Union Find, Path Compression, and the Inverse Ackermann Function

The Data

The Data

$$
\begin{array}{ccccc}
e & & a & & \\
& c & & b & \\
& & & f & \\
d & & & & m \\
& h & & g & \\
j & & i & & \ell \\
& & & & \\
& & & k &
\end{array}
$$

The Data

The Data

The Data The Operations

The Data

The Operations

$$
\ggg \operatorname{find}(h)
$$

The Data

The Operations

$$
\begin{aligned}
& \ggg \text { find }(h) \\
& T \\
& \ggg
\end{aligned}
$$

The Data

The Operations

$$
\begin{aligned}
& \ggg \text { find }(h) \\
& T \\
& \ggg \text { union }(T, V)
\end{aligned}
$$

The Data
 The Operations

$$
\begin{aligned}
& \ggg \operatorname{find}(h) \\
& T \\
& \ggg \operatorname{union}(T, V)
\end{aligned}
$$

The Data
 The Operations

$$
\begin{aligned}
& \ggg \text { find }(h) \\
& T \\
& \ggg \text { union }(T, V) \\
& \ggg
\end{aligned}
$$

The Data

The Operations

$$
\ggg \operatorname{init}(\{a, b, c, d\})
$$

The Data

The Operations

$\ggg \operatorname{init}(\{a, b, c, d\})$
(d)

$$
\ggg
$$

(b)
(c)

The Data

The Operations

(a)
$\ggg \operatorname{init}(\{a, b, c, d\})$
(d)

The Data Structure: Union by Rank

The Data Structure: Union by Rank

e		a		
	c			
d		f		
	h		g	
j		i		
			k	

The Data Structure: Union by Rank

The Data Structure: Union by Rank

The Data Structure: Union by Rank

$$
\begin{array}{ccccc}
e^{2} & a^{2} & & { }^{2} n \\
& c^{2} & & { }^{2} b & \\
d^{2} & & { }^{2} f & & { }^{2} m \\
{ }^{2} h & & { }^{2} g & \\
j^{2} & & { }^{2} i & & \\
& & & { }^{2} \ell
\end{array}
$$

The Data Structure: Union by Rank

$$
\ggg \operatorname{union}(e, a)
$$

$e^{2} \quad a^{2}$
${ }^{2} n$
$c^{2} \quad{ }^{2} b$
$d^{2}{ }_{2}{ }^{2}{ }^{2} f \quad{ }^{2} g{ }^{2} m$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

$e^{2} \quad a^{2}$
\ggg union (e, a)
if $\operatorname{rank}(e)=\operatorname{rank}(a)$:
$c^{2} \quad{ }^{2} b$
${ }^{2} n$
${ }^{2} f$
${ }^{2} m$
d^{2} ${ }^{2} h \quad{ }^{2} g$
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

${ }^{2} n$
\ggg union (e, a)
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$:
edge from e to a
${ }^{2} b$

d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

$$
{ }^{2} k
$$

The Data Structure: Union by Rank

${ }^{2} n$
\ggg union (e, a)
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$: edge from e to a increase rank of a

The Data Structure: Union by Rank

\ggg union (e, a)
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$: edge from e to a increase rank of a
d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

\ggg union (e, a) c^{2} ${ }^{2} b$
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$: edge from e to a increase rank of a
${ }^{2} n$
$e^{2} a^{3}$

The Data Structure: Union by Rank

The Data Structure: Union by Rank

The Data Structure: Union by Rank

2 ${ }^{2} f$
d^{2}
j^{2}

$$
{ }^{2} i
$$

\ggg union (e, a)
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$: edge from e to a increase rank of a
\ggg union (a, c)
if $\operatorname{rank}(\mathrm{e}) \neq \operatorname{rank}(\mathrm{a}):$

$$
{ }^{2} h
$$ smaller to larger

The Data Structure: Union by Rank

${ }^{2} n$ ${ }^{2} b$

${ }^{2} i \quad 2^{\ell}$
j^{2}

$$
{ }^{2} k
$$

\ggg union (e, a)
if $\operatorname{rank}(\mathrm{e})=\operatorname{rank}(\mathrm{a})$: edge from e to a increase rank of a
$\ggg \operatorname{union}(a, c)$
if $\operatorname{rank}(e) \neq \operatorname{rank}(a)$: smaller to larger don't change rank

The Data Structure: Union by Rank

$\ggg \operatorname{union}(b, n)$

${ }^{2} n$
${ }^{2} b$
${ }^{2} f$
d^{2} ${ }^{2} h \quad{ }^{2} g$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

$\ggg \operatorname{union}(b, n)$

2
${ }^{2} f$
m
d^{2} ${ }^{2} h \quad{ }^{2} g$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \text { union }(b, n) \\
& \ggg \text { union }(a, n)
\end{aligned}
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$d^{2}{ }^{2} h{ }^{2} f \quad{ }^{2} g{ }^{2} m$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \operatorname{find}(e)$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

d^{2}

$$
2 h \quad{ }^{2} g
$$

${ }^{2} k$

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \operatorname{union}(b, n) \\
& \ggg \operatorname{union}(a, n) \\
& \operatorname{cost}: O(1) \\
& \ggg \operatorname{find}(e)
\end{aligned}
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell} \ell
$$

$$
{ }^{2} k
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \operatorname{find}(e)$
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

${ }^{2} k$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \operatorname{find}(e)$
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \text { union }(b, n) \\
& \ggg \text { union }(a, n) \\
& \text { cost: } O(1) \\
& \ggg \text { find }(e)
\end{aligned}
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

$$
{ }^{2} k
$$

The Data Structure: Union by Rank

$\ggg \operatorname{union}(b, n)$
\ggg union (a, n)
cost: $O(1)$
$\ggg \operatorname{find}(e)$
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \operatorname{find}(e)$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

d^{2}

$$
2 h \quad{ }^{2} g
$$

${ }^{2} k$

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \text { union }(b, n) \\
& \ggg \text { union }(a, n) \\
& \quad \operatorname{cost}: O(1) \\
& \ggg \text { find }(e) \\
& n
\end{aligned}
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \mathrm{find}(e)$
n cost: O (length of path)

The Data Structure: Union by Rank

${ }^{2} m$
d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

${ }^{2} k$
$j 2$

$$
{ }^{2} i \quad 2^{\ell}
$$

\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \mathrm{find}(e)$
cost: O (length of path)
$\leq O$ (height of tree)

The Data Structure: Union by Rank

2
${ }^{2} f$
d^{2} ${ }^{2} h \quad{ }^{2} g$

$$
{ }^{2} i \quad 2^{\ell}
$$

$$
{ }^{2} k
$$

$j 2$
\ggg union (b, n)
\ggg union (a, n)
cost: $O(1)$
$\ggg \mathrm{find}(e)$
cost: O (length of path)
$\leq O$ (height of tree)
$\leq O(\operatorname{rank}(\mathrm{n}))$

The Data Structure: Union by Rank

		${ }^{2} f$	
${ }^{2}{ }^{2} h$		${ }^{2} m$	
		${ }^{2} g$	
			${ }^{2} i$

```
\(\ggg\) union \((b, n)\)
\(\ggg\) union \((a, n)\)
                                    cost: \(O(1)\)
\(\ggg\) find \((e)\)
```

cost: O (length of path)
$\leq O$ (height of tree)
$\leq O(\operatorname{rank}(\mathrm{n}))$
because

Lemma: The height of the subtree rooted at x is $\operatorname{rank}(x)-2$.

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \operatorname{union}(b, n) \\
& \ggg \operatorname{union}(a, n) \\
& \ggg \operatorname{find}(e) \\
& n
\end{aligned}
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
$\ggg \operatorname{union}(g, m)$
d^{2}

$$
{ }^{2} h \quad{ }^{2} g
$$

j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

${ }^{2} k$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
\ggg union (g, m)
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

$$
{ }^{2} k
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
$\ggg \operatorname{union}(g, m)$
$\ggg \operatorname{union}(k, \ell)$
j^{2}

$$
{ }^{2} i \quad 2^{\ell}
$$

$$
{ }^{2} k
$$

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
$\ggg \operatorname{union}(g, m)$
$\ggg \operatorname{union}(k, \ell)$
j^{2}

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
\ggg union (g, m)
\ggg union (k, ℓ)
\ggg union (ℓ, m)
j^{2}

The Data Structure: Union by Rank

\ggg union (b, n)
\ggg union (a, n)
$\ggg \operatorname{find}(e)$
n
$\ggg \operatorname{union}(g, m)$
\ggg union (k, ℓ)
\ggg union (ℓ, m)

The Data Structure: Union by Rank

$$
\begin{aligned}
& \ggg \operatorname{union}(b, n) \\
& \ggg \operatorname{union}(a, n) \\
& \ggg \operatorname{find}(e) \\
& n
\end{aligned}
$$

$$
\ggg \operatorname{union}(g, m)
$$

$$
\ggg \operatorname{union}(k, \ell)
$$

$$
\ggg \operatorname{union}(\ell, m)
$$

$$
\ggg \operatorname{union}(n, m)
$$

The Data Structure: Union by Rank

Lemma. The height of the subtree rooted at x is
$\operatorname{rank}(x)-2$.

Lemma. The height of the subtree rooted at x is $\operatorname{rank}(x)-2$.

Lemma. The number of nodes in x 's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The height of the subtree rooted at x is $\operatorname{rank}(x)-2$.

Lemma. The number of
elements with rank r is at most $\frac{n}{2^{r-2}}=\frac{4 n}{2^{r}}$.

Lemma. The number of nodes in x 's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The height of the subtree rooted at x is $\operatorname{rank}(x)-2$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}}=\frac{4 n}{2^{r}}$.

Lemma. The number of nodes in x 's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Corollary. The maximum rank is at most $\log (n)+2$. The maximum height is at most $\log (n)$. The operation find (x) takes $O(\log n)$ steps.

Path Compression

The Data Structure: Union by Rank

The Data Structure: Union by Rank

$\ggg \operatorname{find}(c)$

The Data Structure: Union by Rank

$\ggg \operatorname{find}(c)$

The Data Structure: Union by Rank

$$
\ggg \operatorname{find}(c)
$$

The Data Structure: Union by Rank

$\ggg \operatorname{find}(c)$

The Data Structure: Union by Rank

$\ggg \operatorname{find}(c)$

The Data Structure: Union by Rank

\ggg find (c)

m

The Data Structure: Union by Rank

$\ggg \mathrm{find}(c)$
m

The Data Structure: Union by Rank

$\ggg \mathrm{find}(c)$
m

The Data Structure: Union by Rank

Lemma. The height of the subtree rooted at x is $\operatorname{rank}(x)-2$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}}=\frac{4 n}{2^{r}}$.

Lemma. The number of nodes in x 's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Corollary. The maximum rank is at most $\log (n)+2$. The maximum height is at most $\log (n)$. The operation find (x) takes $O(\log n)$ steps.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}}=\frac{4 n}{2^{r}}$.

Lentma_The number of nodesin x 's subtree is-at least $\mathrm{P}^{\operatorname{rank}(\mathrm{x})-2}$.

Corollary. The maximum rank is at most $\log (n)+2$. The maximum height is at most $\log (n)$. The operation find (x) takes $O(\log n)$ steps.

Lemma. The number of elements with rank r is at/most $\frac{n}{2^{r-2}}=\frac{4 n}{2^{r}}$.

Lentma The number of nodesin x 's subtree is at least $2 \operatorname{rank}(\mathrm{x})-2$.

Corollary. The maximum rank is at most $\log (n)+2$. The maximum height is at most $\log (n)$. The operation find (x) takes $O(\log n)$ steps.

Running Time Analysis of the Path Compression Data Structure

Running Time Analysis of the Path

Compression Data Structure

First Attempt

Edge e gets redirected.

Edge e gets redirected.
This operation costs 1

Edge e gets redirected.
This operation costs 1
Who has to pay?

Edge e gets redirected.
This operation costs 1
Who has to pay?

Edge e gets redirected.
This operation costs 1
Who has to pay?

Definition. An edge ${ }^{x} \quad y$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \xrightarrow{\square}$ is paid by x

Definition. An edge ${ }^{x} \xrightarrow{y}$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \xrightarrow{\square}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

Definition. An edge ${ }^{x} \quad y$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \longrightarrow \longrightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root

Definition. An edge ${ }^{x} \quad y$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad x$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root

Definition. An edge ${ }^{x} \xrightarrow{y}$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad{ }^{x} \xrightarrow{\bullet}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root
- ≥ 2

Definition. An edge ${ }^{x} \xrightarrow{y}$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad{ }^{x} \xrightarrow{\bullet}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root
- ≥ 2

Definition. An edge ${ }^{x} \longrightarrow$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad{ }^{x} \xrightarrow{\bullet}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root
- ≥ 2

Definition. An edge ${ }^{x} \longrightarrow$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \xrightarrow{\circ}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root

- ≥ 2

Definition. An edge ${ }^{x} \quad y$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \longrightarrow \longrightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

- root

$\geq 2 \geq 2$
$\bullet \geq 2$

Definition. An edge ${ }^{x} \xrightarrow{y}$ is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) .{ }^{x} \xrightarrow{\square}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges.

Definition. An edge ${ }^{x} \longrightarrow$
$\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad x \longrightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Definition. An edge ${ }^{x} \longrightarrow$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \xrightarrow[y]{\longrightarrow}$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge
 is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \longrightarrow$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \rightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge $x \stackrel{r}{\longrightarrow}$ is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \xrightarrow{y}$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \rightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge $x \bullet \bullet$ is thin. It can be redirected at most $\quad \geq r+1$ $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \longrightarrow$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \rightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$ ©

$$
\geq r+2
$$

Lemma. Suppose edge
is thin. It can be redirected at most
$r:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \xrightarrow{y}$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \rightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most

$$
\geq r+3
$$ $\log \log (n)$

Lemma. Suppose edge
 is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \xrightarrow{y}$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . x \rightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge

is thin. It can be redirected at most
$\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \quad y$ $\xrightarrow{\longrightarrow}$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad x \longrightarrow$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge
ost is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick.

Definition. An edge ${ }^{x} \longrightarrow$ is paid by find is thick if $\operatorname{rank}(y) \geq 2 \operatorname{rank}(x) . \quad x \rightarrow y$ is paid by x

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge
ost is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $=\sum_{r} r \cdot \mid\{\operatorname{rank}-r$-elements $\} \mid$ $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $=\sum_{r} r \cdot \mid\{$ rank $-r$-elements $\} \mid$ $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\leq \sum_{r} r \cdot \frac{n}{2^{r-2}}$ $\operatorname{rank}(x)$
m find operations: $\leq m \log \log (n)$

Lemma. Every find operation redirects at most $\log \log (n)$ thick edges. Thus, every find operation has to pay at most $\log \log (n)$

Lemma. Suppose edge is thin. It can be redirected at most $=\sum_{r} r \cdot \mid\{$ rank $-r$-elements $\} \mid$ $\mathrm{r}:=\operatorname{rank}(x)$ times before it becomes thick. Thus, x has to pay at most $\operatorname{rank}(x)$

Union-by-Rank: $O(n+m \log n)$

Union-by-Rank: $O(n+m \log n)$
Union-by-Rank with path compression: $O(n+m \log \log n)$

Union-by-Rank: $O(n+m \log n)$
Union-by-Rank with path compression: $O(n+m \log \log n)$

Even Better Analysis

Thin edge

$$
x \stackrel{\longrightarrow}{\longrightarrow}
$$

Thin edge
$x \longrightarrow \longrightarrow$
$\operatorname{rank}(x)=r$

Thin edge
$x \xrightarrow{r+1}$
$\operatorname{rank}(x)=r$

Spot the error!

Problem:

Problem:

last thin edge on the path
Problem:

Let's summarize and generalize

Let's summarize and generalize
Different thickness types:

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$r+1 \leq s<2 r$: thickness 1

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$r+1 \leq s<2 r$: thickness 1
$2 r \leq s<r 2^{r}:$ thickness 2

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$r+1 \leq s<2 r$: thickness 1
$2 r \leq s<r 2^{r}:$ thickness 2
$r 2^{r} \leq s:$ thickness 3

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$r+1 \leq s<2 r$: thickness 1
$2 r \leq s<r 2^{r}$: thickness 2
$r 2^{r} \leq s$: thickness $3 \quad$ Why stop here?

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$2 r \leq s<r 2^{r}$: thickness 2
$r 2^{r} \leq s$: thickness $3 \quad$ Why stop here?

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$r 2^{r} \leq s$: thickness $3 \quad$ Why stop here?

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)(2 v) \leq s<r 2^{r}$: thickness 2
$f_{3}(r)\left(r 2^{r} \leq s\right.$: thickness $3 \quad$ Why stop here?

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness $1 \quad f_{2}(r)=f_{1}\left(f_{1}\left(\ldots f_{1}(r) \ldots\right)\right)$
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$

$$
r \text { times }
$$

$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)=\overbrace{f_{1}\left(f_{1}\left(\ldots f_{1}\right.\right.}(r) \ldots))$
$f_{2}(r)(2 n) \leq s<r 2^{r}$: thickness 2
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$

$$
f_{2}(r)=\overbrace{f_{1}\left(f_{1}\left(\ldots f_{1}(r) \ldots\right)\right)}^{r \text { times }}
$$

$r+1 \leq s<2 r$: thickness 1
$f_{2}(r)\left(20 \leq s<r 2^{r}\right.$: thickness $2=f_{1}^{(r)}(r)$
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness 3
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1

$$
f_{2}(r)=\overbrace{f_{1}\left(f_{1}\left(\ldots f_{1}(r) \ldots\right)\right)}^{r \text { times }}
$$

$f_{2}(r) \leq 2 r \leq r 2^{r}$: thickness $2=f_{1}^{(r)}(r)$
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness $3 f_{3}(r)=f_{2}^{(r)}(r)$
$f_{4}(r) \leq s<f_{5}(r)$: thickness 4

Let's summarize and generalize
Different thickness types:

$$
\text { rank }=r \quad \text { rank }=s
$$

$f_{1}(r)$
$r+1 \leq s<2 r$: thickness 1

$$
f_{2}(r)=\overbrace{f_{1}\left(f_{1}\left(\ldots f_{1}(r) \ldots\right)\right)}^{r \text { times }}
$$

$f_{2}(r) \leq s<r 2^{r}$: thickness $2=f_{1}^{(r)}(r)$
$f_{3}(r) r 2^{r} \leq s<f_{4}(r)$: thickness $3 f_{3}(r)=f_{2}^{(r)}(r)$
$f_{4}(r) \leq s<f_{5}(r)$: thickness $4 f_{4}(r)=f_{3}^{(r)}(r)$

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$
Case 1: e is the last edge of thickness i on this path.

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$
Case 1: e is the last edge of thickness i on this path.
Then find operation pays one for this.

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$
Case 1: e is the last edge of thickness i on this path.
Then find operation pays one for this.
This is a weak edge redirection.

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$
Case 1: e is the last edge of thickness i on this path.
Then find operation pays one for this.
This is a weak edge redirection.
Total cost: number of thickness types.

Weak and Strong Edge Redirections

thickness $(e)=i$
$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

strong redirection

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

strong redirection

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

after $r-1$ strong redirections: $\operatorname{rank}($ root $) \geq f_{i}^{(r)}(r)=f_{i+1}(r)$

Weak and Strong Edge Redirections

$f_{i}(r) \leq s<f_{i+1}(r)$
Case 2: e is not the last edge of thickness i on this path.

after $r-1$ strong redirections: $\operatorname{rank}(\operatorname{root}) \geq f_{i}^{(r)}(r)=f_{i+1}(r)$ and the thickness of e increases to $i+1$

Putting Everything Together

Putting Everything Together
let ℓ be the number of thickness types occurring.

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ ©

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ
$\longrightarrow x$ pays at most $\operatorname{rank}(x)$ © before the thickness of e increases.

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ ©
$\underset{x}{\bullet} \quad 0 x$ pays at most $\operatorname{rank}(x)$ © before the thickness of e increases.
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ ©
$x \longrightarrow \quad \begin{aligned} & \quad x \text { pays at } \operatorname{most} \operatorname{rank}(x) \\ & \text { before the thickness of } e \text { increases. }\end{aligned}$
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$
\sum_{x} \ell \cdot \operatorname{rank}(x)=\ell \cdot \sum_{r} \mid\{\text { elements of rank } r\} \mid
$$

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ ©
$x \longrightarrow \quad \begin{aligned} & \quad x \text { pays at } \operatorname{most} \operatorname{rank}(x) \\ & \text { before the thickness of } e \text { increases. }\end{aligned}$
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$
\begin{aligned}
\sum_{x} \ell \cdot \operatorname{rank}(x) & =\ell \cdot \sum_{r} \mid\{\text { elements of rank } r\} \mid \\
& \leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}}
\end{aligned}
$$

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ
$\bullet \longrightarrow x$ pays at most $\operatorname{rank}(x)$
$x \quad$ before the thickness of e increases.
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$
\begin{aligned}
\sum_{x} \ell \cdot \operatorname{rank}(x) & =\ell \cdot \sum_{r} \mid\{\text { elements of rank } r\} \mid \\
& \leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}} \\
& =6 \ell n .
\end{aligned}
$$

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ
 x pays at most $\operatorname{rank}(x)$ before the thickness of e increases.
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$
\begin{aligned}
\sum_{x} \ell \cdot \operatorname{rank}(x) & =\ell \cdot \sum_{r} \mid\{\text { elements of rank } r\} \mid \\
& \leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}} \\
& =6 \ell n .
\end{aligned}
$$

Overall cost is $O(\ell \cdot(n+m))$.

Putting Everything Together
let ℓ be the number of thickness types occurring. each find pays at most ℓ

x pays at most $\operatorname{rank}(x)$ before the thickness of e increases.
Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$
\begin{aligned}
\sum_{x} \ell \cdot \operatorname{rank}(x) & =\ell \cdot \sum_{r} \mid\{\text { elements of rank } r\} \mid \\
& \leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}} \\
& =6 \ell n . \quad \text { How large can } \ell \text { become? }
\end{aligned}
$$

Overall cost is $O(\ell \cdot(n+m))$.

Overall running time is $O(\ell(n+m))$

Overall running time is $O(\ell(n+m))$
ℓ is the number of thickness levels

Overall running time is $O(\ell(n+m))$
ℓ is the number of thickness levels
Imagine $\underset{x}{\bullet} \quad \underset{y}{\longrightarrow}$ is an edge of thickness 5 .

Overall running time is $O(\ell(n+m))$
ℓ is the number of thickness levels
Imagine $\underset{x}{\bullet} \quad \underset{y}{\infty}$ is an edge of thickness 5 .

$$
\operatorname{rank}(y) \geq f_{5}(\operatorname{rank}(x)) \geq f_{5}(2)
$$

What is $f_{5}(2)$?

What is $f_{5}(2)$?
$f_{1}(n)=n+1$

What is $f_{5}(2)$?

$$
f_{1}(n)=n+1
$$

$$
f_{1}(2)=3
$$

What is $f_{5}(2)$?

$f_{1}(n)=n+1$

$$
f_{1}(2)=3
$$

$$
f_{2}(n)=2 n
$$

What is $f_{5}(2)$?

$$
\begin{aligned}
& f_{1}(n)=n+1 \\
& f_{2}(n)=2 n
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(2)=3 \\
& f_{2}(2)=4
\end{aligned}
$$

What is $f_{5}(2)$?

$$
\begin{array}{ll}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} &
\end{array}
$$

What is $f_{5}(2)$?

$$
\begin{aligned}
& f_{1}(n)=n+1 \\
& f_{2}(n)=2 n \\
& f_{3}(n)=n 2^{n}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(2)=3 \\
& f_{2}(2)=4 \\
& f_{3}(2)=8
\end{aligned}
$$

What is $f_{5}(2)$?

$$
\begin{aligned}
& f_{1}(n)=n+1 \\
& f_{2}(n)=2 n \\
& f_{3}(n)=n 2^{n}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(2)=3 \\
& f_{2}(2)=4 \\
& f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)
\end{aligned}
$$

What is $f_{5}(2)$?

$$
\begin{aligned}
& f_{1}(n)=n+1 \\
& f_{2}(n)=2 n \\
& f_{3}(n)=n 2^{n}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(2)=3 \\
& f_{2}(2)=4 \\
& f_{3}(2)=8
\end{aligned}
$$

$$
f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 .
$$

What is $f_{5}(2)$?

$$
\begin{aligned}
& f_{1}(n)=n+1 \\
& f_{1}(2)=3 \\
& f_{2}(n)=2 n \\
& f_{2}(2)=4 \\
& f_{3}(n)=n 2^{n} \\
& f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 \text {. } \\
& f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048)
\end{aligned}
$$

What is $f_{5}(2)$?

$$
\begin{array}{rlrl}
f_{1}(n) & =n+1 & f_{1}(2) & =3 \\
f_{2}(n) & =2 n & f_{2}(2) & =4 \\
f_{3}(n) & =n 2^{n} & f_{3}(2) & =8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8) & =8 \cdot 2^{8}=2048 . \\
& f_{5}(2) & =f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)
\end{array}
$$

What is $f_{5}(2) ?$

$$
\begin{array}{ll}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} & f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 . \\
f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq \underbrace{f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)}_{2048 \text { times }}
\end{array}
$$

What is $f_{5}(2) ?$

$$
\begin{array}{ll}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} & f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 . \\
f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq \underbrace{f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)}_{2048 \text { times }}
\end{array}
$$

$$
\geq 2^{2^{2^{2} \cdot 2^{2048}}}
$$

What is $f_{5}(2) ?$

$$
\begin{array}{ll}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} & f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 . \\
f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq \underbrace{f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)}_{2048 \text { times }}
\end{array}
$$

$$
f_{5}(2) \geq 2^{2^{2^{\cdots \cdot 2^{2048}}}}
$$

What is $f_{5}(2) ?$

$$
\begin{array}{lr}
\begin{array}{ll}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} & f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 . \\
f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq \underbrace{f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)}_{2048 \text { times }} \\
& \\
& \operatorname{rank}(y) \geq f_{5}(2) \geq 2^{2^{2^{\cdots \cdot 2^{2048}}}}
\end{array} .
\end{array}
$$

What is $f_{5}(2)$?

$$
\begin{array}{lr}
f_{1}(n)=n+1 & f_{1}(2)=3 \\
f_{2}(n)=2 n & f_{2}(2)=4 \\
f_{3}(n)=n 2^{n} & f_{3}(2)=8 \\
& f_{4}(2)=f_{3}\left(f_{3}(2)\right)=f_{3}(8)=8 \cdot 2^{8}=2048 . \\
f_{5}(2)=f_{4}\left(f_{4}(2)\right)=f_{4}(2048) \geq \underbrace{f_{3}\left(f_{3}\left(f_{3}\left(\ldots f_{3}(2048) \ldots\right)\right)\right)}_{2048 \text { times }} \\
& \log (n) \geq \operatorname{rank}(y) \geq f_{5}(2) \geq 2^{2^{22^{\cdot 2^{2048}}}}
\end{array}
$$

