
Union Find, Path Compression, and

the Inverse Ackermann Function

The Data

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

V

U

T

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

V

U

T

The Operations

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

V

U

T

The Operations

>>> find(h)

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

V

U

T

The Operations

>>> find(h)

T

>>>

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

V

U

T

The Operations

>>> find(h)

T

>>>>>> union(T, V)

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

U

T

The Operations

>>> find(h)

>>> union(T, V)

T

The Data

a

bc

d

e

f

gh

ij

k

`

m

n

ZY

X

W

U

T

The Operations

>>> find(h)

>>> union(T, V)

T

>>>

The Data The Operations

>>> init({a, b, c, d})

The Data The Operations

>>> init({a, b, c, d})

>>>

a

b

c

d

The Data The Operations

>>> init({a, b, c, d})

>>>

a

b

c

d

The names are arbitrary

The Data Structure: Union by Rank

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n

Every element has a rank.
It is initialized to 2 at the
beginning.

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n

Every element has a rank.
It is initialized to 2 at the
beginning.

2
2

2

2

2

2

2

2

2

2

2

2

2

2

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

2

2

2

2

2

2

2

2

2

2

2

2

2

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

2

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

2

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

if rank(e) = rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

2

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a
if rank(e) = rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

2

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

>>> union(a, c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

>>> union(a, c)

if rank(e) 6= rank(a):

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

>>> union(a, c)

if rank(e) 6= rank(a):
smaller to larger

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(e, a)

edge from e to a

increase rank of a

if rank(e) = rank(a):

>>> union(a, c)

if rank(e) 6= rank(a):
smaller to larger

don’t change rank

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

2

2

2

2

2

2

>>> union(b, n)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

3

2

2

2

2

2

>>> union(b, n)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

3

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

n

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

n
cost: O(length of path)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

n
cost: O(length of path)

≤ O(height of tree)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

n
cost: O(length of path)

≤ O(height of tree)

≤ O(rank(n))

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

cost: O(1)

>>> find(e)

n
cost: O(length of path)

≤ O(height of tree)

≤ O(rank(n))

because

Lemma: The height of the
subtree rooted at x is
rank(x)− 2.

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

2

2

2

2

2

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

3

2

2

2

2

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

3

2

2

2

2

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

3

2

2

2

3

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

3

2

2

2

3

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

>>> union(`,m)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

4

2

2

2

3

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

>>> union(`,m)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

4

2

2

2

3

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

>>> union(`,m)

>>> union(n,m)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> union(b, n)

>>> union(a, n)

>>> find(e)

n

>>> union(g,m)

>>> union(k, `)

>>> union(`,m)

>>> union(n,m)

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The number of
elements with rank r is at most

n
2r−2 = 4n

2r .

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The number of
elements with rank r is at most

n
2r−2 = 4n

2r .

Corollary. The maximum rank
is at most log(n) + 2. The
maximum height is at most
log(n). The operation find(x)
takes O(log n) steps.

Path Compression

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

m

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

m

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

m

The Data Structure: Union by Rank

a

bc

d

e

f

gh

ij

k

`

m

n
2

3

2

2

2

2

2

2

4

5

2

2

2

3

>>> find(c)

m

rank(n) is still 4. But it’s subtree
has height 1 and consists of 2
nodes only.

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The number of
elements with rank r is at most

n
2r−2 = 4n

2r .

Corollary. The maximum rank
is at most log(n) + 2. The
maximum height is at most
log(n). The operation find(x)
takes O(log n) steps.

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The number of
elements with rank r is at most

n
2r−2 = 4n

2r .

Corollary. The maximum rank
is at most log(n) + 2. The
maximum height is at most
log(n). The operation find(x)
takes O(log n) steps.

Lemma. The height of the
subtree rooted at x is
rank(x)− 2.

Lemma. The number of nodes in
x’s subtree is at least 2rank(x)−2.

Lemma. The number of
elements with rank r is at most

n
2r−2 = 4n

2r .

Corollary. The maximum rank
is at most log(n) + 2. The
maximum height is at most
log(n). The operation find(x)
takes O(log n) steps.

Running Time Analysis of the Path

Compression Data Structure

Running Time Analysis of the Path

Compression Data Structure
First Attempt

x

y

root

e

u

x

y

root

e
=⇒find(u)

u

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

Edge e gets redirected.

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

Edge e gets redirected.

This operation costs 1

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

Edge e gets redirected.

This operation costs 1

Who has to pay?

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

Edge e gets redirected.

This operation costs 1

Who has to pay?

x

y

root

e
=⇒find(u)

u

x

y

root

e

u

Edge e gets redirected.

This operation costs 1

Who has to pay?

2

3

4

8

9

12 25

50

52

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

is paid by find

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

is paid by find

is paid by xx
y

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

is paid by find

is paid by xx
y

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

is paid by find

is paid by xx
y

2

3

4

8

9

12 25

50

52

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y

>>> find(u)

u

is paid by find

is paid by xx
y

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges.

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

≥ 2

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

≥ 2
≥ 4

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

≥ 2
≥ 4

≥ 8

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

≥ 2
≥ 4

≥ 8

≥ 16

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. root

≥ 2

≥ 2
≥ 4

≥ 8

≥ 16 ≤ log(n)

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges.

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

≥ r + 1

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

≥ r + 2

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

≥ r + 3

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

≥ 2 r

Definition. An edge
is thick if rank(y) ≥ 2 rank(x).

x y is paid by find

is paid by xx
y

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick.

x
r

≥ 2 r

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

paid by elements

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

paid by elements

≤
∑

x rank(x)

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

paid by elements

≤
∑

x rank(x)

=
∑

r r · |{rank−r−elements}|

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

paid by elements

≤
∑

x rank(x)

=
∑

r r · |{rank−r−elements}|

≤
∑

r r ·
n

2r−2

Lemma. Every find operation
redirects at most log log(n) thick
edges. Thus, every find

operation has to pay at most
log log(n)

Lemma. Suppose edge
is thin. It can be redirected at most
r := rank(x) times before it becomes
thick. Thus, x has to pay at most
rank(x)

m find operations: ≤ m log log(n)

paid by elements

≤
∑

x rank(x)

=
∑

r r · |{rank−r−elements}|

≤
∑

r r ·
n

2r−2≤
∑

r r ·
n

2r−2 = 6n

Union-by-Rank: O(n + m log n)

Union-by-Rank: O(n + m log n)

Union-by-Rank with path compression: O(n + m log log n)

Union-by-Rank: O(n + m log n)

Union-by-Rank with path compression: O(n + m log log n)

Even Better Analysis

Thin edge

x

Thin edge

rank(x) = r

x

Thin edge

rank(x) = r

x
r + 1

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r
8r

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r
8r

=⇒redirect r − 1 times

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r
8r

=⇒redirect r − 1 times

x
r

r 2r

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r
8r

=⇒redirect r − 1 times

x
r

r 2r

ultra-thick

Thin edge

rank(x) = r

x
r + 1 =⇒redirect r − 1 times

x
r

2r

becomes thick

x
r

2r

Thick edge

4r
8r

=⇒redirect r − 1 times

x
r

r 2r

ultra-thick

Spot the error!

root

x

root

2

3

6

8

9

20

40 41x

root

2

3

6

8

9

20

40 41x

>>> find(x)

root

2

3

6

8

9

20

40 41x

>>> find(x)

root

2

3

6

8

9

20

40
41

x

root

2

3

6

8

9

20

40 41x

>>> find(x)

root

2

3

6

8

9

20

40
41

x

root20

40 41

root20

40
41

root20

40 41

root20

40
41

20 40

Problem:

becomes
20

41

root20

40 41

root20

40
41

20 40

Problem:

becomes
20

41

But I claimed this would be at least 80

20 40

Problem:

becomes
20

41

But I claimed this would be at least 80

root

2

3

6

8

9

20

40 41x

20 40

Problem:

becomes
20

41

But I claimed this would be at least 80

root

2

3

6

8

9

20

40 41x

last thick edge on the path

20 40

Problem:

becomes
20

41

But I claimed this would be at least 80

root

2

3

6

8

9

20

40 41x

last thick edge on the path

last thin edge on the path

Let’s summarize and generalize

Let’s summarize and generalize

Different thickness types:

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

r 2r ≤ s: thickness 3

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

r 2r ≤ s: thickness 3 Why stop here?

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

r 2r ≤ s: thickness 3 Why stop here?

f1(r)

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

r 2r ≤ s: thickness 3 Why stop here?

f1(r)

f2(r)

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

r 2r ≤ s: thickness 3 Why stop here?

f1(r)

f2(r)

f3(r)

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

f2(r) = f1(f1(. . . f1(r) . . .))

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

f2(r) = f1(f1(. . . f1(r) . . .))

{r times

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

f2(r) = f1(f1(. . . f1(r) . . .))

{r times

= f
(r)
1 (r)

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

f2(r) = f1(f1(. . . f1(r) . . .))

{r times

= f
(r)
1 (r)

f3(r) = f
(r)
2 (r)

Let’s summarize and generalize

Different thickness types:
e

rank = r rank = s

r + 1 ≤ s < 2r: thickness 1

2r ≤ s < r 2r: thickness 2

f1(r)

f2(r)

f3(r) r 2r ≤ s < f4(r): thickness 3

f4(r) ≤ s < f5(r): thickness 4
...

f2(r) = f1(f1(. . . f1(r) . . .))

{r times

= f
(r)
1 (r)

f3(r) = f
(r)
2 (r)

f4(r) = f
(r)
3 (r)

Weak and Strong Edge Redirections

Weak and Strong Edge Redirections

e

Weak and Strong Edge Redirections

e

r

s

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 1: e is the last edge of thickness i on this path.

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 1: e is the last edge of thickness i on this path.

Then find operation pays one for this.

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 1: e is the last edge of thickness i on this path.

Then find operation pays one for this.

This is a weak edge redirection.

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 1: e is the last edge of thickness i on this path.

Then find operation pays one for this.

This is a weak edge redirection.
Total cost: number of thickness types.

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i root

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i rootrank() ≥ fi(fi(r))

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i rootrank() ≥ fi(fi(r))

strong redirection

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i rootrank() ≥ fi(fi(r))

strong redirection

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i rootrank() ≥ fi(fi(r))

strong redirectionstrong redirections: rank(root) ≥ f
(r)
i (r) = fi+1(r)after r − 1

Weak and Strong Edge Redirections

e

thickness(e) = i

r

s

fi(r) ≤ s < fi+1(r)

=⇒redirect
e

r

s

root

Case 2: e is not the last edge of thickness i on this path.
i

r

s
i rootrank() ≥ fi(fi(r))

strong redirectionstrong redirections: rank(root) ≥ f
(r)
i (r) = fi+1(r)after r − 1

and the thickness of e increases to i + 1

Putting Everything Together

Putting Everything Together

let ` be the number of thickness types occurring.

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

∑
x ` · rank(x) = ` ·

∑
r |{elements of rank r}|

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

∑
x ` · rank(x) = ` ·

∑
r |{elements of rank r}|

≤ ` ·
∑

r
n

2r−2

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

∑
x ` · rank(x) = ` ·

∑
r |{elements of rank r}|

≤ ` ·
∑

r
n

2r−2

= 6 `n.

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

∑
x ` · rank(x) = ` ·

∑
r |{elements of rank r}|

≤ ` ·
∑

r
n

2r−2

= 6 `n.

Overall cost is O(` · (n + m)).

Putting Everything Together

let ` be the number of thickness types occurring.

each find pays at most `

e

x
x pays at most rank(x)
before the thickness of e increases.

Overall, x pays at most ` · rank(x)

∑
x ` · rank(x) = ` ·

∑
r |{elements of rank r}|

≤ ` ·
∑

r
n

2r−2

= 6 `n.

Overall cost is O(` · (n + m)).
How large can ` become?

Overall running time is O(` (n + m))

Overall running time is O(` (n + m))

` is the number of thickness levels

Overall running time is O(` (n + m))

` is the number of thickness levels

Imagine is an edge of thickness 5.
e

x y

Overall running time is O(` (n + m))

` is the number of thickness levels

Imagine is an edge of thickness 5.
e

x y

rank(y) ≥ f5(rank(x)) ≥ f5(2)

What is f5(2)?

What is f5(2)?

f1(n) = n + 1

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)≥ f3(f3(f3(. . . f3(2048) . . .)))

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)≥ f3(f3(f3(. . . f3(2048) . . .))){
2048 times

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)

≥ 22
2

22048...

≥ f3(f3(f3(. . . f3(2048) . . .))){
2048 times

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)

≥ 22
2

22048...

≥ f3(f3(f3(. . . f3(2048) . . .))){
2048 times

f5(2)

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)

≥ 22
2

22048...

≥ f3(f3(f3(. . . f3(2048) . . .))){
2048 times

f5(2)rank(y) ≥

What is f5(2)?

f1(n) = n + 1 f1(2) = 3

f2(n) = 2n f2(2) = 4

f3(n) = n 2n f3(2) = 8

f4(2) = f3(f3(2)) = f3(8)= 8 · 28 = 2048.

f5(2) = f4(f4(2)) = f4(2048)

≥ 22
2

22048...

≥ f3(f3(f3(. . . f3(2048) . . .))){
2048 times

f5(2)rank(y) ≥log(n) ≥

