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Case 2: e is not the last edge of thickness i on this path.
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s
i rootrank( ) ≥ fi(fi(r))

strong redirectionstrong redirections: rank(root) ≥ f
(r)
i (r) = fi+1(r)after r − 1

and the thickness of e increases to i + 1
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How large can ` become?
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Overall running time is O(` (n + m))

` is the number of thickness levels

Imagine is an edge of thickness 5.
e

x y

rank(y) ≥ f5(rank(x)) ≥ f5(2)
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