
J V ED H O R C

Phase I: Organize your data into a heap.



J V ED H O R C



J

V ED H O R C



J

V

ED H O R C



J

V

ED H O R C

V is the child of J .
J is the parent of V .



J

V

ED H O R C

V is the child of J .
J is the parent of V .

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)

heap property violated
swap them



JV

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)



JV

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)



JV

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)

heap property violated
swap them



J

V

E

D

H O R C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H

O R C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O

R C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O R

C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O R

C

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O R

C

Heap Property: Children come later than their parent (alphabetically)

heap property violated
swap them



J

V

E

D

H O RC

Heap Property: Children come later than their parent (alphabetically)



J

V

E

D

H O RC

Heap Property: Children come later than their parent (alphabetically)

heap property violated
swap them



J

V

C

D

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

V

C

D

H O RE

Heap Property: Children come later than their parent (alphabetically)

heap property violated
swap them



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



Phase II: Deconstruct heap into sorted array



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)

heap property violated

swap them



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)

heap property violated

swap them
he
ap

pr
op
ert
y v
iol
at
ed

sw
ap

th
em



J

V

D

C

H O RE

Heap Property: Children come later than their parent (alphabetically)

heap property violated

swap them
he
ap

pr
op
ert
y v
iol
at
ed

sw
ap

th
em

If root is greater than both children, swap it with the
smaller child.



J

D

V

C

H O RE

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O RE

Heap Property: Children come later than their parent (alphabetically)

swap them



J

D

V

C

H O R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O

R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O

R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O

R

E

Heap Property: Children come later than their parent (alphabetically)

swap them



J

D

V

C

H O

R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H O

R

E

Heap Property: Children come later than their parent (alphabetically)

sw
ap

th
em



J

D

V

C

H

OR

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H

OR

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H

OR

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H

O

R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H

O

R

E

Heap Property: Children come later than their parent (alphabetically)



J

D

V

C

H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

swap
them



D

V

C

H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

J



D

V

C

H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

J



D

V

C H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

J



D

V

C H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

J



D

V

C H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

J



D

V

C H

O

R

E

Heap Property: Children come later than their parent (alphabetically)

Jsw
ap
th
em



D

V

C H

O

J

E

Heap Property: Children come later than their parent (alphabetically)

R



D

V

C H

O

J

E

Heap Property: Children come later than their parent (alphabetically)

R



D

V

C H

O

JE

Heap Property: Children come later than their parent (alphabetically)

R



D

V

C H

O

JE

Heap Property: Children come later than their parent (alphabetically)

R



D

V

C H

O

JE

Heap Property: Children come later than their parent (alphabetically)

R



D

V

C H

O

JE

Heap Property: Children come later than their parent (alphabetically)

R

swap
them



D

O

C H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D

O

C H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H

V

JE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H VJE

Heap Property: Children come later than their parent (alphabetically)

RD OC H VJE

Heap Property: Children come later than their parent (alphabetically)

R



D OC H VJE

Heap Property: Children come later than their parent (alphabetically)

RD OC H VJE

Heap Property: Children come later than their parent (alphabetically)

R



HeapSort: towards Java Code

J

V

E

D

H O R

C



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R

7



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R

7

C

7



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R

7

C

7

We find the “parent” of cell i by the formula
⌊
i−1
2

⌋



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R

7

C

7

We find the “parent” of cell i by the formula
⌊
i−1
2

⌋



HeapSort: towards Java Code

J

V

E

D

H O R

C

0

1 2

3 4 5 6

0 1 2 3 4 5 6

D E J V H O R

7

C

7

We find the “parent” of cell i by the formula
⌊
i−1
2

⌋
Make i hop along this path until it is at its correct position



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2

⌋
.



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2

⌋
.

Suppose array is an array of length n, and array[0..i-1] already has
the heap property.
The following code moves the element array[i] to its correct position.

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

After this code has been executed, the heap property holds for
array[0..i].



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2

⌋
.

// array is an unsorted array

for (int i = 1; i < n; i++) {

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

}

After this code has been executed, the whole array has the heap property.



An arrary A has the heap property if A[i] > A[parent(i)] for
all indices i ≥ 1. Here, parent(i) :=

⌊
i−1
2

⌋
.

// array is an unsorted array

for (int i = 1; i < n; i++) {

int node = i;

while (i > 0 && array[i] < array[(i-1)/2] {

int temp = array[i];

array[i] = array[(i-1)/2];

array[(i-1)/2] = temp;

}

}

After this code has been executed, the whole array has the heap property.

compareTo when using String


