Union Find, Path Compression, and
the Inverse Ackermann Function

The Data

The Data

’w’ S
: o

The Data The Operations

T W

The Data The Operations

T 414
>>> find(h)

The Data The Operations

T 414
>>> find(h)

N

The Data The Operations

1 @W >>> find(h)

v 1
>>> union(7, V)

The Data The Operations

T 414
@ >>> find(h)

1
>>> union(7, V)

The Data The Operations

3 @W >>> find(h)

1
>>> union(7, V)

@) S>>
Nty

Y @Z

The Data The Operations

>>> init({a,b, c,d})

The Data The Operations

@ >>> init({a,b,c,d})
@ @ > 2> >
©

The Data The Operations

@ >>> init({a,b,c,d})

@ @ >> >

>\

The names are arbitrary

The Data Structure: Union by Rank

The Data Structure: Union by Rank

The Data Structure: Union by Rank

Every element has a rank.
a It Is Initialized to 2 at the
n beginning.

The Data Structure: Union by Rank

Every element has a rank.

5 a2 It Is Initialized to 2 at the
€ 2 L
n beginning.
c2 2b
2f 2
d? >
2} g
: X4

The Data Structure: Union by Rank

2
e 2,
C2 2h
2 2
d? / "
2} 29
j2 22' 2€

The Data Structure: Union by Rank

>>> union(e, a)

2
e 2,
C2 2h
2 2
d? / "
2} 29
j2 22' 2€

The Data Structure: Union by Rank

>>> union(e, a)

if rank(e) = rank(a):
0 al) -
c2 2b
2 2
d? ! "
2} 29
j2 22' 2 4

The Data Structure: Union by Rank

>>> union(e, a)

@/\?L@ if rank(e) = rank(a):

2 edge from e to a

The Data Structure: Union by Rank

>>> union(e, a)

/\?L@ if rank(e) = rank(a):

e@ 2 edge from e to a

increase rank of a

The Data Structure: Union by Rank

>>> union(e, a)

/\?L@ if rank(e) = rank(a):

e@ 2 edge from e to a

increase rank of a

The Data Structure: Union by Rank

>>> union(e, a)

/\33 if rank(e) = rank(a):

e 2 0 edge from e to a

increase rank of a

The Data Structure:

Union by Rank

>>> union(e, a)
if rank(e) = rank(a):
edge from e to a

increase rank of a

>>> union(a,c)

The Data Structure:

Union by Rank

>>> union(e, a)
if rank(e) = rank(a):
edge from e to a

increase rank of a

>>> union(a,c)
if rank(e) # rank(a):

The Data Structure: Union by Rank

>>> union(e, a)

/* 3 if rank(e) = rank(a):
e 2 /CL 0 edge from e to a

increase rank of a

2 2
¢ , b 5 >>> union(a, c)
f m if rank(e) # rank(a):
d2 5 smaller to larger
2} g
. 4
2Z 2

The Data Structure: Union by Rank

>>> union(e, a)

/* 3 if rank(e) = rank(a):
e 2 /CL 0 edge from e to a

increase rank of a

2 2
¢ , b 5 >>> union(a, c)
f m if rank(e) # rank(a):
d2 5 smaller to larger
2h g don’t change rank
- 14
2Z 2

The Data Structure: Union by Rank

>>> union(b, n)

& /(ZTL
C2 2h
2 2
d? / "
2} 29
j2 22' 2€

The Data Structure: Union by Rank

>>> union(b, n)

;a3
& /(3TL
c2 26/‘
2 2
d? / "
2} 29
j2 22' 2€

The Data Structure: Union by Rank

>>> union(b, n)

62/\?13 3 >>> union(a,n)
n
cé(26/‘
: 2f Qm
d 2} 29
P 2; o

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4
T
/ Zb/‘

C2

The Data Structure: Union by Rank

>>> union(b, n)

>>> union(a,n)
O;\In cost: O(1)
c? 26/‘
2 2
d’ / "
2} °g
j2 22' 2 (

The Data Structure: Union by Rank

>>> union(b, n)

/\(>>> union(a,n)

3

e 2 a/\é? cost: O(1)
T

/ >>> find(e)
2 Qb/‘
2 2
d? / "
2} 29
y X4

The Data Structure: Union by Rank

>>> union(b, n)

>>> union(a,n)
@;\2‘0 cost: O(1)
>>> find(e)
c? 26/‘
2 2
d’ 4 "
2} °g
2 2

The Data Structure: Union by Rank
>>> union(b,n)

/6\ >>> union(a,n)

3

e 2 CL/\I cost: O(1)
T

/ >>> find(e)
2 Qb/‘
2 2
d? / "
2} 29
y X4

The Data Structure: Union by Rank

>>> union(b, n)

>>> union(a,n)
2/\@\ cost: O(1)

- / ‘n >>> find(e)
C2 Qb/‘
2 y
d? / .
2} 29
j2 22' 2€

The Data Structure: Union by Rank

>>> union(b, n)

/\\ 36\ >>> union(a,n)
e 2 @ 4, cost: O(1)

/ >>> find(e)
2 Qb/‘
2 2
d? / "
2} 29
y X4

The Data Structure: Union by Rank

>>> union(b, n)

/\(>>> union(a,n)

3

e 2 CL/\SZ? cost: O(1)
T

/ >>> find(e)
2 Qb/‘
2 2
d? / "
2} 29
y X4

The Data Structure: Union by Rank
>>> union(b,n)

>>> union(a,n)
ﬁ;\ cost: O(1)
/ , 9 >>> find(e)
b

C2

The Data Structure: Union by Rank

>>> union(b, n)
/* >>> union(a,n)
3)
e 2 CL/\(cost: O(1)
/ 9 >>> find(e)
2b n

C2

The Data Structure:

5 a3

-

C2

Union by Rank

>>> union(b, n)
>>> union(a,n)

cost: O(1)
>>> find(e)

" cost O(length of path)

The Data Structure: Union by Rank
>>> union(b,n)

>>> union(a,n)
ﬁ;\ cost: O(1)
/ , 9 >>> find(e)
b n

2
¢ , cost: O(length of path)
f m < O(height of tree)

The Data Structure: Union by Rank
>>> union(b,n)

>>> union(a,n)
ﬁ;\ cost: O(1)
/ , 9 >>> find(e)
b n

2
C . , cost: O(length of path)
f m < O(height of tree)
d2 5 < O(rank(n))
21, 9
22' 2 (

The Data Structure: Union by Rank
>>> union(b,n)

>>> union(a,n)
ﬁ;\ cost: O(1)
/ 9 >>> find(e)
2
b n

c? cost: O(length of path)
2f m < O(height of tree)
d2 5 < O(rank(n))
2h g because
Lemma: The height of the

= 22' 2 4 subtree rooted at x is
J rank(x) — 2.

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

C2

>>> find(e)

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

C2

>>> find(e)
n
2 >>> union(g,m)

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

C2

>>> find(e)
n
3 >>> union(g,m)

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

C2

>>> find(e)
n
3 >>> union(g,m)

P >>> union(k,¥{)
2

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

C2

>>> find(e)
n
3 >>> union(g,m)

P >>> union(k,¥{)
2

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
4

T

/ Zb/‘

>>> find(e)

c2 n
2 3 >>> union(g,m)
)i m .
d2 P >>> union(k,¥{)
27, 29 >>> union(¥, m)

The Data Structure: Union by Rank

>>> union(b, n)

/\33’\ >>> union(a,n)

& 2 4
T :
/ /‘ >>> find(e)
C2 2b n
2 4 >>> union(g,m)
d2 f /m >>> union(k,¥{)
27, 29 j >>> union({, m)
2. 34
2o

The Data Structure: Union by Rank

>>> union(b, n)

/\33’\ >>> union(a,n)

& 2 4TL
/ >>> find(e)
c2 26/‘ n
2 4 >>> union(g,m)
d2 f /m >>> union(k,¥{)
27, 29 j >>> union(¥, m)
>>> union(n,m)
PR

The Data Structure: Union by Rank

>>> union(b, n)

ﬁ;\ >>> union(a,n)
/ , j‘n\' >>> find(e)
b
5

c2 n
2 >>> union(g,m)
d2 f /m >>> union(k,¥{)
27, 29 j >>> union(¥, m)
>>> union(n,m)
2 34

Lemma. The height of the

subtree rooted at x is
rank(x) — 2.

Lemma. The height of the Lemma. The number of nodes in

subtree rooted at x is r's subtree is at least 2rank(x)—2
rank(x) — 2.

Lemma. The height of the Lemma. The number of nodes in

subtree rooted at x is r's subtree is at least 2rank(x)—2

rank(x) — 2.

Lemma. The number of

elements with rank 7 iIs at most

n __ 4n
5=2 = o

Lemma. The height of the Lemma. The number of nodes in

subtree rooted at x Is z's subtree is at least 2rank(x)—2,
rank(x) — 2.

Lemma. The number of Corollary. The maximum rank
elements with rank r is at most is at most log(n) 4+ 2. The

Sz = g—?,?. maximum height is at most

log(n). The operation find(x)
takes O(logn) steps.

Path Compression

The Data Structure: Union by Rank

The Data Structure: Union by Rank

>>> find(c)

The Data Structure: Union by Rank

>>> find(c)

62 4TL
Zb/‘ \'
5
d? 1 Y
2} 29 j
oo

The Data Structure: Union by Rank

>>> find(c)
LoDy

O 4 \'
d? 1) /5 I

2} g

The Data Structure: Union by Rank

>>> find(c)

The Data Structure: Union by Rank

>>> find(c)

The Data Structure: Union by Rank

>>> find(c)

The Data Structure: Union by Rank

>>> find(c)

The Data Structure: Union by Rank

>>> find(c)
& 4TL
c? 26/‘ \'
2]0\—75’)’)@
2 , Pl
2} g
. 3

’J;

The Data Structure: Union by Rank

>>> find(c)

/\ ™m
a3
& 2 4
n rank(n) is still 4. But it's subtree
2 Qb/‘ has height 1 and consists of 2
nodes only.

2f Sm

d2 2 el
2})
. 4
25 3

j2
’J;

Lemma. The height of the Lemma. The number of nodes in

subtree rooted at x Is z's subtree is at least 2rank(x)—2,
rank(x) — 2.

Lemma. The number of Corollary. The maximum rank
elements with rank r is at most is at most log(n) 4+ 2. The

Sz = g—?,?. maximum height is at most

log(n). The operation find(x)
takes O(logn) steps.

Cermmaa—TI he number of nades—m—

T's subtree is—attEastrank(x)—2
Lemma. The number of Corollary. The maximum rank
elements with rank r is at most is at most log(n) 4+ 2. The
Sz = g—?. maximum height is at most

log(n). The operation find(x)
takes O(logn) steps.

Cermmaa—TI he number of nades—m—

T's subtree is—attEastrank(x)—2
Lemma. The number of Corollary. The maximum rank
elements with rank r is af most is at most log(n) + 2. The
Sz = g—?. maximum height is at most

log(n). The operation find(x)
takes O(logn) steps.

Running Time Analysis of the Path
Compression Data Structure

Running Time Analysis of the Path

Compression Data Structure
First Attempt

root)

Edge e gets redirected.

Edge e gets redirected.

This operation costs 1 €

Edge e gets redirected.

This operation costs 1 €

Who has to pay?

Edge e gets redirected.

This operation costs 1 €

Who has to pay?

Edge e gets redirected.

This operation costs 1 €

Who has to pay?

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

>>> find(u)

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

>>> find(u)

52

50

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

>>> find(u)

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

>> ind(u)

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Definition. An edgeu
is thick if rank(y) > 2 rank(x).

o5 Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Is paid by find

o5 Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Is paid by find

Is paid by x

®
= 4

o5 Definition. An edgeu
is thick if rank(y) > 2 rank(x).

Is paid by find

Is paid by x

®
= 4

52
50
Y

o5 Afinition. An edge%—u
is”thick if rank(y) > 2 rank(x).

Is paid by find

Is paid by x

®
= 4

o5 Definition. An edgeu
is thick if rank(y) > 2 rank(x).

>>>find(u) © © © (

is paid by find

Is paid by x

®
= 4

Definition. An edgeu o————peo s paid by find

is thick if rank(y) > 2 rank(z). =

pe IS paid by x

Definition. An edgeu

is thick if rank(y) > 2 rank(z). =

is paid by find

is paid by x

Lemma. Every find operation
redirects at most loglog(n) thick
edges.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation
redirects at most loglog(n) thick

edges. ...e root

5

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot

IV
DO

is paid by find

is paid by x

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot

is paid by find

is paid by x

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot

is paid by find

is paid by x

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot

is paid by find

is paid by x

Definition. An edgeu

is thick if rank(y) > 2 rank(x).

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot
16

is paid by find

is paid by x

Definition. An edgeu o————peo s paid by find

is thick if rank(y) > 2 rank(x). =, © i paid by 2
Y

Lemma. Every find operation
redirects at most loglog(n) thick

edges. _...e Toot

> 16 < log(n)

Definition. An edgeu

is thick if rank(y) > 2 rank(z). =

is paid by find

is paid by x

Lemma. Every find operation
redirects at most loglog(n) thick
edges.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). =, © L is paid by
Y

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge T e >
is thin. It can be redirected at most

r := rank(x) times before it becomes
thick.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge T .7" >0

Is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge T .7" >0

Is thin. It can be redirected at most >r+1
r := rank(x) times before it becomes
thick.

Definition. An edgeu 0o

is thick if rank(y) > 2 rank(x). =

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find

operation has to pay at most
loglog(n)® >+ 2

Lemma. Suppose edge T /\/*

Is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

is paid by find

is paid by x

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

>r+3

Lemma. Suppose edge T 4

Is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). =, © s paid by &

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge T @
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

Definition. An edgeu o————peo s paid by find
is thick if rank(y) > 2 rank(xz). = s paid by 2

Lemma. Every find operation > 9
redirects at most loglog(n) thick

edges. Thus, every find

operation has to pay at most

loglog(n)®

Lemma. Suppose edge T 4

Is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

Definition. An edge e—— g9 &——eo ispaid by find
is thick if rank(y) > 2 rank(z). =z © - s paid by =
Lemma. Every f£ind operation > 9y

redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

r
Lemma. Suppose edge T
is thin. It can be redirected at most
r := rank(z) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge

is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most
loglog(n)®

Lemma. Suppose edge

is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most

loglog(n) € #@ paid by elements

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most

loglog(n) € #@ paid by elements

< > rank(x)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most

loglog(n) € #@ paid by elements

< > rank(x)

= > 1 |{rank—r—elements}|

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most

loglog(n) € #@ paid by elements

< > rank(x)

= > 1 |{rank—r—elements}|

S err) 27”n—2

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

m find operations: < mloglog(n) €

Lemma. Every find operation
redirects at most loglog(n) thick
edges. Thus, every find
operation has to pay at most

loglog(n) € #@ paid by elements

< > rank(x)

= > 1 |{rank—r—elements}|

SZTT° 27~n_2 :6n

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(z) ©

Union-by-Rank: O(n + mlogn)

Union-by-Rank: O(n + mlogn)

Union-by-Rank with path compression: O(n + mloglogn)

Union-by-Rank: O(n + mlogn)

Union-by-Rank with path compression: O(n + mloglogn)

Even Better Analysis

Thin edge

g

Thin edge

O >
rank(z) =r

Thin edge

r—+1

rank(z) =r

redirect r — 1 times

Thin edge .
L o >
rank(z) =r

Thin edge

r—+1

rank(z) =r

redirect r — 1 times

—

.

(A

2r

2r
redirect r — 1 times

Thin edge .1 x ’—/
L @ »o |
rank(z) = r r becomes thick

2r
Thin edge redirect » — 1 times

r—+1) ’.-/
L @ »>® |
rank(z) = r r becomes thick

2r

i

(A

2r
redirect r — 1 times

x J
r becomes thick

2r
Thin edge redirect » — 1 times

r—+1) ’.-/
L @ »>® |
rank(z) = r r becomes thick

8r

2r 4r
Thick edge € .

X

2r
Thin edge redirect » — 1 times

r—+1) ’.-/
L @ »>® |
rank(z) = r r becomes thick

2r dr
Thick edge L redirect r — 1 times

—

X

Thin edge redirect r — 1 times ’—/
r+ 1
L @ »>®
rank(z) = r ; becomes thick

r2"

Thick edge 3,0 redirect r — 1 times

L G : aj

Thin edge redirect r — 1 times ’—/
r+ 1
L @ »>®
rank(z) = r ; becomes thick

r2"

Thick edge 3,0 redirect r — 1 times

e :) |
» ultra-thick

Thin edge redirect r — 1 times ’—/
r+ 1
L @ »o
rank(z) = r ; becomes thick

r2"

Thick edge ¥ redirect r — 1 times

. e : , |
» ultra-thick

Spot the error!

root

20

40

root

41

20 root

o) 40 41

>>> find(x)

3 root

6 0 40 41

>>> find(x)

20

40 41

20

40 41

....... rOOt
............. 41
Problem: 40

20 40 20

o——————P® becomes 0’\41

20

40 41

....... root
............. 41
Problem: 40

20 40

20
—————P® becomes 0’\

But | cIaimedwouId be at least 80

3 root
€T 5 9 40 41
2
Problem:
20 40

20
—————P® becomes 0’\

But | cIaimedwouId be at least 80

last thick edge on the path

Problem:

20 40

20
o—————P® becomes 0’\

But | cIaimedwouId be at least 80

last thick edge on the path

last thin edge on the path

Problem:

20 40

20
o—————P® becomes 0’\

But | cIaimedwouId be at least 80

Let's summarize and generalize

Let's summarize and generalize

Different thickness types:

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r+1<s < 2r: thickness 1

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r+1<s < 2r: thickness 1
2r < s < r2": thickness 2

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r+1<s < 2r: thickness 1
2r < s < r2": thickness 2
r2" < s: thickness 3

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r+1<s < 2r: thickness 1
2r < s < r2": thickness 2
r2" < s: thickness 3 Why stop here?

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

fi(r)
@§ s < 2r: thickness 1
2r < s < r2": thickness 2

r2" < s: thickness 3 Why stop here?

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

fi(r)
@§ s < 2r: thickness 1
fQ(T)@ < s < r2": thickness 2
r2" < s: thickness 3 Why stop here?

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

f1(r)
@§ s < 2r: thickness 1
fQ(T)@ < s < r2": thickness 2
fg(r)@g s: thickness 3 Why stop here?

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

f1(r)
@g s < 2r: thickness 1
fé(ﬂ@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

f1(r)
@g s < 2r: thickness 1
fé(ﬂ@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

f1(r)
@g s < 2r: thickness 1
fé(ﬂ@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

fi(r)
(r+ < s <2 thickness 1) (1, (1))
fQ(T)@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s

r times

P,

fi(r)
@g s < 2r: thickness 1 folr) = }1
fQ(T)@ < s < r2": thickness 2

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

(il far) .

Let's summarize and generalize

Different thickness types: o »e
rank =7 rank = s
fi(r) T tlnes
@4 < s <2r: thickness 1 p,0) = (7, fi(r)...)
fQ(T)@ < s < r2": thickness 2 = /")

fg(r)@g s < f4(r): thickness 3
fa(r) < s < f5(r): thickness 4

Let's summarize and generalize

Different thickness types: o »o
rank = r rank = s
f1(r) r tlnes
(+ 1)< s <2 thickness 1 oy = 77 1))
f2(7“)@§ s < r2": thickness 2 = f;"(r)

fg(r)@g s < fa(r): thickness 3 f3(r) = 7 (r)
fa(r) < s < f5(r): thickness 4

Let's summarize and generalize

Different thickness types: o »o
rank = r rank = s
r tlnes
(+ 1)< s <2 thickness 1 oy = 77 1))
2 T)@§3<r2’”' thickness 2 :fl(r)()

r)@é s < f4(r): thickness 3 f3(1) = 3 (r)
fa(r) < s < f5(r): thickness 4 fa(r) = m()

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

.e/"

Weak and Strong Edge Redirections

e

S

Weak and Strong Edge Redirections

"

thickness(e) = 1

S

Weak and Strong Edge Redirections

—
.
thickness(e) = 1

filr) < s < fiya(r)

S

Weak and Strong Edge Redirections

—
.
thickness(e) = 1

filr) < s < fiya(r)

o redirect

Weak and Strong Edge Redirections

—
.
thickness(e) = 1

filr) < s < fiya(r)

redirect root

S

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 1: e is the last edge of thickness 7 on this path.

redirect root

S

Weak and Strong Edge Redirections

e
r /
thickness(e) = 1
fi(r) < s < figa(r)

Case 1: e is the last edge of thickness 7 on this path.

Then find operation pays one &for this.

redirect root

S

Weak and Strong Edge Redirections

e
r /
thickness(e) = 1
fi(r) < s < figa(r)

Case 1: e is the last edge of thickness 7 on this path.

Then find operation pays one &for this.

redirect root

S

This i1s a weak edge redirection.

Weak and Strong Edge Redirections

e
r /
thickness(e) = 1
fi(r) < s < figa(r)

Case 1: e is the last edge of thickness 7 on this path.

Then find operation pays one &for this.

redirect root

S

"his Is a weak edge redirection.
Total cost: number of thickness types.

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e is not the last edge of thickness ¢ on this path.

redirect root

S

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e is not the last edge of thickness ¢ on this path.

redirect root

S

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e is not the last edge of thickness ¢ on this path.

redirect root

S

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e is not the last edge of thickness ¢ on this path.

redirect root

S

strong redirection

Weak and Strong Edge Redirections

.e/v‘
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e is not the last edge of thickness ¢ on this path.

redirect root

S

strong redirection

Weak and Strong Edge Redirections

.e/v’
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e s not the last edge of thickness ¢ on this path.

redirect root

S

after » — 1 strong redirections: rank(root) > fq;(r) (r) = fita(r)

Weak and Strong Edge Redirections

.e/v’
.
thickness(e) = 1
fi(r) < s < fiqa(r)

Case 2: e s not the last edge of thickness ¢ on this path.

redirect root

S

after » — 1 strong redirections: rank(root) > fq;(r) (r) = fita(r)

and the thickness of e increases to 7 + 1

Putting Everything Together

Putting Everything Together

let ¢ be the number of thickness types occurring.

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most / €

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most / €

€
® o

X

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most / €

e
* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most { €

* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Overall, x pays at most Iz rank(a:)

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most { €

* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Overall, x pays at most Iz rank(a:)

> L-rank(x) =£-) |{elements of rank 7}

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most { €

* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Overall, x pays at most Iz rank(a:)

> L-rank(x) =£-) |{elements of rank 7}
<l i

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most { €

* »e 1 pays at most rank(x)€

before the thickness of e increases.

X

Overall, x pays at most Iz rank(a:)

> L-rank(x) =£-) |{elements of rank 7}
<l i
= 6/{n.

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most { €

6 :
* »e T pays at most rank(z)€

before the thickness of e increases.

X

Overall, x pays at most / - rank(x

> L-rank(x) =£-) |{elements of rank 7}
AP
= 64n.
Overall cost is O(¢ - (n+m)).

Putting Everything Together

let ¢ be the number of thickness types occurring.

each find pays at most £ €

¢ » T pays at most

before the thickness of e increases.

X

Overall, x pays at most / - rank(x

> L-rank(x) =£-) |{elements of rank 7}
AP
= 64n.
Overall cost is O£ - (n+m)).

How large can ¢ become?

Overall running time is O(¢ (n +m))

Overall running time is O(¢ (n +m))

¢ I1s the number of thickness levels

Overall running time is O(¢ (n +m))
¢ 1s the number of thickness levels

Imagine .:13 & ?T is an edge of thickness b.

Overall running time is O(¢ (n +m))

¢ I1s the number of thickness levels
e

Imagine o »e is an edge of thickness 5.
x y\
rank(y) > fs(rank(z)) > f5(2)

What is f5(2)7

fi(n) =n+1

What is f5(2)7

fi(n) =n+1

What is f5(2)7

f1(2)
f2(2)

=~ W

f1(2)
f2(2)

=~ W

What is f5(2)7

™ < OO

AN AN N

fi(
fa(
f3(

n—+1
2n
n 2"

f1(n)
f2(n)
f3(n)

8 - 2% = 2048.

f3(f3(2)) = f3(8)

fa(2)

filn) =n+1 f1(2) =
faln) = 2n (2) =
fz(n) =n2" f3(2) =

f5(2) = fa(f1(2)) = f1(2048)

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.
f5(2) = fa(fa(2)) = f4(2048) > f3(f3(fs(... f3(2048)...)))

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048))))
2048 times

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048))))
2048 times

52048

> 927

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048))))
2048 times

52048

f5(2)> 22"

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048))))
2048 times

52048

rank(y) > f5(2)> 2%

filn) =n+1 £1(2) =
fa(n) = 2n f2(2) = 4
f3(n) =n2" f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8- 2% = 2048.

f5(2) = fa(f1(2)) = f1(2048) st(fs(f:a(- - [3(2048))))
2048 times

52048

log(n) > rank(y) > f5(2)> 22

