
Fakultät für Informatik

CSR-24-02

Image Classification
for Drone Propeller Inspection

using Deep Learning

S. M. Rizwanur Rahman · Wolfram Hardt

August 2024

Chemnitzer Informatik-Berichte

Image Classification for Drone Propeller
Inspection using Deep Learning

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc.

Dept. of Computer Science

Chair of Computer Engineering

Submitted by:
Name: S. M. Rizwanur Rahman
Student ID: 510561
Date: 17.04.2023

Supervising tutor:
Prof. Dr. Dr. h. c. Wolfram Hardt
Dr. Ariane Heller
Mohamed Salim Harras, MSc.

Acknowledgement

First of all, I express my gratitude and am overwhelmed by all those who have
assisted me in turning these ideas into something tangible that goes much beyond
the superficial dimension to conduct my master’s thesis.
I would like to express my profound gratitude to Mohamed Salim Harras for his

supervision and guidance at every stage from conceptualization to the evaluation
of results. Without his invaluable assistance and suggestions, this thesis would not
have been successful. His patience, tenacity, and ambition enabled me to successfully
complete my thesis. Additionally, I want to thank Mr. Shadi Saleh for his prudent
remarks on the active deep learning framework architecture were a great help to
me. Moreover, I sincerely like to thank my academic supervisor, Prof. Dr. Dr. h.
c. Wolfram Hardt and Dr. Ariane Heller. The insightful remarks were given by
Prof. Dr. Dr. h. c. Wolfram Hardt, on my concept presentation, helped me to
comprehend scientific report writing in a better way. Furthermore, the guidance
provided by Dr. Ariane Heller during the time-to-time meeting kept me motivated,
and her thoughtful comments on this report pointed me in the right direction.
Finally, I am also thankful to Mr. Asif Ahmed, Mr. Soaibuzzaman and my family

for their encouragement, support, and inspiration.

i

Abstract

Drones have become an integral part of today’s rescue operations. This field in-
volves the risk of human life which is time and safety sensitive. Most of the time,
drones are found to be faulty when needed, leading to accidents during operations.
Among them propeller fault is the most frequent cause. Therefore, an important
aspect of drone maintenance before the drone’s flight performance is the diagnosis
of the propellers. Traditional propeller inspection methods can be time-consuming
and labor-intensive. A solution is proposed for inspecting drone propellers using
image-based deep-learning techniques. The system utilizes to classify the propeller
images into healthy and broken categories. In this research study, state-of-the-art
classification models such as VGG-19, ResNet-50, and YoloV5m (medium) Classifier
are applied. YoloV5m classifier achieved the highest Top-1 accuracy of 96.7% using
passive learning. Furthermore, YoloV5 (medium, small), and YoloV7 detector are
also trained. Based on the results, YoloV5m obtained the highest mAP among them
with 97.1%. Following the active deep learning strategy, the YoloV5m and YoloV7
detector models are trained through an iterative process. According to the results,
YoloV5m obtained the maximum mAP of 97.00%. On the other hand, YoloV7 is
achieved 90.70% of mAP. Finally, our proposed solution is based on the maximum
accuracy of the detection results, which helps to reduce accidents during rescue op-
erations by detecting propeller faults in time.

Keywords: Propeller inspection, Image classification, VGG-19, ResNet-
50, YOLOV5m classifier, Object detection, YoloV5, YoloV7, Deep learn-
ing, Active learning.

ii

Table of Contents

Acknowledgement . i

Abstract . ii

Table of Contents . iii

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

1 Introduction . 1
1.1 Problem Statement . 3
1.2 Motivation . 4
1.3 Thesis Structure . 5

2 Technical Background . 6
2.1 Convolutional Neural Network (CNN) 6

2.1.1 Convolutional Layer . 7
2.1.2 Pooling Layer . 9
2.1.3 Fully Connected Layer . 10

2.2 Object Classifier and Detector . 11
2.2.1 Object Classification . 11
2.2.2 Object Detection . 12
2.2.3 Anchor-based Detectors . 14

2.3 Deep Learning Strategies . 15
2.3.1 Passive Learning . 15
2.3.2 Active Learning . 16

2.4 Chapter Summary . 18

3 State of The Art . 19
3.1 Overview of Image-Based Inspection 19

3.1.1 Traditional Approaches . 20
3.1.2 Deep Learning Approaches . 23

3.2 Fault Inspection . 34
3.3 Chapter Summary . 38

iii

TABLE OF CONTENTS

4 Methodology . 39
4.1 Data Preprocessing . 40

4.1.1 Data Collection . 41
4.1.2 Data Selection . 43
4.1.3 Data Augmentation . 43
4.1.4 Duplicate Data Detector . 45
4.1.5 Data Consistency . 46
4.1.6 Data Annotation . 47

4.2 Selected Classifiers and Detectors . 47
4.2.1 VGG Family . 48
4.2.2 ResNet Family . 49
4.2.3 YOLO Family . 51

4.3 Active Deep Learning Approach . 55
4.4 Software Deployment . 57
4.5 Chapter Summary . 59

5 Implementation . 60
5.1 System Requirements . 60

5.1.1 Hardware . 60
5.1.2 Software . 62

5.2 Model Training . 63
5.2.1 Environment Setup . 63
5.2.2 Dataset Preparation . 65
5.2.3 Model Configuration . 66
5.2.4 Model Training and Conversion 67

5.3 Model Deploy . 68
5.4 Chapter Summary . 69

6 Results and Evaluation . 70
6.1 Evaluation Metrices . 70

6.1.1 Accuracy . 70
6.1.2 Confusion Matrix . 70
6.1.3 Confidence score . 72
6.1.4 Intersection over Union (IoU) 72
6.1.5 Average Precision (AP) . 72
6.1.6 Mean Average Precision (mAP) 72

6.2 Model Evaluation . 73
6.2.1 Passive learning evaluation . 73
6.2.2 Active learning evaluation . 85

6.3 Performance Analysis . 90
6.4 Inference . 94
6.5 Chapter Summary . 95

iv

TABLE OF CONTENTS

7 Conclusion . 96
7.1 Summary of The Thesis . 96
7.2 Future Work . 97

Bibliography . 98

References form Professorship of Computer Engineering 107

v

List of Figures

1.1 Propeller fault detection techniques (a) steady state model-based [1]
(b) Sound-based [2] (c) Vibration-based inspection[3] 2

2.1 The architecture of a CNN, consisting of basic three layers [4] 6
2.2 A convolutional operation example[5]. 7
2.3 A convolution operation example with stride 1 and zero padding[6]. . 8
2.4 Common activation functions applied in CNN[7] 9
2.5 Pooling Layer[8]. 9
2.6 An overview of a fully connected layer. [9]. 10
2.7 Comparison between classification techniques[10]. 11
2.8 Difference between object recognition, detection, and segmentation[11]. 12
2.9 Anchor-based (a) One-stage and (b) Two-stage object detector[12]. . 15
2.10 Data growth forecasting for the current decade [13]. 16
2.11 Three main active learning scenarios [14]. 17

3.1 (a) traditional approaches, (b) deep learning approaches [15]. 20
3.2 An architecture overview of traditional object detector algorithm[16]. 21
3.3 The progression of object detection milestones[17]. 21
3.4 The Progression of backbones with accuracy metrics based on the

ImageNet 2012 dataset[18]. 23
3.5 Darknet-53 network top1 and top5 error rate in CIFAR-100 dataset

[19]. 27
3.6 Performance comparison between YoloV5 classifiers and ResNet [20]. 29
3.7 Evolution of deep learning based object detectors [21]. 30
3.8 YOLO family tree [22]. 33
3.9 Performance comparison between YOLO’s [23]. 34

4.1 Passive learning workflow of the proposed methodology. 39
4.2 Active learning workflow of the proposed methodology. 40
4.3 Problems of rectangular images for the selected model, a) original

image b) distorted image . 41
4.4 720x720 size of propeller images that (a-c) represents healthy and

(d-f) represents broken in different light condition and background. . 42
4.5 Data augmentation techniques . 44
4.6 Data annotation health condition using Roboflow for dataset 1. . . . 47
4.7 The architecture of VGGNet family [24]. 48
4.8 Difference between Plain and Residual block [25]. 49

vi

LIST OF FIGURES

4.9 The architecture of ResNet Network [25]. 50
4.10 The architectural design for ResNet Families [25]. 50
4.11 The architectural design for YOLO [26]. 51
4.12 An overview of YOLOV5 architecture [20]. 53
4.13 An overview of YOLOV7 architecture [23]. 54
4.14 Proposed active deep learning approach. 56
4.15 Docker architecture [27]. 57

5.1 Distribution of work between hardware computing platforms. 60
5.2 GPU activation check in virtual environment. 64
5.3 Duplicate image detection using MSE algorithm. 65
5.4 The point of early stopping [28]. 67
5.5 Onnx conversion sloution for YOLOV5 and V7 model. 68

6.1 VGG-19 network’s accuracy and loss calculation for dataset 1 and
dataset 2. 74

6.2 Confusion matrix of VGG-19 for dataset 1 and dataset 2. 75
6.3 ResNet-50 network’s accuracy and loss calculation for dataset 1 and

dataset 2. 76
6.4 Confusion matrix of ResNet-50 for dataset 1 and dataset 2. 77
6.5 Yolov5m classification result for dataset 1. 78
6.6 Yolov5m classification result for dataset 2. 79
6.7 YoloV5 model training results for dataset 1 using passive learning. . . 80
6.8 YoloV7 training result for dataset 1 using passive learning. 81
6.9 The performance comparison between YOLO’s using dataset 1. . . . 82
6.10 YoloV5, V7 model training results for dataset 2 using passive learning. 83
6.11 The performance comparison between YOLO’s using dataset 2. . . . 84
6.12 Iterative results of YoloV5 model training. 86
6.13 Iterative results of YoloV7 model training. 89
6.14 Results of (a-c) VGG-19 and (d-f) ResNet-50 classifiers. 91
6.15 Results of YoloV5m (medium) classifier. 91
6.16 Results of YoloV5m object detector using passive learning. 92
6.17 Detection results of YoloV5m at the 10th iteration using active learning. 93

7.1 An overview of the thesis workflow 97

vii

List of Tables

3.1 A summery of several complex backbone networks performance is
measured on ImageNet dataset. 24

3.2 Performance comparison between VGG-16 and ResNet-101. 26
3.3 Accuracy comparison between complex networks for classification. . . 27
3.4 A summery of backbone networks according their applicable task. . . 28
3.5 Two-stage detectors performance in PASCAL VOC dataset. 31
3.6 Performance comparison for one-stage detectors using PASCAL VOC

and COCO datasets. 32

5.1 Dataset creation for model training using active learning. 66

6.1 Confusion matrix table for our model. 71
6.2 The performance comparison between VGG-19 and ResNet-50. 77
6.3 The performance comparison of YoloV5m (medium) classifier. 80
6.4 The performance comparison between YoloV5 and YoloV7 using pas-

sive learning. 85
6.5 YOLOV5 training results using active learning strategy. 87
6.6 YOLOV7 training results using active learning strategy. 90
6.7 The FPS comparison for YoloV5m and YoloV7 detectors. 94

viii

List of Abbreviations

UAV Unmanned Aerial Vehicle

UAS Unmanned Aircraft Systems

GPS Global Positioning System

DWT Discrete Wavelet Transform

IMU Inertial Measurement Unit

ANN Artificial Neural Network

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

FCN Fully Convolutional Network

FPN Feature Pyramid Network

RCNN Region-based Convolutional Neural Network

RFCN Region-based Fully Convolutional Network

ROI Region of Interest

RPN Region Proposal Network

SPP Spatial Pyramid Pooling

YOLO You Only Look Once

NMS Non-Maximum Suppression

ix

1 Introduction

A drone, more formally known as an unmanned aerial vehicle (UAV) or unmanned
aircraft system (UAS), can act as a flying robot. These drones have the capability to
fly autonomously which is controlled remotely by utilizing software-controlled flight
plans embedded in their systems. Additionally, they are equipped with onboard
sensors and a global positioning system (GPS) to navigate. In recent years, drones
have become an increasingly popular and versatile advanced technology for various
applications because of their unique capabilities which have made them useful tools
for specific tasks, such as aerial photography[29], surveillance and monitoring [30],
emergency rescue [31, 32], inspection routines and more. Previously, drones were
most often associated with military activities, but now they are also used in a range
of civilian rules [33, 34, 35]. The low cost and low power consumption of these vehi-
cles, paired with their high-resolution cameras, make them effective tools for civilian
tasks. This has opened a wide range of research opportunities in these areas.

Using drones allows individuals to avoid dangerous situations without physical
exposure. It also improves work efficiency and productivity by providing fast re-
sponses, which reduces working time and costs. However, drone failures can result
in devastating consequences if they crash. According to an Airprox report1, 30% of
drone incidents occurred from 2013 to November 2018, and the number continues
to rise. This is a concerning trend that highlights the importance of proper drone
safety measures. To decrease the number of drone incidents, it is important to in-
spect drones before operation and identify any damaged parts. Common sources of
physical damage on drones include kinetic energy, propellers, and storage batteries.
Propellers are particularly susceptible to damage and are a major cause of drone
incidents.

Propeller defects, such as cracks, deformations, and wear, can significantly reduce
the efficiency and safety of drone operations and even lead to catastrophic failures.
The traditional methods for inspecting drone propellers, such as manual visual in-
spection and ultrasonic testing, are time-consuming, labour-intensive, and may not
be suitable for certain types of defects. In figure 1.1 depicts the majority of propeller
fault inspection solutions in drones fall under acoustic, charge flow (current), and
vibration-based approaches. Lee et al.[1] proposed a technique for detecting faults
in UAV motors using steady-state model and an infrared sensor to measure angular
speed. Another approach [36] uses angular speed and current data to detect speed

1https://www.uasvision.com/2019/01/25/

1

https://www.uasvision.com/2019/01/25/

1 Introduction

and failure in brushless motors, with simulations of unbalanced propellers and loose
motors for faulty data. Although the current-based method is effective in detecting
drone anomalies, it is more suitable for detecting faults in electrical components such
as propeller motors and electronic speed controllers. The sound-based approach can

(a)

(b)

(c)

Figure 1.1: Propeller fault detection techniques (a) steady state model-based [1] (b)
Sound-based [2] (c) Vibration-based inspection[3]

detect more faults and is easier to acquire signals than current-based methods. In
[37, 2], have applied the noise from drones to detect the propeller faulty blades using
a neural network model and techniques like Fourier transform and Discrete wavelet
transform (DWT) [38] have also been used. However, sound-based techniques have
a drawback in that they are susceptible to background noise and can be affected by
sounds from other motors. Vibration-based methods [3] are based on acceleration
data which is got from the Inertial Measurement Unit (IMU), built-in or external
accelerometer and then classify the signals of rotor blades. In this approach, healthy
propellers produce smooth signals compared to broken ones.

However, deep learning has evolved in recent years as a strong tool for image-
based tasks such as object detection, classification, and segmentation. The task
of object classification and detection, being the foundation of image understanding
and computer vision, has laid the groundwork for solving complex vision problems.
It enhances a range of applications including human-computer interaction, machine

2

1 Introduction

vision and content-based image retrieval. And so far, no work has been done on
propeller fault inspection using computer vision and deep learning technologies.
Hence our proposed method is also taken a step forward by applying an image-
based deep learning solution for inspecting the propeller fault.

1.1 Problem Statement

Several difficulties have been acknowledged in the context of the “Rescue Fly”
project, and one of the most investigated areas is ensuring the healthy state of
the drone propellers. This research work aims to develop an automated system that
can classify or detect the propeller’s health condition before going to a rescue op-
eration, and the problem statement of this research work is image classification for
drone propeller inspection using deep learning. After conducting research and test-
ing, several problems were attempted to be identified in order to design the solution.
The problems are described below –

In most cases inspection of the propeller’s health condition was carried out by
manual visual inspection or applying ultrasonic testing. The manual inspection pro-
cess is very time-consuming, and it might be dangerous for the inspector at times.
On the other hand, the problem has emerged more acute due to the distant location
of drone hangars. In most emergencies, releasing the drone on a rescue attempt is
not feasible unless a propeller mechanical issue is carefully monitored. Besides, the
expense of inspection also increases due to the long distance. Ultrasonic testing,
such as acoustic, charge-flow (current) and vibration-based solutions are also expen-
sive due to their sensor. Moreover, the essential problem with this type of solution
is its accuracy. The accuracy rate is not satisfactory which would allow the drone
to fly for rescue operations. Overall, these approaches are not suitable for getting
an accurate inspection result on the basis of time, accuracy and cost. Ensuring the
safety of healthy propellers is the uttermost priority before going to the rescue oper-
ation. In that sense, the diagnosis of the propeller by using an ultrasonic approach
is not a trustable and worthy solution. Therefore, it is a big challenge to develop
a solution with a new method that will give maximum accuracy compared to other
methods for inspecting the propellers.

Another major problem with this research work is the scarcity of propeller image
data. Despite extensive research, no propeller-related datasets were found, either
online or offline, that could be used for further research. This has been a significant
challenge and causes concern in preparing a high-quality dataset.

Finally, the challenge is to find a solution that is not only effective but also
practical for use in real-world scenarios, and that can provide results with a high
degree of credibility. The proposed solution must be reliable and precise, as accurate
inspection of drone propeller faults is crucial to ensure the safe operation.

3

1 Introduction

1.2 Motivation

This thesis aims to secure the flying safety of the drone before a rescue operation. In
order to ensure the flying condition of the drone, it has to be assured that the drone
components are functioning absolutely. Among these components of the drone, the
propeller’s health must be ensured first and foremost. A drone must have a healthy
propeller and it is a pre-condition for rescue flight operation. Hence, the inspection
of propellers is done by applying the traditional methods in hangers. Most of the
methods are very time-consuming and expensive. Besides, they are dependent on
different kinds of sensors. It is a very challenging task to provide an instant solution
when issues happen during the diagnosis time and sometimes act as a risk factor for
the non-technical inspector.

Currently, several kinds of industrial inspection have been done by applying im-
age processing techniques. Although the automated inspection system has already
achieved an accepted range of accuracy, it still demands more research to reach the
highest level of the expected result. Furthermore, the field of deep learning has be-
come a new era to provide a more accurate solution for inspection tasks. Regarding
this aspect, there has been no research on making an automated system for drone
propeller inspection based on image processing and deep learning techniques. More-
over, not only for the propeller diagnosis system but also for it is possible to inspect
other drone components by using these current trend technologies. Scientifically it
has already been proved that image-based deep-learning solutions can predict the
maximum accuracy for other diagnosis or inspection-based systems.

The principal motivation for this research work is to create an automated image-
based inspection system for detecting drone propeller faults before a rescue mission
which could be able to control the disastrous consequences of drone crashes. Fur-
thermore, this system will help to control all the remote hangars from a centralized
base station. This system will reduce the physical attachment of humans as well
as from risky circumstances. Since the solution is being built on a centralized base
solution, it will save both time and cost. For developing an image-based inspection
system, a good and balanced dataset needs to be created to solve the data scarcity
problem. Besides, it can provide the starting point for future research related to
leveraging more accuracy of propeller fault inspection. A better model is built and
eventually, the traditional drone propeller inspection method can replace by using
computer vision and deep learning methods. So overall, the proposed method can
diagnose the propeller fault and increase the work efficiency for the inspector by de-
veloping a central based solution. It is also competent to reduce the outlay compared
to others existing solutions.

4

1 Introduction

1.3 Thesis Structure

This section gives an overview of this research topic and is organized into several
chapters that cover everything from the principles of computer vision and deep
learning. The chapter introduction aimed to denote the entire project’s scope and
explain how this research project is worthy of it. The following is a brief description
of each chapter’s objectives:

Chapter 1. Introduction: provides a context and current researched solution
trends on this thesis topic. This chapter explains the main problem statement to
focus on during the research work and expresses the motivation for a fruitful out-
come.

Chapters 2. Background Knowledge and Fundamentals: discusses the
core fundamentals of computer vision, image processing, and CNN. It also explains
the object classifier and detector architecture along with its components. It in-
cludes a general overview of the deep learning strategies, including learning strate-
gies, which would be essential to comprehend the thesis’s objective.

Chapter 3 - State of The Art: includes a review of relevant literature and
research areas that focus on topics related to the thesis. It clarifies a comparative
analysis of the benefits and drawbacks of the various approaches covering defect
inspection.

Chapter 4 - Methodology: explains the current technology and architectural
concept. The proposed solution based on the literature review and the state of the
art is explained thoroughly in this chapter. The data preprocessing section provides
an explanation of dataset creation. The selected classifiers and detectors section
provides an overview of the DNN architecture employed in this research work and
also discusses the active deep-learning framework. Finally, the software deployment
section is explained to deploy the solution in the production label.

Chapter 5 – Implementation: explains the implementation details of propeller
fault inspection. A brief overview of system requirements for both hardware and
software used to enforce the model is provided. Furthermore, different computing
platforms utilized to train, test, and evaluate the models are also explained.

Chapter 6 - Results and Evaluation: describes the results of analyzing and
evaluating the output obtained after implementation. The accuracy of trained mod-
els following different strategies is calculated and explained in this chapter. Addi-
tionally, the execution and inference times of different platforms are also mentioned.

Chapter 7 - Conclusion: summarizes the overall thesis work and explains
potential future scopes based on the outcomes of the implementation.

5

2 Technical Background

To understand the concept of this thesis work, one needs to grasp the technical
background of all the methods used. This chapter explains the basic knowledge
of convolutional neural network’s (CNN) architecture briefly in this chapter. CNN
is the backbone of object classifiers and detectors. Here, the architecture of object
classifier networks and object detector networks are discussed along with their major
components. The deep learning strategies for the training model, such as active
learning and passive learning are also described in this chapter.

2.1 Convolutional Neural Network (CNN)

A powerful technology that refers to a multi-layered artificial neural network (ANN)
known as deep learning (DL) has evolved over the past few decades. The remarkable
advancements in deep learning technology have been driven by convolutional neural
networks (CNNs) or ”ConvNet”. Nowadays, CNN is frequently used for computer
vision-related tasks like image classification, object detection, pattern recognition,
and so forth [39].

Figure 2.1: The architecture of a CNN, consisting of basic three layers [4]

An overview of a convolutional neural network’s general architecture is shown
in figure 2.1. It analyze massive volumes of input in a grid structure and extract
important granular key features for detection and classification. CNNs generally
have three layers: a convolutional layer, a pooling layer, and a fully connected layer.

6

2 Technical Background

Each layer has a distinct function, executing a specific task on the data it collects
and learning progressively complex things. A brief discussion has been given below
about the convolutional neural network layers.

2.1.1 Convolutional Layer

A convolutional layer is the key component or a core building block of a CNN. The
design philosophy of this layer is to extract various features from an input image
using the kernels or filters and give information such as edges and corners. This
feature extraction is usually accomplished using linear and nonlinear operations,
namely the convolution operation and the activation function.

Convolution

A convolution operation is a special type of linear operation which is a dot product
between a filter and an image. These filters are also referred to kernels. Similarly, an
image is also called a tensor. The convolutional kernels split the tensor into small
pieces known as receptive fields[40]. At each position of the tensor, an element-
wise product is computed between each element of the kernel and the input tensor,
and the resulting value is added to the corresponding position of the output tensor,
producing a feature map.

Figure 2.2: A convolutional operation example[5].

Figure 2.2 represents a simple input image dimension of a 5x5 matrix. The size and
number of kernels are two essential hyperparameters that regulate the convolution
operation. A kernel, dimension of 3x3 matrix has been utilized as an example in
above figure.

cfk
l (p, q) =

∑
c

∑
x,y

ic(x, y)e
k
l (u, v) (2.1)

7

2 Technical Background

Here, the input or image tensor is IC and the element of this tensor ic(x, y) is mul-
tiplied by ekl (u, v) index of kth convolutional kernel of the lth layer, called element-
wise multiplication and cfk

l (p, q) is defined as a feature matrix of the elements of all
channels[40].

The structure of the convolution layer and the volume of the feature map rely on
three hyperparameters: depth, stride, and zero-padding[41, 8]. The number of filters
applied in the preceding layer is denoted by the depth of the output volume. In the

Figure 2.3: A convolution operation example with stride 1 and zero padding[6].

first convolutional layer, the raw tensor is given as an input and different neurons
along the depth dimension can be activated in response to differently oriented color
blobs or edges. The filter slides depending on the stride value. If the stride is 1, the
filter slides one pixel at a time, and so on. In the above figure 2.3, it adds zero rows
and columns to the outside of input tensor and retain the equivalent dimension for
output feature map through convolutional operations.

Activation Function (Nonlinear)

A nonlinear activation function is then applied to the output of convolution or linear
operation. The activation function acts as a decision-making function and assists
the understanding of complex features. The learning process of convolutional neural
network (CNN) relies on the appropriate non-linearity function. The activation
function, which is convolved with feature map can be described by a mathematical
equation.

T k
l = ga(F

k
l) (2.2)

Here, F k
l is the result of a convolution that is given to the activation function ga(.)

with adding non-linearity and the output of T k
l , which is transformed and returned

to the lth layer. There are different types of activation functions are available, such
as tanh, sigmoid, rectified linear unit (ReLU), Leaky ReLU, maxout, ELU, Softmax,
SWISH and so on[7, 40]. The most commonly used nonlinear activation function is
ReLU, which calculates the maximum value between 0 and x[5].

8

2 Technical Background

Figure 2.4: Common activation functions applied in CNN[7]

2.1.2 Pooling Layer

After obtaining a feature map in the convolutional layer, a pooling layer is added to
downsampling the input tensor. This layer is used periodically in between succeed-
ing convolutional layers. The purpose of this layer is to reduce the size of the spatial
domain or convolved feature map, which means reducing the subsequent learnable
parameters on the input and increasing the computational speed in the network.

Max pooling and average pooling are the two types of pooling that are available.
In the max pooling operation, the filter sweeps over the entire input tensor and
returns the maximum values. On the other hand, the average pooling operation
returns average or mean values across the receptive fields.

(a) (b)

Figure 2.5: Pooling Layer[8].

A representation of the pooling layer has shown in figure 2.5. The input image
size in 2.5(a) is (224x224x64) pixels. A 2x2 size filter was applied for the pooling
operation to create an output tensor (112x112x64) pixel in size. There is no change

9

2 Technical Background

in the depth (64) of the volume. Max-pooling down sampling operation with a
stride of 2 has been demonstrated in 2.5(b). Each operations was carried out over
4 numbers, which is (2x2) square[8].

2.1.3 Fully Connected Layer

A fully connected (FC) layer consists of several final layers of a CNN or ConvNet
architecture, combining the activation of all previous layers. The high-label feature
map of all convolution or pooling layers is then flattened into a 1D vector and
connected with one or more FC layers. These layers are also known as dense layers.
All connections between input and output are connected by their weights matrix
and applied a linear transformation in the dense layer. The fully connected layer
classifies the input probabilities and provides a range of probabilities from 0 to 1
using a nonlinear activation function called softmax[5, 42]. A mathematical equation
has given below to understand fully connected layer:

yjk(x) = f(

nH∑
i=1

WjkXi +Wj0) (2.3)

In the above equation, weight matrix (W) is multiplied by the input vector (x) using
the dot product, and also bias is added to the nonlinear function[43].

Figure 2.6: An overview of a fully connected layer. [9].

Figure 2.6 provides an illustration of a fully connected layer. It can be seen that
a fully connected layer resembles a convolution layer or a normal neural network

10

2 Technical Background

layer. The convolution layer’s connection to the input is limited to a very small
input segment, which is the main difference with fully connected layer. Both of
the layers calculate the matrix dot products, since they have the similar linear
functionalities in their computation.

2.2 Object Classifier and Detector

Due to the incredible technological developments, researchers have pursued signifi-
cant use of artificial intelligence. Nowadays, classification and detection applications
are the most reliable solutions for all security monitoring and inspection systems.
The task of this research is also to provide an automated system for drone propeller
inspection through the most dependable solution based on a comparison of exper-
imental results between classification and detection algorithms. A brief discussion
of classification and detection algorithms has given below.

2.2.1 Object Classification

The method of categorizing and identifying sets of pixel values inside an image in
accordance with applying some specific rules is known as classification. In other
words, it is a process to ensure that unclassified object of images are classified into
specific categories. It is possible to develop the classification criteria using spatial
frequencies or image features.

Figure 2.7: Comparison between classification techniques[10].

11

2 Technical Background

There are several techniques for image classification, such as artificial neural net-
work (ANN), support vector machine (SVM), fuzzy logic, and genetic algorithm.
All algorithms have both benefits and limitations in performance, and these indi-
vidual techniques are always applied depending on the specification or requirements
of the problem statement. According to the figure 2.7, it is shown that the artificial
neural networks has gained the highest accuracy in comparison to others. However,
the accuracy of the current algorithm depends on having sufficient labelled data[10].
Graph-based learning algorithms yield good accuracy but have complex computa-
tion. The accuracy of an algorithm is based on the selection of samples and taking
spectral information. DNN-based classification algorithms and their architectures
will be discussed in detail later in Chapter 4.

2.2.2 Object Detection

Object detection refers to the classification including localization of objects in an
image or video frame. Specifically, localization refers to the location of an object
by a rectangular bounding box. In a nutshell, the object detection model takes an
input image and returns the same image with bounding boxes and labels to all de-
tected objects. Here, the below figure 2.8 depicts the relation of collective computer
vision-related tasks, such as object recognition, detection, and segmentation.

Figure 2.8: Difference between object recognition, detection, and segmentation[11].

In machine learning, traditional and deep learning-based object detection models
are available. In this research study, deep learning-based models have been applied
and a brief discussion of its key components is given below.

12

2 Technical Background

Core Components

The key elements or building blocks of deep learning approaches for image-based
object detection are: 1. Backbone Networks 2. Region Proposals 3. Anchor 4. Ob-
ject Classification 5. Bounding Box Regression 6. Loss Function 7. Non-Maximum
Suppression (NMS)[44].

Backbone Network

In general, the backbone network refers to the primary network architecture that is
typically employed to extract high-level information or features in a given task. The
input data is first passed through the backbone network, which is typically com-
prised of several layers of convolutional neural networks (CNN). These layers are
designed to gradually extract more abstract and high-level features from the input
data using various filters and transformations. Deep neural image classifier networks
are used to build backbone networks. They eliminate the final classification layer
and use the remaining layers as the backbone of a network. Detection layers are
added to backbone networks for creating comprehensive object detectors. The back-
bone network is typically combined with additional specialized layers such as region
proposal networks (RPNs) or fully convolutional networks (FCNs). High computing
efficiency and detection accuracy are the main goals of backbone networks. Some
well-known networks are VGGNet, ResNet, GoogleNet and etc [44].

Region Proposal

Region proposal is one of the key components of deep learning. It alludes to the
method of identifying the interest of object localizations within an image. It takes
an image input and gives the output of the region of interest (ROI) and a confidence
score for object classification[44]. The architecture of RPN is based on the small
networks on top of the convolutional layers. It acts as a sliding window to find the
region proposals of the features. Then these features are fed into the classification
and box regression layer that predicts the binary classification for objects in the
selected regions[45, 46].

Anchors

Anchors use the feature map from the output of CNN instead of using filter pyramids
to identify the different shapes of bounding boxes from an input image. They are a
collection of pre-determined bounding boxes with different scales and ratios that are
frequently located on the feature maps. Anchors are projected onto different points
on the feature map to match the input images to the ground-truth bounding box.
[44].

13

2 Technical Background

Object Classification and Bounding Box Regression

The aim of object classification is to estimate the probability of several class labels
of an object or a given region of interest (ROI). The object classification component
is kin to a standard classification problem applied to each RoI rather than the entire
images because the localization problem is dealt with via bounding box regression.
Producing effective results for the object classification and bounding box regression
tasks share the same backbone network.

Loss Function

A mathematical function called a loss function or cost function, is used to calculate
the difference between the predicted output and actual output. There are different
types of loss functions available. For example, the softmax loss function is applied to
minimize the loss of classification and smoothL1 is used for calculating the bounding
box regression loss[44]. Also, the focal loss is used to improve the balance between
the foreground and background of an object [47].

Non-maximum Suppression (NMS)

NMS is a method for eliminating redundant, overlapping bounding boxes and keep-
ing only those with the highest confidence score in tasks involving object detection
and localization. It is used as a post-processing step in the inference phase[44].
NMS is applied to remove unnecessary boxes and keep only the one with the maxi-
mum confidence score. It contributes to reducing the number of false positives and
improving accuracy.

2.2.3 Anchor-based Detectors

Anchor-based detectors rely on pre-defined anchor boxes, which are rectangular
areas of various sizes and aspect ratios, to recognize objects in an image. They are
classified into two state-of-the-art categories: one-stage and two-stage detectors.

One-stage Object detectors

One-stage or single-stage detector is suggested as the simplest method for object
detection. In this method, the detector consists of a single feed-forward FCN that
can generate bounding boxes and classify objects[12]. As a result, a one-stage algo-
rithm flow is more straightforward because it does not require developing a region
proposal as it is described in figure 2.9(a). The detection problem is treated as a
regression-based problem, which is its main feature. As a result, both inference and
training become faster and more effective [48].

14

2 Technical Background

(a) One-stage detector (b) Two-stage detector

Figure 2.9: Anchor-based (a) One-stage and (b) Two-stage object detector[12].

Two-stage Object detectors

The detection problem is divided between the region proposal stage and the detection
stage in a two-stage object detector. This method was presented by the pioneer of
deep learning-based R-CNN[49] that combines CNN features with the region. In
the first stage, it suggests or proposes a number of object candidates known as
regions of interest (RoI) by applying anchors or reference boxes. This is known
as the region proposal stage and the objective is to generate regions where objects
can exist. The second stage involves classifying the suggested ROIs and optimizing
their localization as shown in figure 2.9(b). The candidate region proposals are
categorized into different classes throughout this stage. It generates the probability
of the class as well as refines the region locations[44].

2.3 Deep Learning Strategies

The purpose of deep learning is to assess data using a logical framework resembling
the human brain based on a set of inputs commonly referred to as training data. The
training process can be done by applying different learning strategies. Supervised
learning is best known and requires labelled training data. Several techniques are
available for supervised learning, depending on how the dataset will be used to train
the model, such as passive learning and active learning. This section describes the
learning strategies and working principles, as well as their benefits and drawbacks.

2.3.1 Passive Learning

Deep learning has evolved as complex and sophisticated computational models,
which are made up of several processing layers, to learn feature representations
from training data at multiple abstraction levels [50]. Traditional or passive learn-
ing is the most common strategy used to train deep learning models. According

15

2 Technical Background

to this approach, a sizable dataset is acquired, labelled by humans, and then fed
to the model for training. The model is trained on the complete dataset, and the
parameters are adjusted to minimize the difference between the expected and true
results.

The positive aspect of passive learning is that it is simple to implement and
requires little human involvement. However, the main drawback is that it demands
a substantial amount of labeled data, which can be costly and time-consuming to
acquire, and it takes into account the exponential growth of data in the modern
world[13]. Figure 2.10 shows the exponential growth of data for the current decade,
which will lead to data labeling problems.

Figure 2.10: Data growth forecasting for the current decade [13].

2.3.2 Active Learning

Active learning (query learning)[14] is a more advanced technique for training deep
learning models, which involves selecting the most informative data samples for la-
belling to improve the model’s accuracy. In this approach, the model is trained on
a small initial set of labelled data, and then the model is used to predict the labels
of unlabelled data. The most informative data points are then selected for labelling
by humans, and the model is retrained on the newly labelled data. This process is
iteratively repeated until the model achieves the desired accuracy. The aim of the
active learning method is to decrease the number of labelled data points required
while maintaining or improving model accuracy.

Three categories of active learning strategies can be distinguished based on the
application scenario: membership query synthesis, stream-based selective sampling,
and pool-based active learning. Figure 2.11 has shown the scenarios of active learn-
ing strategies.

16

2 Technical Background

Figure 2.11: Three main active learning scenarios [14].

Membership query synthesis is among the earliest active learning techniques to
be studied. In this scenario, the learner has the option of requesting labels for any
unlabeled instances in the input space, adding queries that the learner produces
entirely from scratch as compared to those that are derived from some underlying
natural distribution. The upside of this approach is its flexibility with challenges
where it is very simple to create a data instance. However, the downside is the
strong possibility of data misidentification[51].

Another strategy called stream-based selective sampling assesses all unlabelled
data points by individual ones and correlates their informativeness to the query
parameters[14]. For each data point, the learner freely chooses whether to utilize
a label or ask the teacher a query. This kind of approach is frequently applied in
lightweight solutions, such as embedded devices with constrained resources. Despite
being an inexpensive strategy, this methodology has a significant drawback, namely
the confined efficiency because of discrete decisions.

On the other hand, the most popular scenario involving active learning is the
pool-based sampling. In this strategy, the algorithm makes an effort to assess the
complete dataset before choosing the most effective query or collection of queries[51].
It is common practice to train the active learner algorithm on a completely labelled
portion of the data, which is then used to decide which instances would be most
useful to add to the training set for the following active learning loop. The disad-
vantage of this strategy is that it may demand a large amount of memory with a
sufficiently computing capable machine [51, 14].

17

2 Technical Background

2.4 Chapter Summary

For a better understanding of this thesis work and subsequent chapters, a general
explanation of the technical knowledge used in this chapter is provided.

The beginning of this chapter discusses an overview of Convolutional Neural Net-
work (CNN) architecture. It generally has three layers. Each layer has been de-
scribed in detail to understand the basic mathematical calculation. In the convo-
lutional layer, convolve the image using kernels. Dependable hyperparameters such
as depth, stride, and zero padding are used for convolution operation. After that, a
nonlinear activation function Relu is applied to the output of the convolution oper-
ation. Next, the pooling layer is used to downsample the input image. It reduces
the size of the spatial domain or convolved feature ma and it returns the mean
value. The fully connected layer consists of several final layers of architecture. The
tensor is flattened into a 1D vector and connected with one or more Fully-connected
layers. These are also known as a dense layers. Finally, This layer classifies the in-
put probabilities and provides a range of probabilities from 0 to 1 using the Softmax.

Next, the difference between object classification and object detection algorithms
is discussed along with their utilization. The core components of object detection,
such as backbone, region proposal, anchor, object classification and bounding box
regression, loss function, and Non-Maximum Suppression (NMS) are also explained.
Furthermore, two categories of anchor-based object detectors: one-stage and two-
stage detectors are briefly discussed. One stage or single-stage detectors is a single
feed-forward fully connected that generate the bounding box and classify objects.
This detector treated detection problem as a regression-based problem. Two-stage
detectors divide the region proposal stage and detection stage. In the first stage, it
calculates Region of Interest(RoI) by using anchors. The second stage, it classifies
the suggested RoIs and optimize the localization.

Finally, the different learning strategies, such as traditional or passive learning,
and active learning are covered in this chapter. The machine learning paradigm
provides a variety of learning methods depending on how the dataset is used. The
whole dataset is used in the traditional deep learning method. On the opposite,
active learning provides a better architecture that enables greater accuracy to be
achieved while utilizing less data. These different learning strategies are described
in this chapter along with their guiding principles, advantages, and disadvantages.

18

3 State of The Art

This chapter will describe state-of-the-art machine vision solutions for inspection
where the previous Chapter 2 elaborated the fundamental knowledge of architec-
tural components. The agenda of this chapter is to explain in detail on the effort
to formulate the base for today’s well-fitted inspection solution that combined with
machine-vision technologies.

Section 3.1 will give an overview of the image-based inspection system. Section
3.1.1 will explain the traditional approaches and how it has transformed the revo-
lutionized evolution of artificial intelligence (AI). Section 3.1.2 will cover a details
exposition of current state-of-the-art efforts using deep learning or machine vision.

3.1 Overview of Image-Based Inspection

With the beginning of image processing and computer vision techniques, the rev-
olution of the world has drastically changed. This sector has gained attraction to
scientists over the last decades, and it is still a complex, significant and long-standing
problem in the current research area. Although it has achieved remarkable advance-
ment to a certain extent from the perspective of state-of-the-art solutions.

The advent of image-based inspection relies on image feature extraction, repre-
sentation, classification, detection and so on as shown in the figure which is the
cornerstone of high-label or complex solutions in computer vision, and machine
learning-related tasks [21]. Considering the aspect of a potential number of notable
state-of-the-art vision-based detectors’ algorithmic performance and characteristics,
they can be categorized into two distinct approaches. One is traditional and the
other is deep learning approaches. Figure 3.1 illustrates the comparison between
these approaches. Here, in (a) traditional approaches take input from different
sources or domains. After that, the feature engineering is followed by the manual
extraction and selection process and preparing the features to feed the classifier
model with their shallow structure and predict the final output. on the contrary, in
(b) deep learning approaches, both feature learning and classification models work
through an End-to-End learning process without the help of an oracle (human) and
give the final output. As it is very clear that the traditional approaches have limita-
tions as compared to the deep learning approaches but these are still very common
and popular solutions in a specific field. The key concern of this research project is
to create an image-based inspection system using deep learning.

19

3 State of The Art

Figure 3.1: (a) traditional approaches, (b) deep learning approaches [15].

It is necessary to understand the approaches with respect to the respective field
of work according to the various state-of-the-art methods. Hence, both approaches
are described below comparing their working principle and performance in terms of
various state-of-the-art methods.

3.1.1 Traditional Approaches

Before the era of deep learning, traditional approaches were widely used and pop-
ular for solving machine vision tasks. They are mainly included with hand-crafted
feature extraction and the construction of the model in a separate way. In the field
of computer vision, traditional object detector algorithms are mainly involved with
the combination of region selection, and image feature extraction with classification.

The Bag of Visual Words (BoVW)[52] model is one of the most extensively uti-
lized conventional approaches. With this approach, local features are extracted from
images, clustered to create a visual vocabulary, and then each image is represented
as a histogram of the frequency of visual words in the image. A classifier, such as
SVM[53] or kNN[54], can then be used to classify the image. The Scale-Invariant
Feature Transform (SIFT)[55] is another well-known approach. It is a feature ex-
traction technique which is resistant to changes in lighting or illumination, scale, and
rotation. It entails locating key points in the input image, extracting the local de-
scriptors surrounding each key point, and then comparing these descriptors between
images. The tasks of object recognition and image retrieval have seen extensive use
of this strategy. In principal component analysis (PCA)[56], it transforms data from
a high-dimensional to a lower-dimensional setting while preserving the most crucial
image details. It can be used to reduce the dimensionality of image features and
make them simpler to classify in the context of images.

Apart from these, traditional approaches also use several classification algorithms
including logistic regression, Naive Bayes, and decision trees. These algorithms are

20

3 State of The Art

utilized to classify images according to their attributes or features. Despite being
commonly utilized in image-based classification problems, they have some drawbacks
when compared to deep learning methods. However, they can be effective in cases
of limited labelled data or when a simpler model is desired.

Figure 3.2: An architecture overview of traditional object detector algorithm[16].

As described in the figure 3.2, the architectural design of the detection-based
traditional approach has three prime components: region selector, feature extractor,
and classifier [16]. Here, the region selector primarily employs sliding windows[57] of
various sizes and ratios in order to slide on the image from the left to the right and top
to bottom by a specific step size. After that the feature extractor such as SIFT[55],
FAST[58], HOG [59], Haar [60], and so on are used to get the feature representative
information. The final part of the classifier algorithm such as KNN [54], SVM [53], or
AdaBoost [61] is used to categorize the object from an image. There are commonly
used traditional handcrafted features detection algorithms, such as Deformable Part-
based Model (DPM)[62], Oxford- Multiple Kernel Learning (MKL) [63], Selective
Search [64], etc. The below figure 3.3 has illustrated the evolution of object detection
algorithms that are transformed from traditional to deep learning based approaches.

Figure 3.3: The progression of object detection milestones[17].

From the above figure 3.3, one of the most extensively used traditional detec-
tion approaches is the Viola-Jones detection algorithm introduced by Paul Viola
and Michael J. Jones[65] (2001). Compared to available methods at that time, this

21

3 State of The Art

detector achieved enormous detection accuracy. The feature computation speed of
this method is fast because of integral image properties. It involves using Haar-like
features to detect objects in an image. Haar-like features are simple rectangular
features that can be used to distinguish between different parts of an image. The
algorithm also involves training an AdaBoost classifier to differentiate between these
features and using a sliding window approach to detect objects in an image. The
HOG is known as a feature descriptor and was introduced by Triggs and Dalal [59]
in 2005. It made substantial progress in terms of SIFT and context of shape. It
utilizes the local contrast of the overlapping normalization technique to boost accu-
racy while controlling the invariance of feature and non-linearity. The computation
of equal space of dense grid cells is the primary task for this method. For detecting
varied sizes of objects, it iteratively rescales the visual representation of the image
while keeping the sliding window’s constant size. The drawback of this detection
algorithm is that the objects are consistently upright, with some partial occlusions
and little variation in pose, appearance, illumination, and background. It does not
perform well in non-rigid subjects.

The extension of the HOG detector, called deformable parts models (DPMs) is
created by training on collections of deformable parts. The work of Felzenszwalb
et al.[62] (2008) brought this strategy to the forefront by demonstrating that it
can produce comprehensive, accurate findings on challenging data sets. Deformable
parts models (DPMs) are built on the premise that objects can be thought of as
collections of components. As a result, finding the components and assessing how
they interact should be sufficient to detect objects. This can be accomplished by
recognizing the components and respective bounding boxes, and then combining
both of them into broader bounding boxes which are representing objects. After
discovering the bounding boxes of objects, no maximum suppression is applied to
these regions to discard the additional analysis. For practical purposes, it assigns
a score to each prospective bounding box, retaining the one with the highest score,
and ignoring any that would have a significant percentage of overlap with the re-
maining bounding box. This model is also established as a “star model”[17].

By following the DPM model, later R. Girshick (2009-2012) conducted more ex-
periments and developed several extended DPM models called “Mixture Models”
[62, 66, 67, 68]. These models aim to detect objects more precisely in real-world
scenarios. A combined root filter and some part filters are the core of the DPM de-
tector. Context priming, hard negative mining, and bounding box regression are a
few of his formulated techniques. Additionally, he developed a cascade architecture
that enabled significantly faster inference without compromising accuracy [17].

Multiple Kernel Learning (MKL)-based detectors were proposed by Vedaldi [63].
A single or a set of kernels with adjustable parameters is used. Finding the best
combination of kernels is determined by the optimization technique. Several reg-
ularizes, including entropy-based, mixed normalization, L1 and Lp normalization

22

3 State of The Art

have been proposed to learn an efficient kernel combination. It may reduce unneces-
sary and noisy kernels. Besides, it can produce a sparse solution. L1 normalization
is the one that is most frequently utilized. This method made an effort to ad-
dress two important problems with object detection, namely the improvement of
learning effectiveness and classifier accuracy. Although the traditional detection al-
gorithms had inherent flaws, they were still rather advanced. However, the sliding
window-based region selection method has computational costs and excessive win-
dow redundancy. Also, the morphological variability in appearance, the variation
of illumination conditions, and the dense background make it difficult to construct
robust features.

3.1.2 Deep Learning Approaches

In recent years, deep learning methods are gaining reliance to provide robust solu-
tions in real-time applications such as image classification, recognition, and detec-
tion. CNN has achieved a tremendous state-of-the-art performance for classification
and detection tasks. In this section, CNN-based deep learning approaches will be
discussed in detail which are deeply related to this research project.

For classification and detection-based problem-solving issues, the feature is ex-
tracted using deep convolutional neural networks, known as backbone networks by
applying an end-to-end learning process. These backbone networks are very com-
plex and hungry for memory consumption. Therefore, they are trained by GPU-
accelerated computers.

Figure 3.4: The Progression of backbones with accuracy metrics based on the Ima-
geNet 2012 dataset[18].

Here, figure 3.4 depicts the progression of feature-extracting backbone networks
with accuracy metrics and parameter counts based on the ImageNet 2012 dataset.
The various colours depict the relationships between the network architectures;
mixed colours denote that concepts from two distinct network families are com-
bined.

23

3 State of The Art

Feature Extraction Networks

Deep convolutional neural models are composed of convolutional layers that work for
extracting features consecutively by diminishing the dimensionality from the image
as input data. In addition, these convolutional layers are well-known as a backbone
networks. Deep learning refers to the process of building models that are deeper
as more layers are added, allowing the learning of more complicated information or
features. It can be classified as a Complex network(3.1) or a lightweight network
according to the convolutional layers and their parameters. As their name implies,
complex networks are more intricately designed. On the other hand, lightweight
networks contain a small number of layers.

Backbone Network
Parameters

(M)
Complexity
(FLOPs)

Top-1
acc(%)

Top-5
acc(%)

Top-1
err(%)

Top-5
err(%)

AlexNet [69] 60 0.72G 57.2 80.3 42.8 16.4
ZFNet [70] 58 - 60.0 85.2 35.7 11.7
VGGNet-16 [24] 138 15.3G 71.5 89.8 28.5 9.9
GoogleNet [71] 6.8 1.5G 69.8 93.3 - 7.89
Inception-V2 [72] 12 1.9G 79.9 95.2 21.2 5.6
Inception-V3 [73] 23.6 5.72G 82.7 96.5 18.7 4.2
ResNet-50 [25] 23.4 38.32G 79.3 96.4 20.74 5.25
ResNet-101 [25] 42 - 80.1 96.4 19.87 4.60
DarkNet-53 [74] 41.57 7.14B 76.50 92.8 - -
CSPDarkNet-53 [75] 28 5B 77.76 93.0 - -

Table 3.1: A summery of several complex backbone networks performance is mea-
sured on ImageNet dataset.

The architecture AlexNet, developed by Alex Krizhevsky et al.[69], outperformed
the preceding LeNet-5 to win the ILSVRC in 2012. It has eight layers, including
five convolutional layers with max-pooling layers, and three fully connected layers
with 60M parameters. The last fully connected layer produces class probabilities.
The input size of the network is 227 x 227. AlexNet was widely recognized for using
rectified linear units (ReLU) as an activation function and dropout regularization in
the fully connected layers for solving gradient dispersion. It also used a data aug-
mentation technique to extend the dataset for minimizing the overfitting problem.
It included a parallel multi-GPU computing system to build layer communication
and increase the training speed. It remains a landmark in the field of deep learning,
and its success has paved the path for the development of different cutting-edge
CNN architectures.

In 2013, ZfNet was released as an upgrade to AlexNet developed by Fergus and
Zeiler [70], and in the same year, it won the minimum top-5 error rate at ILSVRC.
The architecture consists of five convolutional layers, the first two of which differ

24

3 State of The Art

from AlexNet’s first two layers in that they have smaller filters and a shorter stride
for reducing the down-sampling rate, allowing for the preservation of more low-level
information.

The Visual Geometry Group (VGG) first unveiled the deep convolutional neu-
ral network architecture known as VGGNet[24] in 2014. It was created to enhance
CNN performance on image classification tasks by extending the network’s depth
while preserving a straightforward and standard architecture. The representation of
features in the network was improved by increasing the depth of AlexNet to 16–19
layers and VGG16, and VGG19 are the two common network architectures. It uti-
lizes a 3 x 3 kernel and stride value 1. The advantage of using a short kernel is that
the network’s depth is increased while the receptive field is kept constant. After the
parameters are decreased, the network model’s feature representation capabilities
are improved. VGGNet has significantly influenced CNN development overall and
is still a well-liked architecture for many computer vision applications.

GoogleNet[71] referred to as Inception v1, is a deep convolutional neural network
architecture created by Google in 2014. The architecture comprises 22 layers, in-
cluding a cutting-edge Inception module that enables the collateral processing of
various filter sizes and pooling operations within a single layer. This module im-
proves the visualization of the input image and facilitates the extraction of features
at different scales. The term ”network-in-network” or ”micro-architecture” was also
introduced, which refers to a tiny convolutional filter size 1 x 1 to conduct a sort of
dimensionality reduction and enhance the nonlinearity of the network. It reduces
the network parameters as well as increases network effectiveness. On the ILSVRC
in 2014, it attained state-of-the-art performance, and since then, other deep learning
architectures have been influenced greatly.

As an expansion of the first GoogleNet (Inception-v1)[71] design, InceptionNet-v2
[72] and InceptionNet-v3 [73] are both deep convolutional neural network architec-
tures. The key feature of Inception is that it accumulates data across the various
scales of the image using multiple convolutional kernels and then concatenates them
to produce a better visual representation. Two key aspects set Inception-v2 apart
from Inception-v1. The first one requires splitting a 5 x 5 convolution into two 3 x
3 convolutions. The second is the reduction of a n x n convolutional kernel’s size
into two convolutions of n x 1 and 1 x n respectively. Batch Normalization is mainly
utilized by Inception-v3. Both discrete convolution and a reduction in the spatial
resolution were included in Inception-v3. Inception-v4 adds a specific reduction
block for changing the network width and height. Inception-v4 [76] contains more
inception modules than Inception-v3, as well as a more cohesive and straightforward
architecture.

ResNet, short for ”Residual Network,” [25] was first presented by Microsoft re-
searchers in 2015. It was developed to deal with the issue of disappearing gradients

25

3 State of The Art

in deep networks of neurons, which can make the network perform less optimally as
layers are added. It presents a revolutionary idea ”skip connections” also known as
”identity mappings,” which permits information to be transferred from one layer to
the next without being altered by the intermediary layers. This mitigates the van-
ishing gradient problem and enables the training of much deeper neural networks.
It is built by the several numbers of ”residual blocks,” each block contains two or
more convolutional layers, batch normalization, and skip connections[25]. As a re-
sult of the skip connections, the block’s input is added to its output, ensuring that
the gradient signal can easily travel across the network. It has been extended to
ResNet-50 [25], ResNet-101 [25], and ResNet-152 [25] which vary in the complexity
and number of layers, and is used as a premise architecture for many other deep
learning applications.

Network
VOC-07
(test)

VOC-12
(test)

MS COCO

mAP@.5 mAP@[.5,.95]
VGGNet-16 73.2 70.4 41.5 21.2
ResNet-101 76.4 73.8 48.4 27.2

Table 3.2: Performance comparison between VGG-16 and ResNet-101.

In table 3.2, ResNet has achieved a better performance for both object detection
Pascal VOC 2007, 2012 and COCO datasets. This test has been done by adopting
Faster R-CNN object detection method. The performance has increased 3.2% in
Pascal VOC 2007 dataset, 3.4% in Pascal VOC 2012 in test data accordingly. Fur-
thermore, the mAP has 6% increased in COCO dataset detection challenges.

Darknet-53 [74] was introduced as a replacement for the previous Darknet-19 [77]
architecture used in YOLOv2 by Joseph Redmon in 2018. There are 53 convolutional
layers in the architecture, and they all have residual connections, just like ResNet.
In contrast to ResNet, this network applies 1 x 1 convolutional layers to the feature
maps to make them lower dimensional before using larger convolutional filters. It
assists in decreasing the network’s computational expense while maintaining excel-
lent accuracy. In addition to the residual connections, it also has skip connections,
which allow data to move directly from one layer to the next without being altered
by the intervening layers. The vanishing gradient problem is decreased. As a result,
the gradient flow is improved. It is a highly efficient and effective neural network
architecture and contributes significantly to computer vision. Figure 3.5 illustrates
the comparison of the top 1 and top 5 error rates between several networks and
DarkNet-53. The lowest error rate is achieved by the DarkNet-53 network.

The architecture CSPDarkNet-53 is also called CSPNet [75], which introduces
the notion of ”cross-stage partial connection” which divides the network into two

26

3 State of The Art

Figure 3.5: Darknet-53 network top1 and top5 error rate in CIFAR-100 dataset [19].

channels at specific stages and recombines them at a later time using partial con-
volutions. As a result, the gradient flow is enhanced and the cost of computation
is decreased while keeping high accuracy. The fundamental idea of CSPNet is to
partition the gradient flow and make it propagate over various network paths. By
switching the concatenation and transition phases, it creates a significant correla-
tion difference. Moreover, this network can significantly minimize the computation
and increase both inference speed and accuracy. CSPNet-based detectors have also
solved several problems such as enhancing the learning ability and eliminating bot-
tleneck computation with memory cost reduction. In order to gather multi-scale
features, CSPDarknet uses spatial pyramid pooling (SPP).

Backbone Top-1 Top-5
ResNet-50 76 91.6
VGGNet-16 68.5 88.8
DarkNet-53 76.5 92.8
CSPDarkNet-53 78.7 94.8

Table 3.3: Accuracy comparison between complex networks for classification.

In table 3.3 has shown the accuracy comparison in imagenet dataset,while CSPDarkNet-
53 backbone network has achieved the highest accuracy of top1 78.7% and top5
94.8% accordingly. Overall, 2% accuracy is improved compared to Darknet-53.

27

3 State of The Art

This network has contributed significantly to the field of deep learning by achieving
cutting-edge performance on a number of computer vision challenges. A detailed
architectural explanation will be given in the next chapter.

Applications of Backbone Networks

Among these complex backbone networks, several networks are extracting features
for both image classifiers and object detectors. The table below 3.4 indicates the
backbone networks involved in image classification and object detection task.

Backbone Network Applications
AlexNet [69] image classification
VGGNet [24] image classification
GoogleNet [71] image classification
Inception [72] image classification
ResNet [25] image classification
Inception-ResNet-V2 [76] image classification, object detection
DarkNet-53 [74] object detection
CSPDarkNet-53 [19] image classification, object detection

Table 3.4: A summery of backbone networks according their applicable task.

Object Classifiers

As we can see in table 3.4, there are very promising and effective feature extraction
networks available now and still are emerging. The depth and width of the network
must be increased when effectively obtaining the representation of the features is
much expected.

As this research project is closely related to a ”Rescue Fly” operation, we need
to develop an automatic inspection system that is capable of providing best accu-
rate results and capable of fast computing. Considering these aspects, we can see
that YOLOV5-classifier [20] model is comparatively very effective. The feature ex-
tractor or backbone of this network is CSPDarkNet-53[75]. Table 3.3 has already
represented the highest achievement of accuracy compared to other complex net-
works. Recently, YOLOV5 has published their classification model and compared
with ResNet and EfficientNet family.

Figure 3.6 illustrated the performance between the Yolov5 classifier and ResNet
models. The SGD optimizer is used to train all checkpoints to 90 epochs with
lr0=0.001 and weight decay=5e-5 at image size 224 with all default settings[20].
The YoloV5x-cls has achieved the highest top-1 79.4% and top-5 94.4% accuracy

28

3 State of The Art

Figure 3.6: Performance comparison between YoloV5 classifiers and ResNet [20].

with 15.9 billion floating point operations (BFLPOS) and 48.1 million (M) param-
eters where ResNet-101 has achieved 78.5% and 94.4% accuracy respectively. The
Yolov5m-cls takes 26.9ms through ONNX format in CPU and 0.9ms in TensorRT
V100 with 12.9M parameters and only 3.9 billion FLOPS for processing. While
Resnet50 and 101 have taken much time and used many parameters and BFLOPS
almost more than twice of yolov5m-cls parameters and FLOPS. As we know accu-
racy is a very important factor for this research project but also have to consider
that speed is imperative simultaneously.

Object Detectors

The reinstation of convolutional neural networks (CNN) and deep learning for im-
age classification evolved the field of visual perception by ALexNet[69], winning the
ILSVRC 2012 image recognition challenge. It has given the spirit of light to con-
duct further research for computer vision applications. Figure 3.7 has illustrated
the modern evolution of deep learning approaches that success to omit the manual
feature extractions for object detection algorithms. The invention of deep learning-
based methods has led to significant advancements in computer vision. Modern
GPUs’ increased computing power has also enabled researchers to create extremely
deep convolutional neural networks, which have emerged as the most efficient way
to extract accessible information from images.

Recognizing and localizing are two separate problems that comprise the object
detection tasks. Based on these tasks, the state-of-the-art object detection models

29

3 State of The Art

Figure 3.7: Evolution of deep learning based object detectors [21].

are categorized into two groups: 1) Two-stage detectors, and 2) One-stage detectors
(shown in figure 2.9). Two-stage detectors typically achieve better accuracy but
at a higher computational cost than one-stage detectors. The primary difference
between these two groups of detectors is their accuracy and speed. However, this
result mostly depends on the characteristics of feature-extracting backbone networks
and hyperparameter tuning in the model, which is a mathematically complex task.

Two-stage Detectors

The two-stage detectors mainly distinguish two different tasks; one is for the loca-
tion task, and the other is for the classification task. First, it produces the region
proposals, and then the classification task is applied to that region. R. Girshic et
al. proposed a network named RCNN (Regions with CNN) [49] and developed it
by motivating the AlexNet [69] feature extractor backbone network. A selective
search algorithm is used for selecting region proposals and giving them as input into
the DCNN. The SVM algorithm is utilized for feature classification, and a bound-
ing box regressor with NMS is applied for region refinement. RCNN significantly
improved the performance compared to conventional methods with a mean aver-
age precision (mAP) accuracy of 58.5%. Slow operation is the main disadvantage
of this network and takes up a lot of space due to the discrete extraction process [16].

Following a few problems with RCNN, K. He et al. proposed SPPNet[78]. A
fixed-size input image was required by the previous approach, which can be trouble-
some when working with images of various sizes. This issue is resolved by SPPNet
and employing a spatial pyramid pooling layer that generates a fixed-size output
regardless of the size of the input image. This pooling layer divides the image into
regions of different sizes without rescaling and pools the features in each region in-
dividually, resulting in a fixed-size representation of the image that can be fed into
FC layers by avoiding an iterative calculation of the convolutional features. It has
shown a better performance than the RCNN model. The drawback of this network is
slow algorithmic performance, no end-to-end training, indicated expensive training
time, and computation as well[16].

30

3 State of The Art

Detector Name
Backbone
(DCNN))

Train
set

Speed
(fps)

VOC 2007
mAP(%)

VOC 2012
mAP(%)

RCNN [49] AlexNet 7 <0.1 58.5 53.3
SPPNet [78] ZFNet 7 <1 60.9 -
Fast RCNN [79] VGG16 7+12 <1 70.0 68.4

VGGM 7+12 <1 70.0 68.4
Faster RCNN [45] VGG16 7+12 <5 73.2 70.4

ResNet101 7+12 <2.5 76.4 -
ResNet101 7+12 <5.0 76.4 -
ZFNet 7+12 <18.0 62.1 70.4

RFCN [80] ResNet101 7+12 <10 80.5 77.6
ResNet101 7+12 <5.8 83.6 82.0

Mask RCNN[81] ResNet101 7+12 <5 50.3 -
ResNext101 7+12 <5 50.3 -

Table 3.5: Two-stage detectors performance in PASCAL VOC dataset.

With the advancement of RCNN and SPPNet, R. Girshick presented Fast RCNN
in 2015[79], allowing the simultaneous training of a bounding box regressor and a
detector using the same network architecture. The ROI pooling layer was added
to the region proposal features. With Fast RCNN, the mAP for VOC 2007 dataset
increased from 58.5% to 70.0% as well as for VOC 2012 until 68.4% has increased
(as shown in table 3.5). However, there is no room for end-to-end training due to
the sluggish extracting of region proposals[16].

Later that year, S. Ren et al. proposed the Faster RCNN[45], developed the
Region Proposal Network (RPN), a quick replacement for the slow selective search
technique and shared feature map with backbone network[16]. It provided an oppor-
tunity for comprehensive training. In addition, the speed of detection has improved
and on the PASCAL VOC 2007 dataset and the PASCAL VOC 2012 dataset, it
earned mAPs of 73.2% and 70.4%, respectively (Table ??). Despite still having
trouble detecting multi-scale and small objects, faster RCNN dramatically enhances
object detection.

Following that, J. Dai et al. created Region-based Fully Convolutional Networks
(RFCN) in 2016 [80], and K. He et al. created Mask RCNN [81] in 2017. By com-
puting the FC of the entire image, RFCN reduces the amount of work needed for
each ROI, speeding up the process. For the PASCAL VOC 2007, and 2012 datasets,
it obtained a mAP of 83.6% and 82.0%, respectively. Mask RCNN is the expansion
of the previous model FRCNN. It has increased the detection accuracy by replacing
with the ROI align pooling layer which gains pixel-level alignment. Missing the
real-time requirements for detection is the main drawback of this model[16].

31

3 State of The Art

One-stage Detectors

Single Shot Multibox Detector or SSD is one of the one-stage algorithm developed
by Liu et al. VGG-16 has been used as a backbone network but not fully connected
layers. Feature is extracted by following many scales and decrease the size of input
gradually in every layer for better accuracy. Confidence loss and location loss both
are calculated to get total loss. It has achieved 74% mAP at 59 fps on Pascal VOC
and COCO dataset.

Detectors Backbone Network Size AP[0.5:0.95] AP[0.5] fps
YOLO [26] GoogleNet (Modified) 448 - 57.90% 45
SSD [82] VGG16 300 23.20% 41.20% 46
YOLOV2 [83] DarkNet-19 352 21.60% 44.00% 81
RetinaNet [47] ResNet-101-FPN 400 31.90% 49.50% 12
YOLOv3 [84] DarkNet-53 320 28.20% 51.50% 45
EfficientDet-D2 [85] Efficient-B2 768 43.00% 62.30% 41.7
YOLOV4 [74] CSPDarkNet-53 512 43.00% 64.90% 31
YOLOV5 [20] CSPDarkNet-53 640 45.4% 64.1% 140
YOLOV7 [23] E-ELAN 640 51.4% 69.7% 161

Table 3.6: Performance comparison for one-stage detectors using PASCAL VOC and
COCO datasets.

YOLO (You Only Look Once) was introduced by J. Redmon in 2015 as a solution
for an end-to-end one-stage detector which creates the probabilities for class and
bounding box regression [26]. The image is split into a grid cell, and each cell must
determine whether the object’s centre is in it. This design allowed it to increase
its speed significantly. According to the table 3.6, it detects an average precision of
57.9% with 45 fps on VOC 2012 and COCO datasets. It achieved real-time object
detection speed but not accuracy due to its localization and recall issues. To in-
crease the trade-off accuracy and speed, YOLOv2 improves over YOLOv1 by using
DarkNet-19 as the backbone network [83]. The introduction of batch normalization
and the concept of anchors has accelerated network convergence and improved de-
tection over its predecessor.

In comparison to earlier methods, Redmon et al. introduced YOLOv3[84], which
offers greater accuracy and real-time detection performance. The feature extractor
DarkNet-53 [17] network, which has 53 convolutional layers, has been substituted
for the YOLOv2-like overall architectural framework of this approach. It is consid-
erably deeper and has more residual connections. A 3x3 convolutional layer with
a stride of two between the two blocks is used instead of the max-pooling layer.
Additional FPN has also been used for creating various sizes of feature maps and

32

3 State of The Art

Figure 3.8: YOLO family tree [22].

achieved 45 fps detection speed with 51.5% of mAP.

YOLOv5[20] is a state-of-the-art real-time object detection algorithm developed
by Ultralytics. It is the fifth version of the You Only Look Once (YOLO) family
of object detectors as shown in figure 3.8, and it has been trained using a highly
efficient and accurate architecture. It has used CSPDarkNet-53 as the backbone.
It also uses a unique anchor-free design called YOLOv5-P6, which does not rely
on predefined anchor boxes and is more adaptable and ideal for recognizing objects
of different sizes and aspect ratios. YOLOv5 achieves state-of-the-art results on
various object detection benchmarks while being computationally efficient and easy
to use. It has reached 64.1% of mAP with 140 fps. However, it should be noted
that YOLOv5 is not an official version of YOLO and has not been peer-reviewed or
published in a scientific journal.

The latest version of YOLOV7 was proposed by WongKinYiu which is devel-
oped on the basis of Extended efficient layer aggregation networks (E-ELAN) [23].
YOLOv7 is a highly efficient model, achieving state-of-the-art results on popular ob-
ject detection benchmarks while maintaining a fast inference speed. Its architecture
is optimized for both accuracy and speed, making it suitable for various real-world
applications. It has achieved 69.7% accuracy and 161 frames per second. Model re-
parametrization and scaling techniques have been used. This model has used 75%
fewer parameters with 36% less computation than YOLOV4 and increased 1.5%
average precision [23]. Figure 3.9 has shown the highest performance of YOLOV7

33

3 State of The Art

Figure 3.9: Performance comparison between YOLO’s [23].

in MSCOCO object detection datasets and inference speed is +120% faster than
others. In a later chapter, there are more details discussion will be given about
YOLOV5 and V7 detection models.

3.2 Fault Inspection

As we know the reality of rescue fly operation, it is extremely emergent to ensure
the safety of the drone components before going to operation. In most cases, drone
propellers are damaged. Recently, researchers have been interested in deep learning
to consider how to ensure the safety of these propellers. The traditional methods of
manual visual inspection and ultrasonic testing are very time consuming and labour
intensive. Sometimes, it may not be able to detect the small defect on propellers.
Although several techniques such as current- based, sound-based, and vibration-
based inspection were done in before. But the result is not sufficient to ensure the
propellers health condition. After revolution of artificial intelligence, researchers
and scientists have given their focus in this field for solving all kinds of surveillance,
monitoring and fault inspection. As a result, several acoustic based solution has
been given using deep learning technology. Since there is no direct research paper
about image-based drone propeller fault inspection using deep learning, in that sense
a similar classifier task such as Wind turbine propeller fault inspection or other de-
tection technique is considered to search for a well-fitted and optimized solution for
drone propeller fault inspection. This section discusses the state-of-the-art solutions

34

3 State of The Art

of traditional and deep learning based solution for propeller fault inspection.

The steady state model is proposed by Lee et al.[1] for inspecting the UAV motors
fault. The classification and diagnostics of motors is tested based on the predicted
nonlinear parameters of a steady-state model. DC motor is used to simplify the
model assumption due to the facility of removing derivatives. The model perfor-
mance is unstable due to transient state. The fault classification is tested by inject-
ing different faults.Another drawback is about the current sensor noise. Another
author G.Ciaburro[2] proposed a model based on the vibration sensor signal which
is set on the propeller. After collecting data, model is trained and compared the
performance with principal component analysis(PCA) and wavelate analysis. The
sound-based approach is easier to acquire signals than current-based methods. In
[37, 2], have applied the noise from drones to detect the propeller faulty blades us-
ing an ANN model, Fourier transform and Discrete wavelet transform (DWT) [38].
However, sound-based techniques have a drawback due to susceptible background
noise.

Vibration-based methods [3] are based on acceleration data which is got from
the IMU, built-in or external accelerometer and then classify the signals of rotor
blades.The disadvantage of this model is to get the wrong data from different mea-
surement sensor and the final output is classified by vibration anomaly. Another
approach [36] BLDC, based on angular speed and failure data using brushless DC
motors. It is calculated chaos from the system model by using the state variables.
The speed is estimated and detected anomalies in the propellers motor. This chaos-
based model is evaluated and compared to traditional methods such as Hall-effect
sensors and back-EMF. It achieved a good result based on precision and reliability.
The drawback of this model is about sensor data measurement.Sometimes, it might
be given the wrong data, which leads the false prediction of this model.

According to Liu Yajuan et al.[86], they proposed a three-layer based cloud-edge-
end framework for detecting blade surface damage and chose a lightweight custom
YOLOV3-MobileNet-PK model. In the architecture label, the backbone Darknet-53
is replaced with MobileNet and applied the knowledge distillation process, known
as transfer learning. YOLOV3-ResNet34 has been trained as a teacher model and
then YOLOV3-MobileNet has been pruned as a student model. Finally, the result
showed a 4% increase with 94.9% accuracy. The inference time was 35ms and the
hardware Xeon 4214 (CPU) and NVIDIA Quadro 16GB RTX 5000 (GPU) has been
utilized.

In M. Cruse et. al[87] proposed a model that combines the weakly and strongly
supervised segmentation technique. Here, ResNet-34 is selected as backbone. In the
weak segmentation part, class activation mapping has been chosen and combined
with the Mask-RCNN strong segmentation part. 92% accuracy has been achieved
by using this model and was trained in NVIDIA Gforce 1060 GPUs.

35

3 State of The Art

In [88], have developed a solution by using Faster R-CNN object detector. They
have shown a comparison by replacing four backbone networks consecutively. These
are Inception-v2, ResNet-50, ResNet-101, and Inception-ResNet-V2. Traditional
data augmentation and pyramid patching augmentation are utilized during the
model training. The highest accuracy has been achieved 81.10% of mAP@0.30.
The average inference time was 2.11s per image and the hardware Gfroce GTX 1080
is used.

Another paper [89], has proposed a solution using Mask R-CNN with the back-
bone network of ResNetX-101. They have applied white balance, contrast enhance,
gray scale, geometric transformation with the loss convergence of 0.08 and achieved
86.74% of accuracy for classification.

Sakar et. al[90] unveiled a solution using SRCNN with YOLOV3 and CSPDarkNet-
53 is used as a feature extractor network. In this solution, Laplace variance distri-
bution is applied for image separation, SRCNN model is utilized for reconstructing
the blurry images and manual data annotation is done for data labelling. They have
achieved 96% accuracy with 0.20s inference time per images. In another paper which
is proposed by A. Foster et. al [91], used YOLOV5 model. The idea was to select
image aspect ratio adaptively by applying manual data balancing and labelling tech-
nique. They have taken heavily uneven dataset for their training purpose. Finally,
they have achieved 79.37% of accuracy with 82.39% precision and recall 82.12% and
the fps has gained 17.6.

In shihavuddin et. al [92], another solution has been done by using YOLOV5.
Geometric transformation and color temperature for augmentation technique has
been utilized with combined datasets. After training the model, it has achieved
only 87.3% accuracy with a two second inference rate.

D. Liao et.al [93] have developed a solution by using customized YOLOV5 model.
They have applied data enhancement technique, a weighted bidirectional feature
pyramid network is proposed which is replaced with PAN, FPN networks in neck.
CSPDarkNet-53 has been used as a backbone network. In the neck, multi-scale
features are fused by gathering different convolutional kernels. Accuracy has been
achieved 97.41% by using this model.

Zhang, Rue et. al [94] proposed a solution, named as SOD-YOLO using a cus-
tomized CSPDarkNet backbone network. In this solution, they have applied fore-
ground segmentation and Hough transformation. Additionally a micro-scale detec-
tion layer has been added in backbone. The anchor box is re-clustered through
K-means and CBAM attention has been used for all feature fusion layer. The accu-
racy of 95.1% has been achieved through this network with 41.3 frames per second.
They have used NVIDIA GTX 1650 GPU for training model.

36

3 State of The Art

Further, other sectors are conducting research for developing an automated fault
or damage detection system. For example, in [TUC1], they are doing research on in-
sulator and vibration damper detection using YOLO, insulator burn mark detection
by using cutting-edge deep learning solution and achieved a tremendous performance
according to their developed models result. In [TUC2] this research project, they
have experienmented YOLOV4-tiny model with CSPDarkNet-53 backbone network
for insulator detector edge cutting platforms application. According to the paper,
they have collected data and then categorized them. Then select a number of per-
centage random data from that categorical datasets and apply data augmentation
while labelling the data. After training the model, the solution has been tested in
embedded Jetson Nano and Xavior NX device. They have achieved 98.9% accuracy
for detection.

Another research has been conducted under the Automotive Software Engineering
department in TUC. In [TUC3] this paper, they have applied YOLOV5 model for
experimenting the burn mark detection based on active deep learning. According
to the paper, they have applied data preprocessing and augmentation techniques.
After then manual data annotation was done to prepare train data. They have com-
pared the training result by applying the active deep learning strategy during model
training in each iterative step. Finally, they have achieved a tremendous accuracy
of 99.4% which is inspired to apply this strategy in this research project.

Upesh Nepal et al.[95], have conducted a research about autonomous landing spot
detection in faulty UAVs.According to this paper, the prime task is to find a safety
location for emergency landing incase UAV faces the in-flight failure problem. They
have used different version of YOLO object detection model and made a fruitful
comparison between Yolov3, Yolov4, and Yolov5l. All the models are trained with
large aerial image dataset, known as DOTA. After model training, they have checked
the feasibility of selected models. They have got highest precision 73%, recall 41%
in YoloV3, 69% and 57% in Yolov4, 70.7% and 61.1% in Yolov5l respectively. As
it is shown that Yolov3 needs more improvement while v4 and v5l comparatively
better. But the efficient performance is dependent on the balance of precision and
recal value which is measured by F1 score. In this way, yolov5l has achieved high-
est 65.5% f1 score. Finally, the authors has found the best model Yolov5l which is
developed by PyTorch framework.

In this research project, it is decided to apply three distinct backbone networks
for image classification and compare their result by using full datasets. Additionally,
two state-of-the-art solution YOLOV5 and YOLOV7 object detector will be trained
by following active deep learning strategy and compare their performance using
minimal data.

37

3 State of The Art

3.3 Chapter Summary

This chapter contains the literature reviews of state-of-the-art methods of deep
learning technologies which is related to this research topic. An overview has been
given about the backbone networks that works as a feature extractor or backbone
networks for various image classification problems. Traditional and deep learning
approaches has been described in details and shown their evolution according to
their performance. A general discussion has been given about object classifiers and
object detectors. Several comparison details has also been given according to the
image classification challenges on different datasets. Finally, the implementation
idea for this research project has been introduced which is taken from this chapter.

At first, the image-based inspection system depends on the process of feature ex-
traction from an image. This can be done by applying traditional and deep learning
approaches. In traditional, feature engineering is completed by the help from oracle
(human) and the feature is fed to the machine learning models and classify the im-
ages. After evolution of deep learning, the feature engineering and model training
is done by applying the end-to-end learning process and finally got the output. The
traditional algorithms has three prime components. These are region selector, fea-
ture extractor, and classifier. Region selection is calculated using sliding windows
and extracted features from the image tensor by using different feature extractor
such as SIFT, HOG, Haar and so on. The SVM, KNN or AdaBoost is used for clas-
sification. In deep neural network, feature is extracted by using complex backbone
network and the classify the image.Here, several backbone networks performances
are discussed and we got that CSPDarkNet-53 has achieved the heighest Top-1
and Top-5 accuracy.Finally, Object classifiers and detectors performance has been
discussed based on the different dataset results. RFCN has achieved the highest
mAP among the two-stage detectors. On the other hand, YoloV5, and YoloV7 has
achieved a very good average precision in different dataset and the backbone of this
network is CSPDarkNet-53, and E-ELAN.

Finally, we discussed several papers related to propeller fault inspection. A brief
discussion has been given about the traditional approaches as well as deep learning
approaches. In traditional way, we found steady state model that is used to classify
and diagnostics of UAV motors based on the nonlinear parameters. For reducing the
derivatives from the current signal, DC motors are used due to its simplicity. The
test has been done by injecting fault.Besides, other approaches like vibration-based
or sound-based has given a good result but the disadvantages of its sensor data.
There is a possibility to loss the signal data. Some solutions have been found, where
image-based deep neural network is utilized. Most of the authors worked with either
two-stage detector or one-stage detector. According to the papers, YoloV5 model
has achieved upto 99% accuracy for the different type of fault inspection system.
Besides, the cutting-edge solution like transfer learning, active learning strategies
are also applied in few solutions.

38

4 Methodology

This chapter represents the methodology or conceptual idea of the research project.
In our case, we proposed two methods: Passive learning and Active learning. Both
methods are mainly divided into three stages. The first stage is data preprocessing,
the second is the training stage and the last is the deployment process. Further
details are given in the upcoming section of this chapter. The workflow of the
proposed methodologies are illustrated in figure 4.1 and 4.2 below.

Figure 4.1: Passive learning workflow of the proposed methodology.

Figure 4.1 depicts the proposed methodology for passive learning where data is

39

4 Methodology

prepared in the first stage and then send to the training stage and after finishing
the training, model is deployed using Docker in the final stage.

Figure 4.2: Active learning workflow of the proposed methodology.

Figure 4.2 depicts the workflow of active learning methodology where active deep
learning framework is used in the training stage after data preprocessing and checked
the best model performance through the iteration process. Finally, the model is
converted into ONNX format and deployed via Docker to be used in any environment
on the production label.

4.1 Data Preprocessing

This thesis project aims to develop a solution for drone propeller inspection using
deep learning. We know that learning a deep neural model requires a large volume of
data. This research project deals with image-based solutions. There are no propeller
related datasets available online or offline. In that sense, it is imperative to create a

40

4 Methodology

proper image dataset that is playing a vital or leading role of this research project.
There are many issues that are of concern while creating a dataset. The quality
and resilience of the deep learning model are mostly determined by the precision
in which the input data is processed. In addition to being important, cleaning up
the data and getting it ready for a deep learning model enhance the model’s pre-
cision and efficiency. Several approaches are used to build the model’s dataset are
explained in detail in this section. These are related to the collection of data, data
selection, augmentation for enhancing data, duplicate data detection and remove,
and data balancing of each class. The following subsections provide more in-depth
information on each of these strategies.

4.1.1 Data Collection

In the Rescue Fly project, there is no prior image-based work related to the drone
propeller fault inspection. Furthermore, there are no available online datasets as we
can get access to utilize in our research project. So, a Logitech camera has been
mounted on the indoor environment where the drones will take place before and
after rescue operation. The placing of the camera is on top of each propeller with a
minimal distance that covers the whole area of propeller. The images are captured
considering the different light conditions and backgrounds.

It is very important to look at the shape of the object in the image while feeding
these images to the selected model. Most models resize the input images according
to their specified size requirements and specifically prefer square image size. In our
case, we cannot feed any kind of aspect ratios of propeller images because when it
resides in the model, the object of the images will shrink.

(a) Rectangular image (b) Barrel distortion

Figure 4.3: Problems of rectangular images for the selected model, a) original image
b) distorted image

Since our propeller size is maintained only by the symmetrical in length, it dis-
torts the original shape of object in the image. The one and only solution for this

41

4 Methodology

problem is to choose square aspect ratio and spatial selection of an image. Figure
4.3 illustrated the problems about resizing the original rectangular aspect of pro-
peller image which is converted to the barrel shape of distorted image in the model.
Also other distortions can occur while taking images such as pincushion distortion,
mustache distortion and so on. These group of distortion are also known as radial
distortion. Furthermore, another distortion might be happened due to optical design
in camera which is known as camera distortion. It generates the image deformity
because of curvilinear bending light. The pinhole camera model is contrasted with
the deviation lines. As a result, curved lines are created instead of straight lines.
Therefore, it is very important task to check camera before taking images.

(a) (b) (c)

(d) (e) (f)

Figure 4.4: 720x720 size of propeller images that (a-c) represents healthy and (d-f)
represents broken in different light condition and background.

We have set the square frame 720x720px. So that we do not have to face image
distortion while training our model. If we set the rectangular image frame, it creates
barrel distortion in the image because of propeller size. Since our model will train
by converting into 640x640 sizes of images, we have considered the specific square
resolution of the camera. Moreover, indoor images are acquired inside the Indoor
Flight Center IFC) lab at TU Chemnitz. Several random healthy and broken pro-
peller images with different backgrounds and lighting have been taken from TUC
Lab and shown in the above figure 4.4.

42

4 Methodology

4.1.2 Data Selection

The selection of the image data is a crucial phase in the dataset development pro-
cess since it impacts the quality and applicability of the data used to train and
evaluate algorithms based on deep learning. The purpose of data, diversity, quality,
and consistency of the images are some important points to consider when creating
an image-based dataset. The selected images must be appropriate for the specific
task for which the dataset is being generated. If the dataset is intended for the
classification or detection task, the object of interest must be featured clearly in the
image. Images from a variety of contexts and variations should be included in the
dataset because these are the types of things the DNN model is likely to see in the
actual world. Variations in lighting, camera angles, size of objects, background, and
other factors must always be considered. For learning the model properly from the
chosen images, they must be of good quality and have enough resolution and clarity.

The images in the collection should be consistent in terms of format, size, and
other relevant features. This can assist in making sure that the model can con-
sistently process the selected images. After collecting thousands of raw propeller
images, need to be sorted according to their quality. Although it is concerned about
a good resolution of the images, the images had to be sorted in good, average, and
bad categories as per their resolutions. Few images were not in the correct position
or the condition of the propeller due to the different lighting, background, and clut-
tering environment. Bad categorical images were not considered to make a propeller
image dataset. This would bias the model to give a wrong prediction and for this
reason, these images were manually removed from the dataset.

4.1.3 Data Augmentation

Data augmentation is a strategy that uses modified versions of current data samples
to improve the size and diversity of a dataset. It assists in avoiding overfitting,
inconsistency of class data and increase the model performance with generalization.
Moreover, it is very effective for the cost reduction of data collection and labelling.
Geometric and photometric transformation are applied to create new images in this
research project.

Negative Transformation: It is formed by inverting the image with the point
processing operation. In image inversion, the original pixel value is replaced by the
subtraction between the maximum pixel value and each pixel value of ’r’ in the
image. In our study, it plays a vital role due to the object color and darker back-
ground in the image. It helps to extract information from dark areas of the image.
We generated color negative and gray negative images for our dataset.

Rotation (±10°, ±90°): The propeller position will always be in random and we
need different position images. So that, 90° rotation of clockwise and anti-clockwise,

43

4 Methodology

and ±10 degree are used to generate different angles of images. This is a very
common approach to enlarge the data volume and also helps to increase the model
performance.

(a) color negative (b) gray negative (c) rotation 90°

(d) rotation 10° (e) shear (f) flip

(g) gray scale (h) blur (i) noise

Figure 4.5: Data augmentation techniques

Shear (10°): As camera is mounted in the garage, sometimes there could be dis-
placed the camera position. In that case, it cannot be able to inspect the propeller.
That’s why, the shear from 0 to 10 degrees is applied horizontally and vertically.

Flip: Flipping involves moving the pixels while keeping the image’s information
unchanged. We used both horizontal and vertical flipping technique for our images.
It helps to increase the data volume which is beneficial during training for getting
better accuracy of the model.

44

4 Methodology

Grayscale: We have converted RGB to gray images which reduces the dimension
and computational cost is very low. It has a great impact in real time applications
by performing fast processing. Furthermore, it helps to detect features and edges
within a very short time as well as makes it easy to remove noise from the image.

Blur: We have added random Gaussian blur and increased up to 3% pixels value
in each image that makes the blur image. Gaussian blur can assist minimize noise
in an image by smoothing out minor variations in pixel intensity. When dealing
with images that may have a lot of noise and were taken in low lighting, this can be
extremely beneficial for model training.

Noise: This technique is applied to expand the dataset and helps to reduce the
overfitting issue. We therefore employed a Gaussian noise known as salt and pepper
noise, which manifests itself as sporadic black and white pixels scattered throughout
the image. In order to enhance the image in the dataset, we incorporated 3% noise
in each image.

In the above figure 4.5 represented the applied data augmentation techniques to
increase the drone propeller dataset volume for getting the best result after training
the model and their advantages are also discussed.

4.1.4 Duplicate Data Detector

Duplicate image detection is the method of recognizing and eliminating identical
or nearly equivalent images from a collection of images or dataset. The purpose of
duplicate image identification is to remove duplicated images that consume storage
space, mislead the model, and slow down the processing period. Duplicate images
create two major problems in machine learning algorithms. It produces the overfit-
ting issues to the model which means it bias the model to learn a specific pattern
from duplicate images. Another problem is about the less capability of generaliza-
tion for the new input images. The trained model predicts wrong classification most
of the time.

There are several methods for detecting duplicate images. The most widely used
method is hashing, which creates a distinct digital signature or hash for each image
and compares the hash values of each image to identify duplicates. In addition, the
visual content of images is compared using attributes like color, texture, and shape
in content-based approaches. Another approach is called metadata-based algorithms
which compare image metadata such as file name, date, and size. Nowadays, to in-
crease the precision of duplicate image detection, there are hybrid methods which
integrate two or more approaches, such as content-based and hashing method.

We have not been able to achieve good results by applying all the above methods
for detecting duplicate images in our research project. So that we used Mean Square

45

4 Methodology

Error [96] algorithm to detect the duplicates. The main idea of this algorithm is to
sum up the squared differences between two images by setting a certain threshold
value. The lower the value of error, the images will be more similar. First, translate
the image tensors to the numeric data. Then calculate the MSE value of each tensor
and set a maximum threshold value for comparing with MSE. In our case, we have
taken 200 for threshold. If MSE value is less than threshold value, that means one
of the images are duplicates.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (4.1)

Here in this equation, n is the number of data points, Yi is the observed values,
and Ŷi is the predicted values.

The below steps are as followed to detect duplicate images in dataset:

• Compute the tensor or image matrix.

• Calculate the sum of squared value for both tensors and extract difference.

• Set a maximum threshold value to check the similarity of the images.

• If difference is smaller than threshold value, the images are duplicated.

4.1.5 Data Consistency

The dataset is categorized by healthy and broken data. It is a common scenario
having duplicate data in the dataset after applying the data augmentation tech-
nique. So that, duplicate data detector is used to remove that data. After deleting
images from each classification folder (Healthy, Broken), the data is not equivalent
in all folders. It is a big issue while training the model and makes it overfitting. The
model will be biased and it cannot predict accurately. So that, we compared both
folders and found out the difference between these two folders. Then we deleted a
certain amount of random images from the large folder images to make consistency
between the folders. We got 608 broken and 608 healthy original images. After
applying augmentation, we obtained a total of 11404 images and then deleted dupli-
cate images using the duplicate detector. Afterwards, we created a balance between
folders by deleting random images. Finally, we prepared dataset 1 which con-
tains 7869 images, consisting of original and augmented images. And dataset
2 has 9350 images, consisting of dataset 1 images, colour negative (1215) and
grey negative (1209) transformed from the original images. Similarly, we used the
duplicate detector and made a balance between folders.

46

4 Methodology

4.1.6 Data Annotation

We used Roboflow1 for annotating our dataset. This online platform is very friendly
and provides the geometrical transformation of data augmentation with a certain
amount of data. Here, we have set the value 0 for broken images and value 1 for
healthy images. We have used rectangular bounding box for annotating object in
the image.

Figure 4.6: Data annotation health condition using Roboflow for dataset 1.

There is an option available in the Roboflow data annotation dashboard to check
the health condition about the dataset. It generates the heatmap for individual
labels data and also creates the combined one. In figure 4.6 demonstrated the
health condition of dataset 1. Here, it converts all the images in 640x640px with
the aspect ratio of square size as per model requirements. Both healthy and broken
classes of data are equal and a total of 7869 images are annotated and average image
size is 0.41mp. The same procedure has been followed for dataset 2 as well[?].

4.2 Selected Classifiers and Detectors

This section will discuss selected classifiers and detectors architectures that are used
in this thesis for benchmarking performance. Although in the previous chapter,
the backbone networks for the classification and detection have already been dis-
cussed, here the selected vintage architecture such as VGG family, ResNet family,
and YOLO will be discussed in detail.
1https://roboflow.com/annotate

47

https://roboflow.com/annotate

4 Methodology

4.2.1 VGG Family

In 2014, Simonyan and Zisserman [24] presented a deep convolutional neural network
that both extended AlexNet’s [69] convolutional layer and enhanced the network’s
feature representation. They referred to it as VGGNet. VGG-16 and VGG-19 are
the VGG family’s core network architectures. VGGNet is one of the most well-
known backbone or feature extractor network to date. It is utilized extensively
in computer science and computer vision tasks like image classification and object
detection.

Architecture

The VGG architecture starts with a series of convolutional layers, then moves to
the pooling layers, and finishes with a several fully connected layers. The VGG
network’s depth, which is far deeper than the prior state-of-the-art networks at the
time. It has up to 19 layers of trainable parameters. This level of granularity helps
the network to learn more complicated features, resulting in greater accuracy.

Figure 4.7: The architecture of VGGNet family [24].

Figure 4.7 depicted that VGG-16 network consist of 16 layers that contains 13
convolutional layers where 3x3 convolutional kernel in each layer with stride and
padding value of 1, 5 max pooling layers with 2x2 size of kernel with stride value
2, and 3 fully connected (FC) layers. Moreover, it has 138 million of params. On
the other hand, VGG-19 has only 3 more additional convolutional layers with 144
million of params. All layers’ feature learning is improved by the consistency of
the filters, which makes computation easier and more effective. Furthermore, the
VGG architecture pioneered the concept of ”repeated convolution,” which involves
stacking many convolutional layers one after the other before pooling [97].

The effective 5x5 receptive field consists of a stack of two 3x3 convolutional layers
without a pooling layer. As a result, increasing the size of the stack through three

48

4 Methodology

convolutional layers, it also increases the receptive field. Moreover, non-linearity
makes the decision functions more complex but still learn less parameter. This can
be interpreted as regularizing 7x7 filters and causing them to decompose into 3x3
filters with non-linearity injected in between layers [24].

4.2.2 ResNet Family

ResNet is an abbreviation for ”Residual Network”, a deep neural network architec-
ture that was developed by Kaiming He et al. in 2015 [25]. It was developed to deal
with the vanishing or exploding gradients problems, which can emerge during train-
ing of extremely deep neural networks. Basically, this vanishing gradient problems
occur when gradient is back-propagated in its earlier layers which results in a very
small gradient.

Figure 4.8: Difference between Plain and Residual block [25].

The above figure 4.8 describes the fundamental concept underlying ResNet is to
offer shortcut connections, sometimes referred to as skip connections, that enable
data to skip one or more network layers. To accomplish this, a residual block that
adds the input to the block’s output is added to the network’s several layers before
skipping connection. In this manner, the network can use the shortcut connection
to skip a layer only if it realizes that it will have no impact on the output.

Architecture

When the convergence is commenced in deeper networks, it reveals the degradation
problem. As the depth of the network increases, the accuracy of the model saturates
and decreases rapidly. Saturating results are not only due to overfitting issues, but
also directing to extreme training errors. The solution of degradation problem is
resolved through a deep residual learning framework. The architecture specifically
allowed these layers to suit a residual mapping rather than assuming that each few
stacked layers would immediately fit a desired underlying mapping[25].

49

4 Methodology

Figure 4.9: The architecture of ResNet Network [25].

In the above figure 4.9 illustrated the architecture of Resnet-18 which takes image
as input, then send it to the convolutional layer of 3x3 kernels and get the output of
64 channels. The curved arrows represent the Residual Block which consists of two
convolutional layers. The batch normalization and ReLU activation function are
attached into these layers. The connection between layers is called shortcut connec-
tions which convert the network into residual version. The identity can be applied
directly in the network while the dimension of input and output are equal. The ex-
pansion of dimension is introduced with the dotted arrows. During this expansion
time, the connection of the layers use identity mapping with no extra parameter or
projection shortcut can be used for dimension matching. The last layer decides to
give the final output of taking image input.

In Resnet families, there are also ResNet-34, ResNet-50, ResNet-101, ResNet-152
available. The architectural design for ResNet families is given below.

Figure 4.10: The architectural design for ResNet Families [25].

In figure 4.10 depicts that the architecture of different layers Resnet was built

50

4 Methodology

for ImageNet classification challenges. Residual building blocks are shown for each
convolutional layer with their number of block stacks. After taking input image, the
first layer is convolved with 7x7 size of 64 kernels and stride value is 2. Then the
max pooling layer is used 3x3 kernels with the same stride. From the third layer to
5th layer is performed the down sampling operation. The final layer, which is fully
connected, uses the Softmax function for predicting the class of the image.

4.2.3 YOLO Family

YOLO (You Only Look Once) [26] is the state-of-the-art and most promising real-
time single or one-stage object detector. A single network is utilized throughout
the entire detection process, which makes YOLO distinctive compared to other
networks. When compared to other detectors, this one is among the best. The
original YOLO was the first object detection network to recognize class labels and
drawing boxes in a single end-to-end distinguishing network. It is extremely fast
due to the consideration of frame detection as a regression problem. It has achieved
not only 45 frames per second (fps) but also the fast version is greater than 150 fps.
Even, the latency of the processed real-time video frame is less than 25 milliseconds.
Furthermore, mAP is gained more than twice from other networks. During the
training and testing time, it implicitly encodes contextual information about the
class and their appearance. It produces less than half of the background error which
means it makes more localization errors but predicts fewer false positives in the
background. It also learns highly generalizable representation.

Architecture

Since YOLO as a one-stage algorithm used a single network to generate bound-
ing box coordinates and probabilities of classes instead of the anchor mechanism
proposed by Redmon et al[26]. It takes an input image and passes it through a
series of convolutional layers in the backbone. After that model fed those backbone-
extracted features through the neck. Then the neck features through to the heads,
which predicts object, class and box regression accordingly.

Figure 4.11: The architectural design for YOLO [26].

According to figure 4.11, YOLO’s network architecture is modified from GoogleNet,
with a total of 24 convolutional layers and 2 fully connected (FC) layers. Each layer

51

4 Methodology

has 3x3 conv layers with a 1x1 reduction layer. 2 FC layers are added after the last 4
convolution layers to train the network. The final layer is responsible for predicting
class probabilities and bounding box coordinates. Finally, Non-Max Suppression
(NMS) is used to acquire a single optimal detection for an object.

With YOLO’s unified architecture, object identification is reframed as a regression
problem that is solved simultaneously by predicting multiple bounding boxes and
probabilities of class for those boxes. The following steps are followed in the model:

• Input image is divided into an SxS grid.

• The bounding boxes (B) and confidence scores for each box are predicted in
each grid cell.
Confidence = Pr(Object) * IoUpred

truth

• There will be 5 predictions in each bounding box:
x, y, w, h, and confidence.

• The conditional class probabilities (C) will be predicted in each grid cell:
Pr(Classi|Object).

• Multiply the class probabilities and confidence.

• The predicted image tensor will be: S x S x (B * 5 + C).

This study aims to develop a reliable solution for drone propeller fault inspection
based on the YOLOv5 or YOLOV7 architecture since the accuracy, real-time action,
and lightweight model aspects are vital for the accuracy and efficiency of drone
propeller fault inspection.

YOLOV5

YOLOV5[20] is the fifth version of the YOLO family and incorporates the top-notch
algorithm optimization approach for cross-stage partial networks, data augmenta-
tion (mosaic), bounding box anchoring, and more. This network’s benefits include
lightweight, high detection accuracy, and faster inference speed that reaches 140
frames per second for detection.

Architecture

In the following figure 4.12, the YOLO’s network architecture is comprised of three
components: backbone, neck, and head. The input image is fed to the backbone
network for feature extraction. After that, the output of the backbone network is
fed to the PANet into the neck for doing feature fusion, And the final output is
predicted in the head layer[95].

52

4 Methodology

Figure 4.12: An overview of YOLOV5 architecture [20].

Backbone: The backbone network leverages CSPDarkNet-53, a cross-stage par-
tial network [75] which helps to suppress the vanishing gradient problem by using
residual and dense block, and spatial pyramid pooling (SPP) to extract feature maps
of various sizes from the input tensor of an image via several convolution and pool-
ing. BottleneckCSP is applied to decrease the number of calculations and speed up
inference, while a three-scale feature map is generated by SPP that accomplishes
several scales of feature extraction for the identical feature map which helps to en-
hance the detection accuracy [95].

Neck: Path aggregation network (PANet) is used in the neck for increasing the
information flow. It adopts a new feature pyramid network (FPN) structure that
includes top-down and bottom-up feature maps for improving low-level features
propagation in the model [95]. The ultimate motivation of this network is to en-
hance the accuracy of localization in the lower layers.

Head: In the head, it uses the same YOLOV3 head which generates three differ-
ent feature map output that predicts the confidence score, bounding box location
(x, y, height, width), and the classes of objects[95].

Activation Function: The activation function Sigmoid Linear Unit (SiLU) and
Sigmoid are used in this network model. Furthermore, SiLU is also known as swish
and is applied with the operation of convolution between the hidden layers. On the
other hand, Sigmoid is used in the final output layer[95].

53

4 Methodology

Loss Function: This network uses Binary Cross Entropy (BCE) with logit loss
for computing the class loss as well as abjectness loss. the location loss is calculated
by the complete intersection over union (CIoU)[95]. The following equation is given
for calculating the final loss:

LOSS = λ1Lcls + λ2Lobj + λ3Lloc (4.2)

YOLOV7

YOLOV7 [23] was presented by Wang et al. in 2022. It introduces various archi-
tectural innovations that increase speed and accuracy than previous models. Like
Scaled YOLOv4, YOLOv7 backbones don’t rely on ImageNet pre-trained backbones.
Rather, the models are trained solely on the COCO dataset.

Architecture

Yolov7 architecture is designed by using Extended Efficient Layer Aggregation Net-
work (E-ELAN). It plays the leading role as a computational block in the backbone
network. The design is developed by giving focus on several factors such as the cost
of memory access, channel ratios of input and output, element-wise operation, and
gradient path that increase both speed and accuracy in the model. The following
figure 4.13 describes the architectural overview of the Yolov7 model.

Extended Efficient Layer Aggregation: The prime consideration of efficient
architectural design is to optimize parameters, computations, and computational
density. The effect of I/O channel ratio, branch architectures and elementwise in-
ference speed calculation is analyzed in the VoVNet. The shortest longest gradient
path is monitored for better learning and converging successfully by E-ELAN that
is extended from ELAN architecture.

Figure 4.13: An overview of YOLOV7 architecture [23].

It also shuffles and merges cardinality to enhance learning capability without de-
molishing the original gradient path. The architecture of computational blocks has

54

4 Methodology

changed but the transition layer is remaining the same. Group convolution with the
same group parameters is applied to enlarge the computational block and channel.
After that, both are concatenated. As a result, the feature map that makes merge
cardinality will be exact in the original architecture. Furthermore, Several computa-
tional block groups can be led by E-ELAN architecture to learn more varied features.

Model scaling: In general, object detection models figure out the network’s
depth, width, and resolution when training the model to detect objects. In yolov7,
it measures both network’s width and depth while layers are concatenated together.
This strategy makes an optimal solution for different sizes of scaling.

Re-parameterization: This strategy is applied to obtain the weighted average
of model weight to make a more powerful model which is stronger than ordinary
patterns. By using the propagated gradient flow path to look for which modules
utilize the re-parameterization strategy.

Auxiliary head coarse-to-fine: In YOLOv7 framework, they have used mul-
tiple heads. One is called the Lead head, which gives the final output. The other
is the Auxiliary head which assists in the middle layers training and the weight of
this head is updated by applying the assistant loss technique. It boosts the model
for deep supervision and better learning. Lead head and Label assigner are close
couple concepts. The label assigner predicts the network result and grounds truth
together and then soft labels are assigned. The soft and coarse labels are created
by the label assigner the contrary, unlike hard ones.

4.3 Active Deep Learning Approach

The major advantage of an active deep learning approach is that models can be
trained using fewer data and achieve robust performance. This approach reduces
the cost and saves time for doing data annotation by selecting only essential features
related to images. To the best of our extensive research, this active deep learning
technology has not yet been used in any drone propeller fault inspection task using
deep learning. Though, it has shown superior performance in other sectors such as
burn mark detection[TUC3], insulator detection[TUC4], and traffic sign recognition
[TUC5]. The approach is modified according to the requirements of our model,
as shown in figure 4.14. The following steps of the suggested active deep learning
approach are given below:

1. A training pool is created using the entire dataset by splitting the 80% training
data and 20% testing data respectively.

2. Then 15% of the total random images are selected from the training pool for
the first iteration process.

55

4 Methodology

Figure 4.14: Proposed active deep learning approach.

3. After that, this query selected random data is split into training 80%, and
validation 20% datasets respectively.

4. The selected dataset is annotated with the help of an expert oracle.

5. Then the proposed model is trained using this created dataset.

6. After training, the required mAP or the loss function stability is checked.

7. 5% of the images are randomly pooled from the training pool for the next
iteration due to less required mAP.

8. Until the expected accuracy of the model is reached, steps 3 to 7 will be
repeated continuously.

9. The final model will be selected by comparing the highest mAP for inference.

56

4 Methodology

4.4 Software Deployment

One of the most crucial steps in the software development process is software de-
ployment. Application, module, update, and patch delivery from developers to
consumers is accomplished through deployment. The techniques employed by de-
velopers to develop, evaluate, and deploy new code will have an impact on both the
speed and quality of each change that is made to a product in response to adjust-
ments in consumer preferences or requirements.

Nowadays, the most familiar word ”DevOps” has arisen when software deploy-
ment is required after the development process. DevOps is a software development
methodology and set of best practices that aim to reduce delivery times for new soft-
ware updates while keeping high quality. It typically comprises a framework called
CI/CD pipeline for software deployment. Continuous Integration (CI), where new
code is regularly integrated into a repository by working teams. On the other hand,
Continuous Deployment (CD) denotes a software release strategy where new code is
automatically released into the production environment and users can interact with
it after passing automated tests.

Figure 4.15: Docker architecture [27].

In this research project, we have used Docker2. It is a software framework that
enables rapid application development, testing and deployment. After completing
the development and automated testing phase, the software is packaged by docker
containers, each of which contains the runtime, libraries, and system tools. It is
installed in the local system and allowed to write and edit code inside the container.
It is easy to deploy the application in a test environment and attach it to the CI/CD

2https://docs.docker.com/get-started/

57

https://docs.docker.com/get-started/

4 Methodology

workflow. If any bug needs to be fixed in the container, it is possible to resolve it.
Then the container has to be redeployed for validation. Figure 4.15 illustrated the
architectural overview of the docker.

The client-server architecture is followed by docker. A containerization platform
for executing and deploying programs is provided by the docker architecture, which
is made up of several essential key components.

• Docker Daemon: The containers, images, networks, and storage volumes are all
managed by the Docker daemon, which runs in the background. The command
request is sent from the Docker CLI to the daemon and responds to them by
controlling the lifecycle of the containers.

• Docker CLI: a command-line interface (CLI) is used to communicate with the
daemon. To create, manage, and deploy Docker images and containers, it
provides an easy-to-use interface.

• Docker Image: The instructions for building a container are included in a read-
only template known as a Docker image. To run the program in a containerized
environment, it includes the required application code, libraries, and system
utilities.

• Docker Container: A runnable instance of a docker image is known as a docker
container. Each container has its file system, network connections, and process
space. Each container is entirely separate from the host system and other
containers.

• Docker Registry: Docker images can be distributed and kept in a registry,
which acts as a central repository. The most common public registry is Docker
Hub, although corporations can also build up their private registries for inter-
nal usage.

• Docker Networking: Containers use docker networking to communicate be-
tween themselves and with the host system. It supports several network-
ing protocols such as bridge networks, host networks, overlay networks, and
MACVLAN networks by utilizing a variety of network drivers.

• Docker Storage: For preserving data in containers, Docker provides several
kinds of storage solutions. This includes network storage volumes, local storage
volumes, and external storage solutions such as Ceph, GlusterFS, and NFS.

In general, the Docker architecture is designed to offer a flexible and scalable plat-
form for building, deploying, and maintaining containerized applications. Docker is
becoming a powerful component for contemporary software development and deploy-
ment since it provides a standardized method for packaging and running programs
in containers.

58

4 Methodology

4.5 Chapter Summary

This chapter introduces the concept that was formed as a result of the literature
review from the previous chapter. Additionally, it also aims to overcome the stated
issues that were noticed in chapter one. This chapter begins with the methodology
of the proposed method.

Preparing the dataset is the most important stage for building a robust deep neu-
ral network. The deep learning model’s accuracy and consistency are significantly
influenced by how precisely the data is utilized. As a result, the data preprocessing
step is broken down into several subtasks: data collection and selection, augmenta-
tion, duplicate data detection and data balancing.

The drone propeller dataset was formed using several propellers from TUC IFC
Lab. The image resolution is set by a square aspect ratio of 720x720. Data augmen-
tation techniques are applied to increase the data volume. Then detected duplicate
data is deleted and the categorical data is manually balanced. Next, the dataset
is split into the training pool. Finally, the dataset is annotated by oracle. The
essential preprocessing stage has improved the model’s accuracy and reliability.

The model is trained by following two strategies. One is passive learning which
takes the entire annotated dataset to train the model. The other is active learning
which takes a certain number of percentages data from the training pool and splits
it into the train, Val, and test data. Then the data is annotated. After training the
model, the required mAP is checked by applying an iterative process.

The selected object classifiers and detectors are used to train the model. VGGNet,
ResNet, and YOLOv5 classification models are trained with passive learning strat-
egy and benchmarking their accuracy. On the other hand, YOLOV5 and YOLOV7
both models are trained for real-time detection by applying an active learning strat-
egy and benchmarking their performance.

The approach we recommend for active deep learning is outlined next. The active
learning approach increases training data across successive iterations rather than
using the complete dataset for a single training. Although this requires additional
training time, it alleviates the stress of annotation tasks for oracles (humans). As a
result, by using an active deep learning technique, more satisfactory accuracy can
be obtained with fewer data.

In the final section, the model deployment is completed by using docker. It creates
a package of models called containers where package-related libraries, utilities, and
runtime are available. We used docker to deploy our best model and built a docker
image inside the container which can take input from any host machine and give
output after processing and send to the host machine.

59

5 Implementation

The implementation of the proposed drone propeller fault inspection architecture
and functional approach is described in this chapter. It includes the required system
requirements and deep neural model training. In addition, dataset preparation using
an active deep learning framework and the model configuration are also described.
Finally, the iterative process of dataset splitting is illustrated by the diagram.

5.1 System Requirements

The proposed method is implemented by applying several state-of-the-art solutions.
They are divided into hardware and software components. Different computing plat-
forms utilized for implementation and deployment are considered hardware. On the
other hand, programming language and their libraries are acknowledged as software.

5.1.1 Hardware

This research study appliances two different hardware computing resources to im-
plement the inspection model. One is local computing and the other is cloud com-
puting. The assignment of various computational tasks among these two resources
is depicted in the below figure 5.1.

Figure 5.1: Distribution of work between hardware computing platforms.

60

5 Implementation

Local Computing Platform

Two local computing platforms have been used to develop a propeller fault inspection
system. Several tasks such as data preprocessing, active deep learning framework
implementation and model benchmarking have been performed without a GPU-
accelerated computing platform. Moreover, other tasks related to model training
and evaluation have been performed using fast computational or GPU-accelerated
computing platforms. Furthermore, inference speed using both local computing
platforms has also been evaluated.

• Machine 1: An MSI Katana GF76 12UE laptop with 12th Gen Intel® Core™
i7-12700H (20 CPUs) with base frequency 2.7 Ghz, NVIDIA® GeForce RTX™
3060 Laptop GPU 6GB GDDR6 Up to 1475MHz Boost Clock 105WMaximum
Graphics Power with Dynamic Boost and 16GB RAM has been used as a local
computing machine. Additionally, Microsoft Windows 10 Home 64-bit OS has
been used.

• Machine 2: Another computing platform without GPU, Dell Inspiron 5559
with 6th Gen Intel® Core™ i5-6200U CPU @ 2.30GHz (4 CPUs), up to 2.4
GHz, and 12GB RAM has also been used. Microsoft Windows 10 Pro 64-bit
has been used.

Cloud Computing Platform

We used Roboflow for data annotation and data splitting tasks for the passive learn-
ing approach. After finishing model training using local machine 1, we transferred
the model into the cloud computing platform for converting the model into open
neural network exchange (ONNX) format. We had to do this for avoiding several
conflicting library versions which directly impact CUDA. We used Google colabo-
ratory1 (Colab). The colab has provided 12 hours of free GPU accelerated session,
which was sufficient for this model conversion task but not for our model training.
Python Jupyter Notebook and Google drive for getting storage are integrated with
colab.

The colab setup includes a 2.30 GHz of Intel® Xeon® CPU with 2 cores, Haswell
CPU family, and 12GB RAM with 25GB disk space. It has also an available Nvidia
Tesla T4 or K80 GPU with 16G GDDR6. The GPU has 320 Turing Tensor Cores
and 2,560 NVIDIA CUDA® Cores. The GPU has a clock speed of 0.82 to 1.59 GHz
and a throughput of more than 320 GB/s. 4.1 to 8.1 TFLOPS are used to measure
computing performance. The disk space is 358 GB.

1https://colab.research.google.com/

61

https://colab.research.google.com/

5 Implementation

5.1.2 Software

Programming languages Python 3.10, Opencv 4.6, Tensorflow 2.10.0, tensorflow-gpu
2.10.1, torch 1.13.1, torchvision 0.13.1 are used in local computing machine 1 for de-
veloping the inspection system. Additionally, NVIDIA CUDA version 11.6 has been
installed to obtain GPU service.

In machine 2, python 3.9 and Opencv 4.6 have been installed for checking inference
performance without GPU. Other dependencies like scikit-learn, numpy, matplotlib,
pandas, and so on are installed for both machines. PyCharm Community have been
used as a code editor IDE.

Python

Propeller fault inspection application is developed using python which is a very
popular, high-level language and easy to use. It is known for its simplicity, readabil-
ity, and flexibility, making it a versatile language for a wide range of applications.
Python has a large and active community of developers who have created a vast
ecosystem of libraries and tools to extend its functionality. We have used python
versions 3.9 and 3.10 on two local machines. Besides, built-in and third-party li-
braries have also been used.

OpenCV

The OpenCV software library was originally developed in C++ to support a variety
of algorithms and tools for image and video processing, object detection and classi-
fication, and other computer vision and machine learning tasks. Additionally, it is
also available for the Python version. We have pre-processed the image and video
from the camera using the OpenCV library following our model’s specifications.

Tensorflow

A free and end-to-end open-source framework called Tensorflow was created by
Google Brain for applications such as machine learning and artificial intelligence
for a variety of tasks such as image classification, natural language processing, and
speech recognition. It provides a set of tools and APIs for building and deploying
machine learning models, as well as support for distributed computing to scale up
training and inference. We have used Tensorflow 2.10.0 and GPU-accelerated version
2.10.1.

PyTorch

PyTorch is an open-source machine learning framework that is primarily used for
building deep neural networks. It is known for its dynamic computational graph
feature that allows for more flexibility and easier debugging. PyTorch provides a

62

5 Implementation

wide range of tools and APIs for building and training machine learning models,
as well as support for GPU acceleration and distributed computing. We have used
PyTorch-based detectors to benchmark the performance of the models.

PyCharm

PyCharm is an integrated development environment (IDE) for Python programming
language developed by JetBrains. It provides a wide range of features to support
the development of Python applications, including code completion, code inspection,
debugging, testing, and version control integration. PyCharm is designed to boost
developer productivity by providing a streamlined workflow for coding, debugging,
and deploying Python applications. It also supports various frameworks and libraries
such as NumPy, matplotlib, Scikit-learn, OpenCV, Tensorflow, and more.

5.2 Model Training

This section describes all the steps required to train our proposed model, from the
beginning of the experimental setup to model deployment. Environment setup,
dataset preparation strategies, model configuration, model training, and model de-
ployment steps are involved in the implementation of this study. A brief explanation
of each step is provided below.

5.2.1 Environment Setup

We used both offline and online computing platforms to train a robust model for
our application. In the Offline, the virtual environment is set up for training the
heavy and deep models in GPU-accelerated machines. We have also used the colab
setup to convert the trained model which is online.

Offline - Virtual Environment Setup

A virtual environment is a self-contained Python environment that enables develop-
ers to install and handle project-specific dependencies without interfering with other
projects or the system-wide Python installation on their local machine. It offers an
isolated environment with its own Python engine and package dependencies, en-
abling devs to quickly transition between various projects with varying dependency
requirements. We used the Anaconda command prompt (cmd) to create a virtual
environment in our local machine.

After creating the environment, it must have to be activated. Then the selected
folder has to be opened from the selected drive and run the python script. Before
running the model script, make sure that GPU is activated. The below figure 5.2
illustrated a code snippet for checking GPU activation in a virtual environment.

63

5 Implementation

Figure 5.2: GPU activation check in virtual environment.

Online - Google Colab setup

We have trained all of our network in GPU accelerated local machine but used
Google Colab to convert the trained weight file due to some library’s versioning
conflicts. For running google colab, below steps have to be followed:

• GPU runtime has to be connected to run the model and for that, go to ”Run-
time → Change runtime type → GPU ”.

• Google drive has to be mounted for data storage. Otherwise, data will be
deleted after ending the limited session.

• We have used YOLO in our project. So, YOLO has to be cloned from the
GitHub repository according to their version and uploaded to the trained
model’s weight file in the result folder.

• Dependencies have to be installed by navigating the requirements file in the
YOLOV5 folder and have to use ’Pip’ for executing the command.

• Finally, the conversion-related command has to be run by using ’Pip’.

64

5 Implementation

5.2.2 Dataset Preparation

Data preprocessing steps include from the beginning of data collection to data anno-
tation. We have used our local computing system for preparing the dataset except
for data annotation. As we have to train an image-based deep learning model, it is
very essential to check the duplicate data which will bias the model.

Figure 5.3: Duplicate image detection using MSE algorithm.

In the previous chapter, we have already discussed our algorithmic solution for
duplicate image detection, where we use the MSE algorithm to compare two images
by checking the threshold value. In our case, we have set a max threshold value of
470. If the MSE is less than the threshold value, the images are duplicated. Figure
5.3 depicted the duplicate image detection with an MSE value of 65.73 which is a
less than max threshold value.

After deleting all duplicated images, we have made consistency in each class folder
and deleted some random data from the larger class folder. The data annotation is
done by using Roboflow. we have split data into 70% training, 20% valid, and 10%
test data for passive learning. But in active learning, at first, we have to split the
full dataset into train 80% and test 20% accordingly.

Mainly, active learning is an iterative model training process as previously de-
scribed in figure 4.14. For example: a total of 7869 data are available in dataset.
After splitting data, 6295 (80%) random data is selected for training pool and 1574
(20%) data is taken for testing data. According to the algorithm in below table
5.1, 15% of the data was taken from the training pool for the first iteration and

65

5 Implementation

divided again between train (80%) and validation (20%) data to form the dataset
for training the model. After training the model mAP has to be checked. If mAP
is less than our expected result, we need more iteration. Afterwards, the model was
trained sequentially by adding 5% more data to the previous dataset for the next
iteration. This iteration was continued until the expected map was obtained. In
this iteration, we have got a total of 20% training data for our model. This iteration
process will be repeated until reaching the mAP goal. The training and validation
data have been increased in each iteration process. We used only 60% data for
obtaining our expected mAP result through the iterative process.

Iteration New data Training (80%) Validation (20%) Total (%)

1 942 754 188 942 15%

2 266 968 240 1208 20%

3 254 1172 290 1462 25%

4 240 1364 338 1364 30%

5 230 1548 384 1932 35%

6 216 1722 426 2148 40%

7 206 1888 466 2354 45%

8 196 2046 504 2550 50%

9 190 2198 542 2740 55%

10 178 2340 578 2918 60%

Table 5.1: Dataset creation for model training using active learning.

5.2.3 Model Configuration

Deep learning model configuration involves optimizing the architecture, hyperpa-
rameters, and training parameters of the network for a specific reason. The archi-
tectural specification is defined by the number of layers with their types, activation
functions, input, and output dimensions of the network. Moreover, to control the
entire training process and even for tackling the overfitting issues, sometimes it is
needed to hyperparameter tuning such as batch size, learning rate, momentum, regu-
larization, and so on. Furthermore, the number of epochs, criteria for early stopping,
network training duration and when to stop the training process are included in the
training parameters configuration. Configuring these parameters requires careful
experimentation and tuning to find the optimal configuration for a given task.

66

5 Implementation

In this study, we used three classification networks VGGNet, ResNet, Yolov5-
Classifier and two object detectors YoloV5 and V7. We modified the configuration
file as required to train the model. It is needed to separate the images according
to the class folder and provided the configuration file for training the classification
model. On the other hand, the labelled data is required for the object detector
model. We configured the location of the train, valid, and test data. We used a
GPU-accelerated local machine to train the model.

Figure 5.4: The point of early stopping [28].

A model may occasionally overfit on a small dataset. In other words, it remembers
the training dataset, therefore it performs well in validation but poorly in testing.
To address these problems, an early stopping point is used. The early stopping point
is when the model does not overfit. Figure 5.4 shows the early stopping epoch point
and the accuracy that should be chosen to avoid overfitting.

The image resolution of 224x224 is used for both VGGNet, ResNet network.
We used batch-size 32, 150 of epochs, ReLu for activation function, softmax for
final layer activation, dropuot layer 30%, learning rate 1e−5, momentum 0.9, SGD
optimizer, binary-cross entropy for loss function, and pretrained weight Imagenetfor
both classification model. On the other side, we used the default hyperparameter
and default for both the yolov5m and v7 models. In addition, we set batch size 24
with 4 workers, and 300 epochs for the Yolov5 model containing 212 layers. For
yolov7 with 314 layers, we set batch size 5 with 4 workers, and also 300 epochs.

5.2.4 Model Training and Conversion

We have created two datasets for training our models. The first dataset contains
7869 images and the second dataset contains 9350 images. The image size 224x224
px is fed to the VGGNet, and ResNet models. On the other hand, the image size of
640x640 is fixed for the YoloV5 and V7 model. In the passive learning strategy, we

67

5 Implementation

used the entire dataset for both classification and detection models. After getting a
result, later we decided to use only the first dataset for the iterative training process
by using an active deep learning framework. we used this framework only for the
detection model. A total of 10 iterations were applied for getting our expected result
and used only (29.5%) 2340 images from the whole dataset. The dataset is created
by randomly selecting from the training pool for each iteration. Finally, the model
evaluation and inference graphs were saved after each iteration.

Figure 5.5: Onnx conversion sloution for YOLOV5 and V7 model.

After obtaining the best model, we converted this model into ONNX format to
check the inference using the OpenCV Dnn module. We converted the Pytorch
weight file through Colab due to its versioning complication which made compli-
cation in GPU-accelerated local machine. Figure 5.5 illustrated the solution of
mandatory version for torch and onnx.

5.3 Model Deploy

We deployed our model using docker. We have installed Docker windows on our local
machine. Then we have to go to the directory of the project file and open windows
PowerShell from the file option. Next, We created a docker image by following this
”Docker build -t (docker image name) -f (Dockerfile location) .” command. Then we
built the container and mount the input folder with the docker image and followed
the ”Docker run -it -v (input path) : (docker images path) image name” command.
We uploaded our image to the DockerHub registry and maintained the version con-
trolling policy. To do that, we registered in the DockerHub. Then we followed the
command ”Docker login” and it is needed for the first time. Next, we have to set
the image name using the tag by following ”Docker tag (image name: image ver-
sion) (your user-id/new image name: version)”. Finally, we have pushed the image
in DockerHub using the ”Docker push username/name: version” command. This
image can be downloaded in any container. Afterwards, we have given input from
the local host machine. After generating the output through the model into the
container, we sent the output files to the local machine by copying them from the
container output folder.

68

5 Implementation

5.4 Chapter Summary

This chapter is covered the entire development scheme for implementation with a
detailed discussion. This includes hardware specifications and software requirements
in the first section. We used high computing power laptops with NVIDIA GPU RTX
3060 and google colab for the model training and converting purposes. In addition,
Python, OpenCV, TensorFlow, and PyTorch are used for inspection.

The next section is described the entire process of model Training and started
with data collection. After collecting and selecting image data, the MSE algorithm
is used to delete the duplicate images from the database and made data consistent
according to their class folders. Two datasets are created for model training as well
as evaluation and split the dataset between 70% of the training, 20% of the vali-
dation, and 10% of the testing. In an active learning strategy, a training pool is
created and then randomly queries selected images are applied to iteratively create
a dataset for model training.

One of the most important tasks is to configure the model before the training
stage. Image classification networks: VGGNet and ResNet have used the same
model configuration. While YOLOv5 and v7 are followed by their default hyper-
parameter values for the model configuration. This step is tested very sincerely to
overcome the overfitting problem.

The learning strategies for model training are also briefly discussed in this sec-
tion. We followed passive learning for all classification and detection models using
two sets of datasets. After getting the result, we decided to use only one dataset for
testing the deep active learning strategy. We iterated 10 times for making a dataset
to train the model. Finally, we got our expected result using 29.5% of the data from
the selected dataset. After that, we converted the model using collab due to avoid
the library version conflicting issues as we had to train several models in our local
computing machine.

Last but not least, the final section is described the obtained best model de-
ployment process. Here, we used Docker and DockerHub registry. We created a
container after installing docker windows. Then we wrote a docker file for creating
a docker image in the container. After that, we uploaded this image to DockerHub
which is similar to Github. We tested the images by giving input from the local host
machine and copied the processed result from the container to the host machine.
Overall, from the beginning of installing the docker software to the end of deploying
in the registry is discussed by following the given commands in this chapter.

69

6 Results and Evaluation

This chapter describes the evaluation and results of our trained deep neural classifier
and detector models. At the beginning of this chapter, the evaluation matrix is
briefly discussed. Afterwards, trained models result is described by following two
learning strategies: passive learning and active learning. We evaluated VGG-19,
ResNet-50, YOLOv5-classifier as well as YOLOv5m and YOLOv7 detection models.
Finally, the inference and speed rate is evaluated based on deep learning framework
formats.

6.1 Evaluation Metrices

After training the model, it is mandatory to evaluate the model’s performance. It is
done by applying some mathematical and statistical formulas, known as evaluation
matrices. We used Accuracy, Confusion matrix, Precision, Recall, F1 score, and
ROC-AUC curve for the classification model as well as Confidence score, Intersection
over Union (IoU), and mean average precision (mAP) for the detection-based model.
A brief description of these evaluation matrices is given below.

6.1.1 Accuracy

Accuracy quantifies the prediction by statistical metrics of the classifier that rep-
resents the level of precision or correctness. In other words, accuracy assesses how
successfully a classification model or system identifies or predicts the desired vari-
able.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Accuracy perfectly works for a well-balanced target class but is not suggested for
the unbalanced data of classes. In this case, the model will be biased.

6.1.2 Confusion Matrix

A confusion matrix specifies a table that compares the true values with the predicted
values for a given set of data to assess the efficiency of a classification model. The
rows in the matrix represents the actual values and columns for the predicted values.
The number of data points classified into each category of the model is represented
by the number of cells in the matrix.

70

6 Results and Evaluation

Actual Class
Healthy Broken Total

Predicted Class
Healthy TP FP TP + FP
Broken FN TN FN + TN
Total TP + FN FP + TN N

Table 6.1: Confusion matrix table for our model.

Table 6.1 presents the confusion matix cell by true positive (TP), false positive
(FP), false negative (FN), and true negative (TN). TP is the number of instances
in which the model correctly identified the positive class where FP is opposite and
wrongly identified the positive class. FN is represented by the model that wrongly
predicts the negative class. TN represents the number of instances where the model
correctly predicts the negative class.

A confusion matrix provides a variety of performance indicators such as precision,
recall, and F1 score, which can be used to evaluate the effectiveness of a classification
model.

• Precision: The precision of the model is the level to which it correctly iden-
tified the target values. It is the proportion of the number of true positives
and predicted positives.

Precision =
TP

TP + FP
(6.2)

• Recall: Recall is defined as the true positive cases that can predict correctly
in our model. It is a reliable metric where FN gets more focus than FP.

Recall =
TP

TP + FN
(6.3)

• F1 score: The F1 score provides an integrated understanding of the metrics
for Precision and Recall known as harmonic mean. It reaches its highest when
Precision and Recall both are equal.

F1 = 2 · Precision×Recall

Precision+Recall
(6.4)

• ROC-AUC Curve: The effectiveness of a binary classifier is visualized
by the ROC-AUC (Receiver Operating Characteristic - Area Under Curve)
curve. The true positive rate (TPR) and false positive rate (FPR) are plotted
at different categorization levels. The percentage of truly positive instances
properly identified is known as the TPR. The FPR is the percentage of true
negative cases that are falsely classified as positive cases by model calculation.

71

6 Results and Evaluation

6.1.3 Confidence score

The confidence score is usually a numeric value of probability between 0 and 1.
Here, the value of 1 indicates the model confirmation about its prediction and 0
means confusion or a lack of understanding about the prediction. Different levels of
confidence are indicated by intermediate values.

6.1.4 Intersection over Union (IoU)

IoU (Intersection over Union) is a popular evaluation metric in object detection and
image segmentation applications. The discrepancy between the predicted bounding
box (Bpd) and the ground truth annotation (Bgt) is measured by IoU. It is repre-
sented by the intersection of the predicted and ground truth regions and the union
of the two regions. It can be written mathematically as follows:

IoU =
area of intersection (Bpd ∩ Bgt)

area of union (Bpd ∪Bgt)
(6.5)

The confidence score calculates the probability of an object being located in an
anchor box. It is generally predicted using a classifier. The metrics of confidence
score and IoU are both utilized to determine the true positive or false positive value
of a detected object. The IOU values are assigned between 0 to 1.

6.1.5 Average Precision (AP)

The precision-recall curves are often used to measure detection, although average
precision (AP) provides numerical numbers and is easier to compare performance
with other models. Depending on the precision-recall curve, AP summarizes the
average precision and cumulative recall for every threshold value. AP is computed
for individual objects. The equation are as follows:

AP@IoU =

∫ 1

0

p(r)dr

6.1.6 Mean Average Precision (mAP)

For individual classes, the AP is estimated separately. Moreover, the number of AP
values is equal to the number of classes. In addition, AP is expanded as the mean
Average Precision (mAP) and is calculated by averaging these values to acquire the
entire model precision. Hence, it can be defined as:

mAP@IoU =
1

N

N∑
i=0

APi forN classes

72

6 Results and Evaluation

6.2 Model Evaluation

In this section, the model evaluation results are utterly described. We trained our
model using passive and active learning strategies.

6.2.1 Passive learning evaluation

We used two well-balanced datasets to train the classifier network and objcet detec-
tors. The first dataset contains 7869 images and the second dataset contains 9350
images. We split our dataset according to 70% training, 20% validation, and 10%
test data.

Classifiers Result

We trained the VGG-19, ResNet-50, and YoloV5m classification models by using
their default image resolution. The experimented results are given below. We have
tunned the hyperparameters and parameters for VGG-19 and ResNet-50. We set
the batch size of 32, and 150 epochs for training parameters. In addition, We used
the Relu activation function, Softmax for the final activation layer, Dropout 30%,
learning rate 1e−5, momentum 0.9, Stochastic Gradient Descent (SGD), binary cross
entropy for calculating loss function and pre-trained weight ImageNet as hyperpa-
rameters in the model.

VGG-19

The below figure 6.1 is illustrated our model training and validation accuracy as well
as loss calculation. The training accuracy is nearly reached 0.98 where validation
is accuracy nearly 0.97 in figure 6.1(a). On the other hand, the training loss has
reached close to 0.0 and the validation loss is close to 0.1 in figure 6.1(b). The model
is trained perfectly but the accuracy is not satisfied due to the gap between training
and validation accurarcy.

According to figure 6.1(c), we got a slightly bigger difference between the training
and validation accuracy for dataset 2. Besides the loss difference of training and
validation in figure 6.1(d) is also shown bigger than the training and validation loss
of dataset 1. For this reason, we got relatively low accuracy after training this model
using dataset 2.

We checked the validation of our model using 1574 images from dataset 1. In
figure 6.2 depicts the confusion matrix of VGG-19 where the true negative repre-
sents the broken and true positive as healthy predicted images. Here, we can see
the confusion matrix result for dataset 1 in the figure 6.2(a). The model predicts
784 images as true negative (TN), 13 images are false negative (FN), 757 images are
true positive (TP), and 20 images are false positive (FP). The model predicts almost

73

6 Results and Evaluation

(a) Dataset 1: Accuracy calculation (b) Dataset 1: Loss calculation

(c) Dataset 2: Accuracy calculation (d) Dataset 2: Loss calculation

Figure 6.1: VGG-19 network’s accuracy and loss calculation for dataset 1 and
dataset 2.

16% false positive, and 26% false negative images which are not acceptable for our
proposed solution. Finally, we have got an accuracy of 97.9% using confusion matrix
where 98% precision for both broken and healthy classes, recall 98% for broken and
97% for healthy and f1 score 98% is equivalent for both classes.

The figure 6.2(b) depicts that the model has predicted 913 images for true negative

74

6 Results and Evaluation

(a) Dataset 1: Confusion matrix (b) Dataset 2: Confusion matrix

Figure 6.2: Confusion matrix of VGG-19 for dataset 1 and dataset 2.

(TN), 25 images for false negative (FN), 912 images for true positive (TP), and 20
images for false positive (FP). The model is predicted 16% for false positive but 27%
for false negative. After calculating the confusion matrix, we got 97.59% accuracy
from dataset 2 where 98% and 97% precision rate for broken and healthy classes,
97% and 98% recall for broken and healthy and f1-score 98% for both respectively.

ResNet-50

We have taken ResNet-50 from ResNet famlily and trained the model using our pro-
peller two datasets. Figure 6.3 is illustrated the accuracy and loss of training and
validation for ResNet-50. The result is comparatively better than VGG-19. There
is not so much difference between the accuracy and loss curves. Figure 6.3(a) repre-
sents the performance of training and validation accuracy and figure 6.3(b) depicts
the loss of training and validation for dataset 1 which is shown less than VGG-19
results. On the contrary, the second model which is trained by using dataset 2 has
shown in figure 6.3(c) for accuracy calculation, and figure 6.3(d) for loss calculation
This second model is less accurate than the first model.

In figure 6.4 depicts the confusion matrix of ResNet-50 where the true nega-
tive represents the broken and true positive as healthy predicted images. The first
model’s matrix created by using dataset 1 is shown in figure 6.4(a). It predicted
789 images as true negative (TN), 8 images are false negative (FN), 770 images are
true positive (TP), and 7 images are false positive (FP). We can see that the model
predicted almost 10% false positive, and 9% false negative images. After calculat-

75

6 Results and Evaluation

(a) Dataset 1: Accuracy calculation (b) Dataset 1: Loss calculation

(c) Dataset 2: Accuracy calculation (d) Dataset 2: Loss calculation

Figure 6.3: ResNet-50 network’s accuracy and loss calculation for dataset 1 and
dataset 2.

ing the confusion matrix, we have got the accuracy of 99.04% for dataset 1 where
precision, recall and f1 score is 99% equivalent for both broken and healthy classes.

The second model’s confusion matrix which is created by using dataset 2 is shown
in figure 6.4(b). It identifies 923 images as true negative (TN), 15 images are FN,
917 images are TP, and 7 images are FP. After calculating the confusion matrix, we

76

6 Results and Evaluation

(a) Dataset 1: Confusion matrix (b) Dataset 2: Confusion matrix

Figure 6.4: Confusion matrix of ResNet-50 for dataset 1 and dataset 2.

got an accuracy of 98.39% for dataset 2 where precision, recall and f1 score is 98%
equivalent for both broken and healthy classes. The performance comparison result
is as follows:

Dataset Classifier Classes Precision Recall F1 Accuracy

Dataset 1

VGG-19
Broken 0.98 0.98 0.98

97.9%
Healthy 0.98 0.97 0.97

Broken 0.99 0.99 0.99
ResNet-50

Healthy 0.98 0.97 0.97
99.04%

Dataset 2

VGG-19
Broken 0.98 0.97 0.98

97.59%
Healthy 0.97 0.98 0.98

ResNet-50
Broken 0.98 0.98 0.98

98.39%
Healthy 0.98 0.98 0.98

Table 6.2: The performance comparison between VGG-19 and ResNet-50.

Table 6.2 represents the comparison results between VGG-19 and ResNet-50 using
two datasets. ResNet-50 has achieved the better accuracy using dataset 1.

77

6 Results and Evaluation

YoloV5m-Classifier

We also trained the Yolov5 medium classification model using both datasets. The
experimental results are given below:

(a) Training loss (b) Testing loss

(c) Top 1 accuracy (d) Top 5 accuracy

(e) Learning rate

Figure 6.5: Yolov5m classification result for dataset 1.

Figure 6.5 depicts the result of the Yolov5m classification for dataset 1. We have
given 350 epochs with default hyperparameters settings. The training loss decreased
gradually which is shown in figure 6.5(a). Besides the test loss is also reduced as
shown in figure 6.5(b). Furthermore, In figure 6.5(c), we achieved the overall Top
1 accuracy above 96.7% where broken 93.7% and healthy 99.7%. Moreover, We

78

6 Results and Evaluation

achieved 1 for overall Top 5 accuracy where both broken and healthy achieved 1 as
shown in figure 6.5(e). In addition, the learning rate is also decreased respectively.

(a) Training loss (b) Testing loss

(c) Top 1 accuracy (d) Top 5 accuracy

(e) Learning rate

Figure 6.6: Yolov5m classification result for dataset 2.

Figure 6.6 depicts the result of the Yolov5m classification for dataset 2. The
training loss and testing loss are achieved 0.25, and 0.27 respectively. The Top 1
accuracy is nearly 96.0% and top 5 is 100% where the learning rate is decreased
gradually. We found less accuracy in comparison to the result of Dataset 1. A
comparison of the two dataset validation results is shown in the table below.

79

6 Results and Evaluation

Dataset Classifiers Top-1 Accuracy Top-5 Accuracy

Dataset 1 YoloV5m-cls 96.7% 100%

Dataset 2 YoloV5m-cls 95.5% 100%

Table 6.3: The performance comparison of YoloV5m (medium) classifier.

YOLOV5 and YOLOV7 Detectors Result

In the previous section, we achieved a tremendous result from the YoloV5m clas-
sifier. For that reason, we also wanted to experiment on YoloV5 and V7 object
detectors. We have taken YoloV5 medium and small models for experimenting with
our propeller datasets. A total of 7869 images for Dataset 1 and 9350 images for
Dataset 2 were annotated. We have given 300 epochs for both models and default
hyperparameter settings.

Experimental Results for Dataset 1:

(a) Yolov5m training result (b) Yolov5s training result

Figure 6.7: YoloV5 model training results for dataset 1 using passive learning.

In the following figure 6.7, a comparison result between YoloV5 medium and
small models for dataset 1 is given above. Here, we can see that, figure 6.7(a) rep-
resents the training result using the YoloV5 medium model. The overall precision is

80

6 Results and Evaluation

achieved at 99.9%, recall is 100% for both classes representing the harmonic mean.
It achieved 99.5% of mAP@0.5 and 97.1% for mAP@0.5:0.95.The model validation
has been done by giving confidence score 0.001 and IOU value from 45 to 95. The
highest mAP@0.5 97.2% is achieved by using default iou 45. During the training
period, background false negative (BFN) and background false positive (BFP) is
calculated in confusion matrix. The BFN is 0. On the contrary, BFP is 0.67 for
broken, and 0.33 for healthy.

The YoloV5 small model’s training result is shown in figure 6.7(b). It achieved
an overall 99.8% of precision, 100% of recall, 99.5% of mAP@0.5, and 95.3% of
mAP@0.5:0.95 respectively. The model validation checked by giving confidence
score 0.001 and IOU value from 0.45 to 0.95. The highest mAP@0.5 of 99.5% is
achieved by using default iou 0.45. In the confusion matrix,the generated BFN is 0
and BFP is 1.0 only for broken.

(a) Yolov7 training result

Figure 6.8: YoloV7 training result for dataset 1 using passive learning.

The figure 6.8(a) illustrates the training result of yolov7. It achieved an overall
99.7% precision, 99.9% recall, 99.7% of mAP@0.5, and 93.3% of mAP@0.5:0.95. We
evaluated the validation of these three models by using unseen test data. The model
is achieved BFN value of 0, and BFP value of .57 for broken and 0.43 of healthy
class. According to the validation test, the Yolov5 model gave the best detection

81

6 Results and Evaluation

result with the highest accuracy compared to YoloV7. But the inference was very
fast in the Yolov7 model.

In figure 6.9, the performance of yolov5m, yolov5s, and yolov7 is shown using
dataset 1. The precision and recall of each model are almost equivalent and very
high. The mAP@0.5 has fluctuated for all models with a tiny ratio of percentage.
YoloV5m has achieved the highest 97.1% of mAP@0.5:0.95 where the training box
loss has reached below 0.01. Furthermore, the training object loss is below 0.005
and the training and validation both class loss is nearly 0.000. Moreover, the vali-
dation box loss has reached below 0.005 with the validation object loss below 0.0010.

Figure 6.9: The performance comparison between YOLO’s using dataset 1.

Experimental Results for Dataset 2:

We also trained these three models using our second dataset as shown in figure
6.10. We trained YoloV5 model using 100 epochs. After training Yolov5m, we ob-
tained both precision and recall 100%. That means There have no false positives and
no false negatives in our model. All positive and negative prediction was taken as
correct prediction. It also achieved 99.5% of mAP@0.5 and 96.5% of mAP@0.5:0.95
as shown in figure 6.10(a). According to the validation test, it achieved the similar
results. The generated confusion matrix during the training, the BFN result is 0,
but the BFP is 0.33 for broken, and 0.67 for healthy.

In addition, we have got the precision 99.6%, recall 99.5%, mAP@0.5 99.5%, and
mAP@0.5:0.95 93.3% from YoloV5s model as shown in figure 6.10(b). After eva-

82

6 Results and Evaluation

(a) Yolov5m training result (b) Yolov5s training result

(c) Yolov7 training result

Figure 6.10: YoloV5, V7 model training results for dataset 2 using passive learning.

83

6 Results and Evaluation

luting the validation result, we have got the similar result by using the confidence
score 0.001 and changing the iou value from 0.45 to 0.95. It is slightly differ only
the mAP@0.5:95 values. Moreover, BFN is 0 and BFP is 0.64 for broken class and
0.34 for healthy class. Both medium and small YoloV5 models detect few images
background with the interest of objects.This is happening due to the background
and lighting condition of images.

Figure 6.10(c) depicts the training results of YoloV7 and model was trained using
200 epochs with default hyperparameters. According to the figure, 99.1% precision,
99.2% recall, 99.5% mAP@0.5 and 89.5% mAP@0.5:0.95 is obtained. We have also
evaluted the validation test for this model and achieved the equivalent result for
iou 0.45 to 0.95 with the confidence value of 0.001. From the confusion matrix, it
achieved 0.98 of true neagtives, 0.01 of false positives, 0.99 of true positives. Be-
sides this, BFP is 0.45 for broken, 0.55 for healthy and BFN is always 0 in this model.

Figure 6.11: The performance comparison between YOLO’s using dataset 2.

Figure 7.1 is illustrated the performance comparison between YoloV5m, Yolov5s,
and Yolov7 model. These models are trained using dataset 2. Here Yolov5m is
comparatively better than other models. It has achieved highest mAP@0.5:0.95 of
96.5% with precision and recall. In our experiment, the Yolov7 model achieved the
lowest mAP for both dataset but the inference is faster than Yolov5.

After training these three models using different datasets, we have seen that the
background of images are made impact on the performance. Each model has got the
background false positive (BFP) for both classes. That means, it tries to identify

84

6 Results and Evaluation

the background objects that are not a part of either class but are detected as one.
It is happening due to the gray background images with black objects. The gray
absorbs the black in different lighting conditions. On the other hand, it predicts
almost 1.0 for both true negative as broken, and true positive as healthy. A per-
formance comparison table for all trained models using both datasets is given below.

Dataset Model Precision Recall mAP@0.5 mAP@0.5:0.95

Dataset 1

YoloV5m 99.9% 100% 99.5% 97.1%

YoloV5s 99.8% 100% 99.5% 95.3%

YoloV7 99.7% 99.9% 99.7% 93.5%

Dataset 2

YoloV5m 100% 100% 99.5% 96.5%

YoloV5s 99.6% 99.5% 99.5% 93.3%

YoloV7 99.1% 99.2% 99.5% 89.5%

Table 6.4: The performance comparison between YoloV5 and YoloV7 using passive
learning.

Finally, we have got the best model of YOLOV5m using dataset 1 as shown in
table 6.4. It achieved the highest detection accuracy of the mAP at 97.1%.

6.2.2 Active learning evaluation

We applied deep active learning strategies (figure 4.2) to train the Yolov5m and
YoloV7 models using dataset 1 based on the performance of passive learning. Mainly,
it is an iterative model training process as previously described in figure 4.14. A
tabular form of dataset generation for each iteration in the iterative process is already
discussed in table 5.1. The training and validation classification loss, precision,
recall, mAP@0.5, and mAP@0.5:0.95 curves for the 1st, 5th, 9th, and 10th iterations
are illustrated below figures.

YoloV5m:

In the following figure 6.12, the first iteration (figure 6.12(a)) has been done by
754 training data. After evaluating the model, it achieved precision at 0.991, recall
at 0.979, mAP@0.5 at 0.994, and mAP@0.5:0.95 at 0.913 where the training and
validation class loss was a little bit high.

85

6 Results and Evaluation

(a) 1st iteration (b) 5th iteration

(c) 9th iteration (d) 10th iteration

Figure 6.12: Iterative results of YoloV5 model training.

86

6 Results and Evaluation

In the confusion matrix, it predicted FN at 0.02, FP at 0, and BFP is 0.50 for
both classes. The 5th iteration (figure 6.12(b)) has been done by 1548 taining data
and achieved better results. We got precision at 0.997, recall at 0.997, mAP@0.5 at
0.995, and mAP@0.5:0.95 at 0.961 where both class loss graphs showed the steady
result. The false negative predicted 0.01 where background false positive(BFP)
and background false negative(BFN) are 0 in the confusion matrix. Similarly, after
training the 9th iteration (figure 6.12(c)) using 2198 training data, we got precision
at 0.996, recall at 0.998, mAP@0.5 at 0.994, and mAP@0.5:0.95 at 0.968 with less
training and validation class loss. Moreover, the false positive and false negative got
0 but BFP obtained 1 for the broken class in the confusion matrix. Finally, the 10th
iteration (figure 6.12(a)) was done by 2340 training data. After training the model,
we got precision at 1.0, recall at 1.0, mAP@0.5 at 0.995, and mAP@0.5:0.95 at 0.97
where both the training and validation class loss was nearly 0. We obtained BFP
1.0 for only healthy class where both false positive and false negative is 0 as well as
both true positive and true negative is 1.0.

Iteration
Query

data (%)
Training

data
Precision Recall

mAP
@0.5

mAP
@0.5:0.95

1 15% 754 99.10% 97.90% 99.40% 91.30%

2 20% 968 99.00% 98.80% 99.40% 93.30%

3 25% 1172 99.60% 100% 99.50% 94.60%

4 30% 1364 99.60% 99.40% 99.50% 95.30%

5 35% 1548 99.70% 99.70% 99.50% 96.10%

6 40% 1722 99.50% 99.50% 99.30% 95.60%

7 45% 1888 99.80% 99.80% 99.50% 96.90%

8 50% 2046 99.80% 99.80% 99.50% 96.70%

9 55% 2198 99.60% 99.80% 99.40% 96.80%

10 60% 2340 100% 100% 99.50% 97.00%

Table 6.5: YOLOV5 training results using active learning strategy.

Here, the following table 6.5 is representing the final result of YoloV5m with
expected mAP result using active learning strategy. The main goal of this research
thesis is to achieve the highest mAP value by training model with less data. We have
got our expected result at iteration 10 where it has taken 60% of data for training

87

6 Results and Evaluation

the model and obtained expected mAP of 97.00%.

YoloV7:

The iterative process is also applied to the YoloV7 model. In the following figure
6.13, the first iteration (figure 6.13(a)) has been done by the same 754 training data.
After training the model, it achieved precision at 0.885, recall at 0.941, mAP@0.5 at
0.96, and mAP@0.5:0.95 at 0.697. The training and validation classification loss is
too high. The training box and objectness loss graph are not consistence. Besides,
the validation bounding box and objectness loss are also shown inconsistency. In
the confusion matrix, it predicted true negative at 0.91, false negative at 0.11, false
positive at 0.05, and true positive at 0.88. In addition, we got background false
negative 0.05, 0.01 for broken, and healthy respectively and also background false
positive(BFP) is 0.58, 0.42 for broken and healthy classes.

The 5th iteration (figure 6.13(b)) has been done by 1548 training data and
achieved better results. We got precision at 0.994, recall at 0.992, mAP@0.5 at
0.995, and mAP@0.5:0.95 at 0.864. The training and validation classifications loss
are decreased than the previous iterative results, as well as bounding box and ob-
jectness loss, are decreased. The FN and FP predicted both 0.01, where BFP got
0.62 and 0.37 for broken, healthy classes and BFN got 0 in the confusion matrix.

Similarly, after training the 9th iteration (figure 6.12(c)) using 2189 training data.
We got precision at 0.996, recall at 0.997, mAP@0.5 at 0.996, and mAP@0.5:0.95
at 0.907 after model training. Furthermore, the classification loss for training and
validation are remaining the same. Besides the bounding box loss is reached below
0.01. the objectness loss is 0.004 for training, and below 0.002 for validation object-
ness loss. Moreover, the FP predicted 0.01, FN got 0, TP predicted 1.0, and TN is
0.99 The BFP obtained 0.67 for the broken class and 0.33 for the healthy class and
BFN predicted 0 in the confusion matrix.

Finally, the 10th iteration (figure 6.13(d)) was done by 2340 training data. We
got precision at 0.991, recall at 0.989, mAP@0.5 at 0.996, and mAP@0.5:0.95 at
0.864. The training and validation classifications loss are increased than the previ-
ous 9th iterative results. The bounding box loss is also increased for both training
and validation, as well as the objectness loss is increased slightly. The FN predicted
0, FP predicted 0.01, 0.98 for TN and TP predicted 1.0. The BFP got 0.50 for
both broken and healthy classes in the confusion matrix. The expected mAP of this
iteration is less than the previous iteration.

After the 10th iteration, we stopped the iterative process. We evaluated the
training result and compared it with the previous one. It is shown that the result
is decreasing. Finally, we have got the 9th mAP result is better than others.
The below table 6.5 is representing the final result of YoloV7 with expected mAP

88

6 Results and Evaluation

(a) 1st iteration (b) 5th iteration

(c) 9th iteration (d) 10th iteration

Figure 6.13: Iterative results of YoloV7 model training.

89

6 Results and Evaluation

using active learning strategy. The aim of this research study is to achieve the
highest mAP value by training the model with less data. We have got our expected
result at iteration 9 where it has taken 55% of data for training the model and
obtained an expected mAP of 90.7%.

Iteration
Query

data (%)
Training

data
Precision Recall

mAP
@0.5

mAP
@0.5:0.95

1 15% 754 90.80% 88.30% 95% 70.70%

2 20% 968 80.20% 86.00% 91.00% 61.50%

3 25% 1172 97.60% 97.90% 99.30% 82%

4 30% 1364 99.40% 98.70% 99.60% 84.50%

5 35% 1548 99.40% 99.20% 99.50% 86.40%

6 40% 1722 99.50% 99.10% 99.60% 86.40%

7 45% 1888 99.30% 99.40% 99.60% 86.10%

8 50% 2046 99.60% 99.40% 99.50% 87.40%

9 55% 2198 99.60% 99.70% 99.60% 90.70%

10 60% 2340 99.10% 98.90% 99.60% 89.40%

Table 6.6: YOLOV7 training results using active learning strategy.

6.3 Performance Analysis

In the passive learning strategy, we found that VGG-19 has achieved 97.9%
accuracy for healthy (H) and broken (B) classes while ResNet-50 achieved 99.04%
in dataset 1. Similarly, VGG-19 and Resnet-50 have achieved 97.59%, and 98.39%
respectively in dataset 2. After testing the unseen data, we can see both VGG-19
and ResNet-50 can classify the images with a maximum accuracy of 73.11%. Classify
results are illustrated in Figure 6.14. We have tested for both datasets. According to
the result, dataset 1 obtained higher accuracy than dataset 2 and ResNet-50 model
can classify images relatively better than VGG-19. But this accuracy is not enough
sufficient for our application due to the high priority of safety issues.

We also tested the YoloV5m classifier. We obtained 96.7% top 1 accuracy, and
100% top 5 accuracy on dataset 1. Similarly in dataset 2, we got 95.5% top 1
accuracy, and 100% top 5 accuracy respectively. It has been able to classify broken

90

6 Results and Evaluation

(a) VGG-19, H: 58.07% (b) VGG-19, B: 72.93% (c) VGG-19, B: 73.11%

(d) ResNet-50, H: 73.11% (e) ResNet-50, B: 73.11% (f) ResNet-50, B: 73.11%

Figure 6.14: Results of (a-c) VGG-19 and (d-f) ResNet-50 classifiers.

and healthy images with a maximum accuracy rate of 95%. Sample results are
illustrated in Figure 6.15. This model also achieved the highest accuracy from
dataset 1 rather than dataset 2.

(a) YoloV5m-cls, H: 95% (b) YoloV5m-cls, B: 95% (c) YoloV5m-cls, B: 94%

Figure 6.15: Results of YoloV5m (medium) classifier.

91

6 Results and Evaluation

We tested the YoloV5 medium, small and YoloV7 detector model using both
dataset. According to dataset 1 training result, We got mAP@.5 99.5%, mAP@.5:.95
97.1% for Yolov5m, mAP@.5 99.5% and mAP.5:.95 95.3% for Yolov5s. Also, mAP.5
99.7% and mAP@.5:.95 93.5% is obtained on YoloV7. On the other hand, mAP.5
99.5% and mAP@.5:.95 96.5% reached for YoloV5m, mAP@.5 99.5% and mAP@.5:.95
93.3% for Yolov5s, mAP@.5 99.5% and mAP@.5:.95 89.5% for YoloV7 models using
dataset 2.

(a) Healthy: 98% (b) Broken: 98%

Figure 6.16: Results of YoloV5m object detector using passive learning.

After model testing, YoloV5m achieved the highest detection accuracy of 98%
among all trained models in both dataset. The results are illustrted in Figure 6.16.
According to the test results of dataset 1 and dataset 2, this model can accurately
detect propeller faults in dataset 1 compared to dataset 2 with the highest accuracy.

In the active learning strategy, we have taken YoloV5m and YoloV7 model.We
applied the iteration process in YoloV5 first. We have tested a total of 10 iterations
and taken only 15% data from the training pool for the first iteration to train the
model. The model achieved only 91.3% of mAP@.5:.95. The first iteration may not
yield the expected results that were previously envisioned. From the second itera-
tion, 5% more data was added to the dataset from the training pool and trained the
model. We have applied this process iteratively. In the 5th iteration, we achieved
better detection results than before. The mAP increased to 95.3%. Almost the
desired result has been reached in the 9th iteration. A total of 2740 training data is
used to train the model and achieved mAP 96.8%. In the 10th iteration, the model
has achieved our expected mAP 97% for the detection task. A detection result is
given in Figure 6.17. The detection accuracy is much better than the previous iter-
ation results and used only 60% data from the training pool.

92

6 Results and Evaluation

(a) Healthy: 99% (b) Broken: 99%

(c) Healthy: 97% (d) Broken: 93%

Figure 6.17: Detection results of YoloV5m at the 10th iteration using active learning.

We also repeated the iteration process 10 times to train the YoloV7 model. It
achieved mAP@.5:.95 70.7% with a high bounding box and classification loss in the
first iteration. The difference between precision and recall is also high. In the 5th
iteration, mAP increased to 86.40%, precision to 99.4%, and recall to 99.2%. After-
wards, we got the highest mAP 90.7% for the detection task in the 5th iteration.
Again in the 10th iteration, the model achieved mAP 89.4% which is lower than the
result of the previous iteration. Then, we stopped the iteration process.

Finally, we found the best model with the mAP 97.00% for YoloV5m at the 10th
iteration and mAP 90.70% for YoloV7 at the 9th iteration by applying the active
learning approach. Based on these results, it is proved that the YoloV5m is more
reliable and stable than YoloV7 in this research study for drone propeller inspection.

93

6 Results and Evaluation

6.4 Inference

FPS

Frames Per Second (FPS) is a key indicator for assessing the real-time performance
of computer vision applications, such as object detection, tracking, and so on. It
refers to the number of images or frames that a model can process in a second. FPS
is determined using the formula FPS = number of frames / time duration. After
evaluating detection-based model, it is mandatory to test the real-time inference
and speed in different environment with different framework. For that reason, we
converted our model into ONNX format to compare the FPS between OpenCV DNN
and Pytorch using our local computing machines (see 5.1.1). The results are given
below:

Model Processor
GPU Access

(NVIDIA RTX 3060)
Data Framework FPS

YoloV5m

Core-i5
6th Gen

No

image

OpenCV

1.19 - 1.82

video 0.61 - 1.41

YoloV7
image 2.34 - 3.80

video 0.22 - 0.77

YoloV5m

Core-i7
12th Gen

No

image

OpenCV

2.43 - 2.77

video 3.06 - 4.32

YoloV7
image 5.00 - 6.35

video 1.65 - 2.49

YoloV5m Core-i5
6th Gen

No video Pytorch
0.21 - 1.96

YoloV7 0.54 - 1.68

YoloV5m Core-i7
12th Gen

Yes video Pytorch
29 - 40

YoloV7

Core-i7
12th Gen

Yes video Pytorch
31 - 36

Table 6.7: The FPS comparison for YoloV5m and YoloV7 detectors.

According to the table 6.7, we found YoloV5m detector model achieved the highest
FPS using Pytorch framework. It can process upto 40 frames per second for our
drone propeller inspection. On the other hand, YoloV7 are capable to process 30 to
37 frames per second in our GPU accelerated local computing machine.

94

6 Results and Evaluation

6.5 Chapter Summary

In this chapter, we have described the model evaluation and result after complet-
ing the training process. The accuracies of various trained models following passive
learning and active learning strategies are calculated and described in detail. More-
over, the model’s inference and speed comparison is also mentioned.

At first, we described the evaluation matrix such as accuracy, confusion matrix,
and confidence score that are used to obtain accuracy for the classification models.
Also intersection over union (IoU), average precision (AP), and mean average pre-
cision (mAP) calculations that are used for the detection-based models are described.

Afterwards, we compared the performance of different classifiers and detectors
using passive and active learning approaches. In passive learning, we found that
ResNet-50 achieved the highest 99.04% accuracy compared to VGG-19. But after
testing the unseen data, the model can classify the image with 73.11% accuracy.
For that, we tested our dataset using the YoloV5m classifier. We got 96.7% Top 1
accuracy It can classify images with 95% accuracy which is a very impressive result.
Moreover, we also trained the YoloV5m, YoloV5s and YoloV7 detector models using
our two datasets. Yolov5m achieved the highest mAP@.5:.95 at 97.1%. YoloV5m
achieved the highest detection accuracy of 98% among all trained models.

Afterwards, we used the active learning strategy for the YoloV5m and YoloV7
detectors model. We applied an iterative process and trained the models using the
distinct datasets generated from the training pool dataset in each iteration. As a
result, we found the best model with mAP@.5:.95 of 97.00% for YoloV5m at the
10th iteration and mAP@.5:.95 of 90.70% for YoloV7 at the 9th iteration. We found
in the results that the highest detection accuracy of 99% is achieved by training the
YoloV5m model using 60% of the data.

Finally, we tested the inferences and speed of our best models using our local
computing machines. We converted our models into ONNX format to compare the
FPS between OpenCV DNN and Pytorch. We found that YoloV5m can process up
to 40 frames per second using the Pytorch framework in GPU-accelerated machines
while YoloV7 is capable of up to 37 frames per second.

95

7 Conclusion

This research study is involved to create a robust and reliable solution for drone
propeller inspection using deep learning. Several state-of-the-art classifiers and de-
tectors performance are compared. The primary concern of this study was to imple-
ment a deep learning-based model that would obtain the highest accuracy during
the inspection time. In addition, the model would be able to perform in real time
as well.

7.1 Summary of The Thesis

As a part of the ”Rescue Fly” operation, this research study was involved to find the
best image-based solution using state-of-the-art deep learning technology. The basic
convolutional neural network architecture has been described to form the technical
background knowledge. Besides, the idea of the state-of-the-art solution of object
classifiers and detectors with their architectural forms are also discussed. The pri-
mary focus of this thesis project is the passive and active learning strategies for
model training also composed in several chapters.

The drone propeller inspection system has been developed from scratch. The pro-
posed methodology is illustrated in Chapter 4 (see figure 4.1, 4.2). The datasets were
generated following several data preprocessing steps discussed in section 4.1. The
proposed active deep learning approach is elaborated in section 4.3. The several se-
lected classifiers and detector architectures are described in section 4.2. The system
requirements and the training process for the model are described in sections 5.1 and
5.1 respectively. Afterwards, VGG-19, ResNet-50, and Yolov5m classifier training
results are compared using the passive learning strategy and a detailed discussion
is given in section 6.2.1. In addition, the Yolov5m and YoloV7 detector models are
also trained and compared in this section. Furthermore, the active deep learning
approach is used to obtain the highest accuracy from the detector models using
fewer data and their training results are described in section 6.2.2. Then the trained
model’s performances using test data are shown in section 6.3. The FPS comparison
of models in real-time using different frameworks in two local computing resources
is described in section 6.4. Finally, the best model deployment process is briefly de-
scribed in section 5.3. As per our experiment, we found that YoloV5m achieved
the highest accuracy for both classification and detection tasks. YoloV5m classifier
has obtained 96.7% Top-1 accuracy for classification. On the other hand, the
YoloV5m detector model acquired the highest mAP 97.1% for detection using the

96

7 Conclusion

passive learning strategy. Moreover, this model achieved 97% mAP using only
60% of the data following the active learning strategy. Also, it achieved 40 FPS
real-time inference in our GPU-accelerated local machine.

An overview of thesis summary is described below:

Figure 7.1: An overview of the thesis workflow

7.2 Future Work

Though the suggested approach has positive results, nevertheless there is always
a possibility of enhancement. Based on the results achieved and the goals of this
research study, the following advancements are recommended for future directions:

• The main focus of this research study was to develop an automated drone
propeller inspection. The models achieved remarkable accuracy and inference
in real-time using a limited dataset. Nevertheless, the performance of the
model can be enhanced by adding more diversity of images to a well-balanced
dataset.

• The low quality of the background image creates more background false posi-
tive and negative results during the training and impacts accuracy. To improve
the model performance, attention can be paid more to examining the effects
of background images as well as lighting conditions.

• It is possible to use different backbone network in YoloV5. After training
customized model, performance can be compared with the real YoloV5 model.
Besides, the frames per second (FPS) can be increased by converting the model
into different types of deep learning frameworks.

97

Bibliography

[1] J.-y. Lee, W.-t. Lee, S.-h. Ko, and H.-s. Oh, “Fault classification and diagnosis
of uav motor based on estimated nonlinear parameter of steady-state model,”
Int. J. Mech. Eng. Robot. Res, vol. 10, pp. 22–31, 2020.

[2] G. Iannace, G. Ciaburro, and A. Trematerra, “Fault diagnosis for uav blades
using artificial neural network,” Robotics, vol. 8, no. 3, p. 59, 2019.

[3] M. H. M. Ghazali and W. Rahiman, “An investigation of the reliability of dif-
ferent types of sensors in the real-time vibration-based anomaly inspection in
drone,” Sensors, vol. 22, no. 16, p. 6015, 2022.

[4] S. Albelwi and A. Mahmood, “A framework for designing the architectures of
deep convolutional neural networks,” Entropy, vol. 19, no. 6, p. 242, 2017.

[5] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neu-
ral networks: an overview and application in radiology,” Insights into imaging,
vol. 9, pp. 611–629, 2018.

[6] Dharmaraj, “Zero-padding in convolutional neural networks,” https://medium.
com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99,
Sep. 2021, accessed: 2023-2-26.

[7] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, “A guide to convo-
lutional neural networks for computer vision,” Synthesis Lectures on Computer
Vision, vol. 8, no. 1, pp. 1–207, 2018.

[8] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].
Available: https://cs231n.github.io/convolutional-networks/#pool

[9] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks —
the ELI5 way,” Dec. 2018. [Online]. Available: https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[10] P. Gavali and J. S. Banu, “Deep convolutional neural network for image classi-
fication on cuda platform,” in Deep learning and parallel computing environment
for bioengineering systems. Elsevier, 2019, pp. 99–122.

[11] https://machinelearningmastery.com/object-recognition-with-deep-learning/,
accessed: 2023-3-2.

98

https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99
https://medium.com/@draj0718/zero-padding-in-convolutional-neural-networks-bf1410438e99
https://cs231n.github.io/convolutional-networks/#pool
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://machinelearningmastery.com/object-recognition-with-deep-learning/

BIBLIOGRAPHY

[12] M. Carranza-Garćıa, J. Torres-Mateo, P. Lara-Beńıtez, and J. Garćıa-
Gutiérrez, “On the Performance of One-Stage and Two-Stage Object Detectors
in Autonomous Vehicles Using Camera Data,” Remote Sensing, vol. 13, no. 1,
p. 89, Jan. 2021, number: 1 Publisher: Multidisciplinary Digital Publishing
Institute. [Online]. Available: https://www.mdpi.com/2072-4292/13/1/89

[13] https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/,
accessed: 2023-3-9.

[14] B. Settles, “Active learning literature survey,” 2009.

[15] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart
manufacturing: Methods and applications,” Journal of manufacturing systems,
vol. 48, pp. 144–156, 2018.

[16] Y. Xiao, Z. Tian, J. Yu, Y. Zhang, S. Liu, S. Du, and X. Lan, “A review of
object detection based on deep learning,” Multimedia Tools and Applications,
vol. 79, pp. 23 729–23 791, 2020.

[17] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years: A
survey,” Proceedings of the IEEE, 2023.

[18] T. Hoeser and C. Kuenzer, “Object detection and image segmentation with
deep learning on earth observation data: A review-part i: Evolution and recent
trends,” Remote Sensing, vol. 12, no. 10, p. 1667, 2020.

[19] H. Lin and J. Yang, “Ensemble cross-stage partial attention network for image
classification,” IET Image Processing, vol. 16, no. 1, pp. 102–112, 2022.

[20] J. Glenn, “ultralytics /yolov5,” https://github.com/ultralytics/yolov5, Aug. 21
2020, accessed: 2022-20-10.

[21] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen,
“Deep learning for generic object detection: A survey,” International journal of
computer vision, vol. 128, pp. 261–318, 2020.

[22] M. Ivanov, “The evolution of the YOLO neural networks fam-
ily from v1 to v7,” https://medium.com/deelvin-machine-learning/
the-evolution-of-the-yolo-neural-networks-family-from-v1-to-v7-96d0687b4dce,
Oct. 2022, accessed: 2023-3-27.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint
arXiv:2207.02696, 2022.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

99

https://www.mdpi.com/2072-4292/13/1/89
https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/
https://github.com/ultralytics/yolov5
https://medium.com/deelvin-machine-learning/the-evolution-of-the-yolo-neural-networks-family-from-v1-to-v7-96d0687b4dce
https://medium.com/deelvin-machine-learning/the-evolution-of-the-yolo-neural-networks-family-from-v1-to-v7-96d0687b4dce

BIBLIOGRAPHY

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 779–788.

[27] Simplilearn, “Docker architecture: Understanding how docker works
with examples,” https://www.simplilearn.com/tutorials/docker-tutorial/
docker-architecture, May 2021, accessed: 2023-3-30.

[28] C. V. Nicholson and A. Gibson, “Early stopping,” https://mgubaidullin.github.
io/deeplearning4j-docs/earlystopping, accessed: 2023-4-2.

[29] M. Honarmand and H. Shahriari, “Geological mapping using drone-based pho-
togrammetry: An application for exploration of vein-type cu mineralization,”
Minerals, vol. 11, no. 6, p. 585, 2021.

[30] N. A. Khan, N. Jhanjhi, S. N. Brohi, R. S. A. Usmani, and A. Nayyar, “Smart
traffic monitoring system using unmanned aerial vehicles (uavs),” Computer
Communications, vol. 157, pp. 434–443, 2020.

[31] J. N. McRae, C. J. Gay, B. M. Nielsen, and A. P. Hunt, “Using an unmanned
aircraft system (drone) to conduct a complex high altitude search and rescue
operation: a case study,” Wilderness & environmental medicine, vol. 30, no. 3,
pp. 287–290, 2019.

[32] C. Van Tilburg, “First report of using portable unmanned aircraft systems
(drones) for search and rescue,” Wilderness & environmental medicine, vol. 28,
no. 2, pp. 116–118, 2017.

[33] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil,
N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned Aerial Vehicles
(UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE
Access, vol. 7, pp. 48 572–48 634, 2019, conference Name: IEEE Access.

[34] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on Unmanned Aerial
Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2624–2661, 2016.
[Online]. Available: http://ieeexplore.ieee.org/document/7463007/

[35] N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-Altitude Unmanned Aerial
Vehicles-Based Internet of Things Services: Comprehensive Survey and Future
Perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899–922, Dec.
2016, conference Name: IEEE Internet of Things Journal.

100

https://www.simplilearn.com/tutorials/docker-tutorial/docker-architecture
https://www.simplilearn.com/tutorials/docker-tutorial/docker-architecture
https://mgubaidullin.github.io/deeplearning4j-docs/earlystopping
https://mgubaidullin.github.io/deeplearning4j-docs/earlystopping
http://ieeexplore.ieee.org/document/7463007/

BIBLIOGRAPHY

[36] R. L. Medeiros, A. C. Lima Filho, J. G. G. Ramos, T. P. Nascimento, and A. V.
Brito, “A novel approach for speed and failure detection in brushless dc motors
based on chaos,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11,
pp. 8751–8759, 2018.

[37] A. Altinors, F. Yol, and O. Yaman, “A sound based method for fault detection
with statistical feature extraction in uav motors,” Applied Acoustics, vol. 183,
p. 108325, 2021.

[38] J. de Jesus Rangel-Magdaleno, J. Ureña-Ureña, A. Hernández, and C. Perez-
Rubio, “Detection of unbalanced blade on uav by means of audio signal,” in
2018 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC). IEEE, 2018, pp. 1–5.

[39] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convo-
lutional neural network,” in 2017 international conference on engineering and
technology (ICET). Ieee, 2017, pp. 1–6.

[40] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent ar-
chitectures of deep convolutional neural networks,” Artificial intelligence review,
vol. 53, pp. 5455–5516, 2020.

[41] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,”
arXiv preprint arXiv:1511.08458, 2015.

[42] “What are convolutional neural networks?” https://www.ibm.com/topics/
convolutional-neural-networks, accessed: 2023-2-27.

[43] D. Unzueta, “Convolutional layers vs fully con-
nected layers,” https://towardsdatascience.com/
convolutional-layers-vs-fully-connected-layers-364f05ab460b, Nov. 2021, ac-
cessed: 2023-2-27.

[44] Y. Liu, P. Sun, N. Wergeles, and Y. Shang, “A survey and performance evalu-
ation of deep learning methods for small object detection,” Expert Systems with
Applications, vol. 172, p. 114602, 2021.

[45] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural information
processing systems, vol. 28, 2015.

[46] S. Zhang, G. He, H.-B. Chen, N. Jing, and Q. Wang, “Scale adaptive proposal
network for object detection in remote sensing images,” IEEE Geoscience and
Remote Sensing Letters, vol. 16, no. 6, pp. 864–868, 2019.

[47] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense ob-
ject detection,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2980–2988.

101

https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b
https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

BIBLIOGRAPHY

[48] L. Du, R. Zhang, and X. Wang, “Overview of two-stage object detection al-
gorithms,” in Journal of Physics: Conference Series, vol. 1544, no. 1. IOP
Publishing, 2020, p. 012033.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[50] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.
7553, pp. 436–444, 2015.

[51] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A survey of deep active learning,” ACM computing surveys (CSUR),
vol. 54, no. 9, pp. 1–40, 2021.

[52] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object
matching in videos,” in Computer Vision, IEEE International Conference on,
vol. 3. IEEE Computer Society, 2003, pp. 1470–1470.

[53] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
pp. 273–297, 1995.

[54] P. Cunningham and S. J. Delany, “k-nearest neighbour classifiers-a tutorial,”
ACM computing surveys (CSUR), vol. 54, no. 6, pp. 1–25, 2021.

[55] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national journal of computer vision, vol. 60, pp. 91–110, 2004.

[56] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal com-
ponent analysis,” Neural computation, vol. 9, no. 7, pp. 1493–1516, 1997.

[57] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained,
multiscale, deformable part model,” in 2008 IEEE conference on computer vision
and pattern recognition. Ieee, 2008, pp. 1–8.

[58] E. Rosten and T. Drummond, “Machine learning for high-speed corner detec-
tion,” in Computer Vision–ECCV 2006: 9th European Conference on Computer
Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9. Springer, 2006,
pp. 430–443.

[59] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE computer society conference on computer vision and pattern recog-
nition (CVPR’05), vol. 1. Ieee, 2005, pp. 886–893.

[60] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid
object detection,” in Proceedings. international conference on image processing,
vol. 1. IEEE, 2002, pp. I–I.

102

BIBLIOGRAPHY

[61] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of the 2001 IEEE computer society conference
on computer vision and pattern recognition. CVPR 2001, vol. 1. Ieee, 2001, pp.
I–I.

[62] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE transactions
on pattern analysis and machine intelligence, vol. 32, no. 9, pp. 1627–1645, 2009.

[63] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels for ob-
ject detection,” in 2009 IEEE 12th international conference on computer vision.
IEEE, 2009, pp. 606–613.

[64] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International journal of computer vision, vol. 104,
pp. 154–171, 2013.

[65] P. Viola and M. J. Jones, “Robust real-time face detection,” International jour-
nal of computer vision, vol. 57, pp. 137–154, 2004.

[66] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object detec-
tion with deformable part models,” in 2010 IEEE Computer society conference
on computer vision and pattern recognition. Ieee, 2010, pp. 2241–2248.

[67] R. Girshick, P. Felzenszwalb, and D. McAllester, “Object detection with gram-
mar models,” Advances in neural information processing systems, vol. 24, 2011.

[68] R. B. Girshick, From rigid templates to grammars: Object detection with struc-
tured models. The University of Chicago, 2012.

[69] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems, vol. 25. Curran Associates,
Inc., 2012. [Online]. Available: https://papers.nips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[70] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in European conference on computer vision. Springer, 2014, pp. 818–833.

[71] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[72] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning. PMLR, 2015, pp. 448–456.

103

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

BIBLIOGRAPHY

[73] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2818–2826.

[74] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[75] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H.
Yeh, “Cspnet: A new backbone that can enhance learning capability of cnn,”
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition workshops, 2020, pp. 390–391.

[76] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learning,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 31, no. 1, 2017.

[77] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017, pp.
7263–7271. [Online]. Available: https://openaccess.thecvf.com/content cvpr
2017/html/Redmon YOLO9000 Better Faster CVPR 2017 paper.html

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-
lutional networks for visual recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.

[79] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1440–1448.

[80] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based
fully convolutional networks,” Advances in neural information processing sys-
tems, vol. 29, 2016.

[81] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2961–2969.

[82] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016,
Proceedings, Part I 14. Springer, 2016, pp. 21–37.

[83] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017, pp.
7263–7271.

[84] A. Farhadi and J. Redmon, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018.

104

https://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html

BIBLIOGRAPHY

[85] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 10 781–10 790.

[86] Y. Liu, Z. Wang, X. Wu, F. Fang, and A. S. Saqlain, “Cloud-edge-end cooper-
ative detection of wind turbine blade surface damage based on lightweight deep
learning network,” IEEE Internet Computing, 2022.

[87] M. Crous, B. O. K. Intelligentie, and A. Visser, “Combining weakly and strongly
supervised segmentation methods for wind turbine damage annotation,” Com-
puter Science, 2018.

[88] A. Shihavuddin, X. Chen, V. Fedorov, A. Nymark Christensen, N. Andre Bro-
gaard Riis, K. Branner, A. Bjorholm Dahl, and R. Reinhold Paulsen, “Wind
turbine surface damage detection by deep learning aided drone inspection anal-
ysis,” Energies, vol. 12, no. 4, p. 676, 2019.

[89] J. Zhang, G. Cosma, and J. Watkins, “Image enhanced mask r-cnn: A deep
learning pipeline with new evaluation measures for wind turbine blade defect
detection and classification,” Journal of Imaging, vol. 7, no. 3, p. 46, 2021.

[90] D. Sarkar and S. K. Gunturi, “Wind turbine blade structural state evaluation
by hybrid object detector relying on deep learning models,” Journal of Ambient
Intelligence and Humanized Computing, vol. 12, pp. 8535–8548, 2021.

[91] A. Foster, O. Best, M. Gianni, A. Khan, K. Collins, and S. Sharma, “Drone
footage wind turbine surface damage detection,” in 2022 IEEE 14th Image,
Video, and Multidimensional Signal Processing Workshop (IVMSP). IEEE,
2022, pp. 1–5.

[92] A. Shihavuddin, M. R. A. Rashid, M. H. Maruf, M. A. Hasan, M. A. ul Haq,
R. H. Ashique, and A. Al Mansur, “Image based surface damage detection of
renewable energy installations using a unified deep learning approach,” Energy
Reports, vol. 7, pp. 4566–4576, 2021.

[93] D. Liao, Z. Cui, X. Zhang, J. Li, W. Li, Z. Zhu, and N. Wu, “Surface defect
detection and classification of si3n4 turbine blades based on convolutional neural
network and yolov5,” Advances in Mechanical Engineering, vol. 14, no. 2, p.
16878132221081580, 2022.

[94] R. Zhang and C. Wen, “Sod-yolo: A small target defect detection algorithm for
wind turbine blades based on improved yolov5,” Advanced Theory and Simula-
tions, vol. 5, no. 7, p. 2100631, 2022.

[95] U. Nepal and H. Eslamiat, “Comparing yolov3, yolov4 and yolov5 for au-
tonomous landing spot detection in faulty uavs,” Sensors, vol. 22, no. 2, p.
464, 2022.

105

BIBLIOGRAPHY

[96] D. Wallach and B. Goffinet, “Mean squared error of prediction as a criterion
for evaluating and comparing system models,” Ecological modelling, vol. 44, no.
3-4, pp. 299–306, 1989.

[97] O. Elharrouss, Y. Akbari, N. Almaadeed, and S. Al-Maadeed, “Backbones-
review: Feature extraction networks for deep learning and deep reinforcement
learning approaches,” arXiv preprint arXiv:2206.08016, 2022.

106

References form Professorship of
Computer Engineering

[TUC1] C. Sunduijav, W. Hardt, and Z. Bayasgalan, “Image Processing of Insu-
lator and Vibration Damper by YOLO Algorithm,” in 2021 XV Interna-
tional Scientific-Technical Conference on Actual Problems Of Electronic
Instrument Engineering (APEIE), Nov. 2021, pp. 375–379, iSSN: 2473-
8573.

[TUC2] B. Battseren, M. S. Harras, and S. ., “Deep-learning-based insulator de-
tector for edge computing platforms,” 11 2021.

[TUC3] A. J. Chaudhry, “Burn-Mark Detection Based on Active Deep Learning,”
2021.

[TUC4] B. Battseren and M. S. Harras, “Deep-Learning-Based Insulator Detector
for Edge Computing Platforms,” in International Symposium on Computer
Science, Computer Engineering and Educational Technology (ISCSET-
2021), p. 21.

[TUC5] S. Saleh, S. A. Khwandah, A. Heller, A. Mumtaz, and W. Hardt, “Traf-
fic signs recognition and distance estimation using a monocular camera,”
in 6th International Conference Actual Problems of System and Software
Engineering.[online] Moscow: IEEE, 2019, pp. 407–418.

107

This report - except logo Chemnitz University of Technology - is licensed under a Creative
Commons Attribution 4.0 International License, which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The images or other third party material in this report are
included in the report’s Creative Commons license, unless indicated otherwise in a credit
line to the material. If material is not included in the report’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

Chemnitzer Informatik-Berichte
In der Reihe der Chemnitzer Informatik-Berichte sind folgende Berichte erschienen:

CSR-20-01 Danny Kowerko, Chemnitzer Linux-Tage 2019 - LocalizeIT Work-
shop, Januar 2020, Chemnitz

CSR-20-02 Robert Manthey, Tom Kretzschmar, Falk Schmidsberger, Hussein
Hussein, René Erler, Tobias Schlosser, Frederik Beuth, Marcel Heinz,
Thomas Kronfeld, Maximilian Eibl, Marc Ritter, Danny Kowerko,
Schlussbericht zum InnoProfile-Transfer Begleitprojekt localizeI, Ja-
nuar 2020, Chemnitz

CSR-20-03 Jörn Roth, Reda Harradi und Wolfram Hardt, Indoor Lokalisierung auf
Basis von Ultra Wideband Modulen zur Emulation von GPS Positio-
nen, Februar 2020, Chemnitz

CSR-20-04 Christian Graf, Reda Harradi, René Schmidt, Wolfram Hardt, Automa-
tisierte Kameraausrichtung für Micro Air Vehicle basierte Inspektion,
März 2020, Chemnitz

CSR-20-05 Julius Lochbaum, René Bergelt, Time Pech, Wolfram Hardt, Erzeu-
gung von Testdaten für automatisiertes Fahren auf Basis eines Open
Source Fahrsimulators, März 2020, Chemnitz

CSR-20-06 Narankhuu Natsagdorj, Uranchimeg Tudevdagva, Jiantao Zhou, Logi-
cal Structure of Structure Oriented Evaluation for E-Learning, April
2020, Chemnitz

CSR-20-07 Batbayar Battseren, Reda Harradi, Fatih Kilic, Wolfram Hardt, Auto-
mated Power Line Inspection, September 2020, Chemnitz

CSR-21-01 Marco Stephan, Batbayar Battseren, Wolfram Hardt, UAV Flight using
a Monocular Camera, März 2021, Chemnitz

CSR-21-02 Hasan Aljzaere, Owes Khan, Wolfram Hardt, Adaptive User Interface
for Automotive Demonstrator, Juli 2021, Chemnitz

CSR-21-03 Chibundu Ogbonnia, René Bergelt, Wolfram Hardt, Embedded System
Optimization of Radar Post-processing in an ARM CPU Core, Dezem-
ber 2021, Chemnitz

CSR-21-04 Julius Lochbaum, René Bergelt, Wolfram Hardt, Entwicklung und Be-
wertung von Algorithmen zur Umfeldmodellierung mithilfe von Radar-
sensoren im Automotive Umfeld, Dezember 2021, Chemnitz

Chemnitzer Informatik-Berichte

CSR-22-01 Henrik Zant, Reda Harradi, Wolfram Hardt, Expert System-based Em-
bedded Software Module and Ruleset for Adaptive Flight Missions,
September 2022, Chemnitz

CSR-23-01 Stephan Lede, René Schmidt, Wolfram Hardt, Analyse des Ressourcen-
verbrauchs von Deep Learning Methoden zur Einschlagslokalisierung
auf eingebetteten Systemen, Januar 2023, Chemnitz

CSR-23-02 André Böhle, René Schmidt, Wolfram Hardt, Schnittstelle zur Daten-
akquise von Daten des Lernmanagementsystems unter Berücksichti-
gung bestehender Datenschutzrichtlinien, Januar 2023, Chemnitz

CSR-23-03 Falk Zaumseil, Sabrina, Bräuer, Thomas L. Milani, Guido Brunnett,
Gender Dissimilarities in Body Gait Kinematics at Different Speeds,
März 2023, Chemnitz

CSR-23-04 Tom Uhlmann, Sabrina Bräuer, Falk Zaumseil, Guido Brunnett, A
Novel Inexpensive Camera-based Photoelectric Barrier System for Ac-
curate Flying Sprint Time Measurement, März 2023, Chemnitz

CSR-23-05 Samer Salamah, Guido Brunnett, Sabrina Bräuer, Tom Uhlmann, Oli-
ver Rehren, Katharina Jahn, Thomas L. Milani, Güunter Daniel Rey,
NaturalWalk: An Anatomy-based Synthesizer for Human Walking
Motions, März 2023, Chemnitz

CSR-24-01 Seyhmus Akaslan, Ariane Heller, Wolfram Hardt, Hardware-Sup-
ported Test Environment Analysis for CAN Message Communication,
Juni 2024, Chemnitz

CSR-24-02 S. M. Rizwanur Rahman, Wolfram Hardt, Image Classification for
Drone Propeller Inspection using Deep Learning, August 2024, Chem-
nitz

Chemnitzer Informatik-Berichte
ISSN 0947-5125

Herausgeber: Fakultät für Informatik, TU Chemnitz
Straße der Nationen 62, D-09111 Chemnitz

	Deckblatt
	Master_Thesis_drone_propeller_inspection_S_M_Rizwanur_Rahman
	Acknowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Motivation
	1.3 Thesis Structure

	2 Technical Background
	2.1 Convolutional Neural Network (CNN)
	2.1.1 Convolutional Layer
	2.1.2 Pooling Layer
	2.1.3 Fully Connected Layer

	2.2 Object Classifier and Detector
	2.2.1 Object Classification
	2.2.2 Object Detection
	2.2.3 Anchor-based Detectors

	2.3 Deep Learning Strategies
	2.3.1 Passive Learning
	2.3.2 Active Learning

	2.4 Chapter Summary

	3 State of The Art
	3.1 Overview of Image-Based Inspection
	3.1.1 Traditional Approaches
	3.1.2 Deep Learning Approaches

	3.2 Fault Inspection
	3.3 Chapter Summary

	4 Methodology
	4.1 Data Preprocessing
	4.1.1 Data Collection
	4.1.2 Data Selection
	4.1.3 Data Augmentation
	4.1.4 Duplicate Data Detector
	4.1.5 Data Consistency
	4.1.6 Data Annotation

	4.2 Selected Classifiers and Detectors
	4.2.1 VGG Family
	4.2.2 ResNet Family
	4.2.3 YOLO Family

	4.3 Active Deep Learning Approach
	4.4 Software Deployment
	4.5 Chapter Summary

	5 Implementation
	5.1 System Requirements
	5.1.1 Hardware
	5.1.2 Software

	5.2 Model Training
	5.2.1 Environment Setup
	5.2.2 Dataset Preparation
	5.2.3 Model Configuration
	5.2.4 Model Training and Conversion

	5.3 Model Deploy
	5.4 Chapter Summary

	6 Results and Evaluation
	6.1 Evaluation Metrices
	6.1.1 Accuracy
	6.1.2 Confusion Matrix
	6.1.3 Confidence score
	6.1.4 Intersection over Union (IoU)
	6.1.5 Average Precision (AP)
	6.1.6 Mean Average Precision (mAP)

	6.2 Model Evaluation
	6.2.1 Passive learning evaluation
	6.2.2 Active learning evaluation

	6.3 Performance Analysis
	6.4 Inference
	6.5 Chapter Summary

	7 Conclusion
	7.1 Summary of The Thesis
	7.2 Future Work

	Bibliography
	References form Professorship of Computer Engineering

	Buchrücken

