt zusätzlich das Kommutativgesetz), dann gilt für alle x, y in G, dass $x \circ y \circ x^{-1} = y$.
- (b) Betrachten Sie das Beispiel zwischen Übung 83 und Übung 84 im Buch. Vollziehen Sie den Resolutionsbeweis nach. Betrachten Sie die beiden Strukturen \mathcal{A}, \mathcal{B} mit

$$U_{\mathcal{A}} = U_{\mathcal{B}} = \{0, 1, 2\}$$

$$e^{\mathcal{A}} = e^{\mathcal{B}} = 0$$

$$P^{\mathcal{A}} = P^{\mathcal{B}} = \{(x, y, z) | (x + y) \equiv z \mod 3\}$$

$$i^{\mathcal{A}}(0) = i^{\mathcal{B}}(0) = k^{\mathcal{A}}(0) = k^{\mathcal{B}}(0) = 0$$

$$i^{\mathcal{A}}(1) = k^{\mathcal{A}}(1) = 2$$

$$i^{\mathcal{A}}(2) = k^{\mathcal{A}}(2) = 1$$

$$i^{\mathcal{B}}(1) = k^{\mathcal{B}}(1) = 0$$

$$i^{\mathcal{B}}(2) = k^{\mathcal{B}}(2) = 0.$$

Gehen Sie im Beweis hoch, bis Sie zu einer Klausel kommen, die in der jeweilgen Interpretation falsch ist.