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Abstract

We see a spectacle of different colors on a sunny day. However, during the

evening and night hours we need additional light source to see the same sight.

Even during the day in a building or a room, if the environment does not allow

much light into it and has bad lighting, we would see only small amount of the

color detail just as in the evening light. The same is true for cameras, in a well-lit

environment cameras perform good but in a dimly-lit room they perform signif-

icantly worse as they cannot see the colors anymore.

Brief Introduction to Color Vision

The colors we see do not exist in the form we see them outside of our brain [1, 2,

3, 4, 5]. We humans and several other mammals such as chimpanzees and gorillas

have so called trichromatic vision that uses only three main types of light absorbing

pigments for color vision [6]. Therefore, the colors we see are non-existent for

some animals, while color that fish see are non-existent in other words invisible to

humans. Colors are essentially a quality of light [7]. The light has two properties,

wave and particle. Which means a light beam has frequency and a wavelength.

What we see as colors is light with wavelengths between 350 nm and 700 nm [8].

Our eyes have specialized cells in the retina for detecting these wavelengths [2, 8].

Rods and cones named after their shapes convert light into signals. Rods are espe-

cially sensitive to low light, however they cannot detect colors well. Cones on the

other hand require more photons, but are good at color detecting [2]. As human

vision is trichromatic, the cones correspond to three different colors to which they

are most sensitive to, red, green and blue [8]. However, that does not mean that

the cones can detect only one color. Our brain computes any other color we see

by combining or overlapping the detected wavelengths [2].

Literature Review

There are a few night vision technologies that enable us to see in the dark, low-

light environments. Such as:

Thermal Imaging where we see the temperature difference of objects.

Image Intensification in which small amount of photons strike a photocathode

emitting electrons which then illuminate an image screen in wavelengths

humans can see.

Active Illumination where there is an active Near Infrared (NIR) light source.

For each of the methods a special camera is needed, and the corresponding out-

puts are blue-red image for thermal cameras, green for intensification cameras, and

grayscale for NIR cameras. Each of these methods enable vision in the dark, how-

ever, these technologies are usually expensive, and they do not enable the most

important aspect of vision, the color vision.

The researchers at University of California Irvine have published a paper last year

discussing this problem. They reported that they were able to reconstruct color

images from grayscale, NIR images using U-Net like deep learning architecture [9].

The reason for using U-Net for the task of color vision in the dark is the general

use of U-Net itself, which is colorization of images in other words segmentation

problem. Recent advances in the field of machine learning have shown that U-Net

like networks excel in segmentation tasks [10].

The problem with this approach is, however, that the data for NIR and IR images

and videos are sparse compared to classic datasets. Our goal is to improve their

model and implement it.

How dowe get low-light color vision?

In order to recreate RGB images from grayscale or infrared images, we implemented

U-Net inspired autoencoder. Browne et al. have also used a U-Net inspired ap-

proach to enable vision in poorly illuminated environments [9]. The autoencoder

was then tested on grayscale images first to observe whether the input images

could be reconstructed. The implemented U-Net model can be seen in Fig 1.

Figure 1. U-Net model.

For image reconstruction as well as colorization of grayscale images, we need for

the input and the output 3 channels. The input is then convolutedwith a kernel size

of 3x3, normalizedwith batch normalization, and rectified by a ReLU function, each

operation used twice for the double convolution. We use padding in the double

convolution step to perserve the original image size to facilitate concatenation

step later. After the double convolution step we get 64 channels, which goes

through max pooling with 2x2 resulting in 128 channels and half of the input image

size. The process of double convolution and max pooling then continues for three

additional timeswherewe reach the last layer and get 1024 channels. The decoder

part of the U-Net starts with up-convolution of the last layer by 2x2 filter and then

concatenates it with the feature map of second to last layer from the encoder part.

This then is followed by double convolution same as the encoder part, which is

then again up-convoluted. The process repeats until it reaches number of channels

equal to 64. After one last double convolution, the output is generated with the

same size and number of channels as the input.

Training Process

We first trained and tested our U-Net inspired autoenconder on grayscale images

to see whether the grayscale images could be reconstructed. For the dataset, we

first started with CIFAR-10 dataset. Due to our first prototype of autoencoder

having non-flexible concatenation part, we deemed images of small sizes are not

fit for our case, however with our current model this error could be solved. Our

second choice was CelebA dataset, which was excluded for the moment due to a

download error. We then settled on Caltech101 and Caltech256.

Figure 2. Trainig episode.

To train ourmodel we firstwith the help of pytorch Grayscale method grayscaled all

the images, however with channel number of three. We then splitted the dataset

into 80:20 train and test batches. For the criterion Mean Square Error (MSE) was

used, and for the optimizer Adam optimizer was chosen. The deep architectures

were trained for number of iterations equal to the size of the training batch with

a learning rate starting at 0.0001 and for 3 epochs. The training could not be con-

ducted as memory allocation problem with the gpu was found. Therefore, for the

start we trained our model on random noises with the above mentioned parame-

ters. It took ca. 2 days for the whole training process.

Result

The model was trained with batch size of 64, learning rate of 0.0001 and Adam

optimization function for 50 epochs with CPU and 100 epochs with GPU.

Figure 3. Training results with CPU and GPU.

The original image is shown top left, grayscaled version top right, predicted re-

sults with GPU bottom left, and with CPU bottom right.

Conclusion

As we can see from the results, outcomes were a bit different depending on

whether we used CPU or GPU for training. When the loss curves were plotted, it

could be seen that the curves were still converging. Therefore, we believe that it

needs further training time and more data.
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