Union Find, Path Compression, and the Inverse Ackermann Function

The Data

The Data

The Data

The Data

>> find(h)

>> find(h)T

>> find(h)T>> union(T, V)

>> find(h)T>> union(T, V)

>> find(h)T>> union(T, V)>>>

 $>> init(\{a, b, c, d\})$

The Data The Operations >> init $(\{a, b, c, d\})$ a>>>CThe names are arbitrary

 \mathcal{N}

 \mathcal{M}

b

g

k

 \mathcal{A}

i

e

d

j

 \mathcal{C}

h

Every element has a *rank*. It is initialized to 2 at the beginning.

a2 e^2 ^{2}n ^{2}b c^2 ^{2}f ^{2}m d^2 ^{2}h 2ℓ 2ij2 ^{2}k

Every element has a *rank*. It is initialized to 2 at the beginning.

>> union(e, a)

>> union(e, a)if rank(e) = rank(a):

>>> union(e, a)if rank(e) = rank(a): edge from e to a

>>> union(e, a)
if rank(e) = rank(a):
 edge from e to a
 increase rank of a

>>> union(e, a)
if rank(e) = rank(a):
 edge from e to a
 increase rank of a

>>> union(e, a)
if rank(e) = rank(a):
 edge from e to a
 increase rank of a

>>> union(e, a)if rank(e) = rank(a): edge from e to aincrease rank of a>>> union(a, c)

>>> union(e, a)if rank(e) = rank(a): edge from e to aincrease rank of a>>> union(a, c)if rank(e) \neq rank(a):

>>> union(e, a) if rank(e) = rank(a): edge from e to aincrease rank of a>>> union(a, c) if rank(e) \neq rank(a): smaller to larger

>>> union(e, a) if rank(e) = rank(a): edge from e to aincrease rank of a>>> union(a, c) if rank(e) \neq rank(a): smaller to larger don't change rank

>> union(b, n)

>> union(b,n)

>> union(b, n)>> union(a, n)

>> union(b, n)>> union(a, n)

>>> union(b, n)>>> union(a, n)cost: O(1)

>>> union(b, n)>>> union(a, n)cost: O(1)>>> find(e)

>>> union(b, n)>>> union(a, n)cost: O(1)>>> find(e)

>> union(b, n)>> union(a, n)cost: O(1)>> find(e)

n

>>> union(b, n)>>> union(a, n)cost: O(1)>>> find(e)ncost: O(length of path)

>>> union(b, n) >>> union(a, n) cost: O(1)>>> find(e) ncost: O(length of path) $\leq O($ height of tree)

>> union(b, n)>> union(a, n)cost: O(1)>> find(e)ncost: O(length of path) $\leq O(height of tree)$ $\leq O(rank(n))$

>> union(b, n) >> union(a, n) cost: O(1) >> find(e) n cost: O(length of path) $\leq O(height of tree)$ $\leq O(rank(n))$ because

Lemma: The height of the subtree rooted at x is rank(x) - 2.

>> union(b, n)>> union(a, n)

>> find(e)

n

- >> union(b, n)>> union(a, n)
- >> find(e)n>> union(g,m)

- >> union(b, n)>> union(a, n)
- >> find(e)n>> union(g,m)

- >> union(b, n)>> union(a, n)
- >> find(e) n >>> union(g,m) $>>> union(k,\ell)$

- >> union(b, n)>> union(a, n)
- >> find(e) n >>> union(g,m) $>>> union(k,\ell)$

- >> union(b, n)>> union(a, n)
- >>> find(e) n>>> union(g, m) >>> union(k, ℓ) >>> union(ℓ, m)

- >> union(b, n)>> union(a, n)
- >> find(e)n>> union(g,m)
- $>> \operatorname{union}(k, \ell)$ $>> \operatorname{union}(\ell, m)$

- >> union(b, n)>> union(a, n)
- >> find(e)
- n
- >>> union(g, m)>>> union (k, ℓ) >>> union (ℓ, m) >>> union(n, m)

>> union(b, n)>> union(a, n)

>> find(e) n

>>> union(g, m)>>> union (k, ℓ) >>> union (ℓ, m) >>> union(n, m)

Lemma. The number of nodes in x's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The number of nodes in x's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}} = \frac{4n}{2^r}$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}} = \frac{4n}{2^r}$.

Lemma. The number of nodes in x's subtree is at least $2^{rank(x)-2}$.

Corollary. The maximum rank is at most log(n) + 2. The maximum height is at most log(n). The operation find(x)takes O(log n) steps. Path Compression

>> find(c)

m

>> find(c)

m

>> find(c)

m

>>find(c)

m

rank(n) is still 4. But it's subtree has height 1 and consists of 2 nodes only.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}} = \frac{4n}{2^r}$.

Lemma. The number of nodes in x's subtree is at least $2^{rank(x)-2}$.

Corollary. The maximum rank is at most log(n) + 2. The maximum height is at most log(n). The operation find(x)takes O(log n) steps.

Lemma. The number of nodes in x's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}} = \frac{4n}{2^r}$. Corollary. The maximum rank is at most log(n) + 2. The maximum height is at most log(n). The operation find(x)takes O(log n) steps. Lemma. The height of the subtree rooted at x is rank(x) - 2.

Lemma. The number of nodes in x's subtree is at least $2^{\operatorname{rank}(x)-2}$.

Lemma. The number of elements with rank r is at most $\frac{n}{2^{r-2}} = \frac{4n}{2^r}$.

Corollary. The maximum rank is at most log(n) + 2. The maximum height is at most log(n). The operation find(x)takes O(log n) steps.

Running Time Analysis of the Path Compression Data Structure

Running Time Analysis of the Path Compression Data Structure First Attempt

Edge e gets redirected.

Edge e gets redirected.

This operation costs 1

Who has to pay?

This operation costs 1

Who has to pay?

This operation costs 1

Who has to pay?

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. root

 ≥ 2

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge $x \bullet \longrightarrow$ is thin. It can be redirected at most r := rank(x) times before it becomes thick.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge $x \stackrel{r}{\bullet}$ is thin. It can be redirected at most r := rank(x) times before it becomes thick.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge $x \stackrel{r}{\bullet}$ is thin. It can be redirected at most $\geq r+1$ r := rank(x) times before it becomes thick.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$ $\textcircled{\ } \geq r+2$

Lemma. Suppose edge $x \checkmark$ is thin. It can be redirected at most r := rank(x) times before it becomes thick.

 $\geq r+3$

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge $x \bullet$ is thin. It can be redirected at most r := rank(x) times before it becomes thick. Definition. An edge x y is paid by find is *thick* if $rank(y) \ge 2 rank(x)$. x is paid by x

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge $x \bullet$ is thin. It can be redirected at most r := rank(x) times before it becomes thick.

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

 $\geq 2 r$

Lemma. Suppose edge x is thin. It can be redirected at most r := rank(x) times before it becomes thick.

Definition. An edge x y is paid by find is *thick* if $rank(y) \ge 2 rank(x)$. x is paid by x

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

 $\geq 2 r$

Lemma. Suppose edge x is thin. It can be redirected at most r := rank(x) times before it becomes thick. Thus, x has to pay at most rank(x) o

```
Lemma. Every find operation
redirects at most \log \log(n) thick
edges. Thus, every find
operation has to pay at most
\log \log(n)
```

Lemma. Suppose edge is thin. It can be redirected at most r := rank(x) times before it becomes thick. Thus, x has to pay at most rank(x) \bigotimes m find operations: $\leq m \log \log(n)$

Lemma. Every find operation redirects at most $\log \log(n)$ thick edges. Thus, every find operation has to pay at most $\log \log(n)$

Lemma. Suppose edge is thin. It can be redirected at most r := rank(x) times before it becomes thick. Thus, x has to pay at most rank(x) $\textcircled{\label{eq:rank}}$

Union-by-Rank: $O(n + m \log n)$

Union-by-Rank: $O(n + m \log n)$

Union-by-Rank with path compression: $O(n + m \log \log n)$

Union-by-Rank: $O(n + m \log n)$

Union-by-Rank with path compression: $O(n + m \log \log n)$

Even Better Analysis

Problem:

Problem:

Different thickness types:

Different thickness types:
$$rank = r$$
 $rank = s$

Different thickness types:

$$rank = r$$
 $rank = s$

 $r+1 \leq s < 2r$: thickness 1

Different thickness types:
$$rank = r$$
 $rank = s$

 $r+1 \leq s < 2r$: thickness 1

 $2r \leq s < r 2^r$: thickness 2

Different thickness types:
$$rank = r$$
 $rank = s$

 $r+1 \leq s < 2r$: thickness 1 $2r \leq s < r 2^r$: thickness 2 $r 2^r \leq s$: thickness 3

Different thickness types:
$$rank = r$$
 $rank = s$

 $r+1 \leq s < 2r$: thickness 1 $2r \leq s < r 2^r$: thickness 2 $r 2^r \leq s$: thickness 3 Why stop here?

Different thickness types: rank = r rank = s $f_1(r)$ $r+1 \le s < 2r$: thickness 1 $2r \le s < r 2^r$: thickness 2 $r 2^r \le s$: thickness 3 Why stop here?

Different thickness types:

$$rank = r$$

$$rank = s$$

$$rank = s$$

$$rank = s$$

$$re^{f_1(r)}$$

$$r+1 \le s < 2r$$
: thickness 1
$$r^{2(r)}(2r) \le s < r 2^r$$
: thickness 2
$$r 2^r \le s$$
: thickness 3 Why stop here?

Different thickness types: rank = r rank = s $f_1(r)$ $r+1 \le s < 2r$: thickness 1 $f_2(r) (2r) \le s < r 2^r$: thickness 2 $f_3(r) (r 2^r) \le s$: thickness 3 Why stop here?

Different thickness types:

$$rank = r$$

$$rank = s$$

$$rank = s$$

$$f_1(r)$$

$$r + 1 \le s < 2r$$
: thickness 1
$$f_2(r) (2r) \le s < r 2^r$$
: thickness 2
$$f_3(r) (r 2^r) \le s < f_4(r)$$
: thickness 3

Different thickness types:

$$e \quad rank = r \quad rank = s$$

$$f_1(r) \quad r+1 \leq s < 2r: \text{ thickness 1}$$

$$f_2(r) \quad 2r \leq s < r \ 2^r: \text{ thickness 2}$$

$$f_3(r) \quad r \ 2^r \leq s < f_4(r): \text{ thickness 3}$$

$$f_4(r) \leq s < f_5(r): \text{ thickness 4}$$

1

Different thickness types:

$$e = r$$

$$rank = r$$

$$rank = s$$

$$f_1(r)$$

$$r+1 \le s < 2r$$
: thickness 1
$$f_2(r) (2r) \le s < r 2^r$$
: thickness 2
$$f_3(r) (r 2^r) \le s < f_4(r)$$
: thickness 3
$$f_4(r) \le s < f_5(r)$$
: thickness 4

eDifferent thickness types: rank = srank = r $f_1(r)$ $(r+1) \leq s < 2r$: thickness 1 $f_2(r) = f_1(f_1(\dots f_1(r) \dots))$ $2r \leq s < r 2^r$: thickness 2 $f_2(r)$ $f_{3}(r)(r 2^{r}) \le s < f_{4}(r)$: thickness 3 $f_4(r) \leq s < f_5(r)$: thickness 4

Different thickness types:

$$rank = r$$

$$rank = s$$

$$f_1(r)$$

$$r + 1 \le s < 2r$$
: thickness 1
$$f_2(r) \ge s < r \ 2^r$$
: thickness 2
$$f_3(r) \ (r \ 2^r) \le s < f_4(r)$$
: thickness 3
$$f_4(r) \le s < f_5(r)$$
: thickness 4
$$\vdots$$

l

Different thickness types:

$$rank = r$$

$$rank = s$$

$$f_1(r)$$

$$r + 1 \le s < 2r$$
: thickness 1
$$f_2(r) @ r \le s < r \ 2^r$$
: thickness 2
$$f_3(r) @ r \ 2^r \le s < f_4(r)$$
: thickness 3
$$f_4(r) \le s < f_5(r)$$
: thickness 4

Different thickness types:

$$e \quad e \quad rank = r \quad rank = s$$

$$f_1(r) \quad r + 1 \le s < 2r: \text{ thickness } 1 \quad f_2(r) = \underbrace{f_1(f_1(\dots f_1(r) \dots))}_{f_2(r)(2r) \le s < r 2^r: \text{ thickness } 2} \quad e = f_1^{(r)}(r)$$

$$f_3(r) (r 2^r) \le s < f_4(r): \text{ thickness } 3 \quad f_3(r) = f_2^{(r)}(r)$$

$$f_4(r) \le s < f_5(r): \text{ thickness } 4$$

$$\vdots$$

Different thickness types:

$$e \quad rank = r \quad rank = s$$

$$f_1(r) \quad r+1 \leq s < 2r: \text{ thickness } 1 \quad f_2(r) = \underbrace{f_1(f_1(\dots f_1(r) \dots))}_{f_2(r)(2r) \leq s < r 2^r: \text{ thickness } 2} \quad e \quad f_1^{(r)}(r)$$

$$f_3(r) \quad r2^r \leq s < f_4(r): \text{ thickness } 3 \quad f_3(r) = f_2^{(r)}(r)$$

$$f_4(r) \leq s < f_5(r): \text{ thickness } 4 \quad f_4(r) = f_3^{(r)}(r)$$

$$\vdots$$

Case 1: e is the last edge of thickness i on this path.

Case 1: e is the last edge of thickness i on this path. Then find operation pays one \bigcirc for this.

Case 1: e is the last edge of thickness i on this path. Then find operation pays one \bigcirc for this. This is a *weak* edge redirection.

Case 1: *e* is the last edge of thickness *i* on this path. Then find operation pays one for this. This is a *weak* edge redirection. Total cost: number of thickness types.

Case 2: e is not the last edge of thickness i on this path.

after r - 1 strong redirections: rank(root) $\geq f_i^{(r)}(r) = f_{i+1}(r)$

and the thickness of e increases to i+1

let ℓ be the number of thickness types occurring.

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most rank(x) before the thickness of e increases.

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ x before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

 $\sum_{x} \ell \cdot \operatorname{rank}(x) = \ell \cdot \sum_{r} |\{\text{elements of rank } r\}|$

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ x before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

 $\sum_{x} \ell \cdot \operatorname{rank}(x) = \ell \cdot \sum_{r} |\{\text{elements of rank } r\}| \\ \leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}}$

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$\sum_{x} \ell \cdot \operatorname{rank}(x) = \ell \cdot \sum_{r} |\{\text{elements of rank } r\}|$$
$$\leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}}$$
$$= 6 \ell n.$$

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ x before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$\sum_{x} \ell \cdot \operatorname{rank}(x) = \ell \cdot \sum_{r} |\{\text{elements of rank } r\}|$$
$$\leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}}$$
$$= 6 \, \ell n.$$
Overall cost is $O(\ell \cdot (n+m)).$

let ℓ be the number of thickness types occurring.

each find pays at most ℓ 🌑

• x pays at most $\operatorname{rank}(x)$ x before the thickness of e increases. Overall, x pays at most $\ell \cdot \operatorname{rank}(x)$

$$\begin{split} \sum_{x} \ell \cdot \operatorname{rank}(x) &= \ell \cdot \sum_{r} |\{\text{elements of rank } r\}| \\ &\leq \ell \cdot \sum_{r} \frac{n}{2^{r-2}} \\ &= 6 \, \ell n. \\ \text{Overall cost is } O(\ell \cdot (n+m)). \end{split} \text{How large can } \ell \text{ become?} \end{split}$$

 ℓ is the number of thickness levels

 ℓ is the number of thickness levels

Imagine $\underbrace{e}{x}$ is an edge of thickness 5.

 ℓ is the number of thickness levels

Imagine e is an edge of thickness 5. x y $rank(y) \ge f_5(rank(x)) \ge f_5(2)$

 $f_1(n) = n+1$

 $f_1(n) = n + 1$ $f_2(n) = 2n$ $f_3(n) = n 2^n$

 $f_1(2) = 3$ $f_2(2) = 4$

 $f_1(n) = n + 1 \qquad f_1(2) = 3$ $f_2(n) = 2n \qquad f_2(2) = 4$ $f_3(n) = n 2^n \qquad f_3(2) = 8$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8)$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$

 $f_4(2) = f_3(f_3(2)) = f_3(8) = 8 \cdot 2^8 = 2048.$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8) = 8 \cdot 2^{8} = 2048.$

 $f_5(2) = f_4(f_4(2)) = f_4(2048)$

 $f_1(n) = n + 1$ $f_1(2) = 3$ $f_2(n) = 2n$ $f_2(2) = 4$ $f_3(n) = n 2^n$ $f_3(2) = 8$ $f_4(2) = f_3(f_3(2)) = f_3(8) = 8 \cdot 2^8 = 2048.$

 $f_5(2) = f_4(f_4(2)) = f_4(2048) \ge f_3(f_3(\dots f_3(2048)\dots)))$

 $f_1(n) = n + 1$ $f_1(2) = 3$ $f_2(n) = 2n$ $f_2(2) = 4$ $f_3(n) = n 2^n$ $f_3(2) = 8$ $f_4(2) = f_3(f_3(2)) = f_3(8) = 8 \cdot 2^8 = 2048.$

$$f_5(2) = f_4(f_4(2)) = f_4(2048) \ge \underbrace{f_3(f_3(\dots f_3(2048)\dots)))}_{2048 \text{ times}}$$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8) = 8 \cdot 2^{8} = 2048.$ $f_{5}(2) = f_{4}(f_{4}(2)) = f_{4}(2048) \ge f_{3}(f_{3}(\dots f_{3}(2048)\dots)))$

 $2048 \ {\rm times}$

$$\geq 2^{2^{2} \cdot \cdot \cdot 2^{2048}}$$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8) = 8 \cdot 2^{8} = 2048.$ $f_{5}(2) = f_{4}(f_{4}(2)) = f_{4}(2048) \ge \underbrace{f_{3}(f_{3}(\dots f_{3}(2048)\dots)))}_{2048 \text{ times}}$

$$f_5(2) \ge 2^{2^{2} \cdot \cdot \cdot 2^{2048}}$$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8) = 8 \cdot 2^{8} = 2048.$ $f_{5}(2) = f_{4}(f_{4}(2)) = f_{4}(2048) \ge \underbrace{f_{3}(f_{3}(\dots f_{3}(2048)\dots)))}_{2048 \text{ times}}$

 $\operatorname{rank}(y) \ge f_5(2) \ge 2^{2^{2^{\cdot \cdot 2^{2048}}}}$

 $f_{1}(n) = n + 1$ $f_{1}(2) = 3$ $f_{2}(n) = 2n$ $f_{2}(2) = 4$ $f_{3}(n) = n 2^{n}$ $f_{3}(2) = 8$ $f_{4}(2) = f_{3}(f_{3}(2)) = f_{3}(8) = 8 \cdot 2^{8} = 2048.$ $f_{5}(2) = f_{4}(f_{4}(2)) = f_{4}(2048) \ge \underbrace{f_{3}(f_{3}(\dots f_{3}(2048)\dots)))}_{2048 \text{ times}}$

 $\log(n) \ge \operatorname{rank}(y) \ge f_5(2) \ge 2^{2^{2^{\cdot 2^{2^{-1}}}}}$