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Phase I: Organize your data into a heap.
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Phase II: Deconstruct heap into sorted array
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If root is greater than both children, swap it with the
smaller child.
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We find the “parent” of cell i by the formula
⌊
i−1
2

⌋
Make i hop along this path until it is at its correct position



An arrary A has the heap property if A[i] > A[parent(i)] for
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An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2

⌋
.

Suppose array is an array of length n, and array[0..i-1] already has
the heap property.
The following code moves the element array[i] to its correct position.

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

After this code has been executed, the heap property holds for
array[0..i].



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=
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// array is an unsorted array

for (int i = 1; i < n; i++) {

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

}

After this code has been executed, the whole array has the heap property.



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2
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.

// array is an unsorted array

for (int i = 1; i < n; i++) {

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

}

After this code has been executed, the whole array has the heap property.

compareTo when using String


