Union Find, Path Compression, and
the Inverse Ackermann Function
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Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

fi(r)
(r+ < s <2 thickness 1 ) (1, (1))
fQ(T)@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4




Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r times

P,

fi(r)
@g s < 2r: thickness 1 folr) = }1
fQ(T)@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

(il far) .



Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s
fi(r) T tlnes
@4 < s <2r: thickness 1 p,0) = (7, fi(r)...)
fQ(T)@ < s < r2": thickness 2 = /")

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4



Let's summarize and generalize

Different thickness types: o »o
rank = r rank = s
f1(r) r tlnes
(+ 1)< s <2 thickness 1 oy = 77 1))
f2(7“)@§ s < r2": thickness 2 = f;"(r)

fg(r)@g s < fa(r): thickness 3 f3(r) = 7 (r)
fa(r) < s < f5(r): thickness 4



Let's summarize and generalize

Different thickness types: o »o
rank = r rank = s
r tlnes
(+ 1)< s <2 thickness 1 oy = 77 1))
2 T)@§3<r2’”' thickness 2 :fl(r)( )

r)@é s < f4(r): thickness 3 f3(1) = 3 (r)
fa(r) < s < f5(r): thickness 4 fa(r) = m( )
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Weak and Strong Edge Redirections

e
r /
thickness(e) = 1
fi(r) < s < figa(r)

Case 1: e is the last edge of thickness 7 on this path.

Then find operation pays one &for this.

redirect root

S

"his Is a weak edge redirection.
Total cost: number of thickness types.
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Weak and Strong Edge Redirections

.e/v’
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e s not the last edge of thickness ¢ on this path.

redirect root

S

after » — 1 strong redirections: rank(root) > fq;(r) (r) = fita(r)

and the thickness of e increases to 7 + 1
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let ¢ be the number of thickness types occurring.

each find pays at most { €

* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Overall, x pays at most Iz rank(a:)

> L-rank(x) =£- ) |{elements of rank 7}
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Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most £ €

¢ » T pays at most

before the thickness of e increases.

X

Overall, x pays at most / - rank(x

> L-rank(x) =£- ) |{elements of rank 7}
AP
= 64n.
Overall cost is O£ - (n+m)).

How large can ¢ become?
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Overall running time is O(¢ (n +m))
¢ 1s the number of thickness levels

Imagine .:13 & ?T is an edge of thickness b.




Overall running time is O(¢ (n +m))

¢ I1s the number of thickness levels
e

Imagine o »e is an edge of thickness 5.
x y\
rank(y) > fs(rank(z)) > f5(2)
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What is f5(2)7

™ < OO

AN AN N

fi(
fa(
f3(

n—+1
2n
n 2"

f1(n)
f2(n)
f3(n)

8 - 2% = 2048.

f3(f3(2)) = f3(8)

fa(2)
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filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048) ....)))
2048 times

52048

log(n) > rank(y) > f5(2)> 22



