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Abstract

The maximum weight clique problem has a wide area of possible applications and
various heuristic and exact algorithms for solving it have been proposed. Multiple
algorithms, including a new heuristic approach called unexplored weight (UEW),
are implemented and tested on systematically ordered graphs. An approach for
optimizing consecutive calculations on similar graphs is also discussed. The focus
of the experiments lies on applications that require fast computations, so compara-
tively small graphs are tested within a short time limit. The results are evaluated
in detail and recommendations about which algorithm to chose for which graphs are
provided. The experiments reveal that the new UEW algorithm runs significantly
faster than its competitors on smaller graphs, while still providing an acceptable
solution quality.
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1 Introduction

1.1 Motivation

Vertex-weighted graphs are a versatile tool to model a multitude of problems. The
vertex weights can be set to represent a certain benefit value, while the edges in
between them represent some sort of pairwise compatibility. If the aim is now to
maximize the benefit, it is of interest to find the largest-weight set of vertices that are
compatible with each other. Such a set is known as the maximum weight clique of the
graph. The potential applications for maximum weight clique problems to practical
problems cover a wide range from computer vision [1] over social network analysis [2]
and communication networks [3] to biology [4], [5]. Since the maximum weight clique
problem is a generalized version of the maximum clique problem [6], algorithms for
the former are also capable of finding maximum cliques, which broadens the range
of applications even further.

Various state of the art algorithms to solve the maximum weight clique problem
have been proposed, like for example FastWClq [7], SCCWalk [6] or TSM-MWC
[8]. When it comes to comprehensive comparisons of the algorithms as a guide for
which algorithm to apply for which types of graphs, there seems to be untapped
potential in the literature. McCreesh et al. particularly also criticize the nature
of the weights used in many experiments in [9]. Usually the papers presenting
the algorithms include comparisons with few algorithms and put more emphasis on
certain graph instances instead of a larger number of systematically ordered test
graphs. Furthermore the literature usually focuses more on large graphs with many
thousands to millions of vertices. The existing algorithms are designed and tested
for processing different graph instances independently from each other. Even when
operating consecutively on very similar graphs, previous computation results are not
reused. Together, the mentioned factors create a gap that this thesis aims to fill.

1.2 Objectives

Deriving from that, the thesis will have two main objectives. The first main objective
is to research and select state of the art maximum weight clique algorithms and to
test them on many different graphs. The set of graphs used should be systematically
defined the possible combinations of certain vertex counts, edge densities and vertex
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1 Introduction

weight distributions. The focus should be on rather small graphs with at most 4000
vertices, aiming for application domains where fast runtimes are crucial.

The second objective is about exploring new algorithmic approaches. Besides of de-
veloping an own simple heuristic approach, the optimization potential of the existing
algorithms when being iteratively applied on similar graphs should be evaluated.
Instead of trying to find a maximum weight clique from scratch in every iteration,
adapted algorithms should try to reuse the information from the clique found in
the previous iteration. It should be evaluated whether such approaches can bring
benefits in regard to the needed computation time or the quality of the solutions.

1.3 Related work at the professorship Computer
Engineering

As already hinted, communication networks are a domain where maximum weight
clique algorithms can be applied, since graphs in general are an important instrument
for modeling networks. At the professorship Computer Engineering, there has been
various research on communication systems, in particular with a focus on optimizing
energy efficiency [10]–[13]. Other research activities at the professorship concern
hardware-/software partitioning [14], [15] and task assignment [16]. What all those
topics have in common, is their relation to assignment problems. Those are naturally
also a great fit for being modeled as a maximum weight clique problem. A vertex can
be representative for a particular assignment between two entities, and the vertex
weight is chosen to represent the benefit of that assignment. The edges would then
be chosen so that there exists an edge between each pair of vertices that represent
assignments that are not in conflict, e.g. by not assigning the same resource twice.
Calculating the maximum weight clique on such a graph should then deliver an
optimal solution of the assignment problem.

1.4 Structure of the thesis

At first, chapter 2 of the thesis will introduce the reader to some fundamentals
needed to understand the maximum weight clique problem and the related algo-
rithms. Building upon that chapter 3 presents several algorithms for solving it.
After that, in chapter 4 new algorithmic approaches, especially for working itera-
tively on similar graphs are described. Together with that an experimental setup
gets explained. It will be used to evaluate the algorithms in different situations.
Finally chapter 5 will then contain the analysis of the results obtained with the
experimental setup and based on that try to formulate recommendations regarding
the suitability of the various algorithms for different graphs and problems.
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2 Fundamentals

The following sections will briefly introduce basic terms, definitions and conventions
that are used in this thesis.

2.1 Graphs

A graph G = (V,E) is defined by a set of n vertices V = {v1, v2, ..., vn} (also called
nodes) and a set of m edges E. The existence of the edge (vi, vj) ∈ E denotes that
the two vertices vi and vj are connected, i.e., adjacent. It is assumed that i ̸= j, so
a vertex cannot be connected to itself with an edge.

An undirected graph is a special case of a graph where the order of the vertices
in an edge is irrelevant, meaning that there is no difference between (vi, vj) ∈ E and
(vj, vi) ∈ E. In this thesis, only undirected graphs are considered. When a “graph”
is mentioned, it is implied that this is an undirected graph.

If two vertices are adjacent, they are called neighbors. When referring to the
neighbors or neighborhood N(vi) of a vertex vi, the set of all its adjacent vertices,
not including the vertex itself, is meant. The neighborhood (also called exclusive
neighborhood or open neighborhood) is defined as N(vi) = {vj ∈ V | (vi, vj) ∈ E}.
In contrast, the inclusive neighborhood (or closed neighborhood)N [vi] of a vertex
also includes the vertex itself N [vi] = N(vi) ∪ {vi}. The number of neighbors that
a vertex has is the degree of the vertex deg(vi) = |N(vi)| [17].

To classify a graph with regard to the relative amount of edges, the measure of
density

d =
2m

n(n− 1)
=

m(
n
2

)
is used [18]. As it can be seen, it is the ratio between the number of edges the graph
has and the number of edges a graph with n vertices and all possible edges between
them has.

If weights are assigned to each vertex, the graph is a vertex-weighted graph.
Such a weighted graph is then defined as G = (V,E,w), where w is a function that
assigns a weight to each vertex. The weight of a vertex vi is thus referred to as w(vi).
Furthermore the notation vwi

i represents a vertex with the index i and a weight of
wi = w(vi). vi and vwi

i denominate the same vertex. Which of the two notations is
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Figure 2.1: Example of a vertex-weighted graph

used depends on the relevance of the vertex weight in the respective context. It is
assumed that ∀vi ∈ V : w(vi) > 0, weights should not be zero or negative. If in the
practical use case an entity represented by a vertex provides no benefit and would
therefore have a weight of exactly zero, it should not be included in the graph. Some
algorithms furthermore require integer weights. The vertex weights of the graphs
that the algorithms are tested on are not necessarily integers, but rather floating
point values in a range of 0 < w(v) ≤ 1. In such cases, all vertex weights are
premultiplied with a constant factor before being passed to those algorithms.

An example of how graphs are visualized within the thesis is shown in figure 2.1.
A vertex is depicted by a circle. The black number at the top inside the circle is
the index of the vertex, while the gray number at the bottom represents the vertex-
weight. If unweighted graphs are visualized, the circles contain only one number,
which is the index. If two vertices are connected by an edge, a line is drawn between
the respective circles. In the given example graph, v1 (the vertex with index 1) has
a weight of 0.1 and is connected to v4, v5, v7 and v8. v

1.0
2 is connected to v3 and v5,

etc. Sometimes only a part of a graph is relevant for an explanation and the rest of
the graph is not visualized. Such left out parts of a graph are indicated by dotted
lines that go downwards from a vertex into nowhere. This is often done in figures
for graph reductions.

2.2 Cliques

A clique C is a subset of the vertices V that satisfies the condition

∀vi, vj ∈ C, i ̸= j : (vi, vj) ∈ E,

i.e., every vertex in a clique is connected to each other vertex in that clique. In the
previously given example graph (figure 2.1), one clique is for instance formed by v1,
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Figure 2.2: Example of a clique
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Figure 2.3: Example of a maximal clique

v4 and v8. This clique is highlighted in figure 2.2 and as it can easily be seen, all
three vertices are connected to each other. The weight of a clique C is calculated
by adding together the weights of all its vertices:

w(C) =
∑
v∈C

w(v).

A maximal clique is a clique that can not be extended by any other vertex while
still remaining a clique. The clique highlighted in figure 2.2 is not a maximal clique.
v7 is connected to v1, v4 and v8, so it can be be used to extend the clique to the
one highlighted in figure 2.3. Since there is no other vertex in the graph that is
connected to all of v1, v4, v7 and v8, this is now a maximal clique.

If there exists no clique in a graph with more vertices than a certain clique, that
clique is called a maximum clique (MC). A maximum clique is always also a
maximal clique. It is possible that there are multiple maximum cliques within a
graph. Those multiple maximum cliques then need to have the same number of
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Figure 2.4: The maximum clique in the example graph
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Figure 2.5: The maximum weight clique in the example graph

vertices by definition. The problem of finding the maximum clique within a graph
is known as the maximum clique problem (MCP). In the example graph, there
is one maximum clique which consists of v3, v5, v6, v8 and v9. This maximum clique
with 5 vertices is highlighted in figure 2.4. The maximal clique presented in figure
2.3 is not a maximum clique, as it only consists of 4 vertices.

The clique with the greatest sum of vertex weights is called the maximum weight
clique (MWC). The problem of finding the maximum weight clique of a graph is
called the maximum weight clique problem (MWCP). Given that the weights
are greater than zero, the maximum weight clique will always be a maximal clique
as well. It is however not necessary that the clique containing the most vertices, the
maximum clique, is also the maximum weight clique. This is also the case in the
example graph. The maximum clique highlighted in figure 2.4 has a weight of 1.1,
but the maximum weight clique with a weight of 1.5 is formed out of v1.02 , v0.33 and
v0.25 , as shown in figure 2.5. Other maximal cliques in the graph with less weight
than the maximum weight clique are the one shown in figure 2.3 with a weight of
1.0, as well as v0.11 , v0.25 and v0.38 with a weight of 0.6.
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Figure 2.6: Example of an independent set

If it is mentioned that a clique C1 is better than another clique C2, this means
that C1 has a higher weight than C2, i.e., w(C1) > w(C2). Within algorithms the
notation Ĉ is used for the best clique (i.e., with the greatest weight) that has been
found so far. Similarly ŵ(D) refers to the most weighted vertex within a set of
vertices D. Note that D does not necessarily have to be a clique.

2.3 Independent sets

Contrary to a clique, an independent set D is a subset of the vertices V where
every vertex is not connected to any other vertex in that independent set. Formally
speaking, the condition for an independent set is:

∀vi, vj ∈ D, i ̸= j : (vi, vj) /∈ E.

A commonly used abbreviation for “independent set” is IS. An example for an IS is
provided in figure 2.6. It can be seen that the set D1 = {v1, v2, v9} is an independent
set, since v1 is not adjacent to v2 and v9, while v2 and v9 are not adjacent either.
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The subsequent sections will present the different classic and recent algorithms from
the literature that are later compared in the experimental part. The algorithms
are presented in the order of their publication. Some notations and namings will
deviate from those used in the respective original papers, mostly for consistency
reasons. Sometimes also slight restructurings were conducted to make matters more
clear, parts of long procedures were moved to new subprocedures. Subprocedures of
algorithms are suffixed by the name of the main algorithm to make their affiliation
clear. Sometimes there are letters or other markers on the left side of an algorithms
pseudo-code. They tag the start of a section of the algorithm that can be referenced
within the explaining text. Those sections that structure the algorithm do not
have any direct impact on the code itself and are just an orientation guide for the
reader.

In general there are two types of algorithms: heuristic and exact ones. Exact
algorithms always search for the optimal solution, i.e., the actual maximum weight
clique. In the general case, finding the maximum weight clique is a NP-hard problem
[19]. So depending on the input graphs, exact approaches can require prohibitively
long computation times. Heuristic algorithms on the other hand try to find a clique
of great weight in rather short time using some kinds of estimates. They can find a
solution that is optimal or close to optimal, but may also be completely off in some
cases. While in general it can be said that exact algorithms provide higher-quality
results but are slower, there can also be cases where exact algorithms are faster
than heuristic ones. Then again an exact algorithm may not find a solution in a
reasonable time while a heuristic one finds the maximum weight clique quickly, thus
delivering the higher quality result. Table 3.1 provides an overview of the heuristic
and exact MWC algorithms that will be introduced here.

Heuristic algorithms Exact algorithms
FastWClq WLMC
SCCWalk WC-WMC

SCCWalk4L TCM-MWC
MWCRedu MWCPeel

Table 3.1: Algorithms overview
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3.1 Exact algorithms

3.1.1 WLMC

The exact algorithm WLMC [20] was presented in 2017 by Jiang, C.M. Li and
Manyà. Main features introduced with it are its special preprocessing and vertex
splitting strategies. It requires integer vertex weights. In general it makes use of a
strategy called branch-and-bound (BnB). This encompasses exploring subprob-
lems in a search tree. Branches of the tree that do not meet a certain bound, which is
required for potential solutions, are discarded. The first mention of the BnB-scheme
can be found at [21].

Main procedure

Algorithm 1 outlines the main procedure of WLMC. At first an initial clique C0,
an initial vertex ordering O0 and a reduced Graph are determined by the helper
function InitializeWLMC. O0 is a degeneracy ordering of the vertices so vertices
at the beginning of the ordering tend to have fewer neighbors than the ones at the
end of the ordering. G′ is a version of the original input graph G where all vertices
u where UB0(u) ≤ w(C0) have been removed (cf. chapter 3). The best found clique
Ĉ is initialized with C0. The vertices of G

′ are prepared in V ′ in an ordered manner
according to O0 so that they can be used for looping through them in the following
main loop.

In the for-loop of this main procedure of WLMC, searches for the maximum weight
clique are conducted from each individual vertex vi of the reduced graph as a respec-
tive starting point. It should be noted that the loop traverses V ′ in reverse, which
means that vertices with many neighbors are processed earlier as starting vertices
for a clique. Vertices with more neighbors are more likely to be in a large and thus
high weight clique. This means the better cliques are often explored first. When Ĉ
is always updated accordingly, the less good cliques that occur later can be detected
as such and discarded ahead of further exploration.

At the start of each loop iteration a set Candidates is formed which contains all
the vertices that are allowed to be explored as potential clique members alongside
vi. If the Candidates and vi can potentially form a higher weigh clique than Ĉ, the
clique search in the subgraph G[Candidates] is performed. Again the initialization
procedure is used to get another initial clique C ′

0, ordering O′
0 and reduced graph

G′′ specifically for the subgraph. As every member of the subgraph is a neighbor of
vi and vi is not included in the subgraph itself, every clique in G[Candidates] can
be extended with vi in the original graph. Therefore if C ′

0 and vi can together form
a better clique than Ĉ, the latter already gets updated.
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Following that, in the most important part of the main loop, the highest weight
clique C ′ within the reduced subgraph G′′ (plus vi) is searched for recursively by
the function SearchMaxWCliqueWLMC. If a new best clique was found within
the subgraph, Ĉ can be updated as well. When the loop is finished, all viable
branches of the search space for a maximum weight clique have been explored and
Ĉ is returned.

Algorithm 1: WLMC

(C0, O0, G
′) := InitializeWLMC(G, 0);

Ĉ := C0;
V ′ := vertices of G′;
order V ′ w.r.t. O0;
for i := |V ′| to 1 do

Candidates := N(vi) ∩ {vi+1, vi+2, . . . , v|V ′|};
if w(Candidates) + w(vi) > w(Ĉ) then

(C ′
0, O

′
0, G

′′) := InitializeWLMC(G[Candidates], w(Ĉ)− w(vi));

if w(C ′
0) + w(vi) > w(Ĉ) then

Ĉ := C ′
0 ∪ {vi};

C ′ := SearchMaxWCliqueWLMC(G′′, Ĉ, {vi}, O′
0);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;

Initialization

The initialization function is given in algorithm 2. From a graph G and a lower
bound for the clique weight lb it derives an initial clique C0 an ordering O0 of the
vertices according to their degrees and a reduced graph G′.

Section A determines a vertex degree ordering and the initial clique. The vertex set
U is initialized as a copy of all vertices V in G. The degrees deg(v) are computed
by counting the number of neighbors of each vertex. In the following loop over all
vertices, the vertex of minimal degree is chosen and stored as vi where i is the loop
counter variable. When the condition deg(vi) = |U |− 1 is satisfied, that means that
vi is adjacent to all other vertices in U . Since vi has a minimal degree, the other
vertices can not have fewer neighbors, nor can they have more as the maximum
possible degree in U is |U | − 1. This means that in this situation every vertex in U
is connected to every other one, which means that U is a clique. Therefore the initial
clique C0 is set to U . The elements of U are stored in the remaining vi, vi+1, . . . , v|V |.
For the latter assignments the order does not matter anymore since all vertices in U
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should have the same degree. After the ordered vertices and the clique are stored,
the loop is terminated. In the cases where U is not yet a clique, vi is removed from
U . Subsequently the degree of every neighbor of vi that is still in U is decreased by
1 to reflect the new degrees within the changed set U .

Following that in section B the lower bound for the clique weight lb is adapted
to match the weight of the initial Clique in the case that it is smaller. Then the
reduced graph G′ is assembled. It is initialized as a copy of G. The actual reduction
is performed by removing all vertices where the weight of the inclusive neighborhood
w(N [v]) is not greater than lb. The ordering O0 can be simply obtained by stringing
together the vi’s that were collected before. Finally C0, O0 and G′ are returned.

Algorithm 2: InitializeWLMC(G, lb)

A U := V ;
deg(v) := |N(v)| ∀v ∈ U ;
for i := 1 to |V | do

vi := argmin
v∈U

deg(v);

if deg(vi) = |U | − 1 then
{vi, vi+1, . . . , v|V |} := elements of U in arbitrary order;
C0 := U ;
break;

U := U \ {vi};
for v ∈ N(vi) ∩ U do

deg(v) := deg(v)− 1;

B if w(C0) > lb then
lb := w(C0);

G′ := G;
for v ∈ V do

if w(N [v]) ≤ lb then
remove v and its incident edges from G′;

O0 := {v1, v2, . . . , v|V |};
return (C0, O0, G

′);

Clique search

Algorithm listing 3 shows the recursive function that WLMC uses to find the max-
imum weight clique within a subgraph. As parameters it takes a graph G in which
the best clique is searched, the best clique Ĉ found so far, the clique C that is cur-
rently being built and an ordering O of the vertices in G. The return value is the
best clique found in G or the Ĉ passed to the function, whichever is greater. As the
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recursion level advances, the smaller the subgraph of the original input graph that
is being passed to the clique search procedure will be.

The main task of section 1 is distributing all vertices V of the graph of into two
disjunct sets A and B. A is chosen so that the weight of the best clique within it is
not greater than w(Ĉ) − w(C). The remaining vertices B are called the branching
vertices. The actual process of building the two sets is accomplished by the func-
tion GetBranchesWLMC. That function only returns B, but A can be trivially
constructed as A = V \ B has to hold. Furthermore possible early return scenarios
are handled. If the subgraph passed to SearchMaxCliqueWLMC does not contain
any vertices, the search in the current branch is finished and the created clique C is
returned. When no branching vertices can be found, the search can also be aborted.
A = V will hold when B = ∅. Given the properties of A that were mentioned earlier,
this means that the current subgraph cannot contain a clique with a weight greater
than w(Ĉ) − w(C). Due to this, a better clique than Ĉ will not be found in the
current branch of the search, so Ĉ is returned.

After having the branching vertices in place, they are used in section 2 to explore
different paths of the search tree and recursively build up the clique in different
variants. Within their set |B| = {b1, . . . , b|B|} the branching vertices are arranged
according to the Ordering O. This means that b1 has the smallest degree while
b|V | was one of the last remaining vertices in the initialization procedure when the
vertex of the least degree was removed in every step. The ordering of B should
already be produced like this by the function GetBranchesWLMC. In a loop that
reversely runs through B from the last to the first element, each branching vertex
is evaluated regarding its potential as a new member of the clique C. Similar to
the loop in the main WLMC procedure, B is iterated through backwards because
vertices that have a higher position in the Ordering O should be more likely to be in
a large clique. This again allows for an early discard of unnecessary exploration.

Within the loop, first a set Candidates is defined that contains the vertices that the
algorithm allows to be possibly added to C after adding bi. These are all neighbors
of bi that are part of A or {bj ∈ B | j > i}. Now the best case weight of a
completed maximal clique with bi added is determined, i.e., a developed version of
C where bi and all Candidates could be added. If this best case weight is higher
than the weight of Ĉ, the recursion step is started. Now the actual best clique
with bi added is determined and stored as C ′. For this, the clique search procedure
SearchMaxWCLiqueWLMC is called by itself, with the subgraph of G containing
only the Candidates, the unchanged Ĉ, a current clique consisting of C and {bi},
as well as the also unchanged ordering O. If C ′ is better than Ĉ, Ĉ is updated
accordingly.

When the loop is finished, Ĉ is returned, which has been potentially updated by
suitable cliques induced by “good” branching vertices.
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Algorithm 3: SearchMaxWCliqueWLMC(G, Ĉ, C,O)

1 if V = ∅ then
return C;

B := GetBranchesWLMC(G,w(Ĉ)− w(C), O);
if B = ∅ then

return Ĉ;

A := V \B;
2 Let B = {b1, b2, . . . , b|B|}, b1 < b2 < . . . < b|B| w.r.t. O;
for i := |B| to 1 do

Candidates := N(bi) ∩ ({bi+1, bi+2, . . . , b|B|} ∪ A);

if w(C ∪ {bi}) + w(Candidates) > w(Ĉ) then

C ′ := SearchMaxWCliqueWLMC(G[Candidates], Ĉ, C ∪ {bi}, O);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;

Branching

To obtain the branching vertices mentioned before, the function that can be found
as algorithm 4 is used. The branching vertices are stored in the variable B. The
process of determining B requires to build up some independent sets, who are in
turn stored in one parent set Π. Both variables are initialized as empty sets. The
actual algorithm encompasses two sections marked as 1 and 2.

Section 1 basically iterates through all vertices of the graph G that was passed to
the function and inserts it either into an independent set within Π or into B. Until
V is empty, inside the loop a vertex v is chosen from V that is the greatest according
to the ordering O. Then v is removed from V . Now there are three options where
to put v afterwards. The first option is to insert it into an existing independent
set D ∈ Π. This is allowed if the definition of an independent set is not violated,
i.e. none of the members of D are a neighbor of v. If the latter is not the case, the
second option is to insert v into its own new independent set and add this new set to
Π. Both the first and the second option are only permitted if the sum of the highest
weight vertices of each set in the resulting Π would not exceed the parameter t.
Otherwise the third option is chosen, and v is added to the branching vertices B.

After the initial creation of the sets, section 2 initializes the upper bound ub0 for
the maximum weight of a clique in A = D1 ∪ . . . ∪D|A|. Using the same formula as
in some comparisons in section 1 of the algorithm, a simple upper bound is given by
the sum of the maximum weights of each IS in Π. This upper bound is not always
tight. The most weighted vertices ŵ(Dj) or even any vertex from every IS Dj ∈ Π
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may not actually form a clique together. In such cases, Π is called conflicting.
Some members of B can then be inserted into Π, while the upper bound based on
the cliques that are actually possible to build still does not exceed t. The for-loop
goes through each branching vertex bi and checks whether it could be inserted into
Π. For this the function UP&SplitWLMC is used. It gets passed a union of Π
and {bi} and the upper bound of the weight of a clique containing vertices from Π
and bi. The latter equals to ub0 + w(bi) according to our best knowledge up until
now. UP&SplitWLMC now determines a tighter upper bound ub and rearranges
the independent sets to Π′ in the process. If ub is then below or equal to t, that
means that bi should not be considered as a branching vertex. Remember that
t = w(Ĉ)−w(C) when GetBranchesWLMC was called. This means that a further
exploration with bi cannot lead to new best clique. So if ub ≤ t, the updated ub is
used for ub0, Π

′ replaces the previous Π, and bi is removed from B. After the loop
is finished, the refined B is returned. It should now only contain branching vertices
worth exploring.

Algorithm 4: GetBranchesWLMC(G, t, O)

B := ∅ ; // branching vertices

Π := ∅ ; // set of ISs

1 while V ̸= ∅ do
v := greatest vertex of V w.r.t. O;
V := V \ {v};
if ∃D ∈ Π

∣∣∣ (N(v) ∩D = ∅
)
∧
(∑|Π|

j=1 ŵ(Dj) ≤ t | after adding v into D
)

then
D := D ∪ {v};

else if
∑|Π|

j=1 ŵ(Dj) + w(v) ≤ t then

D := {v};
Π := Π ∪ {D};

else
B := B ∪ {v};

2 ub0 :=
∑|Π|

j=1 ŵ(Dj);

Let B = {b1, b2, . . . , b|B|}, b1 < b2 < . . . < b|B| w.r.t. O;
for i := |B| to 1 do

(ub,Π′) := UP&SplitWLMC(G,Π ∪ {{bi}}, ub0 + w(bi), t);
if ub ≤ t then

ub0 := ub;
Π := Π′;
B := B \ {bi}

return B;
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Example For a simple example, which is also presented in [20] itself, we assume
that the subgraph passed to GetBranchesWLMC is the graph G that is displayed
in figure 3.1. The given ordering O sorts the vertices according to their index, so
that v1 < v2 < v3 < v4 < v5 < v6. Furthermore t = 6 is provided, which again was
derived by the calling function from t = w(Ĉ)− w(C).

1
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2

4
1

5
4

6
1

Figure 3.1: Example graph G for WLMC

The iteration steps of the loop in section 1 of algorithm 4 are visualized in figure 3.2.
At first the greatest unprocessed vertex with respect to O is v6. No ISs are present
yet in Π, so the vertex is inserted into its own new IS D1. In iteration (2) v5 is
picked. It is not adjacent to v6, so it can be added to D1 as well. Note that since v

4
5

is the new highest weight vertex in D1, the upper bound
∑|Π|

j=1 ŵ(Dj) increases to 4.
During the next step v4 is processed. It is a neighbor of v5, thus it cannot be added
to D1, but instead requires its own IS D2. The upper bound consequently rises to
5. Iteration (4) clearly assigns v3 to D2, since the IS D1 only contains neighbors of
v3. This changes the upper bound to 6 as v23 is the new most weighted member of
D2 now. Next, v2 can be added to D1, leaving the upper bound unchanged.

Probably the most interesting iteration is (6), where v31 is taken into account. Both
members of D1 and D2 are adjacent to it, so it would require a new IS. However
that is not allowed either because we already have

∑|Π|
j=1 ŵ(Dj) = 6 = t. Adding

w(v31) to that would exceed t. Therefore it is the first (and only) vertex which gets
added to the branching vertices B.

Now for section 2 of the algorithm, we have Π = {{v16, v45, v32}, {v14, v23}}, ub0 = 6
and B = {v31}. The for-loop that tries to reduce both B and ub0 will only have
one iteration which takes a look at b1 = v31. The function UP&SplitWLMC will
prove that the combined set Π ∪ {v31} does have an upper bound of ub = 6 instead
of ub0+w(v31) = 9 as the initial bound estimation would suggest. The details of this
upper bound improvement will be discussed in the example of the following section
of the thesis. As ub = 6 ≤ t, v31 can be removed from B. This ultimately leads to
GetBranchesWLMC returning an empty set of branching vertices.
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v = v5 D1 = {v16, v45}
∑|Π|

j=1 ŵ(Dj) = 4

(3)
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v = v4
D1 = {v16, v45}
D2 = {v14}

∑|Π|
j=1 ŵ(Dj) = 5

(4)
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4
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v = v3
D1 = {v16, v45}
D2 = {v14, v23}

∑|Π|
j=1 ŵ(Dj) = 6

(5)
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3
2

4
1

5
4

6
1

v = v2
D1 = {v16, v45, v32}
D2 = {v14, v23}

∑|Π|
j=1 ŵ(Dj) = 6

(6)

1
3

2
3

3
2

4
1

5
4

6
1

v = v1

D1 = {v16, v45, v32}
D2 = {v14, v23}
B = {v31}

∑|Π|
j=1 ŵ(Dj) = 6

Figure 3.2: Initial IS creation on the example graph G
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Unit IS propagation

The main task of the function UP&SplitWLMC listed as algorithm 5 is to deter-
mine an accurate upper bound of the weight that a clique built from the ISs Π can
have. As already mentioned, the initial upper bound estimation ub0 =

∑|Π|
j=1 ŵ(Dj)

assumes the extreme case where the most weighted vertices of every set in Π form
a clique together. This function now tries to find out conflicts between the ISs,
i.e., situations where no such clique can be created. As long as one is available,
the while-loop takes a unit IS {v} that is not marked. A unit IS is an independent
set with exactly one vertex v. Each IS of Π has a flag that encodes whether it is
marked. This flag is set later in the course of UP&SplitWLMC to not consider
fully processed sets again. It is not set or read in any other function, but is passed
around together with the ISs when they are returned and given to another call of
this function again.

If the initial upper bound ub0 would be tight, the only vertex v of the chosen unit
IS must be in a clique with the to-be-selected vertices from the other ISs. Thus all
vertices not adjacent to v are removed from the other sets. If there are no conflicts
between the sets, this removal should not change the maximum possible weight and
size of a clique. If that is however not the case, the algorithm differentiates between
two different scenarios.

Scenario 1: empty set The condition labeled with 1 in the listing represents the
first scenario, where an IS S0 becomes empty from the removal. All vertices that
were originally included in S0 were then removed by v and potentially some other
unit ISs in previous iterations. Vertices removed from any IS get restored. Those
ISs that caused the removals from S0 are called S1, . . . , Sr. That S0 got completely
empty means that it could not contribute to a clique if the ISs S1, . . . , Sr are already
part of the clique. This in turn means that the initial upper bound estimation was
too high, since it could not include the highest vertex weights of both S0 and all
of S1, . . . , Sr at the same time. So the upper bound would have to be decreased by
at least the weight of the “worst” highest weight vertex of an IS in {S0, . . . , Sr}.
Formally this difference is expressed as δ = min(ŵ(S0), . . . , ŵ(Sr)).

Following that in section 1.1 the sets S0, . . . , Sr are split up. The split of an IS Sj

happens on a vertex level. A vertex ux
i ∈ Sj can be split into uy

i ∈ S ′
j and uz

i ∈ S ′′
j

where y + z = x. So the weight of the original vertex is distributed among its
counterparts in the new sets S ′

j and S ′′
j . More precisely, the splitWLMC function

puts the parts of the individual vertex weights up to δ into S ′
j and the parts of the

weight above δ into S ′′
j . If for a vertex u ∈ Sj its weight does not exceed δ, i.e.,

w(u) ≤ δ, it can be copied to S ′
j without changes and can be omitted in S ′′

j . To
complete the splitting, each S ′

j is added to ∆ and each S ′′
j replaces its corresponding

Sj in Π. Finally, the upper bound estimation ub is corrected by δ.
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Scenario 2: most weighted vertices removed Besides condition 1, the second
scenario handled by condition 2 is that an IS S0 still contains some vertices, but
its k vertices with the highest weights got removed by some unit ISs S1, . . . , Sr.
That would also mean that ub cannot be tight, as the highest weight vertex of S0

is assumed to be included in the best clique if ub =
∑|Π|

j=1 ŵ(Dj). This can clearly
not be the case if every other ŵ(Si) | 1 ≤ i ≤ r is in the clique too. Remember
that every Si was a unit IS {vi} at the moment of the vertex removal from S0. So
vi has to be a neighbor of the vertex of S0 that gets chosen for the clique. If that
chosen vertex is not the highest weighted in S0, the upper bound could be decreased
accordingly.

The steps executed when condition 2 is fulfilled have a structure similar to the
ones from 1. Again the removed vertices are restored. The vertices within the set
S0 are addressed in a way so that they are ordered by weight decreasing from the
first element uw1

1 to the last one u
w|S0|
|S0| . This ordering implicitly makes the k vertices

which were previously removed also the first k vertices in the restored set. Similar to
the first scenario a value δ = min(β, ŵ(S1), . . . , ŵ(Sk)) is calculated that denotes the
needed change in the upper bound. Instead of ŵ(S0), another value β = w1 − wk+1

is used for obtaining δ. In scenario 2 with the most weighted vertices missing, so
the possible the contribution of S0 to the clique would not fully diminish due to the
conflicts. Therefore β is only the difference between the highest originally included
weight w1 and the highest weight of the not removed vertices wk+1. The latter
weight is furthermore stored as γ.

Section 2.1 of the algorithm is mostly equivalent to 1.1. The only difference is that
S ′
0 and S ′′

0 are created in a special manner unlike the other split sets generated by
splitWLMC. S ′

0 is only filled with the k most weighted vertices and the weight of
vertex i, 1 ≤ i ≤ k is set to min(δ, wi − γ), so the minimum of either the upper
bound correction value δ or the difference between the original weight of the vertex
and the weight of the most weighted vertex that did not get removed. S ′′

0 contains
all vertices present in S0 with the the weights set to the parts of the original weights
that are not already covered in S ′

0.

Concluding steps Independent of conditions 1 and 2, if the corrected upper bound
ub becomes smaller or equal to t, all members of the set ∆ are marked and the loop
is terminated. The function has then proved that a potential branching vertex bi
that was included in the parameter Π is not useful as a branching vertex.

After the loop, all removed vertices that have not yet been restored to their ISs are
added to them again. Finally the improved upper bound and the updated set of ISs
obtained by the union of δ and Π are returned.

Example To make the process more tangible, the example from the previous
section about the branching procedure can be continued here. As an input of
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Algorithm 5: UP&SplitWLMC(G,Π, ub, t)

∆ := ∅;
while ∃ unit IS {v} ∈ Π | {v} is not marked do

remove vertices non-adjacent to v from their IS;
1 if ∃S0 ∈ Π | S0 = ∅ ∧ S0 is not marked then

restore all removed vertices into their IS;
Let S1, . . . , Sr be the ISs responsible of removing all vertices from S0;
δ := min(ŵ(S0), . . . , ŵ(Sr));

1.1 for Sj ∈ {S0, S1, . . . , Sr} do
(S ′

j, S
′′
j ) := splitWLMC(Sj, δ);

∆ := ∆ ∪ {S ′
0, S

′
1, . . . , S

′
r};

Π := (Π \ {S0, S1, . . . , Sr}) ∪ {S ′′
0 , S

′′
1 , . . . , S

′′
r };

ub := ub− δ;

2 else if ∃S0 ∈ Π | S0 is not marked ∧ the k most weighted vertices are
removed from S0 then

Let S0 = {uw1
1 , . . . , uwk

k , . . . , u
w|S0|
|S0| } | w1 ≥ . . . ≥ wk ≥ . . . w|S0|;

Let uw1
1 , . . . , uwk

k be the k most weighted vertices removed from S0;
β := w1 − wk+1;
restore all the removed vertices into their IS;
Let S1, S2, . . . , Sr be the ISs responsible of removing uw1

1 , . . . , uwk
k from

S0;
δ := min(β, ŵ(S1), . . . , ŵ(Sr));
γ := wk+1;

2.1 S ′
0 := {umin(δ,w1−γ)

1 , . . . , u
min(δ,wk−γ)
k };

Let w′′
j = wj −min(δ, wj − γ) | 1 ≤ j ≤ k;

S ′′
0 := {uw′′

1
1 , . . . , u

w′′
k

k , u
wk+1

k+1 , . . . , u
w|S0|
|S0| };

for Sj ∈ {S1, S2, . . . , Sr} do
(S ′

j, S
′′
j ) := splitWLMC(Sj, δ);

∆ := ∆ ∪ {S ′
0, S

′
1, . . . , S

′
r};

Π := (Π \ {S0, S1, . . . , Sr}) ∪ {S ′′
0 , S

′′
1 , . . . , S

′′
r };

ub := ub− δ;

3 if ub ≤ t then
mark all ISs in ∆;
break;

restore all the removed vertices into their ISs;
return (ub,∆ ∪ Π);

UP&SplitWLMC we have G as seen in figure 3.1, Π = {{v16, v45, v32}, {v14, v23}, {v31}},
ub = 9 and t = 6.
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Starting into the loop, the unit IS {v31} can be found within Π. Therefore its non-
neighbors v26, v

4
5 and v14 are removed from their independent sets. This results in

Π = {{v32}, {v23}, {v31}}. That in turn means that there is a new unit IS {v32}.
Removing its non-neighbor v23 from Π yields Π = {{v32}, ∅, {v31}}. Now the second
IS in Π is empty, thus the condition labeled with 1 in algorithm 5 is triggered. After
restoring the removed vertices, the sets can be labeled as

S0 = {v14, v23} S1 = {v31} S2 = {v16, v45, v32}.

With that we can calculate

δ = min(ŵ(S0), ŵ(S1), ŵ(S2)) = min(2, 3, 4) = 2.

Now the splits are executed (section 1.1 in the algorithm listing). The resulting sets
are:

S ′
0 = {v14, v23} S ′

1 = {v21} S ′
2 = {v16, v25, v22}

S ′′
0 = ∅ S ′′

1 = {v11} S ′′
2 = {v25, v12}.

The sets of ISs are updated with the newly split up independent sets:

Π = {{v11}, {v25, v12}}
∆ = {{v14, v23}, {v21}, {v16, v25, v22}}.

Finally the upper bound can be updated: ub = ub − δ = 9 − 2 = 7. This does not
yet reach t = 6, so the loop can proceed to its next iteration. The unit IS {v11} in
the new Π leads to the removal of v25, resulting in Π = {{v11}, {v12}}. The removed
v25 was the most weighted vertex in the second IS in Π, so the condition labeled as
2 in the algorithm is fulfilled, with k = 1. We label the sets

S0 = {v25, v12} = {uwk
k , u

wk+1

k+1 } S1 = {v11}.

With the sets in place, the following calculations can be made:

β = w1 − wk+1 = w(v25)− w(v12) = 2− 1 = 1

δ = min(β, ŵ(S1)) = min(β, w(v11)) = min(1, 1) = 1

γ = wk+1 = w(v12) = 1.

The next step is the splitting as seen in section 2.1 of the listing. Applying the
procedure to the set S0 yields

S ′
0 = {vmin(δ,wk−γ)

5 } = {vmin(1,2−1)
5 } = {v15}

S ′′
0 = {vwk−min(δ,wk−γ)

5 , v12} = {v2−min(1,2−1)
5 , v12} = {v15, v12}.

For S1 the split can be done using the regular splitWLMC function which returns

S ′
1 = {v11}

S ′′
1 = {v01} ∼ ∅.
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With that in place Π and ∆ are updated again.

Π = {{v15, v12}}
∆ = {{v14, v23}, {v21}, {v16, v25, v22}, {v15}, {v11}}.

Updating the upper bound like ub = ub − δ = 7 − 1 = 6 makes it equal to t. This
means that the condition labeled with 3 in the algorithm listing is fulfilled. Thus we
mark all the sets in ∆ (depicted here by underlining) and exit the loop. The final
return value pair of the function will then be:(

6, {{v14, v23}, {v21}, {v16, v25, v22}, {v15}, {v11}, {v15, v12}}
)
.

It should be noted that as no ISs were marked in the given input parameter Π of
the function, the marking states did not have an influence on the conditions 1 and
2 in algorithm 5. In cases where there are multiple iterations in the for-loop of the
GetBranchesWLMC function, UP&SplitWLMC might operate on independent
sets that it already modified by itself in a previous call. Then there could already
be marked ISs within Π that UP&SplitWLMC has to deal with.

Vertex splitting

The split function presented in algorithm 6 accomplishes the task of dividing an
independent set S according to a weight threshold δ. The first returned set S ′

contains all the same vertices that are in S, but all weights that are greater than
or equal to δ are changed to δ. Thus the maximum weight that can possibly occur
in S ′ is δ. According to the notation in the listing, the vertices where the weights
get adjusted are {u1, . . . , uk}. The second returned set S ′′ only contains the vertices
{u1, . . . , uk} where the original weight was greater than δ. All weights in S ′′ are
adapted to wi − δ | 1 ≤ i ≤ k. It is apparent that the sum of the weights that each
vertex has in S ′ and S ′′ (adding zero for S ′′ if the vertex is not in it) is equivalent
to the original weight in S. The other way round, it can be said that the weights of
S have been distributed or split to S ′ and S ′′.

Algorithm 6: SplitWLMC(S, δ)

Let S = {uw1
1 , . . . , u

w|S|
|S| } | w1 ≥ . . . ≥ wk ≥ δ ≥ wk+1 ≥ . . . w|S|;

S ′ = {uδ
1, . . . , u

δ
k, u

wk+1

k+1 , . . . , u
w|S|
|S| };

S ′′ = {uw1−δ
1 , . . . , uwk−δ

k };
return (S ′, S ′′);

Example To better visualize the split function, an example how it transforms its
input is shown in figure 3.3. The parameters are S = {v16, v45, v32} and δ = 2. S did
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already occur as S2 during the first splits in the example of the previous chapter. In
the figure the weights are depicted by the number of squares above the corresponding
vertex. It can be seen that the parts of the weights up to the threshold δ, marked
as ■, go to S ′. v45 and v32 have weights that reach above δ. The remaining parts of
their weights that were not included in S ′ are marked as ■ and get added to S ′′. v6
is omitted from S ′′ because its original weight 1 is already below δ.

■
> δ ■ ■

≤ δ ■ ■
■ ■ ■

S = { v16 v45, v32 }

■
■ ■

S ′′ = { v25, v12 }

■ ■
■ ■ ■

S ′ = { v16, v25, v22 }

Figure 3.3: Example vertex splitting

3.1.2 WC-MWC

WC-MWC stands for weight cover maximum weight clique and is an exact state
of the art algorithm for medium and large graphs [18]. It was published in 2018 and
authored by C.M. Li, Liu, Jiang, Manyà and Y. Li.

As WC-MWC is based on the works of WLMC [20] and a branch-and-bound algo-
rithm too, the general structure of it shows great similarities to the one of WLMC.
For the initialization, the exact same function InitializeWLMC is used again. The
main procedure WC-MWC (algorithm 27, appendix 7.2)) and the clique search
function SearchMaxWCliqueWC-MWC (algorithm 28, appendix 7.2)) are almost
equivalent to their counterparts WLMC and SearchMaxWCliqueWLMC. The
only significant difference is that they call the respective sub-functions of WC-MWC
instead of those from WLMC. The most interesting difference is at the core of the
algorithm the determination of the interesting branches that should be explored re-
cursively in the clique search function. WLMC uses GetBranchesWLMC to obtain
a set B of branching vertices and trivially infers A = V \ B from that. WC-MWC
on the other hand uses its function PartitionWC-MWC that directly returns A
and B. The following subchapter will explain the concept of the weight cover. This
construct is in turn used by PartitionWC-MWC, which will be described in the
next but one subchapter.
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Weight Cover

A weight cover Π = {(D1, w1).(D2, w2), . . . , (Dr, wr)} is a set of special pairs (Di, wi).
In those pairs Di is an independent set of the graph G that the weight cover refers
to. wi is a weight function where

∀v ∈ Di : wi(v) > 0

∀v /∈ Di : wi(v) = 0.

A further condition for the weight function is that they “cover” the weight of each
vertex, i.e. the sum of the weight functions yields the original weight of the ver-
tices:

∀v ∈ V : w(v) =
r∑

i=1

wi(v).

Such a weight cover can be used to obtain an upper bound UBWC(G) for the weight
of a clique within G. It is defined as the sum of the highest vertex weights of each
IS Di according to the weight functions wi:

UBWC(G) =
r∑

i=1

ŵi(Di).

By the definition of an independent set, Each IS Di can at most contain one member
of any clique C. The definition of the weight cover requires that the weight of each
vertex is preserved by the sum of its weights according to every wi. Furthermore it
is trivial that wi(u) ≤ ŵi(Di) | u ∈ C ∩Di. Combining these three facts, it becomes
clear that the weight of any clique cannot surpass UBWC .

Example The concept will now be illustrated on the example graph from figure
3.4, which can also be found in the original paper [18].

1
3

2
3

6
2

3
2

4
1

5
4

Figure 3.4: Example graph G for WC-MWC

A possible weight cover for G would be

Π = {(D1, w1), (D2.w2), (D3, w3)}.
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The independent sets in this case are

D1 = {v1, v3, v5} D2 = {v2, v4, v5} D3 = {v2, v6}.

A comparison with figure 3.4 can quickly verify that none of the vertices which are
within the same Di are neighbors. Finally the weight functions for the weight cover
should be

w1(v) =


3 v = v1

2 v = v3

3 v = v5

0 else

w2(v) =


1 v = v2

1 v = v4

1 v = v5

0 else

w3(v) =


2 v = v2

2 v = v6

0 else

.

Written in a more compact manner that combines the ISs with the weight functions
we have

D1 = {v31, v23, v35} D2 = {v12, v14, v15} D3 = {v22, v26}.

Furthermore the Π from the example satisfies the condition that the sum of the
weights according to the individual weight functions preserves the original vertex
weights. This can be seen in figure 3.5, where the number of squares (■) directly
above or below the nodes visualizes the weight of the node. The color of the squares
on the right side of the figure shows by which weight function that part of the weight
has been covered. ■ indicates that the part of the weight is covered by w1, ■ is
used for weight parts covered by w2 and ■ for the ones covered by w3.
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2
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6
2

3
2

4
1

5
4

■
■
■

■
■

■
■
■
■

■
■
■

■
■

■

1
3

2
3

6
2

3
2

4
1

5
4

■
■
■

■
■

■
■
■
■

■
■
■

■
■

■

D1 D3
D1

D2

D3

D2 D1
D2

Figure 3.5: Weight cover for example graph

35



3 Algorithms

With the weight cover in place, the upper bound UBWC(G) for a clique in G can
be calculated as well like

UBWC(G) =
r∑

i=1

ŵi(Di) = ŵ(D1) + ŵ(D2) + ŵ(D3) = 3 + 1 + 2 = 6.

A look at the example graph reveals that there are no cliques with more than two
members. The two pairs of adjacent vertices where the sum of the weights is the
highest are (v31, v

3
2) and (v45, v

2
6). Those two pairs are thus the maximum weight

cliques and both have a clique weight of 6. Since UBWC(G) is 6 as well, the upper
bound is correct and even tight for the example graph.

Partitioning

Algorithm listing 7 shows the partitioning procedure of WC-MWC. It builds a weight
cover, whose ISs D1, . . . , Dt are stored as Π. Furthermore the branching vertices are
maintained in A and the remaining vertices where a branching in the clique search
is not required in B. Initially all sets are empty, they will be gradually filled during
the for-loop that iterates through all vertices vi ∈ V of the given subgraph G. It
is assumed that V is ordered so that v1 < v2 < . . . < v|V | according to O. In each
iteration a value β and a set of ISs ∆ are introduced. The latter one will be filled
with the ISs that vi can be added to. The main idea of each iteration will be that
the algorithm tries to integrate vi into the weight cover without exceeding the clique
weight limit t. If that is possible, vi can be added to A, if not it becomes one of the
branching vertices B.

Preparation phase Section 1 of the algorithm can be seen as a preparation phase
where information is gathered that can be later used to decide if and how to integrate
vi into the weight cover Π. It loops through all independent sets that are already
present in Π. In 1.1 the set Dj that is currently visited by the loop is added to
∆ if it contains no neighbors of vi. Otherwise the else branch 1.2 is triggered.
There the highest weight neighbor u of vi in Dj is determined. β gets updated so
that at the end of the loop it will be equivalent to the maximum weight difference
between u ∈ Dj and the highest-weight member of Dj among all Dj ∈ Π \∆. x is
also updated accordingly so that it always represents the index of the IS Dj that
the current value of β relates to. The last step within the inner loop is the break
condition 1.3 that exits the loop to avoid unnecessary iterations. It checks whether
the currently determined ∆ and β provide enough information to be sure that vi
can be integrated into the weight cover without exceeding the weight limit t, i.e. vi
can be part of A. The detailed reasoning behind the formula will become clear in
later stages of the partition function.
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Integration phase Section 2 uses the information gathered in section 1 to put vi
into A and integrate it into the weight cover Π, or put it into the set of branching
vertices B. For the decision what to do it uses the same condition as seen in 1.3.
The term of the left side of the condition represents the upper bound of the clique
weight according to the weight cover after vi was inserted into it:

|Π|∑
j=1

ŵj(Dj)︸ ︷︷ ︸
current weight cover

+max

(
w(vi)−

( ∑
Dk∈∆

ŵk(Dk) + β
)
, 0

)
︸ ︷︷ ︸

weight change when inserting vi

.

Isolating the first part of that term

|Π|∑
j=1

ŵj(Dj),

it can be seen that this is equivalent to the upper bound UBWC presented in chapter
3.1.2. This represents the upper bound for the clique weight of the unmodified weight
cover, i.e. where vi is not yet inserted. The interesting part is the first operand of
the max-operation in the second part of the term:

w(vi)−
( ∑

Dk∈∆

ŵk(Dk)︸ ︷︷ ︸
weight that can
be covered by
existing ISs

(2.2)

+ β︸︷︷︸
weight that

can be
covered by
modified IS

(2.1)

)
.

In the “worst” case, the whole weight w(vi) of vi has to be added to a new separate
IS. However unless ∆ is empty, parts of the weight of vi can be distributed into the
ISs of ∆. When adding a vertex to an IS Di and the weight of the added vertex
according to wi does not exceed the current maximum weight ŵi(Di) of that set,
UBWC will not change. Therefore, up to ŵk(Dk), Dk ∈ ∆ of w(vi) can be covered
by the IS Dk without increasing the maximum clique weight.

When slightly modifying Π, also the previously determined β can be covered by it.
This modification is conducted in section 2.1. To recap, β was calculated within
an independent set Dx that contained at least one neighbor of vi. Given that Dx

contains members with more weight than the highest-weight neighbor of vi, Dx can
be split up into two ISs where one of them contains no neighbors of vi. In the
following explanation the members of Dx and their weights are denoted as

Dx = {vwx(vx1 )
x1 , . . . , vwx(vxa )

xa
, v

wx(vxa+1 )
xa+1 , . . . , v

wx(vxb )
xb }.

Furthermore in this notation vertices within Dx are sorted by their weight according
to wx in descending order:

wx(vx1) ≥ . . . ≥ wx(vxa) ≥ wx(vxa+1) ≥ . . . ≥ wx(vxb
).
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The highest-weight neighbor of vi within Dx is labeled as xa:

vxa = argmax
z∈N(vi)

wx(z).

xa corresponds to the vertex u defined section 1.2 for the IS Dx. This yields its
relation to β:

β = ŵx(Dx)− wx(vxa) = wx(vx1)− wx(vxa). (∗)

The actual modification of Π is now to split Dx into Dx′ and Dx′′ . Dx′ contains
the same vertices as Dx, but their weights are clipped so that they do not exceed
wx(vxa):

Dx′ = {vwx(vxa )
x1

, . . . , vwx(vxa )
xa

, v
wx(vxa+1 )
xa+1 , . . . , v

wx(vxb )
xb }.

The remaining weights that were clipped off in Dx′ are covered by Dx′′ , which only
contains the vertices vx1 , . . . , vxa−1 :

Dx′′ = {vwx(vx1 )−wx(vxa )
x1 , . . . , v

wx(vxa−1 )−wx(vxa )
xa−1 }.

Since the vertices within Dx were ordered by their weight and vxa is the highest-
weight neighbor of vi, it becomes clear that Dx′′ contains no neighbors of vi anymore.
Therefore ŵx(DX′′) = wx(vx1)−wx(vxa) of vi can be covered by Dx′′ . As formula (∗)
shows, this part of the weight corresponds to β. Furthermore the split itself does
not change UBWC , as the sum of the maximum weights of the derived sets Dx′ and
Dx′′ is the same as the maximum weight of Dx:

ŵx′(Dx′) + ŵx′′(Dx′′) = wx(vxa) + wx(vx1)− wx(vxa) = wx(vx1) = ŵx(Dx).

This whole derivation leads to a rather compact realization within the code of section
2.1. The whole split only will be executed if the current ISs of ∆ cannot fully cover
the weight of vi and a suitable set Dx was found. The latter is the case if β > 0. The
split of Dx can be performed by calling the already introduced function splitWLMC
with a weight threshold of ŵ(Dx)−β. Dx gets removed from Π, while its successors
Dx′ and Dx′′ are added to it. As Dx′′ does not contain neighbors of vi anymore, it
can be added to ∆.

After that, in section 2.2 all members of ∆, if applicable including the just added
Dx′′ , are used to cover the weight of vi. The indices of the p ISs in ∆ are tagged
as j1 to jp. In a loop for every IS in ∆ except the last one, vi is added to the IS
Djs with a weight of wjs(vi) = ŵjs(Djs). This ensures that as much weight of vi
as possible without changing UBWC is covered by each Djs . For Djp , the last IS of
∆, the processing is a little different. vi also gets added to it, but this time with
an assigned weight which is the difference between w(vi) and the weight already
covered by the other members of ∆. This difference is called the residual weight
w(vi)−

∑p−1
s=1 wjs(vi). With the weight remainder being handled by Djp , the whole

weight of vi is now covered by the weight cover Π. In the first p − 1 members of
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∆, the maximum weight has not changed, so their modification does not influence
UBWC . Only the last set Djp could potentially induce a change of the upper bound
by

max(wjp(vi)− ŵjp(Djp), 0) | considering Djp before vi is added.

Should ∆ be empty, section 2.3 simply adds vi with its whole weight to a new IS
D|Π|+1. This new IS is then appended to the weight cover Π. The if condition
marked with 2 in the listing 7 ensures that neither the modifications of Π conducted
within branch 2.1 nor 2.2 raise UBWC above t.

After the modifications to Π are finished, vi is inserted into the set of non-branching
vertices A. In the else-case 2.4 where condition 2 was not satisfied, Π remains
unchanged and vi is added to the branching vertices B. When all vi ∈ V were
processed by the outer for-loop, A and B are complete and get returned.

Example The example graph seen in figure 3.5 will now also be used to demonstrate
the partitioning procedure. As in the original paper [18], furthermore an ordering O
yielding v6 < v5 < v4 < v3 < v2 < v1 and t = 6 are chosen. Figure 3.6 visualizes the
state of the weight cover after each iteration of the main for-loop of the partitioning
algorithm.

(1) Since the weight cover is initialized as empty, the first iteration where vi = v31 will
practically skip the preparation phase 1 of the algorithm. Therefore the integration
phase 2 will start with the following preconditions:

Π = ∅ ∆ = ∅ β = 0

|Π|∑
j=1

ŵj(Dj)+max

(
w(v1)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 0+max

(
3−(0+0), 0

)
= 3 ≤ t.

As the integration condition is fulfilled with t = 6, v1 will be integrated into Π
and added to A. The then-branches of the conditions 2.1 and 2.2 are not executed,
unlike 2.3 which inserts v31 into its own new IS D1 with its full weight. This results
in the weight cover shown in (1) of figure 3.6.

(2) The second iteration considers v32. The preparation phase 1 cannot insert D1

into ∆ because the only member of D1, v1, is a neighbor of v2. Furthermore branch
1.2 cannot determine a new β since no non-neighbor u is available. The state before
the integration phase is

Π = {{v31}} ∆ = ∅ β = 0

|Π|∑
j=1

ŵj(Dj)+max

(
w(v2)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 3+max

(
3−(0+0), 0

)
= 6 ≤ t.
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Algorithm 7: PartitionWC-MWC(G, t, O)

Π := ∅; // weight cover(sets of ISs)

A := ∅, B := ∅; // sets of vertices

for i := |V | to 1 do
β := 0;
∆ := ∅;

1 for j := 1 to |Π| do
1.1 if N(vi) ∩Dj = ∅ then

∆ := ∆ ∪ {Dj};
1.2 else

u := argmax
z∈N(vi)

wj(z);

if ŵj(Dj)− wj(u) > β then
x := j;
β := ŵj(Dj)− wj(u);

1.3 if
(∑|Π|

j=1 ŵj(Dj) +max
(
w(vi)−

(∑
Dk∈∆ ŵk(Dk) + β

)
, 0
))

≤ t then

break;

2 if
(∑|Π|

j=1 ŵj(Dj) +max
(
w(vi)−

(∑
Dk∈∆ ŵk(Dk) + β

)
, 0
))

≤ t then

2.1 if
(∑

Dk∈∆ ŵk(Dk) < w(vi)
)
and (β > 0) then

(Dx′ , Dx′′) = splitWLMC(Dx, ŵx(Dx)− β);
Π := (Π \ {(Dx, wx)}) ∪ {(Dx′ , wx′), (Dx′′ , wx′′)};
∆ := ∆ ∪ {Dx′′};

2.2 if ∆ ̸= ∅ then
Let ∆ = {Dj1 , Dj2 , . . . , Djp};
for s := 1 to p− 1 do

wjs(vi) := ŵjs(Djs);

Djs := Djs ∪ {vwjs (vi)
i };

wjp(vi) := w(vi)−
∑p−1

s=1 wjs(vi);

Djp := Djp ∪ {vwjp (vi)

i };
2.3 else

D|Π|+1 := {vw(vi)
i };

Π := Π ∪ {(D|Π|+1, w|Π|+1)};
A := A ∪ {vi};

2.4 else
B := B ∪ {vi};

return (A,B);
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This makes it possible to add v2 to Π and A as well. Like v1, v2 is added to its new
IS D2 which covers its full weight. Graph (2) in figure 3.6 is shows the new weight
cover Π.

(3) The situation in the third iteration with vi = v23 is a little different. D1 contains
no neighbors of v3 and is thus added to ∆. v2, the only member of D2, is adjacent
to v3. So β will remain unchanged by 1.2 again. We now have:

Π = {{v31}, {v32}} ∆ = {{D1}} β = 0

|Π|∑
j=1

ŵj(Dj)+max

(
w(v3)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 6+max

(
2−(3+0), 0

)
= 6 ≤ t.

As ∆ is not empty this time, the algorithm enters branch 2.2. ∆ has one member,
so p = 1 and the body of the for-loop within 2.2 is therefore never executed. The
full weight of v3 is covered by the residual weight function

wjp(v3) = wj1(v3) = w(v3)−
p−1∑
s=1

wjs(v3) = 2− 0 = 2.

Then v23 is inserted into D1 and finally into A too. The resulting weight cover is
depicted in part (3) of figure 3.6.

(4) Within the fourth iteration v14 is processed. D1 contains two vertices, v1 and v3.
v31 is the highest weight member of D1 and not a neighbor of v4. v23 on the other
hand is adjacent to v4. Due to this, D1 cannot be added to ∆. Section 1.2 of the
algorithm will determine u = v23 and

β = ŵ1(D1)− w1(u) = w1(v1)− w1(v3) = 3− 2 = 1.

Meanwhile D2 can be added to ∆. The resulting state after the preparation phase
is:

Π = {{v31, v23}, {v32}} ∆ = {{D2}} β = 1 x = 1

|Π|∑
j=1

ŵj(Dj)+max

(
w(v4)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 6+max

(
1−(3+1), 0

)
= 6 ≤ t.

During the integration phase, 2.1 is once again skipped because the full weight of v4
can be covered by ∆. The latter is then realized in section 2.2, where v14 is integrated
into D2. Π after this operation is shown in (4) of figure 3.6. Just as its predecessors,
v4 is added to A.

(5) Another interesting constellation is present in the fifth iteration where vi = v45.
The only neighbor of v5 is v6, which has not been assigned to an IS yet. Therefore
both D1 and D2 are adjoined to ∆, which leaves β at its default value:

Π = {{v31, v23}, {v32, v14}} ∆ = {{D1}, {D2}} β = 0
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|Π|∑
j=1

ŵj(Dj)+max

(
w(v5)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 6+max

(
4−(6+0), 0

)
= 6 ≤ t.

This time the full vertex weight is greater than the maximum weights of the IS
Dj ∈ ∆:

w(v5) = 4 > ŵ1(D1) = ŵ2(D2) = 3.

Adding v5 solely to one existing IS Dj would increase its maximum weight. That
in turn would increase UBWC above the weight limit t. To avoid that, the weight
of v45 is distributed among D1 and D2. In section 2.2 of the algorithm the for-
loop is executed once and assigns the current maximum weight of Dj1 = D1 to
wj1(v5) = w1(v5). So v35 is added to D1, which means a weight value of 1 is left
uncovered. This uncovered residual weight is then consumed by

wjp(v5) = wj2(v5) = w2(v5) = w(v5)−
p−1∑
s=1

wjs(v5) = 4− 3 = 1.

With v15 added to D2, v5 is fully covered by the modified Π, which can be found
in picture (5) of figure 3.6. Putting v5 into the set of non-branching vertices A
concludes the iteration.

(6) The sixth and final iteration handles v26. During the preparation phase 1, no
independent set is added to ∆. From D1, both v1 and v4 are neighbors of v6 and each
one covers a weight of 3 according to w1. That is simultaneously the highest weight
covered by w1, which makes v1 and v4 exchangeable candidates for u, yielding

ŵ1(D1)− w1(u) = 3− 3 = 0 ≯ β = 0.

Given this, D1 will not be the Dx later in the algorithm. Looking at D2, it is
evident that it has two members who are neighbors of v6 as well, v4 and v5. Both
have an equal weight of 1 according to w2, making them both eligible for being the
highest-weight neighbor u. Contrary to D1 the highest weight member of D2 is not
a neighbor of v6, so β can be calculated as

β = ŵ2(D2)− w2(u) = 3− 1 = 2.

At the end of the preparation phase, there is now a situation where solely a mod-
ification of the existing weight cover Π that goes beyond adding vertices can help
to meet the weight limit t. The weight covering potential that this modification
can deliver is encoded in β. The whole state before the integration phase 2 is as
follows:

Π = {{v31, v23, v35}, {v32, v14, v15}} ∆ = ∅ β = 2 x = 2

|Π|∑
j=1

ŵj(Dj)+max

(
w(v6)−

( ∑
Dk∈∆

ŵk(Dk)+β
)
, 0

)
= 6+max

(
2−(0+2), 0

)
= 6 ≤ t.
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This time branch 2.1 of the integration phase will be visited. Its condition is satisfied
since

∑
Dk∈∆ ŵk(Dk) = 0 < w(v6) = 2 and β = 2 > 0. Now the previously

determinedDx = D2 is split up intoDx′ = {v12, v14, v15} andDx′′ = {v22}. The previous
Dx = D2 with its weight function is removed from Π, while (Dx′ , wx′) and (Dx′′ , wx′′)
are added to it. Due to the latter ones now being the second and third ISs in Π,
Dx′ will from now on be the new D2, while Dx′′ is referenced as D3. Additionally,
Dx′′ respectively D3 is added to ∆, it can be seen that this is valid because its only
member v2 is no neighbor of v6. With the modified ∆ = {D3}, section 2.2 is able to
add v26 to D3 with its full weight. After inserting v6 into A the final state after the
final iteration is

Π = {{v31, v23, v35}, {v12, v14, v15}, {v22, v26}} A = {v1, v2, v3, v4, v5, v6}.

Π is also visualized as the last graph (6) within figure 3.6. With that, the upper
bound based on the weight cover was able to prove that none of the vertices v1, . . . , v6
is a branching vertex. This can save valuable runtime that would otherwise be
wasted on exploring branches that will not lead to a new best clique.

3.1.3 TSM-MWC

Another exact state of the art BnB algorithm is TSM-MWC [8] from 2018 by Jiang,
C.M. Li, Liu and Manyà. Its novelty is the two-stage MaxSAT reasoning approach
which also is the origin of the algorithm’s name.

Just as WC-MWC, TSM-MWC is very comparable to WLMC in many parts but
again differs in the process of determining the branches. Therefore the main pro-
cedure TSM -MWC (algorithm 29) and the corresponding clique search procedure
SearchMaxWCliqueTSM -MWC (algorithm 30)) are likewise only listed in the
appendix 7.3 and not explained a second time.

The function GetBranchesTSM -MWC as seen in algorithm 8 merely calls two
other sub-functions that perform the two actual MaxSAT reasoning stages. An
initial set of branching vertices B, a set of ISs Π and an initial upper bound ub are
calculated by BinaryMaxSATTSM -MWC. Unless this first stage did not already
reveal that there are no interesting branching vertices and a further search is futile,
the second stage realized by OrderedMaxSATTSM -MWC is applied. The second
MaxSAT reasoning stage produces a reduced set of branching vertices that is then
returned to the superordinate clique search function.

Binary MaxSAT reasoning

The first stage of finding the branching vertices uses a strategy which resembles
some of the approaches that were already used in WLMC and WC-MWC. The
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Figure 3.6: Partitioning on the example graph G
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Algorithm 8: GetBranchesTSM-MWC(G, t, O)

(B,Π, ub) := BinaryMaxSATTSM -MWC(G, t, o);
if B ̸= ∅ then

B := OrderedMaxSATTSM -MWC(G, t, O,B,Π, ub);

return B;

binary MaxSAT reasoning procedure produces a set of ISs Π. This will contain ISs
whose vertices cannot form a clique greater than the given weight limit t. The upper
bound of weight of a clique formed from Π is returned as ub. As seen from previous
algorithms, the upper bound is defined by the sum of the maximum weights of the
ISs: ub =

∑
D∈Π ŵ(D). The vertices which could not be integrated into Π without

exceeding the weight limit will go to the branching vertices B. At the beginning, Π
and B are empty, consequently ub = 0.

The main for-loop of the procedure iterates through the vertices vi from the greatest
one according to O to the smallest one. In the beginning of each iteration the current
state of Π is cached as Π′. The original weight of vi is stored as δ. Now every vertex
that is not a neighbor of vi is removed from Π. The processing that follows depends
on the nature of Π after the non-neighbor removal.

If the removal produces no empty ISs, vi cannot be integrated into any existing IS
as they all have at least one neighbor of vi. In this case branch 1 of the algorithm
is triggered. First all removed vertices are restored to their previous ISs. Due to
the initial condition of 1, vi has to be added into a new IS if it should be integrated
into Π. This would increase the upper weight bound ub by the weight of vi, which
is equivalent to δ. Adding vi to Π is only allowed if the increased weight is smaller
or equal than t, which is checked in condition 1.1. When the former condition is
fulfilled, vi is added to a new IS of Π with its full weight and the weight bound ub
is updated accordingly. Otherwise the else-branch 1.2 gets executed. There vi is
added to the branching vertices B as it cannot be added to a new set in Π without
violating t.

In the case that removing vertices which are non-adjacent to vi results in some
ISs S1, S2, . . . , Sk being empty, branch 2 will be invoked. Firstly, again all vertices
are restored to the ISs they were just removed from. After that the inner for-loop
iterates over the ISs S1, S2, . . . , Sk to distribute the weight of vi among them. In
the default-case 2.2, vi is added to each set Sj with the current maximum weight
ŵ(Sj) of that set. δ, which is used to keep track of the weight that has not been
distributed yet, gets decreased by the newly assigned weight wj(vi) = ŵ(Sj). Path
2.1 represents the early termination of the inner for-loop. It is entered when adding
vi with its full remaining weight to Sj will not violate the weight limit t. Besides
adding the remainder of vi to Sj the upper bound ub and the remaining weight are
updated accordingly.
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After the inner loop, condition 2.3 checks whether the full weight of vi could not be
covered. If so, it is assumed that vi can potentially lead the search to a new best
clique and it is this added to the branching vertices B. Since integrating vi into Π
was not concluded successfully, the latter is in an invalid state. Therefore, Π is reset
to Π′, its state at the beginning of the current iteration of the outer loop.

Example To help the understanding of the binary MaxSAT reasoning stage, it will
be demonstrated on the example graph in figure 3.7 which was initially presented
in [8]. It is assumed that the ordering 0 yields v6 < v5 < . . . < v1 and that t = 6.

1
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2
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2

4
2

5
1

6
4

Figure 3.7: Example graph G for binary MaxSAT reasoning

(1) At first the outer loop will process v31, so we initialize δ = 3. Because Π is empty,
branch 1 will inevitably be triggered. Since ub+ δ = 0+ 3 < t = 6, furthermore the
condition 1.1 is satisfied. Therefore v31 is added to its own IS in Π. After updating
the upper bound, the resulting state at the end of the first main iteration is

Π = {{v31}} ub = 3 B = ∅.

(2) The next considered vertex is v22. v31 is the only vertex present in Π at the
moment and it is a neighbor of v2. Given this, there are no non-neighbors of v2 that
could be removed to produce an empty IS, so the algorithm visits branch 1. With
δ = 2 ⇒ ub + δ = 3 + 2 = 5, so again the if branch 1.1 is executed, which results
in

Π = {{v31}, {v22}} ub = 5 B = ∅.

(3) When looking at v23, removing the vertices not adjacent to it (i.e. v31) would
change Π to {∅, {v22}}. So as the operation produces an empty setD1, the else branch
2 is chosen. Π is brought back to its state before removing v3. With S1 = D1, the
inner for loop is executed once. Due to

ub+max(δ − ŵ(S1), 0) = 5 +max(2− 3, 0) = 5 < t = 6

the procedure continues with branch 2.2. The latter one fully adds v23 to S1. The
upper bound remains unchanged because the maximum weight of S1 = D1 is not
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Algorithm 9: BinaryMaxSATTSM-MWC(G, t, O)

ub := 0;
B := ∅;
Π := ∅;
Let V = {v1, . . . , vn} | v1 < . . . < vn w.r.t. O;
for i := n downto 1 do

Π′ := Π;
δ := w(vi);
remove vertices non-adjacent to vi from their ISs;

1 if ∄S ∈ Π | S = ∅ then
restore all removed vertices into their ISs;

1.1 if ub+ δ ≤ t then
D = {vδi };
Π := Π ∪ {D};
ub := ub+ δ;

1.2 else
B := B ∪ {vi};

2 else
Let S1, S2, . . . , Sk be the empty ISs;
restore all removed vertices into their ISs;
for j := 1 to k do

2.1 if ub+max(δ − ŵ(Sj), 0) ≤ t then
Sj := Sj ∪ {vδi };
ub := ub+max(δ − ŵ(Sj), 0);
δ := 0;
break;

2.2 else

Sj := Sj ∪ {vŵ(Sj)
i };

δ := δ − ŵ(Sj);

2.3 if δ > 0 then
Π := Π′;
B := B ∪ {vi};

return (B,Π, ub);
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surpassed the weight of v3. With no weight left to be distributed at condition 2.3,
this main iteration is concluded with

Π = {{v31, v23}, {v22}} ub = 5 B = ∅.

(4) A similar situation is present when processing v24. Removing its non-neighbor
v22 results in Π = {{v31, v23}, ∅}. Again section 2 is visited, this time with S1 = D2,
into which v24 gets fully integrated. With this, the state after the fourth iteration
will be

Π = {{v31, v23}, {v22, v24}} ub = 5 B = ∅.

(5) Next up is v15. It is adjacent to members of both ISs of Π. Therefore removing its
non-neighbors from Π creates no empty ISs, so this time branch 1 of the algorithm
9 is visited. Increasing the upper bound ub by δ = 1 still barely meets the weight
limit t = 6. So v15 can be added to its own IS D3 in section 1.1. Now we have

Π = {{v31, v23}, {v22, v24}, {v15}} ub = 6 B = ∅.

(6) At the start of the last iteration which handles v46, the upper bound ub al-
ready reached the weight limit t. This means that v6 either has to distributed
among existing ISs without increasing their maximum weight, or it has to become a
branching vertex. δ is initialized as 4. The only neighbor of v6 is v15 ∈ D3. Neither
D1 nor D2 contain neighbors of v6, so the usual vertex removal operation produces
Π = {∅, ∅, {v15}} this time. Given the empty sets, the algorithm chooses branch
2, where S1 = D1 and S2 = D2. In the first iteration of the inner for-loop, the
condition 2.1 evaluates to

ub+max(δ − ŵ(S1), 0) = 6 +max(4− 3, 0) = 7 ≰ t = 6,

so the else branch 2.2 is selected. There v6 is added to S1 with only ŵ(S1) = 2 of its
weight. This still leaves δ = 4− 2 = 2 of the weight to be distributed. The second
iteration of the inner loop has

ub+max(δ − ŵ(S2), 0) = 6 +max(2− 3, 0) = 2 < t = 6

satisfied, so the if-branch 2.1 is carried out. This adds v6 with its remaining weight
to S2. ub stays the same because max(δ − ŵ(S2), 0) = max(2 − 2, 0) = 0. The
algorithm finishes with the state

Π = {{v31, v23, v26}, {v22, v24, v26}, {v15}} ub = 6 B = ∅.

The binary MaxSAT reasoning algorithm was able to prove that no branching ver-
tices worth to further explore are present in the graph G. Figure 3.8 shows the
distribution of the vertex weights in Π in the style of the visualizations found in the
previous weight cover chapter 3.1.2.
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Figure 3.8: Result of the binary MaxSAT reasoning example

Ordered MaxSAT reasoning

The second stage of determining the branching vertices, the ordered MaxSAT rea-
soning, takes the initial branching vertices B determined by the binary MaxSAT
reasoning as an input. Additionally together the corresponding set of ISs Π and
upper bound for a clique weight ub are passed, besides the usual G, t and O. The
first stage was not able to fully integrate the branching vertices B into any set of
Π. However there might still a possibility to integrate parts of the weight of certain
branching vertices into Π, so that the upper bound ub together with the parts of the
branching vertices’ weight that could not be integrated does not exceed t. That is
exactly what the algorithm OrderedMaxSATTSM -MWC shown in the algorithm
listing 10 tries to do.

In its main loop the procedure iterates over the branching vertices from the largest to
the smallest according to the ordering O. Just as in BinaryMaxSATTSM -MWC,
at the beginning of each iteration a backup Π′ of Π is stored and the remaining
weight δ of the branching vertex bi, that was not yet integrated into Π, is initialized
with the full weight of bi. After that, the algorithm tries to integrate parts of δ (or
bi respectively) into Π by looking at different subsets of conflicting ISs in Π∪{{bi}}
with increasing size one after another, hence the “ordered” in the name. First will
be the subsets with 2 conflicting ISs, then those with 3, and finally those with more
than 3. For each of those cases, the algorithm will iterate over the sets of conflicting
ISs in an inner loop. Therein it performs an adequate integration and splitting if
possible and needed. At the end of each inner iteration, δ is updated and potentially
the inner loop is terminated early when the limit t is already satisfied.

The subsets with two conflicting ISs are processed in section 1. Those conflicting
subsets have the form {Sj, {bi}}, where Sj is an independent set within Π that
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contains no neighbor of bi, so it cannot be in a clique with it. To resolve the conflict
situation here, bi can simply be added to each of such sets Sj with the current
maximum weight of that set assigned to it, as realized in line 1.1. In the following
line 1.2, the just integrated weight is subtracted from δ. An early termination of
the integration process is not implemented for this first phase of conflict resolving.
If the integration into those sets alone would cover all of δ, bi would have already
been fully inserted into Π by BinaryMaxSATTSM -MWC.

Section 2 takes care of the subsets of conflicting ISs with three members. To identify
those subsets, first the ISs {U1, U2, . . . , Ur} containing exactly one neighbor u of bi
each are collected. Then for every Uj the algorithm tries to find another set Dq

which contains no members that are neighbors of both bi and u. Now no clique
containing one member of Dq, {bi} and Uj each could be formed. Out of Uj only u
could be in such a clique, as it is the only neighbor of bi there. Due to the condition
for Dq, it has no vertices that can form a clique with bi and u. Therefore the set
{Dq, {bi}, Uj} is conflicting. To resolve the conflict, section 2.1 uses the strategy
seen within the second scenario of the UP&SplitWLMC function. The details of
this were already explained in the subsection Unit IS propagation of chapter 3.1.1.
One difference is that there are no markings and no set ∆ to deal with. Also the
splitting parameter is denoted as β since δ is already in use, and this β is used to
update δ instead of ub directly in section 2.2. Should the changes up until now be
enough to make ub + δ fit within t, no further conflicts need to be searched and
resolved, and the inner loop of section 2 is terminated.

If previous steps were not sufficient, section 3 inserts bi into its own new IS inside Π.
Then it performs nearly the same processing that was already presented in the first
scenario of the UP&SplitWLMC function, with adaptions as in section 2. Once
again the loop is terminated early should ub+ δ not exceed t anymore.

At the final section 4 of each iteration, it is checked whether a large enough fraction
of the weight of bi was integrated into Π, so that the weight limit t is satisfied. If
that is the case, OrderedMaxSATTSM -MWC has proven that bi does not need to
be explored as a branching vertex and thus removes it from B. The not integrated
remainder weight δ is added to the upper bound ub. Should the weight however
not be satisfied, the partly integration of bi into B did not serve a purpose and
is therefore reverted by resetting Π to its backup Π′. For an example of how the
the ordered MaxSAT reasoning procedure can reduce the number of branches, the
interested reader is referred to the original paper [8].

3.1.4 MWCRedu

MWCRedu [17] is another current exact algorithm proposed by Erhardt, Hanauer,
Kriege, Schulz and Strash in 2023 that employs various graph reduction strategies,
including new ones.
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Algorithm 10: OrderedMaxSATTSM-MWC(G, t, O, B, Π, ub)

Let B = {b1, . . . , b|B| | b1 < . . . b|B|} w.r.t. O;
for i := |B| downto 1 do

Π′ := Π;
δ := w(bi);

1 Let S1, S2, . . . , Sk be the ISs containing no neighbor of bi;
for j := 1 to k do

1.1 Sj := Sj ∪ {bŵ(Sj)
i };

1.2 δ := δ − ŵ(Sj);

2 Let U1, U2, . . . , Ur be the ISs containing exactly one neighbor of bi;
for j := 1 to r do

Let N(bi) ∩ Uj = {u};
if ∃Dq ∈ Π | Dq ∩N(bi) ∩N(u) = ∅ then

2.1 β := min(δ, ŵ(Uj), ŵ(Dq));
(U ′

j, U
′′
j ) := splitWLMC(Uj, β);

(D′
q, D

′′
q ) := splitWLMC(Dq, β);

Π := (Π \ {Uj, Dq}) ∪ {U ′′
j , D

′′
q};

2.2 δ := δ − β;
if ub+ δ ≤ t then

break;

3 if ub+ δ > t then
Π := Π ∪ {{bδi}};
while ∃ unit IS {v} ∈ Π do

remove vertices non-adjacent to v from their ISs;
if ∃S0 ∈ Π | S0 = ∅ then

Let S1, . . . , Sp be the ISs responsible of removing all vertices
from S0;
restore all removed vertices into their ISs;

3.1 β := min(ŵ(S0), . . . , ŵ(Sp));
for Sj ∈ {S0, S1, . . . , Sp} do

(S ′
j, S

′′
j ) := splitWLMC(Sj, β);

Π := (Π \ {S0, . . . , Sp}) ∪ {S ′′
0 , . . . , S

′′
p};

3.2 δ := δ − β;
if ub+ δ ≤ t then

break;

4 if ub+ δ ≤ t then
B := B \ {bi};
ub := ub+ δ;

else
Π := Π′

return B;
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Figure 3.9: Example of a twin reduction

Reduction rules

The main means used by MWCRedu to solve the MWC problem faster are reductions
of the input graph. With a greatly simplified graph, the process of finding a solution
within it can be significantly accelerated. The following paragraphs introduce the
rules that are used to reduce the graph.

The first reduction rule is the Neighborhood Weight Reduction. It removes
vertices where the weight of their inclusive neighborhood is smaller than the weight
of the best clique Ĉ that has been currently found. Even if such a vertex would form
a clique with all its neighbors, the resulting clique will not improve the solution, thus
the vertex can be omitted. This rule is equivalent to a reduction based on the upper
bound UB0 described in the FastWClq chapter 3.2.1.

The Largest-Weight Neighbor Reduction rule provides a tighter upper bound
which is also dependent on the best currently found clique and furthermore takes
the highest weight neighbor of a vertex into account. Again this reduction is already
familiar from FastWClq, specifically its upper bound UB1.

If two vertices have the same inclusive neighborhood, the Twin Reduction can be
applied. Given that two vertices are adjacent and also share all other neighbors,
they can be merged into one vertex whose weight is the sum of the two original
vertices. An example is shown in figure 3.9, where v0.14 and v0.35 are twins that get
merged into v0.46 .

Vertex u dominates a non-neighbor-vertex v if it has a larger or equal weight and
all neighbors of v are also neighbors of u. According to the first Domination
Reduction rule, a dominated vertex v can be removed from the graph. Any subset
of v’s neighbors that form a clique with it would also form a clique with u that has
an equal or greater weight. In the example graph in figure 3.10, both v4 and v5 are
connected to v1 and v2, but only v5 is also connected to v3. Furthermore, the weight
of v0.35 is higher than the weight of v0.14 . Therefore v5 dominates v4, so v4 can be
removed.
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Figure 3.10: Example of a domination reduction of non-neighbor vertices
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Figure 3.11: Example of a domination reduction of neighbor vertices

The second domination rule applies to two neighbor vertices u and v if all neighbors
of v are also neighbors of u. Unlike in the first domination rule, it is not possible to
remove v in such cases since it may be in a relevant clique together with u. However,
the edge between u and v can be removed, in which case the weight of u has to be
added to the weight of v, so that w′(v) = w(v) + w(u). Since the precondition
ensures that u is contained in any maximal clique including v, merging the weight
of u into v and removing the edge in between them will produce maximal cliques of
the same weight as if the edge was still there. The initial example graph in figure
3.11 shows such a situation where v0.14 can be seen as u and v0.35 as v. In the reduced
graph, the weight update w(v0.45 ) = w(v0.35 ) + w(v0.14 ) has been performed and there
is no edge between v0.14 and v0.45 anymore.

The Edge Bounding Reduction rule is based on the largest weight neighbor
reduction. In situations where a clique with v and a neighbor u cannot form a new
best clique, it might still be possible to find a better clique that includes v but not
u. Formally speaking, this is the case if the two conditions

w(N [v] ∩N [u]) ≤ w(Ĉ)

w(N [v])− w(u) > w(Ĉ)

are satisfied. Because of the second condition v should not be removed yet, since it
can be part of a new best clique. However at least the edge between v and u can be
removed as the maximum weight clique cannot contain both vertices at the same
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Figure 3.12: Example of an edge bounding reduction

time. An example of this is featured in figure 3.12. Vertex v4 has its neighbor v1.02 .
The upper bound for cliques with both v4 and v2 is determined by the sum of the
weights of v4, v4 and v5, which evaluates to 1.4. In the example the current best
clique Ĉ has a weight of 1.5, so the first condition holds as

w(N [v4] ∩N [v2]) = w({v1.02 , v0.14 , v0.35 }) = 1.4 ≤ 1.5 = w(Ĉ).

This alone is enough to justify removing the edge {v4, v2}. To verify that v4 could
not be removed altogether for sure, the second condition can be reviewed. This
shows that v4 might form a clique without v2 which is better than Ĉ, with an upper
bound of 2.0:

w(N [v4])− w(v2) = w({v0.91 , v1.02 , v0.73 , v0.14 , v0.35 })− w(v1.02 ) = 2.0 > 1.5 = w(Ĉ).

A vertex that forms a clique with its inclusive neighborhood is called simplicial.
According to the Simplicial Vertex Removal Reduction, such a vertex can be
removed in any case. If the clique that it forms together with its neighbors has
a larger weight than the best clique found so far, it can should be set as the new
candidate for the maximum weight clique. As the vertex can not be included in
another larger clique, it does not need to be processed in the further steps. In
figure 3.13, v4 is a simplicial vertex as all its neighbors v1, v2 and v3 are connected
to each other and thus form a clique C with v4. If this clique is better than the
best currently found clique, i.e., w(C) > w(Ĉ), the best clique has to be updated
accordingly: Ĉ = C.

Algorithm

The main procedure MWCRedu is pretty straightforward, as algorithm 11 demon-
strates. First, the best clique Ĉ is initialized by the initial clique generation strategy
used in the function InitializeWLMC. That clique and the graph G are passed to
ReduceMWCRedu, which applies the reduction rules on the graph and potentially
also improves Ĉ. Finally, the reduced graph is processed by TSM -MWC and the
result is returned.
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Figure 3.13: Example of a simplicial vertex reduction

Algorithm 11: MWCRedu

Ĉ := InitializeWLMC(G, 0);

ReduceMWCRedu(G, Ĉ, true);

return TSM-MWC(G, Ĉ);

The application of the reduction rules is conducted in ReduceMWCRedu (algorithm
12). The parameters it takes are the graph G that should be reduced, the current
best clique Ĉ which is on the one hand needed for certain reduction rules and on the
other hand potentially improved, and a boolean parameter named lim. If the latter
is set to true, not all vertices will be processed by the reduction rules at once. At the
beginning only the vertices with a degree of up to 10% of the maximum degree will
be processed, and the limit on the vertex degree will be iteratively increased until all
vertices get processed. If lim is set to false, all vertices will be eligible for reduction
at once. Di is the set of vertices on which the reduction rule ri will be applied. It
is initialized to either all vertices or only those who meet the vertexDegreeLimit,
depending on the value of lim. The reason for only reducing the vertices with a
lower degree in the first steps is that they are more efficient to process, since fewer
neighbors have to be checked. Furthermore they are less likely to be in a clique
of large weight, although the number of vertices in a clique is not necessarily an
indicator for its weight.

Now the main reduction loop starts. The main loop consists of two sections. Section
1 applies each reduction ri on its eligible vertices Di, unless the reduction rule is
paused or Di is empty. If a reduction rule cannot remove a vertex, this vertex
is removed from Di. By default, no reduction rule is paused. If a rule fails to
remove 1% or more of the vertices (or edges) per second, it will be paused. After
the application of each reduction rule, MWCRedu tries to improve its current best
clique Ĉ by sampling cliques according to the strategy of FastWClq [7]. FastWClq is
a heuristic algorithm that will be introduced in chapter 3.2.1. Condition 1.1 checks
whether a paused reduction rule ri can be unpaused again. The latter is the case
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when other reduction rules have managed to remove at least 1% of the vertices or
edges since ri was paused. Section 2 of the main loop is only entered if lim = true
and all reductions are currently paused. If the condition is true, the reduction rules
have been exhaustively applied on the current limited set of vertices. Therefore the
vertexDegreeLimit is increased so that the rules can be executed on more vertices.
The sets of eligible vertices Di are updated to also contain the new vertices that are
not blocked by the vertexDegreeLimit anymore. When all reductions have been
paused, and at the same time the vertex degree is not limited anymore, the main loop
terminates. In this situation there are no more vertices that could be investigated
which were previously blocked by the vertexDegreeLimit, and no reduction rule is
able to perform sufficiently fast reductions. The reduced version of the graph G and
the updated best clique Ĉ are then returned.

Algorithm 12: ReduceMWCRedu(G, Ĉ, lim)

if lim then
vertexDegreeLimit := 0.1;

foreach ri do
initialize Di;

repeat
1 foreach reduction rule ri do

if (ri not paused) ∧ (Di ̸= ∅) then
apply ri on every v ∈ Di;
update Di;
if reduction rate not achieved then

pause ri;

update Ĉ via local search;

1.1 else if (ri paused) ∧ (G reduced enough) then
unpause ri;

2 if lim ∧ (all reductions paused) then
vertexDegreeLimit := vertexDegreeLimit + 0.1;
foreach ri do

update Di;
unpause ri;

until (all reductions paused) ∧ (vertexDegreeLimit > 1.0);

return (G, Ĉ);
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3.2 Heuristic algorithms

3.2.1 FastWClq

FastWClq [7] is an heuristic algorithm proposed by Shaowei Cai and Jinkun Lin
in 2016. An updated version of the algorithm was presented in 2022 [22], but the
following chapter will focus on the original version. It tries to find a maximum
clique in multiple iterations and stops either when an optimal solution is found or
a predefined cutoff time is reached. The decision which vertex to add to a clique
is made based on a heuristic that randomly samples a number of vertices from a
candidate set and chooses the one which will provide the greatest weight increase
together with its neighbors eligible for the clique. Over time, the number of randomly
sampled vertices is increased if necessary. With each iteration the graph also gets
reduced.

Main procedure

The main procedure of FastWClq is illustrated in algorithm 13. It maintains three
important variables. One is a StartSet which contains all vertices that have not
yet been used to as a starting point for the clique construction. It is initialized to
include all vertices in the graph. The currently best found clique Ĉ is initialized
to an empty set. Last but not least, the strategy parameter k controls how many
vertices get sampled in the heuristic process of estimating which vertices are the
best ones to extend the cliques. The authors of [7] recommend using k0 = 4 as an
initial value for k. Everything else in the main procedure is executed within a loop
that stops when the set time limit is reached. For a better overview, it is divided
into three sections 1, 2, and 3, labeled at the left of the algorithm listing.

Section 1 controls the greediness of the sampling heuristic. If the StartSet is empty,
every vertex has been explored with the current strategy parameter k for the clique
construction. In this case k is adapted by the AdjustBMSNumberFastWClq func-
tion to make the exploration more greedy. The StartSet is reset to all vertices of G
so that the exploration can start over again with the new strategy parameter.

In section 2 the construction of a clique takes place. First a random vertex u is
taken from the StartSet and used as a starting point to build a clique C. The
set of vertices that can be added to C, so that it remains a clique, is maintained
as Candidates. Initially, all neighbors of u are set as potential Candidates. After
that the clique is grown in the inner loop, until no more Candidates are left. With
the help of the SelectV ertexFastWClq function, the best of k randomly sampled
vertices is chosen from the candidate set and moved into the clique. The Candidates
have to be updated so that they only consist of vertices that are adjacent to every
member of the clique C. If it becomes clear during the construction of C that it
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cannot become better than Ĉ, the process of construction is aborted. The abortion
criterion is that the weights of the current clique C, the selected best vertex v and
its so called effective neighborhood do not surpass the weight of the best clique Ĉ.
More precisely, the effective neighborhood N(v)∩Candidates of a vertex v consists
of all vertices that could possibly be added to the clique given that v gets added to
it. Even in the best case only all the vertices of the effective neighborhood and no
others could be added to the clique. Therefore the effective neighborhood is useful
for obtaining an upper bound for the weight that the clique C can have when it is
finished.

Finally section 3 deals with updating the results and the graph reduction. When
the construction is finished and the constructed clique C is better than the best
clique found so far, Ĉ is updated. The graph is then reduced so that vertices that
can certainly not be included in better cliques than Ĉ are removed. This yields
that if the graph is empty after the reduction, Ĉ can be returned before the time
limit, since no better cliques can be found. In such a case FastWClq has proven
that its solution is optimal and exits the main loop without reaching the time limit.
As FastWClq is sure that it has delivered an exact solution in those cases, but on
the other hand this condition is not triggered on every graph with every time limit,
it was also described as a semi-exact algorithm in a later publication [22]. As the
graph and especially its vertices have changed after the reduction, the StartSet is
reset to contain all vertices remaining in G again. Then the outer loop can start
again and the search is continued on the potentially changed graph.

Strategy Parameter

The strategy parameter k is also called BMS number. BMS stands for “Best from
Multiple Selection”. This relates to the already mentioned process of choosing the
next vertex: multiple eligible vertices are sampled, and the best one of them is se-
lected. The function AdjustBMSNumberFastWClq listed in algorithm 14 adapts
the parameter by doubling it. That means that after this, twice as many vertices
will be explored in each step of the clique construction. When k gets too big and
surpasses its maximum allowed value kmax, it is reset to the initial value k0. However
with each reset k0 is incremented by one, so the exploration still gets broader and
greedier over the time. Cai et al. recommend setting the maximum value to 64.

Vertex selection

To decide which vertex from the Candidates should be added, the weight gain of
adding a vertex v to the clique is estimated. This weight gain is called the benefit
of v. The minimum benefit bmin(v), i.e., the worst case is present if only v can be
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Algorithm 13: FastWClq

StartSet = V, Ĉ := ∅, k := k0;
while within time limit do

1 if StartSet = ∅ then
StartSet = V ;
k := AdjustBMSnumberFastWClq(k);

2 u := pop a random vertex from StartSet;
C := {u};
Candidates := N(u);
while Candidates ̸= ∅ do

v := SelectV ertexFastWClq(Candidates, k);

if w(C) + w(v) + w(N(v) ∩ Candidates) ≤ w(Ĉ) then
Break;

C := C ∪ {v};
Candidates := Candidates \ {v};
Candidates := Candidates ∩N(v);

3 if w(C) > w(Ĉ) then

Ĉ := C;

G := ReduceGraphFastWClq(G, Ĉ);
StartSet = V ;
if G = ∅ then

return Ĉ;

return Ĉ;

Algorithm 14: AdjustBMSNumberFastWClq(k)

k := 2k;
if k > kmax then

k := + + k0;

return k;

added to the clique and no other vertices besides it:

bmin(v) = w(v).

The maximum achievable benefit bmax(v) could be retrieved when v and all of its
neighbors that are also included in Candidates can be added:

bmax(v) = w(v) + w(N(v) ∩ Candidates).

59



3 Algorithms

To get an estimation of the benefit b(v) that adding v will provide, the average of
the minimum and maximum cases is used:

b(v) =
bmin + bmax

2
.

As shown in algorithm listing 15, k random vertices from the Candidates are taken
and their benefits are calculated. The vertex v̂ with the highest benefit of those sam-
pled vertices is selected to be added to the clique. If the cardinality of Candidates is
smaller than the k, the maximum benefit vertex can be determined exactly instead
of using the sampling heuristic.

Algorithm 15: SelectVertexFastWClq(Candidates, k)

if |Candidates| < k then
return argmax

v∈Candidates
b(v);

v̂ := a random vertex in Candidates;
for iteration := 1 to k - 1 do

v := a random vertex in Candidates;
if b(v) > b(v̂) then

v̂ := v;

return v̂;

Graph reduction

To reduce the graph, upper bounds for the weights of cliques that a vertex v can be
in are determined:

∀C ∋ v : UB(v) ≥ w(C).

If such an upper bound is not higher than the weight of the best clique found so
far, that means that none of the cliques that contain v can be the maximum weight
clique. So if UB(v) ≤ w(Ĉ) is satisfied, v and all edges containing it can be removed
from the graph, since this will have no influence on the maximum weight clique. The
first simple upper bound is given by the weight of the inclusive neighborhood of v:

UB0(v) = w(N [v]).

It is easy to see that this is a valid upper bound, it represents a situation where a
vertex forms a clique with all its neighbors. By the definition of a clique, v can only
be in cliques with vertices that it is connected to, so no clique could surpass this
upper bound.

For a tighter upper bound, a vertex v and its neighbor with the highest weight u are
considered. If neither a clique with v that contains u, nor one that does not contain
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Figure 3.14: Example of a graph reduction using UB1

u, can be better than Ĉ, v can be removed. The upper bound for a clique with
v not containing u is simply given as w(N [v]) − w(u). Cliques that contain both
v and u can only consist of neighbors of both vertices. So in this case the upper
bound of the weight is dependent on the intersection of their inclusive neighborhoods
w(N [v] ∩N [u]). Taken together, one can obtain another upper bound:

UB1(v) = max
(
w(N [v])− w(u), w(N [v] ∩N [u])

)
.

An example is given in figure 3.14. The vertex v that gets evaluated is v4, its neighbor
with the highest weight is v1.02 . On the left of the figure the upper bound for a clique
without v2 is illustrated. Such a clique could contain v1, v3, v4 and v5 and have a
weight ≤ 1.3. Note that v1 and v3 are not adjacent and thus could not actually be in
the same clique. This is not an issue since we are only looking for an upper bound of
the weight. On the right the case where v2 is included in the clique is visualized. v1
and v3 are not included in N [v2] and neither in w(N [v4] ∩N [v2]). Hence the upper
bound can only consist of w(v1.02 ), w(v0.14 ) and w(v0.35 ) and evaluates to 1.4. In the
example the current best clique has a weight of w(Ĉ) = 2.0 which is larger than
UB1(v4) = max(1.3, 1.4). Therefore v4 can be removed from the graph according to
UB1 without degrading the maximum weight clique. UB0 would not have been able
to prove that v4 can be omitted, since UB0(v4) = w(N [v4]) = 2.3 ≥ w(Ĉ) = 2.0.

Given the upper bounds, the reduction can be performed as seen in algorithm 16.
The input data is a graph G that should be reduced and a clique C inside that graph.
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C should be the best clique found so far to eliminate as many vertices as possible.
At first, it is checked for all vertices whether their upper bounds are smaller than or
equal to the weight of C. If that is the case, they are added to a queue of vertices
that should be removed, the RemovalQueue. As UB0(v) is easier to compute, it
is considered first. Only if UB0 cannot show that v can be excluded, UB1(v) is
evaluated. After this, all vertices in the RemovalQueue and their incident edges
are removed from the graph. Since the upper bounds of the remaining neighbors
Nr(u) of the removed vertices u will change with the removal, those upper bounds
are checked again. If this reveals that some vertices v ∈ Nr(u) are now eligible
for removal as well, they are added to the queue too. The reduction stops when
the RemovalQueue is empty. The authors of [7] hint that the reduction process
can be sped up for large graphs by only using UB0 at first, and checking the more
computationally expensive UB1 after the graph is already partly reduced.

Algorithm 16: ReduceGraphFastWClq(G,C)

foreach v ∈ V do
if

(
UB0(v) ≤ w(C)

)
∨
(
UB1(v) ≤ w(C)

)
then

RemovalQueue := RemovalQueue ∪ {v};

while RemovalQueue ̸= ∅ do
u := pop a vertex from RemovalQueue;
remove u and its incident edges from G;
foreach v ∈ Nr(u) do

if
(
UB0(v) ≤ w(C)

)
∨
(
UB1(v) ≤ w(C0)

)
then

RemovalQueue := RemovalQueue ∪ {v};

return G;

3.2.2 SCCWalk

SCCWalk [6] is a state of the art heuristic algorithm proposed by Wang, Cai, Chen
and Yin in 2020. It works by iteratively modifying several initial cliques, searching
for better solutions. During that, two novel strategies called strong configuration
checking and walk perturbation are used.

Operators

In general, four operators for changing a clique C are considered. For each operator,
a set of vertices eligible for it is defined. Furthermore a value ∆operator describes
the amount by which the weight w(C) of the clique changes after applying the
operator.
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The Add operator adds a vertex v that is adjacent to all vertices in C to the clique.
v should not already a be part of C. The set of candidates for add is given as

AddSet = {v | v /∈ C, v ∈ N(u) ∀u ∈ C}.

The weight of the clique after applying the Add operator will be increased by the
weight of the added vertex, which yields

∆add(v) = w(v) | v ∈ AddSet.

Drop is an operator for removing a vertex from C. Since this operator cannot be
applied to vertices outside of the clique, we obtain

DropSet = {v | v ∈ C}.

The weight change of C after dropping a vertex v from it is defined as the negative
weight of v:

∆drop(v) = −w(v) | v ∈ DropSet.

Swap removes a vertex u from the clique C and adds another vertex v instead. Like
in the Add operator v has to be a neighbor of all members of C except the removed
u. This results in a set of eligible pairs of vertices

SwapSet = {(u, v) | u ∈ C, v /∈ C, v ∈ N(x) ∀x ∈ C \ {u}}.

The clique weight will be changed by the difference of the weights of the two vertices
involved in the swapping process, which produces

∆swap(u, v) = w(v)− w(u) | (u, v) ∈ SwapSet.

Finally, the operator Jump adds some vertex v to C and removes every vertex ui

from the clique that is not a neighbor of v. While v does not have to be a neighbor of
any member of C, it is required that more than one vertex ui in C is not connected
to v. Otherwise no vertex at all or just one would be removed by Jump and it would
be equivalent to Add or Swap. The respective set is specified as

JumpSet =
{
{u1, . . . , ut, v}

∣∣ v /∈ C,
(
ui ∈ C \N(v) ∀i ∈ {1, . . . , t}|t > 1

)}
.

The clique weight after performing Jump is increased by the weight of the added
vertex w(v) and decreased by the weights of the removed vertices w(ui):

∆jump(u1, . . . , ut, v) = w(v)−
t∑

i=1

w(ui) | {u1, . . . , ut, v} ∈ JumpSet.

63



3 Algorithms

Strong Configuration Checking

The idea of Configuration Checking (CC) in general is to avoid revisiting vertices
when their usefulness for finding the solution has not changed. For each vertex v,
a configuration change value confChange(v) is stored. If the configuration of a
vertex has changed since the last visit, confChange(v) = 1 is set, and v can be
considered for adding it to the clique. Otherwise, we set confChange(v) = 0 which
means that v is excluded from being added to the clique in construction. To employ
a Configuration Checking strategy, rules for updating confChange(v) are needed.
In their version of CC, called Strong Configuration Checking (SCC), Wang et al.
propose the rules SCC-InitialRule, SCC-AddRule, SCC-DropRule, SCC-SwapRule
and SCC-JumpRule. The following paragraphs will explain those rules and exam-
ples for them and the operators in general. In the example graphs, a 1 in the
upper right corner of a vertex v denotes that confChange(v) = 1. A 0 means that
confChange(v) = 0.

The SCC-InitialRule sets confChange(v) = 1 ∀v ∈ V . It is used to initialize all
configuration change values at the start of a search, where every vertex is unexplored
and could potentially be of interest.

When the add operator was applied to extend the clique by a vertex v, the SCC-
AddRule sets the configuration change values of all its neighbor vertices v′ to 1:
confChange(v′) = 1 ∀v′ ∈ N(v). Figure 3.15 shows an example where initially we
have a clique C containing v2 and v5. As only v4 is adjacent to both v2 and v5,
we have AddSet = {v4}. Since also confChange(v4) = 1 is given, the operation
Add(v4) can be performed. After the Add operator is applied, C consists of v2, v4
and v5. Now no other vertices are neighbors to very member of C, so AddSet = ∅.
It is also trivial to see that ∆add(v4) = w(v0.14 ) = 0.1. Furthermore, changes of
the configuration change values can be observed. All neighbors v′ of v4 now have
confChange(v′) = 1: for v1 this implies a switch of the value form 0 to 1, all others
already had it set to 1 before. v6 is not adjacent to v4, so confChange(v6) remains
unchanged.

When a vertex v is dropped from the clique, the SCC-DropRule sets its config-
uration change value to 0, so that v does not get added to the clique again until
its configuration is changed by another rule. An example can be seen in figure
3.16. Initially we have a clique with v2, v4 and v5. The corresponding operator
set contains all vertices that are in the clique, so DropSet = {v2, v4, v5}. v4 is
picked to be dropped. After Drop(v4) is executed, it is removed from the clique
and confChange(v4) has changed from 1 to 0 accordingly. All other configura-
tion change values are not modified. The change of the clique weight is given by
∆drop(v4)) = −w(v0.14 ) = −0.1.

Similar to the SCC-DropRule, the SCC-SwapRule sets the configuration change
value of the vertex that gets removed during the swap operation to 0. So if Swap(u, v)
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Figure 3.15: Example of an Add operation
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Figure 3.16: Example of a Drop operation
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Figure 3.17: Example of a Swap operation

is applied, where v takes the place of u in the clique, the SCC-SwapRule en-
sures that confChange(u) = 0. Figure 3.17 presents an example. Initially, v2,
v4 and v5 are in the clique. The pairs eligible for swapping are the following:
SwapSet = {(v2, v1), (v2, v3), (v2, v6)}. The second pair gets chosen for the opera-
tion, so we perform Swap(v2, v3). v2 gets removed from the clique and v3 gets added.
Since v2 is equivalent to the u in the SCC-SwapRule, confChange(v2) changes from
1 to 0. The other configuration change values remain the same again. The weight
change is ∆swap(v2, v3) = w(v0.73 )− w(v1.02 ) = 0.7− 1.0 = −0.3.

Likewise the SCC-JumpRule resets the configuration change values of the vertices
u1, . . . , ut removed by Jump(u1, . . . , ut, v): confChange(ui) = 0 ∀i ∈ {1, . . . , t}. In
the jump example in figure 3.18, the initial clique again consists of v2, v4 and v5. The
jump set contains one tuple: JumpSet = {(v2, v4, v6)}. This one tuple is then used
to execute Jump(v2, v4, v6). v2 and v4 are equivalent to the vertices u1 and u2 from
the previous formal descriptions of the jump operation, so they get removed from C.
v6 on the other hand can be seen as the vertex v that gets added to the clique. The
configuration change values of the removed vertices are unset, so after the operation
we have confChange(v2) = 0 and confChange(v4) = 0. The weight delta can be
calculated as ∆jump(v2, v4, v6) = w(v0.46 ) − (w(v1.02 ) + w(v0.14 )) = 0.4 − (1.0 + 0.1) =
0.7.

It can be observed that in strong configuration checking, after a vertex was once
removed from the clique by any operation (which always sets confChange(v) = 0),
it can only be considered for the clique again if one of its neighbors gets added
(SCC-AddRule).

Main procedure

The main procedure of SCCWalk is portrayed in algorithm 17. First the solution
clique Ĉ is initialized to an empty set. Like FastWClq, SCCWalk has a main loop
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Figure 3.18: Example of a Jump operation

that runs until a set time limit is reached. However, there is no early return in
SCCWalk, meaning it will not run in less time than the given cutoff time.

In the first phase (section 1) of each iteration the algorithm sets all configuration
change values to 1 according to the SCC-InitRule. A clique C is initialized with a
random maximal clique using the function InitGreedySCCWalk. Another clique
that gets handled by the algorithm is Clocalbest, it is initialized with the initial C.
In the following inner for loop a local search from the initial C is performed. C
gets modified using the operators introduced before in search for a better clique.
Clocalbest is used to store the best clique found during that search. The loop variable
unimprovestep counts for how many iterations Clocalbest could not be improved. The
parameter L controls how many steps without such an improvement are allowed.
The authors use L = 4000 for graphs with a density below 0.99, and L = 15000
for higher densities. When unimproveStep reaches its maximum value L, the outer
loop goes into the next iteration and a new search from another initial clique is
started.

During Section 2.1, SCCWalk modifies the clique using one of the operators Add,
Swap or Drop. Firstly the algorithm determines the best vertex for the Add op-
eration v and the best pair for the Swap operation u, u′. In each case, the best
vertices are the ones where the weight change that the operation would result in
is the highest. Vertices can only be taken into account if they are members of the
sets corresponding to the operation and if their configuration change value is 1. In
cases where two vertices (or vertex pairs) would induce the same weight change, the
winner is determined by the vertex age and the older one is selected. The age of a
vertex is given by the number of steps passed since it changed its membership status
in the clique (included or excluded). As long as a possible Add operation exists,
the operation yielding a higher weight change is chosen between the Add and Swap
operation with the previously found best operands. If is C is maximal, AddSet will
be empty. In such cases, the best operation is picked between Swap and Drop. To
determine the best Drop operand x, not every vertex from the DropSet is taken
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into account. Instead, only half of the vertices from DropSet are randomly selected
and put into the DropSubSet used for the further selection process. Again, if mul-
tiple candidates for x provide the same benefit, the oldest one is preferred. After
the chosen operator was applied, the corresponding SCC-Rule is used to adapt the
configuration change values.

In section 2.2 the algorithm evaluates the success of the clique modification. If
the resulting clique C is better than the best clique previously found in the lo-
cal search Clocalsearch, the latter one is set to the former one and the inner loop
variable unimproveStep is reset, since an improvement just happened. If that
is not the case and no improvement took place since maxUStep steps, it is as-
sumed that the algorithm is stuck in limited area of the search space. To mit-
igate this problem, SCCWalk uses its walk perturbation strategy. The function
WalkPerturbationSCCWalk() is used to get a tuple of operands u1, . . . , ut, u

′ for
a jump operation to get into another area of the search space. The jump operation
is then performed and the SCC-JumpRule gets applied accordingly. If that jump
operation improved C beyond Clocalbest the same updates as if the other operations
yielded an improvement are performed. In the experiments in [6], maxUStep is set
to 500 for graph densities below 0.99 and otherwise to 3000.

After the inner loop is completed, in section 3, the solution clique Ĉ is updated to
Clocalbest if the latter one is better. When the outer loop is finished, Ĉ is returned.

For very dense graphs with d ≥ 0.99, in addition to the parameter adaptions already
mentioned, removed vertices are blocked from being added to the clique again for 7
steps.

Greedy initialization

The greedy initialization sub-procedure as listed in algorithm 18 starts with picking
a random vertex from the input graph. This vertex is used as the initial member
of the clique C. After that vertices are added to C in a loop. In each iteration a
set Candidates is determined by choosing all vertices u that are neighbors of every
member of the clique C. Unless Candidates is empty, a random vertex v is selected
from it and added to the clique. If Candidates becomes empty, the clique cannot be
extended anymore, i.e., it is a maximal clique. In this case the function is finished
and returns the clique C. The random nature of this initialization is intended in
order to get different initial cliques for better exploration in the outer loop of the
main procedure.

Walk perturbation

The walk perturbation procedure is used to find a jump operation to escape a part
of the search space that SCCWalk is trapped in. Its formal description is listed
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Algorithm 17: SCCWalk

Ĉ = ∅;
while within time limit do

1 apply SCC-InitRule;
C := InitGreedySCCWalk();
Clocalbest := C;
for unimproveStep := 0 to L− 1 do

2.1 v := argmax
z∈AddSet | confChange(z)=1

∆add(z);

(u, u′) := argmax
(z,z′)∈SwapSet | confChange(z′)=1

∆swap(z, z
′);

if AddSet ̸= ∅ then
if ∆add(v) > ∆swap(u, u

′) then
C := C ∪ {v};

else
C := C \ {u} ∪ {u′};

else
DropSubSet := |DropSet|/2 random vertices from DropSet;
x := argmax

z∈DropSubSet
∆drop(z);

if ∆drop(x) > ∆swap(u, u
′) then

C := C \ {x};
else

C := C \ {u} ∪ {u′};

apply SCC-AddRule, SCC-DropRule and SCC-SwapRule;
2.2 if w(C) > w(Clocalbest) then

Clocalbest := C;
unimproveStep := 0;

else if (unimproveStep % maxUStep) = (maxUStep− 1) then
(u1, . . . , ut, u

′) := WalkPerturbationSCCWalk();
C := C \ {u1, . . . , ut} ∪ {u′};
apply SCC-JumpRule;
if w(C) > w(Clocalbest) then

Clocalbest := C;
unimproveStep := 0;

3 if w(Clocalbest) > w(Ĉ) then

Ĉ := Clocalbest;

return Ĉ;

in algorithm 19. First, a random allowed jump operation is picked and its delta
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Algorithm 18: InitGreedySCCWalk

C := {one random vertex};
repeat

Candidates := {u | u ∈ N(x) ∀x ∈ C};
if Candidates ̸= ∅ then

v := random vertex from Candidates;
C := C ∪ {v};

until Candidates = ∅;
return C;

is calculated and saved as ∆∗
jump. In the loop that follows, the walk perturbation

procedure tries to sample the jump operation with the highest (positive) weight
change out of candJump samples. The authors recommend to set the parameter
candJump to 100. If a sampled jump operation Jump(u′

1, . . . , u
′
t, v

′) has a higher
delta than the highest one found so far, it is set as the new best jump operation
tuple (u1, . . . , ut, v). If a jump operation has the same delta as the best one found
so far, it is only chosen if its v′ has a higher age than v. v′ is the vertex that gets
added in the sampled jump operation, v the one added in the current best jump
operation.

Algorithm 19: WalkPerturbationSCCWalk

pick a random (u1, . . . , ut, v) ∈ JumpSet | confChange(v) = 1;
∆∗

jump := ∆jump(u1, . . . , ut, v);

for i := 1 to candJump do
pick a random (u′

1, . . . , u
′
t, v

′) ∈ JumpSet | confChange(v′) = 1;

if
(
∆jump(u

′
1, . . . , u

′
t, v

′) > ∆∗
jump

)
∨
((

∆jump(u
′
1, . . . , u

′
t, v

′) =

∆∗
jump

)
∧
(
age(v′) > age(v)

))
then

(u1, . . . , ut, v) := (u′
1, . . . , u

′
t, v

′);
∆∗

jump := ∆jump(u
′
1, . . . , u

′
t, v

′);

return (u1, . . . , ut, v);

3.2.3 SCCWalk4L

Together with the original SCCWalk, the authors also proposed a derivative called
SCCWalk4L in [6]. It aims to be more suitable for large graphs, hence the suffix
’4L’. It employs Best from Multiple Selection (BMS) and the reduction rules UB0

and UB1 that have already been used by FastWClq [7].
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The main procedure of SCCWalk4L is shown in algorithm 20. It can be seen that
it is very similar to the original SCCWalk. The lines where the walk perturbation
is performed are left out in the listing for space reasons, they are the same as in
algorithm 17. The first difference to the original algorithm is the selection of the
swap pair. The change is marked with *A in the listing. Instead of choosing the
best swap pair from the whole SwapSet, it gets picked by a special heuristic which
is implemented in the function GetSwapPairSCCWalk4L(). Another significant
difference is marked with *B. When finding a new best clique Ĉ, the graph is re-
duced by the sub procedure ReduceGraphSCCWalk4L. The reduction function
will eliminate vertices from the graph G and the current clique C which could never
be part of a clique better than the updated Ĉ. Furthermore the authors of [6] sug-
gest to set the parameters maxUStep = 50 and L = 400 for large sparse graphs and
maxUStep = 250 and L = 4000 for medium sized graphs with higher densities.

Swap pair selection

Checking all possible swap pairs like in SCCWalk could take too long in large graphs.
Thus a BMS strategy is realized by the function GetSwapPairSCCWalk4L(). As
a starting point, this function takes a random swap pair (v, v′) from the SwapSet.
The calculated weight change corresponding to the swap operation with (v, v′) is
set as the initial value of the best weight change ∆∗

swap. After this, k random pairs
(u, u′) from the SwapSet are sampled and the one pair (v, v′) with the best weight
change is returned at the end. Should there be a tie regarding the weight change
∆swap, the pair where the vertex that would be added by the swap operation (u′

or v′) has a higher age is preferred. As in FastWClq, the BMS number k controls
the exploration by determining how many possible swap pairs should be tested.
However, this time k has a fixed value during the whole execution of the algorithm.
Wang et al. recommend setting k = 100 for SCCWalk4L.

Graph reduction

The graph reduction procedure of SCCWalk4L is shown in algorithm 22. It can be
seen that it is quite similar to the one of FastWClq (algorithm 16). A reduction
according to the more advanced upper bound UB1 is only performed if the graph
already has less than 100,000 vertices. In contrast to FastWClq, the reduction takes
place while the working clique C is still being modified and explored. Because of
this, vertices that get removed from the graph and are a part of C have to get
removed from the clique as well.
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Algorithm 20: SCCWalk4L

Ĉ = ∅;
while within time limit do

1 apply SCC-InitRule;
C := InitGreedySCCWalk();
Clocalbest := C;
for unimproveStep := 0 to L− 1 do

2.1 v := argmax
z∈AddSet | confChange(z)=1

∆add(z);

*A (u, u′) := GetSwapPairSCCWalk4L();
if AddSet ̸= ∅ then

if ∆add(v) > ∆swap(u, u
′) then

C := C ∪ {v};
else

C := C \ {u} ∪ {u′};
else

DropSubSet := |DropSet|/2 random vertices from DropSet;
x := argmax

z∈DropSubSet
∆drop(z);

if ∆drop(x) > ∆swap(u, u
′) then

C := C ∪ {x};
else

C := C \ {u} ∪ {u′};

apply SCC-AddRule, SCC-DropRule and SCC-SwapRule;
2.2 if w(C) > w(Clocalbest) then

Clocalbest := C;
unimproveStep := 0;

else if (unimproveStep % maxUStep) = (maxUStep− 1) then
. . . // WalkPerturbation

3 if w(Clocalbest) > w(Ĉ) then

Ĉ := Clocalbest;

*B G,C := ReduceGraphSCCWalk4L(G, Ĉ, C);
if V = ∅ then

return Ĉ;

if C = ∅ then
break;

return Ĉ;
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Algorithm 21: GetSwapPairSCCWalk4L

pick a random (v, v′) ∈ SwapSet | confChange(v) = 1;
∆∗

swap := ∆swap(v, v
′);

for i := 1 to k do
pick a random (u, u′) ∈ SwapSet | confChange(u′) = 1;

if
(
∆swap(u, u

′) > ∆∗
swap

)
∨
((

∆swap(u, u
′) = ∆∗

swap

)
∧
(
age(u′) > age(v′)

))
then

(v, v′) := (u, u′);
∆∗

swap := ∆swap(u, u
′);

return (v, v′);

Algorithm 22: ReduceGraphSCCWalk4L(G, Ĉ, C)

foreach v ∈ V do

if
(
UB0(v) ≤ w(Ĉ)

)
∨
((

|V | ≤ 100, 000
)
∧
(
UB1(v) ≤ w(Ĉ)

))
then

RemovalQueue := RemovalQueue ∪ {v};

while removalQueue ̸= ∅ do
u := pop a vertex from removalQueue;
remove u and its incident edges from G;
if v ∈ C then

C := C \ {v};
foreach v ∈ Nr(u) do

if
(
UB0(v) ≤ w(Ĉ)

)
∨
((

|V | ≤ 100, 000
)
∧
(
UB1(v) ≤ w(Ĉ)

))
then

RemovalQueue := RemovalQueue ∪ {v};

return G,C;

3.2.4 MWCPeel

Together with MWCRedu, which was already introduced in chapter 3.1.4, the au-
thors also proposed an heuristic algorithm named MWCPeel in the same paper [17].
It makes use of the same reduction rules as MWCRedu. Its pseudo-code is shown
in algorithm listing 23.

First, an initial clique is computed like in MWCRedu. After that follows the re-
duction loop. In every iteration, first the exact reduction rules presented in 3.1.4
are applied by the function ReduceMWCRedu. Only in the first iteration of the
reduction loop, a vertex degree limit (parameter lim) is used in the reduction. This
is followed by a heuristic reduction, the so-called peeling. A certain percentage of
the vertices gets removed based on a score. The percentage will be 10 % for graphs
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with 50.000 and more vertices, 1 % for graphs with 5.000 or less vertices and linearly
interpolated between 10 % and 1 % for graph sizes in between [23]. The score is
the weight of the inclusive neighborhood w(N [v]). So those vertices get removed,
for which the upper bound for the weight of the cliques they can be in is the lowest.
Those two reduction strategies are applied over and over until the maximum score
in the current reduced graph maxv∈V ′(w(N [v])) is less than 90 % of the maximum
score in the original graph maxu∈V (w(N [u])). The reduction is also stopped if the
difference between the maximum score in the reduced graph maxv∈V ′(w(N [v])) and
the minimum score in the reduced graph drops below 90 %. After the loop, the
reduced graph is again passed to the exact TSM-MWC-Algorithm.

Algorithm 23: MWCPeel

Ĉ := InitializeWLMC(G, 0);
isF irstIteration := true;
repeat

G, Ĉ := ReduceMWCRedu(G, Ĉ, isF irstIteration);
isF irstIteration := false;

num :=

{
0.1 · |V | |V | > 50, 000,

max(0.01 · |V |, 0.1 · |V |
50,000

) otherwise

remove num vertices with the lowest score w(N [v]);

until stopping criteria met ;

return TSM-MWC(G, Ĉ);

3.3 Other approaches

The algorithms that were explained in the previous chapters only present a curated
subset of all currently available maximum weight clique algorithms. Some further
examples are Österg̊ard’s Algorithm [24], Kumlander’s Algorithm [25], MaxWClq
[26] and OTClique [27]. The selection was made to keep the scope of the thesis
feasible. Not every approach that was considered (according to the literature) clearly
outperformed by other ones was taken into account. Some interesting and more
recent methods that use machine learning (see [28] and [23]) were proposed as well
that did not make it into this thesis either.

As a first naive approach, some tests with an adapted variants of the Bron-Kerbosch
algorithm [29] were also made. The Bron-Kerbosch algorithm finds all maximal
cliques in a graph, and when filtering those cliques for the highest weighted one,
it can also be used to determine the maximum weight clique. First experiments
showed that its performance is notably worse than the algorithms presented in the
previous chapter. Because of that and since the Bron-Kerbosch algorithm is not a
real MWC algorithm to begin with, it was excluded from this thesis as well.
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This chapter starts with the description of the own custom algorithmic approaches
that have been used. After that, the test data used for the experiments is specified.
Finally the test setup that is used to actually gather the measurements is introduced.
This test setup was used run all algorithms and their variants, both the new ones
described in this chapter and those from the literature, on the mentioned test data.

4.1 Custom algorithms

4.1.1 UEW

The first custom created algorithm is named UEW which stands for unexplored
weight. It can be described as a one-shot greedy algorithm. UEW is a heuristic
algorithm that will only construct one clique. It is expected that it will be very
fast. Regarding the optimality of its solutions, the algorithm will not provide any
guarantee or even proof. The found result clique might end up being sub-optimal
more often compared to other heuristic algorithms. These suspected properties will
have to be analyzed during the experiments later on.

Besides the clique Ĉ that is being built, the algorithm holds a set Candidates
containing all vertices that could be added to Ĉ in the current step. The central
measure of this heuristic algorithm, the “unexplored weight” of a vertex is calculated
by

wUE(v) = α · wO(v) +
∑

u∈N(v)

wO(u).

The factor α is a weight that determines how much the weight of a vertex is pri-
oritized in comparison to its neighbors’ weights. This parameter is also referred to
as the “own weight priority”. A value ≥ 1 is recommended. wO(v) is the “own
unexplored weight” defined as

wO(v) =

{
w(v) v ∈ Candidates,

0 otherwise.

The procedure of UEW outlined in algorithm listing 24 starts with setting all vertices
as potential candidates to be added to the clique. After that the main loop starts
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where in each iteration a vertex is added to the result clique until no more candidates
are left. This is done by selecting the vertex from the candidates that has the highest
unexplored weight. The set of candidates has to be updated each time a vertex is
added to the clique. The vertex which is added gets removed from Candidates
as it already is in the clique now, furthermore Candidates is intersected with the
neighbors of the added vertex to make sure the candidate set only contains vertices
that would keep Ĉ a valid clique if they were added to it.

Algorithm 24: UEW

Candidates := V ;

Ĉ := ∅;
while Candidates ̸= ∅ do

c := argmax
v∈Candidates

wUE(v);

Ĉ := Ĉ ∪ {c};
Candidates := Candidates \ {c};
Candidates := Candidates ∩N(c);

return Ĉ;

4.1.2 UEW-R

The second custom created algorithm is UEW-R, where the R stands for “Reduc-
tion”. It is a derivative of UEW, that also incorporates concepts of FastWClq. It
creates cliques iteratively and applies graph reductions in between. In cases where
the reduction step reduces the graph to an empty set, just like FastWClq, UEW-R
can even guarantee the optimality of its solution.

The pseudocode of UEW-R can be seen in algorithm 25. The best found clique is
stored in Ĉ and initialized to an empty set. There is an outer loop in which the
clique search and the graph reduction happen. The loop terminates when the graph
is reduced to an empty set. At the end, Ĉ is returned.

Section 1 of the outer loop of UEW-R creates a new clique Ccurrent in each iteration.
For this it is using the same strategy as the classic UEW algorithm. Again, in its
inner loop the clique Ccurrent is assembled by always choosing the candidate vertices
with the highest unexplored weight. When a new iteration of the outer loop begins,
not only is Ccurrent reinitialized, but also the set Candidates is reset to contain all
vertices of the graph again. Since later in the algorithm the graph is reduced, V can
be different and consequently the resulting Ccurrent can be another clique as well.

In section 2 the clique Ccurrent created in the current iteration gets compared to
the best clique Ĉ so far. Due to the nature of the algorithm, Ĉ can also be seen
as the Ccurrent of the previous iteration. If the comparison is positive and the new
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clique has a higher weight, Ĉ is updated accordingly and the graph is reduced by the
function ReduceGraphFastWClq and the outer loop can start its next iteration.
UEW in general can choose a suboptimal clique if it gets “distracted” by a vertex
with a high-weight inclusive neighborhood, where not many of its neighbors have
edges in between each other. If the graph gets reduced and vertices that cannot be
part of the best clique are removed, this results in less distractions for the UEW
strategy. That in turn increases the probability that a more optimal solution is
found. If however the weight comparison of Ccurrent and Ĉ shows that Ĉ is better
or at least of equal quality, the algorithm terminates. Without improvements of Ĉ,
the graph reduction would not change the graph. This would lead to the Ccurrent

constructed in the next iterations always being the same, leaving the algorithm in
an inifinite loop.

Algorithm 25: UEW-R

Ĉ := ∅;
repeat

1 Ccurrent := ∅;
Candidates := V ;
while Candidates ̸= ∅ do

c := argmax
v∈Candidates

wUE(v);

Ccurrent := Ccurrent ∪ {c};
Candidates := Candidates \ {c};
Candidates := Candidates ∩N(c);

2 if w(Ccurrent) > w(Ĉ) then

Ĉ := Ccurrent;

G := ReduceGraphFastWClq(G, Ĉ);

else

return Ĉ;

until G = ∅;
return Ĉ;

4.1.3 Optimizations for similar graphs

One thing that many algorithms have in common, is that a current best clique is
held across iterations and updated when a better one is found. Some algorithms
like MWCRedu and MWCPeel even require an initial clique which needs to be
determined by some heuristic. This seems to present a suitable opportunity to reuse
the best clique Ĉ0 found in a similar graph G0. Some vertices from Ĉ0 may not be
present anymore in G1 or not pairwise adjacent in G1. Therefore a clique Ĉ ′

0 ⊆ Ĉ0

is determined. To obtain Ĉ ′
0, vertices are iteratively removed from Ĉ0 until a valid
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clique within G1 results. In the best case Ĉ ′
0 and Ĉ0 will be the same. In the

worst case no member of Ĉ0 is present in G1 and consequently Ĉ ′
0 will be empty.

When processing the iterative version of an algorithm, Ĉ ′
0 is set as the initial best

clique, and the algorithm is executed as usual after that. This strategy is applied to
WLMC, WC-MWC, TSM-MWC, MWCRedu, FastWClq, SCCWalk, SCCWalk4L,
MWCPeel and UEW-R. It is not applied to UEW, since as a one-shot algorithm, it
has no ability to recover from a unsuitable initial clique. In the iterative version of
UEW-R, an additional graph reduction based on the weight of Ĉ ′

0 was performed
before the beginning of the outer loop.

If the differences between the graphs G0 and G1 do not have a major influence on
the highest weighted cliques, Ĉ ′

0 might already be the best clique in G1. Even if
there is a better clique in G1, w(Ĉ

′
0) is still likely to be a rather tight lower bound

for the weight of the best clique. This means that graph reductions based on such
lower bounds can potentially eliminate large parts of the graph G1 even in the first
iteration of a reduction process. Working on a quite small graph from the start
instead of only getting a smaller graph over the time could speed up the search for
a solution significantly.

Initial clique conversion

Algorithm listing 26 specifies the full procedure of converting Ĉ0 to Ĉ ′
0. It is impor-

tant to note that every time neighborhoods are used in this algorithm, this refers
to the neighborhoods within the current graph G1. In the first step, Ĉ ′

0 is ini-
tialized with Ĉ0 but without the vertices that do not exist in the current graph
G1. After that a loop is executed until Ĉ ′

0 becomes a valid clique in G1. Within
the loop, a set of RemovalCandidates is determined. RemovalCandidates are all
members of Ĉ ′

0 that are not adjacent to some other members of Ĉ ′
0. A vertex v

from the RemovalCandidates will be in conflict with its non-neighbors Ĉ ′
0 \N [v] of

the RemovalCandidates set. v and every x ∈ Ĉ ′
0 \ N [v] cannot be members of a

clique at the same time. For every removal candidate v, the difference between the
weight of the vertices conflicting with v and the weight of v itself is calculated. This
difference represents the benefit of removing v instead of the vertices it conflicts
with. With all the differences calculated, the vertex u with the highest difference
is removed from Ĉ ′

0. When the loop terminates, all conflicts within Ĉ ′
0 are resolved

and it can be returned.

4.2 Test data

The performed tests can be divided into two categories. On one hand, there are
the standalone runs, where the algorithms are executed on each graph in an isolated
manner. The other test category are the iterative runs. For the latter, the algorithms
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Algorithm 26: ConvertInitialClique(G1, Ĉ0)

Ĉ ′
0 := Ĉ0 \ {v | v /∈ G1};

while Ĉ ′
0 is not a clique in G1 do

RemovalCandidates := {v | v ∈ Ĉ ′
0, Ĉ

′
0 \N [v] ̸= ∅};

u := argmax
v∈RemovalCandidates

w(Ĉ ′
0 \N [v])− w(v);

Ĉ ′
0 := Ĉ ′

0 \ {u};
return Ĉ ′

0;

would first be executed on one graph the same way as they were in the standalone
case. After that, adapted versions of the algorithms would be executed on graphs
similar to the graphs used in the first execution step reusing the information about
the maximum weight clique from the first step. For both test categories, various
graphs were randomly generated. The properties of those graphs are described in
the following two chapters.

In general the term Algorithm Run is used to describe a single execution of an
algorithm on a single graph. There can be multiple algorithm runs of the same
combination of graph and algorithm, which can have varying runtimes and in the
case of heuristic algorithms even output different cliques.

4.2.1 Test graphs for standalone runs

For the standalone runs, the used set of different vertex numbers was NTest =
{25, 50, 75, 100, 125, 150, 200, 250, 500, 1000, 2000, 4000}. The density set was
DTest = {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. Furthermore, three different
vertex weight distributions were used. The first one had all vertex weights set to
1.0, which makes the situation equivalent to a maximum clique problem. Next, a
uniform distribution with weights in the interval [0.001, 1.0] was used. The last was
a normal distribution with µ = 0.5 and σ = 0.25 which was also cut off to fit the
interval [0.001, 1.0].

To generate the edges, first the number of edges required by the density d and vertex
count n was determined by m = d∗n(n−1)

2
. To create graphs where not all vertices

have a similar amount of neighbors, some vertices need to be more likely than others
to be part of an edge. Therefore the probability of choosing vertex vx ∈ {v1, . . . , v|V |}
for an edge is multiplied with a factor

αx =

⌈
|V |
3

(x+ 0.5)−2

⌉
.
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Afterwards the probabilities are normalized. Additionally the already chosen edges
were kept track of to avoid picking the same edge multiple times.

For each combination of vertex number, density and weight distribution, three dif-
ferent graphs were generated. To provide a better intuition for the scale of the
graphs, their respective edge counts are listed in table 4.1. In total, 864 graphs were
generated and tested with the algorithms.

n
d

0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.5

25 0 1 3 15 30 60 90 150
50 1 6 12 61 122 245 367 612
75 2 13 27 138 277 555 832 1387
100 4 24 49 247 495 990 1485 2475
125 7 38 77 387 775 1550 2325 3875
150 11 55 111 558 1117 2235 3352 5587
200 19 99 199 995 1990 3980 5970 9950
250 31 155 311 1556 3112 6225 9337 15562
500 124 623 1247 6237 12475 24950 37425 62375
1000 499 2497 4995 24975 49950 99900 149850 249750
2000 1999 9995 19990 99950 199900 399800 599700 999500
4000 7998 39990 79980 399900 799800 1599600 2399400 3999000

Table 4.1: Numbers of edges m of the generated graphs

4.2.2 Test graphs for iterative runs

To test the performance of the iterative variants of the algorithms, for every stan-
dalone run graph (“original graph”) two graphs similar to it were generated. One
of the similar graphs was generated by taking the standalone graph and with a 2%
chance each removing an existing vertex, adding a new vertex, removing an existing
edge and adding a new edge. The vertex weights were changed by a value which was
sampled from a normal distribution with µ = 0.0 and σ = 0.01. The second similar
graph was generated with the same method as the first one, but this time with a
5% probability of each add- and remove-operation. The vertex weight change for
the second similar graph was sampled from a normal distribution with µ = 0.0 and
σ = 0.1. In both cases, the number of edges for the newly added vertices was chosen
according to the density of the original graph, and the weights of the new vertices
were also generated from the same distribution as the original graph.

For the iterative run tests, the newly generated similar graphs were treated as the
“older” graph G0, while the original graph was processed as if it was G1, the newer
one. For each of the generated similar graphs, the test procedure was to first run the
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normal algorithms on the similar graphs. The resulting clique was then fed as a seed
into another algorithm run, where an iterative version of the algorithm processed
the original graph. The results of the iterative processing of the original graph
could then be compared to the non-iterative processing of it, which was already
conducted during the standalone run tests. This comparison can be used to reveal
whether there is a benefit to the iterative approach.

4.3 Evaluation criteria

The first criterion that all algorithms will be evaluated on is their runtime t on
each of the graphs. Runtimes over 5 minutes are not considered. The reasons
for this time limit is that the main focus of the thesis are smaller graphs, whose
maximum weight clique should be found quickly and sometimes even in real time.
Additionally a lot of graphs are evaluated, which in turn means that the allowed
time per algorithm run must be limited to keep the tests temporally feasible. If an
algorithm exceeds this time limit on particular graphs, those graphs are viewed as
not solved by the algorithm and not taken into account when calculating average
runtimes for a certain graph type with this particular algorithm. Nevertheless the
information about which graphs could not be solved in time by an algorithm is still
kept track of, since it provides insight into the limitations of the algorithm.

The second evaluation criterion is the quality q of the solution. For a particular
graph, the solution quality of an algorithm run ai is defined by the ratio

q(ai) =
w(Ĉai)

w(Ĉexact)

where Ĉai is the best clique found by the algorithm run ai and Ĉexact is the exact
solution for the maximum weight clique problem on that particular graph. To de-
termine the quality for heuristic runs on a graph, it is necessary to get the graph
processed by an exact algorithm at least once, if needed without a time limit.

4.4 Test environment

4.4.1 Own implementations

All of the presented algorithms were implemented from scratch in C++, sharing
commonly needed code like classes for managing graphs and independent sets be-
tween the algorithms. Those implementations mostly stayed close to the pseudo
code in the listings which can be found in the corresponding chapters about the al-
gorithms. The decision to create own implementations was made because reference
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implementations from the authors were not available for all of the chosen algorithms,
and naturally could not be available for the newly introduced UEW, UEW-R and it-
erative algorithm versions. Furthermore implementing the algorithms on a common
code base should help the comparability of the results. It can reduce performance
differences which are caused by differently implemented base functionality instead of
the actual concepts that are characteristic to the particular algorithms. All the own
implementations operate on double precision floating point type weights. Although
the authors of some of the algorithms might not have intended them to work with
those kinds of weights, experiments have shown that the concepts of the algorithms
still work under those conditions.

In addition to the algorithms themselves, utility classes to generate, manage, mea-
sure, import and export both algorithm runs and graphs were implemented. Based
on this whole framework a set of programs was build. The “TestGraphGenerator”
realizes the generation of the test graphs which are described in chapter 4.2. The
“TestRunGenerator”-program generates algorithm run specification files for all the
combinations of test graphs and algorithms, including different parametrizations of
the algorithms. Finally the “SingleRunExecutor” takes an such an algorithm run
specification file, executes the respective algorithm on the respective graph, and
exports the measured runtime as well as the clique that was found by the algo-
rithm. For development purposes, also the program “CliqueExplorer” was created.
It allows to generate, manipulate and compare graphs and algorithm runs through
a graphical user interface. A screenshot of CliqueExplorer is shown in figure 4.1.
Used third-party libraries are Qt [30] for the graphical user interface, GraphViz [31]
for visualizing graphs and pugixml [32] for reading and writing XML files.

4.4.2 Reference implementations

In addition to the own implementations of the algorithms, available reference im-
plementations of the authors were tested. The source code of WLMC, TSM-MWC
and FastWClq (newer version as presented in [22]) is available for download on the
web pages of Prof. Chu-Min Li [33] and Prof. Shaowei Cai [34]. The reference im-
plementations of WC-MWC [18] and SCCWalk4L [6] were kindly provided by their
authors. Reference implementations for MWCRedu and MWCPeel were unfortu-
nately not available at the time of the experiments, since the corresponding paper
[17] was not published yet. The reference implementations were integrated into the
test suite described in 4.4.1. Their initialization procedures were adapted so that
the graph data type used in the test suite was converted to the internal formats of
the reference implementations. Besides that and minor adaptions needed to make
everything compile, the reference implementations were left in their original state.

The reference implementations were written in C or C++. They are all programmed
in a rather low level fashion, storing most of their data in global arrays or vectors,
while rarely making use of classes or structs to encapsulate the data they work with.
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Figure 4.1: Screenshot of the program CliqueExplorer

Most of the reference implementations contain all of their code in one large source
file. In general the code of the reference implementations is less close to the algorithm
listings than the code of the own implementations. The reference algorithms only
accept integer vertex weights. As the graphs a generated with double precision
floating point weights, the weights are premultiplied with a constant factor of 100,000
before being converted to integers and passed to the reference implementations.

4.4.3 Execution

For the actual final tests whose results will be presented in the next chapter, every
algorithm was run three times on each graph. From those three runtimes the average
was calculated. If an algorithm took longer than 5 minutes to process a graph, its
execution was canceled.

The runs were executed on three Raspberry Pi 4 Model B with 8 GB of RAM and a
Quad core Cortex-A72 processor running at 1.8 GHz [35]. The used operating system
was Raspberry Pi OS Lite (64-Bit) released on 11th December 2023, which is based
on Debian 12 (bookworm) [36]. Each Raspberry Pi was additionally equipped with
an active cooling case to mitigate thermal throttling, and a 4-digit display to show
the number of remaining runs. The physical test setup can be seen in figure 4.2. On
each of the computers the different algorithms were executed on all graphs with at
least three minutes of cool-down time between the runs belonging to one algorithm.
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Figure 4.2: The test setup

The order in which the graphs were processed by an algorithm was randomized.
Per computer up to three graphs were processed in parallel, sparing one core for
orchestrating the runs and potential system tasks.
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This chapter will first present the most important measurements obtained from the
test setup described in chapter 4. More detailed measurement data can be found
in the appendix and on the attached DVD. Secondly, conclusions regarding the
suitability of the algorithms for different scenarios are drawn from the data.

For calculating the qualities of the heuristic algorithm runs, the results of the ref-
erence implementation of TSM-MWC were used. In cases where the latter did not
finish on a Raspberry Pi within 5 minutes, it was executed again on a desktop com-
puter without a time limit. For the graphs with 4000 vertices and a density of 0.5
no ground truth cliques and consequently no qualities could be computed. The runs
that where supposed to provide a ground truth for those hardest graphs did run for
a week but did not remotely come close to completion at the end of that week, so
they were cancelled.

The measurements obtained in the experiments are presented in diagrams with four
subplots each. Every subplot subplot represents results for graphs with varying
vertex count and one particular fixed density. That density can be found in the
lower right corner of every subplot. To provide a more compact overview of the
performance of the algorithms, the diagrams within this chapter focus on the graphs
with the densities 0.001, 0.01, 0.1 and 0.5. The diagrams for the remaining densities
can be found in the appendix at chapter 7.4. For the heuristic algorithms, directly
below the diagrams with the runtimes, another diagram with the qualities is shown.
When studying the diagrams, please note that the runtime axes (t) and vertex
count axes (n) are always scaled logarithmically. Every data point in the plots
represents the average of the successful runs (finished within the time limit) of a
certain algorithm parametrization, vertex count and density. With three possible
vertex weight distributions, three graphs generated for every combination and the
three Raspberry Pi computers that processed all runs each, up to 27 measurements
are incorporated into every data point. When the it is mentioned in the following
sections that an algorithm “fails”, this usually means that it did not finish within
the runtime limit.
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Figure 5.1: Runtimes of the exact algorithms

5.1 Exact algorithms

Overall, the runtimes of the different exact algorithms displayed in figure 5.1 follow a
similar trend and show a pretty direct correlation to both vertex count and density.
For graphs with d ≤ 0.05 (see figure 7.1 for more densities), all exact algorithm
runs finished within the time limit. For d = 0.1, WC-MWC met the time limit
successfully except for one of 27 instances, while the other algorithms surpassed the
limit 18/27 times. When looking at the graphs with the highest tested density, i.e.,
d = 0.5, no exact algorithm found a solution for graphs with 1000, 2000 or 4000
vertices in time. Even for d = 500, WC-MWC never finished early enough, the
other algorithms failed at least half of the time. In most cases the runtimes are
very similar, apparently the different strategies the algorithms use to minimize the
amount of branches do not make that much of a difference on the tested graphs. The
only algorithm that deviates a bit more from the others is MWCRedu. Its additional
elaborate graph reduction techniques appear to have little success on most of the
smaller and medium-sized graphs, but at the same time require a lot of runtime.
This makes it actually slower than the other algorithms in those instances. However
for the hardest graphs that were solved by any of the heuristic algorithms, it is about
20% faster than the others. For future research it could be interesting to investigate
whether this advantage of MWCRedu potentially continues and maybe even grows
with larger graphs and with less strict time limits.

When comparing the runtimes of the own implementations in figure 5.1 to the ones of
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Figure 5.2: Runtimes of the reference implementations of the exact algorithms

the reference implementations shown in figure 5.2, it can be seen that for the lower
densities the reference implementations have an almost constant runtime. Their
runtimes only start to rise with the higher densities and vertex counts. While the
constant offset makes them slower than the own implementations at the more simple
graphs, they have a significant performance advantage on the bigger and more dense
graphs. A possible reason for the offset could be that parts of the initialization
procedures of the reference implementations allocate large amounts of memory of
a constant size independent of the actual size of the graphs. It should be noted
that the reference implementations themselves measure loading and solving time
separately, unlike the test environment, which counts both into one runtime. The
initialization procedures have been adapted so that they do not have to read the
graphs from the disk, as the files are already loaded by the test environment. Some
reference implementations also use their initialization procedure to collect useful
properties that go beyond the minimum data required to represent the graphs, which
commends counting the initialization time too. Another interesting occurrence are
the runtime bumps of WC-MWC and TSM-MWC on the bottom left and especially
on the bottom right plots of figure 5.2. Similar bumps cannot be found in the plots
of the own implementations, leading to the presumption that this is an issue of
implementations rather than the algorithmic concepts.
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5.2 Heuristic algorithms

Most of the presented heuristic algorithms have parameters that can be tuned to
control certain properties of the algorithms. In the following chapters, at first se-
lected parametrizations of the algorithms are compared. In the end, an overview
is presented which also draws comparisons across algorithms, to see which heuristic
algorithm with which parametrization is suitable for certain graphs.

5.2.1 FastWClq

FastWClq was tested with cutoff times of 20 ms, 1 s and 60 s. The other parameters
were fixed to the values recommended by the authors of [7]. The results are dis-
played in figure 5.3. FastWClq proves to have a comparatively very good runtime
performance on the larger graphs. Not only did all runs succeed within the time
limit, they also never ran significantly longer than the largest chosen cutoff time,
i.e., 60 s. For the smaller and less dense graphs, the runtime rises with the den-
sity and vertex count, with the different parametrizations taking approximately the
same time until they reach their cutoff time. The smaller and less dense graphs are
apparently easier to reduce up to a point where FastWClq can prove that it found
the optimal solutions, so that it can terminate early without approaching the cutoff
time. At the point where the respective cutoff time is crossed the runs exhibit at
a relatively constant runtime despite rising densities and numbers of vertices. At
this plateau, FastWClq terminates the search for a clique without necessarily being
sure that it has found the optimal solution. For the largest graphs, and especially
the more dense of those, FastWClq tends to overshoot the cutoff times. This can
be explained by the fact that FastWClq only checks whether it is within the cutoff
time after it finished an iteration which consists of sampling a clique and potentially
reducing the graph. Such an iteration naturally takes more time if there are more
vertices and each vertex has a higher degree on average. That postpones the check
for the cutoff time for a greater amount of time. The reference implementation
shows a similar behavior, although not as strongly, as visible in figure 7.11.

For many graph instances, FastWClq manages to find the exact solution or a clique
very close to it. At lower vertex counts, all parametrizations produce high quality
solutions. When a certain vertex count is crossed, the quality begins to drop. The
higher the density or the lower the cutoff time, the earlier the quality drop happens.
This can easily be explained by the fact that FastWClq does not have enough time to
sample a sufficient number of cliques, as the amount of possible cliques rises with the
size and density of the graphs. Another observation is that the weight of the found
clique declines to as low as 40% compared to the actual maximum weight clique for
a low density of 0.001. In contrast to that, for the highest tested density 0.5, all
parametrizations achieve a solution quality of at least 75%. There are some probable
reasons for this. One factor is that in dense graphs, there are likely more cliques
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with a weight that is close to the exact solution weight. This increases the chance
that a clique which is at least close to the optimal solution is sampled. Another
factor lies within the heuristic of FastWClq. To estimate the benefit of a candidate
vertex for a clique, the weight of its neighborhood is taken into account. In dense
graphs, on average more members of this neighborhood should be connected to the
rest of the clique as well, which means that the neighborhood weight is a good metric
for the benefit of a vertex. In less dense graphs, presumably only a smaller part of
the neighborhood can be used in the finished clique, which makes the neighborhood
weight a less reliable benefit indicator.

5.2.2 SCCWalk

The test runs for SCCWalk were conducted with the cutoff times 1 s and 60 s.
Like Wang et al. recommended, L = 4000 and maxUStep = 500 are used for the
runs of both cutoff times. Runs with a 20 ms cutoff time were not launched, as
with the given L and maxUStep parameters, even a single iteration of SCCWalk
would violate this cutoff time for most of the graphs. Since SCCWalk has no early
exit within the algorithm in contrary to FastWClq, it will not run for less than
the cutoff time, like it can be seen in figure 5.4. From the smallest graph on, the
runtime stays relatively constant with rising vertex numbers. Similar to the behavior
of FastWClq, above a certain vertex count the runtime starts to exceed the cutoff
time considerably, especially if the latter is only 1 s. This rise in the runtime
already starts with smaller graphs compared to the measurements from FastWClq.
Considering that SCCWalk evaluates the potential weight changes of all eligible
members of the AddSet and SwapSet and potentially also of the DropSet in every
iteration, significant runtime increases are expectable, given those sets increase in
size with larger graphs. With both cutoff times, all runs for graphs with n = 4000
and d = 0.1 fail to stay within the time limit of 5 minutes. Regarding graphs with
d = 0.5, both those with 4000 and 2000 vertices cannot be processed in time at all,
while those with 1000 vertices are successfully handled at least half of the time.

While the speed of SCCWalk is not the most remarkable, the quality of its solutions
is very good. Up until a density of 0.1, the algorithm finds the optimal solution in
most cases, in the other cases still at least a 99% quality is achieved on average. With
the d = 0.5 graph instances, a slight decrease in quality is visible for larger graphs.
However on average, the quality stays above 95% even for those harder instances.
When observing the plots, it does become clear that the quality difference between
the two parametrizations is negligible on the tested graphs. Hence choosing a cutoff
time of 1 s over 60 s should be preferred in this context, as it results in the same
quality while the runtimes for smaller graphs are shorter. A potential reason for
this result is that the local search strategy of SCCWalk is already quite successful
in finding the maximum weight clique during the first iterations. Due to that, the
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Figure 5.3: Measurements of FastWClq with different cutoff times
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following iterations, which runs with a higher cutoff time have more of, can hardly
or not at all find a better clique to improve the solution.

5.2.3 SCCWalk4L

For the SCCWalk4L tests, the same two cutoff times as for SCCWalk were used.
However for the other parameters, that were not alternated between the runs, this
time maxUStep = 50 and L = 400 are set, as the original paper [6] suggests. Be-
cause SCCWalk4L, just like FastWClq, uses both a graph reduction to make an early
exit if possible and a cutoff time, the general shape of the runtime diagrams found
in figure 5.5 resembles the ones of FastWClq. The SCCWalk4L plots do however
overshoot the cutoff time more quickly, just as SCCWalk does. At the lower vertex
counts the SCCWalk4L runtime manages to stay significantly under the cutoff time
and below the one of SCCWalk. At a density of 0.5, that advantage is gone and
the runtimes of SCCWalk4L and SCCWalk are relatively similar. SCCWalk4L also
fails to meet the time limit on the same graph types as SCCWalk. The available
reference implementation exhibits less of an overshooting effect and thus never vio-
lates the time limit as it can be verified in figure 7.11. The reason for that could be
that the reference implementation checks whether it approaches the cutoff time at
multiple locations within the algorithm, allowing it to follow it more strictly. The
own implementation only does such a check once in each iteration, as the pseudo
code listed in the original paper [6] suggests it.

Regarding the quality, there are no notable differences to SCCWalk either. Again
the cutoff time has no clear effect on the resulting quality. Overall, the only differ-
entiation point of SCCWalk4L from SCCWalk remains the lower runtime on smaller
graphs. The solution quality of the reference implementation shows a less strong
drop in the quality on larger graphs, which can probably be attributed to a more
efficient implementation that is able to explore more cliques in a shorter time. One
particularity that can be noticed is a sudden quality decrease of 8% with 1 s cutoff
time, d = 0.001 and n = 4000. A deeper analysis of the data came to the conclusion
that this is due to some outliers. Most runs of that graph configuration actually
finish with about 100% quality. The average is dragged down by two runs on a
graph with a normal weight distribution with 69% and 53% quality and one run on
a graph with uniform vertex weight distribution that reached 55% quality. Together
with the fact that not all runs on those problematic graphs have a sub-par quality,
this serves as a reminder that algorithms containing random elements always bear
a certain risk of unexpected and unwanted results.
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Figure 5.4: Measurements of SCCWalk with different cutoff times
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Figure 5.5: Measurements of SCCWalk4L with different cutoff times
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5.2.4 MWCPeel

For MWCPeel, whose performance is plotted in figure 5.6, only one configuration
was tested, as the corresponding paper [17] did not explicitly mention parameters
that should be tuned. The runtime graphs tend to proceed relatively steep compared
to other algorithms without a cutoff time. MWCPeel starts to fail to compute its
solution within the time limit at smaller graphs than the other heuristic algorithms.
For graphs with d = 0.1, no runs terminate in time for n = 4000, only one run
succeeds for n = 2000 and also for n = 1000 two runs fail. At d = 0.5, all runs
on graphs with 1000 or more vertices fail. Furthermore 22/27 runs for n = 500
and even some single runs for graphs with 200 and 250 vertices violate the time
limit. A possible explanation is that the algorithm is engineered for larger and more
sparse graphs and that the employed reduction strategies have too much overhead
while not achieving significant reductions on the graph instances that were tested
within the thesis. If the reduction and peeling strategies fail to reduce the graph
considerably, MWCPeel as a hybrid algorithm will have the combined runtime of its
own preprocessing steps and TSM-MWC.

For the cases where MWCPeel produces a solution in time, its quality is quite good.
It does not undercut 94%, most of the time the quality is even at 100%. As explained
in chapter 3.2.4, the process of MWCPeel consists of two ain steps. The first one
is a heuristic graph reduction, which in the best case does not affect the vertices
of the maximum weight clique. If the latter is the case, the second stage, which
uses the exact TSM-MWC algorithm, will also find the exact solution. This best
case seems to occur often on the example graphs. In the suboptimal case where
too many vertices would get removed by the heuristic reduction, MWCPeel also
employs a safeguard which stops the graph from being reduced too much, which in
turn explains why the quality does not drop dramatically.

5.2.5 UEW

For UEW, the own weight priority parameter α was tested with the values 1, 2
and 4. It can be seen in figure 5.7 that the runtime is not significantly affected
by the parameter. The lines representing the different parametrizations are almost
indistinguishable. The runtime increases quite evenly with growing vertex count and
density. The runtimes on graphs with a small density are the best ones among all the
algorithms. The relative increase in runtime with higher densities is rather strong, in
the graphs with the combination of the highest densities and highest vertex counts
the runtime approaches the approximately half of the time limit. None of the runs
failed to complete in time. Most algorithms do not manage to achieve the latter,
with the exception of FastWClq. While FastWClq is slower on the smaller and less
dense graphs, it is up to ten times faster than UEW on the hardest graphs of the
experiments.
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Figure 5.6: Measurements of MWCPeel
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In the graphs with smaller densities, there does not seem to be a single value for the
own weight priority α that has a clear advantage with regards to the quality of the
solutions. With the highest tested density 0.5 however, a parametrization of α = 4
shows a consistent albeit small quality benefit over the other ones. The plots for
d = 0.2 and d = 0.3 in figure 7.7 confirm the observation that α = 4 is a suitable
parametrization for more dense graphs. As 4 was the highest tested parameter value
here and a quality proportional to α seems to be present for the dense graphs, higher
own weight priorities would be worth testing in future work.

In general the quality always stays above 0.8, but rarely reaches the optimal value
of 1.0. While other heuristic algorithms exhibit a better quality in many scenarios,
it is notable that the quality of UEW shows no clear dependency on the number of
vertices of the graph.

5.2.6 UEW-R

Similar to UEW, UEW-R was tested with the own weight priorities 1, 2, and 4.
The graphs in figure 5.8 reveal that again the runtime is not influenced by the value
chosen for α, but steadily raising with the vertex count and density. UEW-R fails
to timely compute solutions for the biggest graphs with n = 4000 and d = 0.5 most
of the time with all parametrizations, i.e., 22 or 23 times out of 27. The runtimes
are consistently and considerably higher than the ones of UEW. This was expected
since UEW-R performs the same steps as UEW but (depending on the graph) repeats
those steps and additionally conducts graph reductions. On lower-density-graphs,
those additional iterations and reductions pay off and provide solutions of higher
quality, often even the exact solution is found. For the more dense graphs, the
reduction strategy does not seem to be effective and the resulting quality is similar
to the one of the original UEW algorithm.

5.2.7 Comparison

With the help of figure 5.9, this section summarizes the key takeaways regarding the
performance of the heuristic algorithms and draw some comparisons between them.
The measurements of FastWClq, SCCWalk and SCCWalk4L that can be seen in the
plots are all based on a cutoff time of 1 s. This value was found to achieve a good
balance between speed and quality for all algorithms. Additionally using the same
cutoff time for the algorithms improves the meaningfulness of the comparison. The
own weight priority α for UEW and UEW-R was set to 4 in the comparison graph,
as this proved to deliver a good quality in many cases.

The runtime graphs in the upper part of figure 5.9 show that for lower densities,
UEW is significantly faster than its competitors, while at the larger graphs with
higher densities, it gets overtaken by FastWClq. SCCWalk is on the slower side for
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Figure 5.7: Measurements of UEW with different own weight priorities
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Figure 5.8: Measurements of UEW-R with different own weight priorities
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most graphs, which is expected due to it not being able to terminate before its cutoff
time. SCCWalk4L is in the middle field for smaller and more sparse graphs. At the
larger and more dense graphs, it joins the slower pace of SCCWalk. MWCPeel
has quite mixed runtime results in the different scenarios. It is always slower than
UEW and UEW-R. On very sparse graphs, sparse graphs with few vertices and
dense graphs with more vertices, it is noticeably slower than FastWClq, SCCWalk
and SCCWalk4L. On the other types of graphs, MWCRedu does have an advantage
over the aforementioned algorithms. Those patterns are also visible in figure 7.9 on
the graphs with the other densities.

The qualities of the solution cliques delivered by the heuristic algorithms are plotted
in the lower part of figure 5.9. At the graphs with low to medium vertex counts,
UEW visibly has the lowest qualities , while for the highest tested vertex counts
FastWClq clearly produces the lowest-quality cliques. At lower densities and smaller
graphs, UEW-R exhibits a quality that is significantly better than UEW and often
even optimal. At the more dense graphs, the qualities of UEW and UEW-R tend
to be the same. FastWClq, SCCWalk, SCCWalk4L and MWCRedu demonstrate
excellent qualities on the smaller and middle-sized graphs. On the graphs with the
most vertices, their qualities do decline. This decline is the strongest for FastWClq,
of medium intensity for MWCRedu. SCCWalk and SCCWalk4L have a rather slight
quality decline that is only present at the most dense graphs. A positive general
observation is that in the most cases the heuristic algorithms deliver a quality that
is comfortably above 80% for the tested data.

As an additional overview, figures 5.10 and 7.10 present a runtime comparison be-
tween the heuristic algorithms (except UEW-R) and the exact algorithm TSM-
MWC. The parameters used in there for the heuristic algorithms remained the
same as in the previous comparison. In most instances, TSM-MWC is faster than
MWCPeel, sometimes by a large amount. Again, just like MWCRedu, MWCPeel
uses TSM-MWC internally together with some novel graph reduction techniques.
Towards the larger graphs with d = 0.5, the plot lines of both algorithms meet just
before the runtime limit. This leads to the assumption that MWCPeel could po-
tentially turn out to outperform TSM-MWC on larger graphs if the time limit was
higher. With the data at hand however, similarly to the observations with MW-
CRedu, the additional graph reduction strategies do not seem to be effective enough
on the given graphs to justify their additional runtime. TSM-MWC is slower than
UEW in any case, and slower than FastWClq on larger graphs. At medium den-
sities, TSM-MWC tends to be faster than SCCWalk and SCCWalk4L. On smaller
graphs, TSM-MWC is also obviously faster than heuristic algorithms with cutoff
times where they do not find an early exit. Since TSM-MWC performed quite simi-
lar to WLMC and WC-MWC, the former statements should also apply to the those
other exact algorithms as well. As a rule of thumb, exact algorithms might generally
be preferred on smaller graphs, as they promise to find the best solution in some-
times shorter amounts of time. Heuristic algorithms on the other hand could be
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Figure 5.9: Measurements of the heuristic algorithms
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Figure 5.10: Measurements of the heuristic algorithms compared to TSM-MWC

more suitable for larger graphs where the runtime of the exact algorithms becomes
prohibitively high.

5.3 Iterative runs on similar graphs

Overall, the measurements suggest that the versions of the algorithms adapted for
iterative runs do not have a clear universal advantage compared to the original algo-
rithms. For several algorithms and parametrizations the advantages in runtime and
quality are either quite small or non-existent, thus most of the respective diagrams
are only listed in the appendix in section 7.4.3. Visible differences do however occur
in more specific scenarios, which will be highlighted in this chapter. In the charts,
the data series with the label “non-iterative” represents the measurements of the
unmodified algorithms on the standalone run graphs. Those results were already
presented and discussed in the previous chapters. The subject of interest here are
the runs in which the iterative versions of the algorithms were used, with the adap-
tions described in chapter 4.1.3. Like explained in chapter 4.2.2, in a first step, a
graph similar to the standalone one, but with modifications made with a 2% chance
each, was processed by the algorithms. Using the results from that, the iterative
algorithms processed the unmodified standalone graphs. The results from that sec-
ond run are represented in the data series “iterative (2% change)”. Similarly, the
data series “iterative (5% change)” represent the second runs with iterative algo-
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rithm versions from experiments where the graphs with 5% change probability were
processed in the first step.

5.3.1 Findings

For all of the exact algorithms, the iterative versions were either similarly fast or
even slower than their non-iterative counterparts. Seemingly the runtime overhead
that the execution of the ConvertInitialClique function (algorithm 26) brings is
not outweighed by the benefits of the potentially better initial clique it produces.
Ĉ ′

0 might either be not better than the initial cliques that the algorithms produce
in their own initialization procedures, or at least not suitable to reduce the search
space more than those.

Regarding the heuristic algorithms, a notable case is FastWClq with a cutoff time
of 20 ms and to a certain extent also with 1 s. As evident in figure 5.11 (and figure
7.22), the quality drops on graphs with a high vertex count and low density are
less strong when the the iterative version of FastWClq is used. On the flip side,
for both FastWClq and SCCWalk4L, the iterative versions take considerably more
runtime in the situations where the non-iterative version is able to finish well before
the cutoff time is reached. Yet the runtime increase does at least not lead to a
violation of the cutoff time. In contrast to this are the situations observable in
figure 5.12, where SCCWalk4L with a cutoff time of 60 s does not perform an early
exit before reaching its cutoff time. There the iterative version is faster than the
original one by up to a third (note the logarithmic scale), considering the case with
2% change probability between the previous and current graph. Furthermore, some
slight quality improvements with UEW-R adapted for iterative runs can be seen in
figures 7.35 to 7.40. Those improvements are however mostly below 5% and show
no clear pattern.

5.3.2 Further potential

In general, the results obtained from the adapted iterative version of the algorithms
reveal less benefit than expected. A potential reason could be that the strategy
proposed in chapter 4.1.3 is not generally suitable for iterative runs on similar graphs.
Another possibility is that the strategy is a valid approach, but that the similar
graphs G0 used in the tests are already too different from the original graphs G1.
This in turn leads to two possible tasks for future work, which are outlined in figure
5.13. At first, it could be investigated how different the maximum weight clique on
the similar graph Ĉ0, its converted version Ĉ ′

0 and the maximum weight clique on
the original graph Ĉ1 are for the various graph instances. If it turns out that those
differences are too distinct, this indicates that the second task should be conducted.
The latter consists of executing and analyzing test runs with more similar graphs.
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Figure 5.11: Measurements of iterative runs of FastWClq (20 ms cutoff time)

103



5 Results

0.1
1
10
100
1000
10000
100000

d = 0.001 d = 0.01

0.1
1
10
100
1000
10000
100000

25 75 250 1000 4000

d = 0.1

25 75 250 1000 4000

d = 0.5

t
[m

s]

non-iterative

iterative (2% change)

iterative (5% change)

t
[m

s]

n n

0

0.2

0.4

0.6

0.8

1

d = 0.001 d = 0.01

0

0.2

0.4

0.6

0.8

1

25 75 250 1000 4000

d = 0.1

25 75 250 1000 4000

d = 0.5

q
u
al
it
y

q
u
al
it
y

n n

Figure 5.12: Measurements of iterative runs of SCCWalk4L (60 s cutoff time)

104



5 Results

Analyze similarity of cliques Ĉ0, Ĉ
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Figure 5.13: Approach for further research on iterative runs

Within that, many scenarios can be examined. For example the different types
of change operations on the original graph (remove vertices, add vertices, remove
edges, add edges, change weights) can be done isolated from each other to produce
many similar graphs. This would allow to obtain more detailed insights on the
individual impacts of the change operations. Also generating similar graphs with
overall lower change probabilities would be interesting. If those tests on additional
similar graphs reveal further advantages, the proposed iterative approach could be
considered more widely applicable. Otherwise its use is confirmed to be limited to
the specific scenarios described in the previous section 5.3.1.

5.4 Recommendations

After the previous chapters extensively presented and analyzed the results of the
test runs, the following ones should provide a compact overview over which algo-
rithms and parametrizations are suitable for which types of the tested graphs. To
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support this, special tables dubbed “recommendation matrices” are used. In those
recommendation matrices, the horizontal headers contain the graph densities and
the vertical headers contain the vertex counts. The cells contain the recommended
algorithm (according to a certain criterion) for dealing with graphs of the respective
combination of vertex count and density. Recommendations for the same algorithm
are colored in the same way to aid the identification of potential patterns.

5.4.1 Exact algorithms

The recommendation matrix for the exact algorithms is depicted in table 5.1. The
recommended algorithms were selected by the lowest average runtime. The empty
cells at the lower right corner represent graph instances for which no algorithm
finished within the time limit. Hence no definite guide can be provided for those
graphs. Since the runtimes of the exact algorithms were often quite similar, those
recommendations are not that strong and using different algorithms will usually not
have a too significant effect. In general, WLMC seems to be a good choice for many
graphs with small to medium densities, whereas WC-MWC is more appropriate for
higher densities. Choosing MWCRedu might be indicated on some larger graphs,
while there is no clear pattern for TSM-MWC.

The recommendation matrix for the reference implementations of the exact algo-
rithms (table 7.1) shows an even greater preference for WLMC throughout the
graphs. But however for the combinations of the highest densities and vertex counts,
other algorithms appear more frequently as the best choice. As that observation in
the lower right corners of the recommendation matrices can be made for both the
own and reference implementations, this reinforces that the choice of WC-MWC,
TSM-MWC or MWCRedu is more advisable for those larger graphs.

5.4.2 Heuristic algorithms

In the recommendation matrices for the heuristic algorithms, some of the names
had to be abbreviated to fit inside their cells. FastWClq is abbreviated to “FWC”,
SCCWalk to “SCC”, SCCWalk4L to “S4L” and UEW-R to “U-R”. The parameters
for which the recommendations apply are written below the (abbreviated) name
in smaller letters. Different parametrizations of the same algorithms use different
shades of the same color as their cell background.

Runtime

If a short average runtime is the highest priority for a given application, UEW will
be the best choice if the graphs have a small to medium vertex count and density.
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Table 5.1: Exact algorithms with the best runtime
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Table 5.2: Heuristic algorithms with the best runtime

For the larger and more dense graphs, FastWClq should be selected as per the
recommendation matrix shown in table 5.2. The pattern in the matrix is quite clear
this time, which strengthens its recommendations.

UEW was not part of the reference implementation comparisons, table 7.2 reveals
that instead SCCWalk4L takes its place as the fastest reference algorithm for smaller
and more sparse graphs. Meanwhile FastWClq remains advisable for large dense
graphs but also gains traction in the middle diagonal, where the number of edges is
in a medium range.

Quality

Besides the runtime, heuristic algorithms can also be judged by their quality. A
recommendation matrix visualizing the algorithm parametrizations with the best
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n
d

0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.5

25
UEW

α = 2

UEW

α = 2

UEW

α = 2

UEW

α = 4

U-R

α = 2

MWC

Peel

MWC

Peel

MWC

Peel

50
UEW

α = 1

U-R

α = 4

U-R

α = 4

U-R

α = 1

U-R

α = 4

MWC

Peel

MWC

Peel

FWC

0.02 s

75
UEW

α = 1

U-R

α = 1

U-R

α = 1

U-R

α = 1

MWC

Peel

MWC

Peel

MWC

Peel

MWC

Peel

100
U-R

α = 2

U-R

α = 2

U-R

α = 1

MWC

Peel

MWC

Peel

MWC

Peel

FWC

1 s

FWC

1 s

125
U-R

α = 2

U-R

α = 4

U-R

α = 4

U-R

α = 4

MWC

Peel

MWC

Peel

FWC

1 s

MWC

Peel

150
U-R

α = 1

U-R

α = 2

U-R

α = 2

MWC

Peel

MWC

Peel

MWC

Peel

MWC

Peel

SCC

1 s

200
U-R

α = 1

S4L

60 s

FWC

60 s

MWC

Peel

MWC

Peel

FWC

1 s

FWC

1 s

FWC

60 s

250
U-R

α = 2

S4L

1 s

U-R

α = 1

MWC

Peel

MWC

Peel

FWC

1 s

FWC

60 s

FWC

60 s

500
U-R

α = 2

U-R

α = 4

S4L

60 s

MWC

Peel

MWC

Peel

S4L

1 s

SCC

60 s

FWC

60 s

1000
FWC

60 s

S4L

60 s

MWC

Peel

MWC

Peel

FWC

60 s

FWC

60 s

FWC

60 s

SCC

60 s

2000
FWC

60 s

MWC

Peel

MWC

Peel

MWC

Peel

SCC

1 s

SCC

60 s

FWC

60 s

FWC

60 s

4000
SCC

1 s

SCC

1 s

MWC

Peel

MWC

Peel

UEW

α = 4

UEW

α = 4

UEW

α = 4
-

Table 5.3: Heuristic algorithms with the best quality

quality is found in table 5.3. The first criterion for the recommendations here was
the average achieved solution quality. When two parametrizations have the same
average quality, the one with more runs completed within the time limit is chosen.
Should there still be a tie situation, the algorithm parametrization with the lower
average runtime is preferred. Because for many graph types several algorithms
delivered 100% quality, the aforementioned secondary criteria will often be crucial
to the decision. The cell corresponding to graphs with n = 4000 and d = 0.5 does
not contain a recommendation because no ground truth could be calculated for those
graphs in a reasonable amount of time.

For very small and sparse graphs, UEW is still a good choice when quality is im-
portant, while for a little larger graphs, UEW-R delivers the best results. For input
data on the upward middle diagonal, i.e., from the large sparse graphs to the small
dense graphs, MWCPeel should be chosen. For the larger and more dense graphs,
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5 Results

FastWClq performs the best, while for the largest dense graphs UEW is recom-
mended again. The latter is largely influenced by the fact most algorithms did not
process those graphs in time, besides FastWClq, which exhibits a subpar quality on
them.

Taking a look at the best choices for the reference implementations regarding quality,
the pattern in the corresponding matrix (table 7.3) is mostly similar to the runtime
one, but now SCCWalk4L also is the best choice on the large and more dense
graphs.

Quality to runtime ratio

Ultimately, when making a decision about which heuristic algorithms to use, the
runtime and quality might both be of importance. For this reason another set of
recommendations is made in table 5.4. The criterion to determine the “winner”
there is the quality achieved per runtime, i.e., q

t
. There is again no well-founded

recommendation available for n = 4000 and d = 0.5 due to the missing ground
truth.

The results regarding which algorithm to choose are basically the same as in table
5.2. However, there are differences in the recommended parameters. Setting the own
weight priority to α = 4 is now more advisable than α = 1. The reason becomes
more clear when revisiting chapter 5.2.5. The runtime differences between the pa-
rameter settings are small and rather arbitrary, while the quality differences are more
distinct. This makes the quality the deciding factor for those recommendations.

In general however, the quality always stays within a range of 0.4 to 1.0, whereas the
runtime spans multiple orders of magnitude. This leads to the ratio metric being
close to the runtime metric, also among the reference implementation results, see
table 7.4. Depending on the requirements of the application, the quality or runtime
within the ratio may need to be weighted with a custom factor to obtain individual
recommendations.
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n
d

0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.5

25
UEW

α = 2

UEW

α = 2

UEW

α = 2

UEW

α = 2

UEW

α = 2

UEW

α = 2

UEW

α = 4

UEW

α = 4

50
UEW

α = 1

UEW

α = 2

UEW

α = 2

UEW

α = 4

UEW

α = 1

UEW

α = 4

UEW

α = 4

UEW

α = 4

75
UEW

α = 2

UEW

α = 2

UEW

α = 4

UEW

α = 1

UEW

α = 4

UEW

α = 1

UEW

α = 4

UEW

α = 4

100
UEW

α = 1

UEW

α = 2

UEW

α = 4

UEW

α = 1

UEW

α = 2

UEW

α = 1

UEW

α = 4

UEW

α = 4

125
UEW

α = 1

UEW

α = 4

UEW

α = 2

UEW

α = 4

UEW

α = 4

UEW

α = 4

UEW

α = 1

UEW

α = 4

150
UEW

α = 4

UEW

α = 2

UEW

α = 2

UEW

α = 4

UEW

α = 4

UEW

α = 4

UEW

α = 4

UEW

α = 4

200
UEW

α = 4

UEW

α = 2

UEW

α = 2

UEW

α = 1

UEW

α = 4

UEW

α = 4

UEW

α = 4

UEW

α = 4

250
UEW

α = 4

UEW

α = 2

UEW

α = 1

UEW

α = 4

UEW

α = 2

UEW

α = 2

UEW

α = 4

FWC

0.02 s

500
UEW

α = 2

UEW

α = 1

UEW

α = 2

UEW

α = 4

UEW

α = 4

FWC

0.02 s

FWC

0.02 s

FWC

0.02 s

1000
UEW

α = 4

UEW

α = 2

UEW

α = 4

UEW

α = 2

FWC

0.02 s

FWC

0.02 s

FWC

0.02 s

FWC

0.02 s

2000
UEW

α = 4

UEW

α = 1

UEW

α = 2

FWC

0.02 s

FWC

0.02 s

FWC

0.02 s

FWC

1 s

FWC

1 s

4000
UEW

α = 2

UEW

α = 4

UEW

α = 1

FWC

0.02 s

FWC

1 s

FWC

1 s

FWC

1 s
-

Table 5.4: Heuristic algorithms with the best quality to runtime ratio
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6 Conclusion

6.1 Summary

In this thesis, different state of the art exact and heuristic algorithms for solving the
maximum weight clique problem were presented. An own heuristic algorithm called
UEW was proposed alongside its extension UEW-R and an approach to optimize
consecutive runs of MWC algorithms on similar graphs. In total 220,320 test runs of
the algorithms with various graphs and parametrizations were conducted to gather
data about the suitability of the algorithms for different use cases regarding graph
size and density.

The tests have shown that the exact algorithms have a very similar performance on
the evaluated graphs. WLMC tends to be slightly faster than other algorithms on
smaller and more sparse graphs, while WC-MWC, TSM-MWC and MWCRedu gain
more traction on larger and more dense graphs. As for the heuristic algorithms,
FastWClq for larger and more dense graphs and the newly proposed UEW for the
other graphs show the best performance both in regard to the runtime and the solu-
tion quality to runtime ratio. When the primary focus lies on quality, additionally
MWCPeel can be a good choice for graphs with an average or slightly above average
amount of edges, as well as UEW-R for the small to medium configurations of the
inspected graph types. Meanwhile the current approach for iterative runs on similar
graphs likely requires further investigation and optimization.

6.2 Outlook

In future work, more algorithms or modifications of the inspected ones could be in-
vestigated. The proposed UEW heuristic could be integrated with other algorithms.
The possibilities reach from using it to deliver initial cliques for exact algorithms to
combining it with the benefit estimation in FastWClq. Also analyzing optimization
potential to speed up the existing implementations, especially for tasks that are
executed often, might result in significant speed-ups. At the time when a reference
implementation of MWCRedu and MWCPeel is released by the authors of [17], this
could also be tested against the other reference implementations, which, together
with a yet to be created low level implementation of UEW and UEW-R, could bring
a new perspective to the comparisons.
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6 Conclusion

While this thesis tapped into the issue of iterative runs on similar graphs, chapter
5.3.2 already discussed that more diverse tests would help to get a clearer under-
standing of the potential there.

To further broaden the comparison, the set of test graphs could be extended. More
graphs for the same configurations of vertex number, density and weight distribution
could be generated to obtain more stable results. The steps in which the parame-
ters are varied could be decreased to get more fine-grained comparisons. Different
vertex degree distributions and other graph generation techniques in general can be
explored too. Besides synthetically generated graphs, more “real” data taken from
different domains could be taken into account as well. While this thesis focused on
rather small graphs, an augmentation of the comparison with larger or more dense
graphs could be very interesting as well.

Depending on the time criticality of the application, the time limit within which the
algorithms have to produce a result can be varied. Running algorithms more often
on each graph yields another possibility to get a more realistic estimation of their
performance. This is especially the case for non-deterministic heuristic algorithms
like FastWClq or SCCWalk.

What most of the proposed extensions of the comparisons have in common is a
potentially great increase of the overall runtime of the comparison. So the available
resources regarding time and computing power have to be taken into account.
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7 Appendix

7.1 Contents of the DVD

• aggregated data Folder containing the aggregated measurements from the
test runs (was also used for the plots in the thesis)

• CliqueSuite Folder containing the software written for the thesis

– build Folder containing a build of the software for Raspberry Pi OS
(64-Bit, release from 11th December 2023)

– src Folder containing the C++ source code

– .clang-format File specifying how clang-format should format the C++
source code

– CMakeLists.txt File specifying how to build the software using CMake

– raspi bulk run.py Python script that was used to execute the test runs
on the Raspberry Pi

– README.md Markdown document describing the parts of the soft-
ware, their requirements and how to use them

• MA sebpe.pdf The written thesis as a PDF document

• test data.zip An archive containing the test graphs and algorithm runs (un-
packed size ∼9.1 GiB)

– iterative runs s2 raspi 1 Folder containing the results of the iterative
runs with 2 % change probability of the graphs on the 1st Raspberry Pi

– iterative runs s2 raspi 2 Folder containing the results of the iterative
runs with 2 % change probability of the graphs on the 2nd Raspberry Pi

– iterative runs s2 raspi 3 Folder containing the results of the iterative
runs with 2 % change probability of the graphs on the 3rd Raspberry Pi

– iterative runs s5 raspi 1 Folder containing the results of the iterative
runs with 5 % change probability of the graphs on the 1st Raspberry Pi

– iterative runs s5 raspi 2 Folder containing the results of the iterative
runs with 5 % change probability of the graphs on the 2nd Raspberry Pi
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– iterative runs s5 raspi 3 Folder containing the results of the iterative
runs with 5 % change probability of the graphs on the 3rd Raspberry Pi

– similar graphs s2 Folder containing the test graphs with 2 % change
probability for the first step of iterative runs

– similar graphs s5 Folder containing the test graphs with 5 % change
probability for the first step of iterative runs

– standard graphs Folder containing the test graphs for the standalone
runs

– standard runs raspi 1 Folder containing the results of the standalone
runs on the 1st Raspberry Pi

– standard runs raspi 2 Folder containing the results of the standalone
runs on the 2nd Raspberry Pi

– standard runs raspi 3 Folder containing the results of the standalone
runs on the 3rd Raspberry Pi

7.2 WC-MWC

Algorithm 27: WC-MWC

(C0, O0, G
′) := InitializeWLMC(G, 0);

Ĉ := C0;
V ′ := vertices of G′;
order V ′ w.r.t. O0;
for i := |V ′| to 1 do

Candidates := N(vi) ∩ {vi+1, vi+2, . . . , v|V ′|};
if w(Candidates) + w(vi) > w(Ĉ) then

(C ′
0, O

′
0, G

′′) := InitializeWLMC(G[Candidates], w(Ĉ)− w(vi));

if w(C ′
0) + w(vi) > w(Ĉ) then

Ĉ := C ′
0 ∪ {vi};

C ′ := SearchMaxWCliqueWC-WMC(G′′, Ĉ, {vi}, O′
0);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;
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Algorithm 28: SearchMaxWCliqueWC-MWC(G, Ĉ, C,O)

if V = ∅ then
return C;

(A,B) := PartitionWC-MWC(G,w(Ĉ)− w(C), O);
if B = ∅ then

return Ĉ;

Let B = {b1, b2, . . . , b|B|}, b1 < b2 < . . . < b|B| w.r.t. O;
for i := |B| to 1 do

Candidates := N(bi) ∩ ({bi+1, bi+2, . . . , b|B|} ∪ A);

if w(C ∪ {bi}) + w(Candidates) > w(Ĉ) then

C ′ := SearchMaxWCliqueWC-MWC(G[Candidates], Ĉ, C ∪ {bi}, O);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;

7.3 TSM-MWC

Algorithm 29: TSM-MWC

(C0, O0, G
′) := InitializeWLMC(G, 0);

Ĉ := C0;
V ′ := vertices of G′;
order V ′ w.r.t. O0;
for i := |V ′| to 1 do

Candidates := N(vi) ∩ {vi+1, vi+2, . . . , v|V ′|};
if w(Candidates) + w(vi) > w(Ĉ) then

(C ′
0, O

′
0, G

′′) := InitializeWLMC(G[Candidates], w(Ĉ)− w(vi));

if w(C ′
0) + w(vi) > w(Ĉ) then

Ĉ := C ′
0 ∪ {vi};

C ′ := SearchMaxWCliqueTSM -WMC(G′′, Ĉ, {vi}, O′
0);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;
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Algorithm 30: SearchMaxWCliqueTSM-MWC(G, Ĉ, C,O)

if V = ∅ then
return C;

B := GetBranchesTSM -MWC(G,w(Ĉ)− w(C), O);
if B = ∅ then

return Ĉ;

A := V \B;
Let B = {b1, b2, . . . , b|B|}, b1 < b2 < . . . < b|B| w.r.t. O;
for i := |B| to 1 do

Candidates := N(bi) ∩ ({bi+1, bi+2, . . . , b|B|} ∪ A);

if w(C ∪ {bi}) + w(Candidates) > w(Ĉ) then

C ′ := SearchMaxWCliqueTSM -MWC(G[Candidates], Ĉ, C∪{bi}, O);

if w(C ′) > w(Ĉ) then

Ĉ := C ′;

return Ĉ;
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7.4 Results

7.4.1 Exact algorithms
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Figure 7.1: Runtimes of the exact algorithms (other densities)
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Figure 7.2: Runtimes of the exact algorithms (reference implementations, other den-
sities)
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n
d

0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.5

25
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

50
WL

MC

WC-

MWC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC
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WL

MC

WL

MC

WC-

MWC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC
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WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC
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WL

MC

WL

MC

WL

MC

WC-

MWC

WL

MC

WL

MC

WL

MC

WL

MC
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WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

200
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

250
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

500
WL

MC

WL

MC

WL

MC

WC-

MWC

WC-

MWC

WL

MC

WC-

MWC

WC-

MWC

1000
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

TSM-

MWC

2000
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WC-

MWC
-

4000
WL

MC

WL

MC

WL

MC

WL

MC

WL

MC

WL

MC
- -

Table 7.1: Exact algorithms (reference implementations) with the best runtime
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7.4.2 Heuristic algorithms

Own implementations
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Figure 7.3: Measurements of FastWClq with different cutoff times (other densities)
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Figure 7.4: Measurements of SCCWalk with different cutoff times (other densities)
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Figure 7.5: Measurements of SCCWalk4L with different cutoff times (other densi-
ties)
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Figure 7.6: Measurements of MWCPeel (other densities)
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Figure 7.7: Measurements of UEW with different own weight priorities (other den-
sities)
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Figure 7.8: Measurements of UEW-R with different own weight priorities (other den-
sities)
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Figure 7.9: Measurements of the heuristic algorithms (other densities)
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Figure 7.10: Measurements of the heuristic algorithms compared to TSM-MWC
(other densities)
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Reference implementations
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Figure 7.11: Measurements of the heuristic algorithms (reference implementations)
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Figure 7.12: Measurements of the heuristic algorithms (reference implementations,
other densities)
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1 s
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FWC

1 s

FWC

1 s

FWC

1 s
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1 s
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1 s
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1 s

Table 7.2: Heuristic algorithms (reference implementations) with the best runtime
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Table 7.3: Heuristic algorithms (reference implementations) with the best quality
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Table 7.4: Heuristic algorithms (reference implementations) with the best quality to
runtime ratio
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7.4.3 Iterative runs on similar graphs
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Figure 7.13: Measurements of iterative runs of WLMC
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Figure 7.14: Measurements of iterative runs of WLMC (other densities)
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Figure 7.15: Measurements of iterative runs of WC-MWC
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Figure 7.16: Measurements of iterative runs of WC-MWC (other densities)
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Figure 7.17: Measurements of iterative runs of TSM-MWC
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Figure 7.18: Measurements of iterative runs of TSM-MWC (other densities)
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Figure 7.19: Measurements of iterative runs of MWCRedu
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Figure 7.20: Measurements of iterative runs of MWCRedu (other densities)
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Figure 7.21: Measurements of iterative runs of FastWClq (20 ms cutoff time, other
densities)
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Figure 7.22: Measurements of iterative runs of FastWClq (1 s cutoff time)
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Figure 7.23: Measurements of iterative runs of FastWClq (1 s cutoff time, other
densities)
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Figure 7.24: Measurements of iterative runs of FastWClq (60 s cutoff time)
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Figure 7.25: Measurements of iterative runs of FastWClq (60 s cutoff time, other
densities)
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Figure 7.26: Measurements of iterative runs of SCCWalk (1 s cutoff time)
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Figure 7.27: Measurements of iterative runs of SCCWalk (1 s cutoff time, other
densities)
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Figure 7.28: Measurements of iterative runs of SCCWalk (60 s cutoff time)
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Figure 7.29: Measurements of iterative runs of SCCWalk (60 s cutoff time, other
densities)
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Figure 7.30: Measurements of iterative runs of SCCWalk4L (1 s cutoff time)
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Figure 7.31: Measurements of iterative runs of SCCWalk4L (1 s cutoff time, other
densities)
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Figure 7.32: Measurements of iterative runs of SCCWalk4L (60 s cutoff time, other
densities)
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Figure 7.33: Measurements of iterative runs of MWCPeel
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Figure 7.34: Measurements of iterative runs of MWCPeel (other densities)

151



7 Appendix

0.1
1
10
100
1000
10000
100000

d = 0.001 d = 0.01

0.1
1
10
100
1000
10000
100000

25 75 250 1000 4000

d = 0.1

25 75 250 1000 4000

d = 0.5

t
[m

s]

non-iterative

iterative (2% change)

iterative (5% change)

t
[m

s]

n n

0

0.2

0.4

0.6

0.8

1

d = 0.001 d = 0.01

0

0.2

0.4

0.6

0.8

1

25 75 250 1000 4000

d = 0.1

25 75 250 1000 4000

d = 0.5

q
u
al
it
y

q
u
al
it
y

n n

Figure 7.35: Measurements of iterative runs of UEW-R (α = 1)
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Figure 7.36: Measurements of iterative runs of UEW-R (α = 1, other densities)
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Figure 7.37: Measurements of iterative runs of UEW-R (α = 2)
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Figure 7.38: Measurements of iterative runs of UEW-R (α = 2, other densities)
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Figure 7.39: Measurements of iterative runs of UEW-R (α = 4)
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Figure 7.40: Measurements of iterative runs of UEW-R (α = 4, other densities)
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