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Abstract

The problem of finding the minimum weight k-edge connected spanning subgraph of a mixed

graph is NP-hard for every k ≥ 1, and, for k ≥ 2, the best approximation ratio known so far is 4. In

this thesis, we analyze several approaches to the general k-ECSS problem of mixed graphs.

We give a factor 2 approximation for a special case in which all undirected edges have the same

weight, and this weight is no higher than twice the weight of the cheapest directed edge. For the special

case in which undirected edges have no higher weights than directed edges (though not necessarily

being uniform) we achieve a factor 3.75 approximation.

Further, we give several examples on which the analyzed algorithms perform poorly.
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Chapter 1

Introduction

A graph G = (V,E) is called k-edge connected (k-EC) if it contains at least k edge disjoint

paths — i. e. paths that do not share an edge — between every two vertices. This is equivalent to

say that every set of vertices, except ∅ and V , is entered by at least k edges. A natural problem is

how to find a minimum cost k-edge connected spanning subgraph (k-ECSS) of G, that is, a k-EC

spanning subgraph containing the smallest possible number of edges, or having the smallest possible

total weight, if the graph is weighted.

One can think about this problem as the task of designing a fault-tolerant communication

network between several hosts, which means the network should survive a certain number of link

failures, i. e. every host should still be able to communicate with any other.

The problem comes in several flavours: the graph can be directed or undirected, the edges can

be weighted or not. Further, we can allow parallel edges (multigraphs) or require all edges to be simple

(simple graphs).

The problem of finding the smallest or minimum weight k-ECSS is NP-hard for every k ≥ 2,

and, if the graph is directed, also for k = 1. This follows easily from a reduction from Hamiltonian

Cycle: consider an unweighted, undirected graph G with n vertices, and let k = 2. Every 2-ECSS

must contain at least n edges, and there is a 2-ECSS of G containing exactly n edges if and only if G

has a Hamiltonian cycle.

Since it is usually assumed that P 6= NP, there is little hope for finding the minimum weight

k-ECSS in polynomial time. Therefore people are looking for approximation algorithms, i. e.

algorithms that run in polynomial time and produce a solution which has a weight not much higher

than the weight of an optimal solution.

For a given problem instance I, we say an algorithm achieves a ratio of α on I if it finds a
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solution that has a weight which is α times the weight of an optimal solution. If an algorithm achieves

a ratio of at most α on every problem instance, we call it an α-approximation algorithm.

If we can prove a ratio of α for some algorithm, and also find a problem instance on which the

algorithm achieves a ratio of α, we say the analysis of the algorithm is tight, and call the problem

instance a tight example. Sometimes, we do not come up with a single example, but rather with

a family of examples, on which the ratios the algorithm achieves are strictly smaller than α, but do

converge to α. We then still call the analysis tight, or, to be more precise, asymptotically tight.

Previous Work

Khuller and Raghavachari [7] give a depth-first search algorithm for the k-ECSS problem on

unweighted undirected multigraphs that achieves a ratio of 1.85, which was the first improve over the

previously known ratio of 2. Gabow [3] improved the analysis of this algorithm to a factor of 1.61.

For unweighted multigraphs, [5] gives an LP-rounding algorithm achieving an approximation

ratio of 1 + 2/k for directed graphs or undirected graphs with k even, and 1 + 3/k for undirected

graphs and k odd. There is also another rounding technique which achieves a ratio of 1 + 2/k on

undirected graphs for arbitrary k.

For weighted graphs, there has been considerably less progress. An application of Lawler’s

minimum weight matroid intersection algorithm [8] yields a factor 2 approximation for the k-ECSS

problem for both undirected and directed weighted multigraphs. However, this is the best ratio known

so far. A far more general problem is the Steiner network problem, where each vertex pair u, v has a

cut-requirement r(u, v), and we are looking for a minimum weight subgraph that contains at least

r(u, v) edge disjoint paths between u and v. Note that setting r(u, v) = k for every vertex pair gives

the k-ECSS problem.

Jain [6] gives an iterated LP-rounding algorithm for the Steiner network problem on undirected

graphs which achieves a ratio of 2. Gabow [4] extends Jain’s proof to directed graphs and achieves a

factor of 3, but also shows that iterated rounding has unbounded approximation ratio on mixed graphs.

Our Results

The best currently known approximation algorithm for the minimum weight k-ECSS problem

on mixed graphs achieves a ratio of 4. Given a mixed graph G, the algorithm builds the directed

version D by replacing each undirected edge by two directed edges, one in each direction. On D, one

can run any algorithm for the k-ECSS problem on directed graphs, so e. g. the one using the minimum
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weight matroid intersection algorithm cited above. It is easy to show that an algorithm achieving a

ratio of α on directed graphs will achieve a factor of 2α on mixed graphs.

In Chapter 3 we show how to achieve the factor 2 approximation on directed and undirected

graphs, and how this yields the factor 4 for mixed graphs.

In Chapter 4 we present our results. In Section 4.1, we prove an approximation ratio of 2 for a

special case. In this special case, we assume that all undirected edges have uniform weights, and that

this weight is at most twice the weight of the cheapest (lowest weight) directed edge.

Section 4.2 gives some examples demonstrating that the simple approach of 4.1 does not work

for more general graphs.

In Section 4.3, we will achieve a factor 3.75 approximation for mixed graphs where undirected

edges have no higher weights than directed edges (we do not require uniformity here) and k = 2. We

think this bound is far from being tight, and also think it should generalize to higher k.

In Section 4.4 we give some examples on which the algorithm analyzed in Section 4.3 performs

poorly. We did not find tight examples, though.

Finally, in Section 4.5 we analyze another special case, where all directed edges have weight zero

and undirected edges have uniform weight cost. We did not succeed in proving any ratio better than

4, but did find some results that might be useful.

Note that we always allow parallel edges, i. e. we are dealing with multigraphs.



Chapter 2

Notation

Consider a directed graph G = (V,E) and a vertex set X ⊂ V , and an edge e = (u, v) ∈ E.

The vertex v is called the head of e, u is called the tail of e. An edge e = (u, v) is said to enter X

if v ∈ X but u 6∈ X. If u ∈ X but v 6∈ X, e leaves X. An edge set F is said to enter (leave) X if it

contains an edge entering (leaving) X. Further ρF (X) and δF (X) denote the number of edges of F

entering X and leaving X, respectively.

If G is undirected, an edge e = {u, v} is called adjacent to X if exactly one of u and v is inside

X. In this case, we write dF (X) to count the edges of F adjacent to X. If G is mixed, i. e. contains

both directed and undirected edges, an undirected edge e = {u, v} that is adjacent to some set is said

to both enter and leave it. Thus, it is counted by ρ as well as by δ.

It is well known that ρ and δ are submodular, i. e. they fulfill the inequality

ρ(M) + ρ(N) ≥ ρ(M ∪N) + ρ(M ∩N)

for any vertex sets M and N .

For an edge set F , V (F ) is the set of all vertices spanned by F , i. e. the set of all endpoints

(heads and tails) of edges in F . If V is a set, we sometimes write V − v and V + v instead of V \ {v}
and V ∪ {v}. Further, given a vertex set X, an edge is called inside X if both its endpoints are in X,

and outside if neither endpoint is in X.

Two sets X, Y are said to intersect if X ∩ Y is nonempty. They are said to cross if none of

the sets X ∩ Y , X \ Y and Y \X is empty. This means, two sets cross if they are neither disjoint, nor

one is a subset of the other.

For mixed graphs, we have to introduce some additional notation: given a mixed edge set E,

we let EU denote the set of all undirected edges in E, and ED the set of all directed edges. ~E

denotes the directed version of E, i. e. it contains all directed edges of E and, for each undirected
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edge e = {u, v} ∈ E, it contains the two antiparallel directed copies of e, which are (u, v) and (v, u).

Remember that we always allow parallel edges.

Given a mixed edge set E and a directed edge set F ⊆ ~E, F̄ denotes the original mixed version

of F , which means it contains the directed edges of F , and includes an undirected edge {u, v} if at

least one of its antiparallel directed copies is in F .

In F , an edge e = (u, v) that is a copy of an undirected edge in E is called a single undirected

edge if (v, u) 6∈ F . Otherwise, it is called a double undirected edge.1 FUd denotes the set of all double

undirected edges in F , FD
s the set of all single undirected edges. Further, we define F U := FUd ∪ FUs

and FD = F \ FU , so FD is the set of all edges in F that have a directed original in the mixed set E.

Throughout this paper, A denotes a solution returned by some algorithm (it will be clear from

the context which algorithm), and OPT denotes an optimal solution to the problem that is analyzed.

1 Note that F is a directed edge set. So we extend the notion of an undirected edge to directed sets that were
built from a mixed set



Chapter 3

The Branching Algorithm

We mentioned that Lawler’s minimum weight matroid intersection algorithm yields a factor 2

approximation on directed graphs. In this Chapter, we demonstrate how to achieve that and how to

apply this algorithm to undirected and mixed graphs. We refer to that algorithm as the branching

algorithm.

3.1 Directed Graphs

Before starting to analyze algorithms for the k-ECSS problem, we will introduce some additional

notation and facts that will be crucial to our analysis.

Definition 3.1 Given a directed graph G = (V,E), a root vertex r ∈ V and a positive integer k, a

set F ⊆ E is called k-entering if every set X ⊆ V − r has ρ(X) ≥ k. Similarly, F ⊆ E is called

k-leaving if every set X ⊆ V − r has δ(X) ≥ k.

We state two key properties of k-entering sets.

Proposition 3.1 F is k-entering (k-leaving) if and only if for every vertex s ∈ V − r, there are ≥ k

edge-disjoint r − s-paths (s− r-paths).

This fact is a direct consequence of the well-known Min Cut—Max Flow theorem. The next

Proposition is less obvious but equally important:

Proposition 3.2 F is k-entering (k-leaving) if and only if F can be partitioned into k 1-entering

(1-leaving) subsets F1, . . . , Fk.

Note that a 1-entering set F always contains a spanning arborescence T rooted at r.1 We

call T an out-tree rooted at r, or simply an out-tree, if there is no doubt about r. Every minimal

1 an arborescence is simply a directed tree in which either all edges are directed away from the root or all edges are
directed towards the root. We will use the words tree and arborescence as synonyms
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1-entering set is an out-tree, and every minimal k-entering set F can be partitioned into k out-trees.

In this case, we call F a k-out-tree (rooted at r). Similarly, a minimal k-leaving set is called a k-in-tree.

There are several proofs of Proposition 3.2, the first one given by Edmonds [1]. In this thesis,

we will look at a proof by Frank [2], because it is very clear and gives us a polynomial algorithm to

construct the decomposition. He proves a more general result about so-called Kernel systems, of

which the above Proposition is a special case. To make this paper self-contained, we will restate

Frank’s proof here, adapted to our special case.

Proof of Proposition 3.2. The “if”-direction is trivial. For the “only if”-direction, we will

show how to partition F into a 1-entering set F1 and a k − 1-entering set F ′. Repeating this process

proves the proposition.

We start with F1 empty and F ′ = F . We then iteratively remove an edge from F ′ and add it to

F1. This is repeated until F1 is 1-entering. The difficulty is to assure that F ′ stays k − 1-entering all

the time.

At any stage of the algorithm, a set X ⊆ V − r is called dangerous if ρF ′(X) = k − 1. This

means, an edge e ∈ F ′ that enters X must not be moved to F1, since otherwise F ′ would not be

k − 1-entering any more. A set X ⊆ V − r is called unsatisfied if F1 does not enter X.

In every step, let X be some maximal unsatisfied set. We find some edge e ∈ F ′ that does

not enter any dangerous set, remove it from F ′ and insert it into F1 and say e was inserted into F1

because of X. Clearly, this keeps F ′ k − 1-entering.

We only have to show that such an edge e always exist. In the following, F1 and F ′ always

denote the sets under construction just before edge e is removed from F ′ and added to F1.

Proposition 3.3 Let X be any maximal unsatisfied set. For any f ∈ F1, the head of f is not in X.

Proof. Let f = (u, v). Suppose for the sake of contradiction that v ∈ X. Since X is unsatisfied,

f does not enter X, so we must also have u ∈ X. Let F ′1 be the set of edges the algorithm has inserted

into F1 before f , and let Xf be the set because of which f was inserted. Obviously, F ′1 enters neither

Xf nor X. Hence it neither enters X ∪Xf , so this set must be unsatisfied, too. Also, X ∪Xf is larger

than Xf (it contains u, which Xf does not contain), which contradicts the fact that the algorithm

chooses the maximal unsatisfied set in each step. �

Proposition 3.4 If XD is a dangerous set, then it is not a subset of X.
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Proof. A dangerous set cannot be unsatisfied. Therefore, there is some edge f ∈ F1 entering

XD. So the head of f is in XD, but, by Proposition 3.3, not in X. �

Proposition 3.5 If X and Y are dangerous and X ∩ Y 6= ∅, then X ∩ Y is also dangerous.

Proof. Since ρ is a submodular function, we have

(k − 1) + (k − 1) = ρF ′(X) + ρF ′(Y ) ≥ ρF ′(X ∪ Y ) + ρF ′(X ∩ Y ) ≥ (k − 1) + (k − 1)

This implies that every inequality must hold with equality. Since X ∩ Y 6= ∅, we have ρF ′(X ∩
Y ) ≥ k − 1, and since X ∪ Y 6= V (neither set contains the root r), we have ρF ′(X ∪ Y ) ≥ k − 1 as

well, so both X ∪ Y and X ∩ Y must be dangerous. �

Now, for the sake of contradiction, suppose that every edge e = (u, v) ∈ F ′ that enters X also

enters some dangerous set. Such a dangerous set must intersect with X, since both sets contain v.

Let XD be a dangerous set intersecting with X and XD −X as small as possible. XD −X cannot be

empty, since otherwise XD ⊂ X, contradicting Proposition 3.4.

Now, we show that there is some edge e = (u, v) ∈ F ′ with u ∈ XD − X and v ∈ XD ∩ X.

Suppose that no such edge exists, then every edge entering XD ∩ X also enters XD. Since exactly

k − 1 edges enter XD, XD ∩X is also dangerous. But it is a subset of X, contradicting Proposition

3.4. So there is an edge e = (u, v) ∈ F ′ with u ∈ XD −X and v ∈ XD ∩X.

We claim that edge e does not enter any dangerous set. Suppose it did enter the dangerous

set Xe. Then X ′ = Xe ∩ XD is nonempty (both sets contain vertex v), hence also dangerous by

Proposition 3.5. But X ′ −X is smaller than XD −X, because it does not contain u, which XD does

contain, so this contradicts the fact that XD was chosen such that XD −X is as small as possible.

This means there is some edge e ∈ F ′ that enters X but no dangerous set, so e can safely be

moved from F ′ to F1. This proves Proposition 3.2. �

It is interesting to ask what F1 will look like at each stage of the algorithm.

Proposition 3.6 At any stage of the algorithm, F1 is a subtree of F , rooted at r.

Proof. We prove this by induction. At the beginning, F1 is empty, hence trivially a subtree.

For simplicity we say at the beginning F1 spans only the root r, i. e. V (F1) = {r}. Now suppose F1

is a subtree rooted at r, but not a spanning subtree (if it is spanning, F1 is also 1-entering, hence we

are done). Then the maximal unsatisfied set X cannot contain any vertex spanned by F1. Clearly,
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V − V (F1), the set of all vertices not spanned by F1 is nonempty, since F1 is not spanning yet. Also,

V −V (F1) is unsatisfied, since no edge of F1 enters it. It is indeed the unique maximal unsatisfied set.

To see this, first note that no unsatisfied set X can contain a vertex in V − V (F1), otherwise there

would be at least one edge of F1 entering X (since r 6∈ X). Also, if X is unsatisfied and v ∈ V −V (F1),

then X + v is unsatisfied as well, since no edge of F1 enters v.

Now, the algorithm will add an edge e ∈ F ′ to F1 which enters X, so F1 + e is still a tree rooted

at r. �

Note that Frank’s proof gives us a polynomial time algorithm to construct the partition of a

k-entering set F into k 1-entering sets. This follows because it is easy to find a maximal unsatisfied set,

as stated in Proposition 3.6, and also possible, in polynomial time, to check whether an edge e ∈ F ′

enters a dangerous set: if it does, then F ′ is not k − 1-entering any more, so there is a vertex s such

that F ′ contains less than k− 1 r− s-paths. To check this, we have to find the minimum r− s-cut for

every vertex s.

Given a weighted graph G = (V,E), w : E → R+
0 , an interesting question is whether one can

find a minimum weight k-entering set F in polynomial time The weighted matroid intersection

algorithm first given by E. L. Lawler [8] achieves that. Since such an F is minimal, we call it a

minimum weight k-out-tree.

This immediately yields a factor-2 approximation for the minimum weight k-ECSS problem of

directed graphs:

Lemma 3.1 Given an integer k and a weighted k-edge connected graph G = (V,E). Choose r ∈ V
arbitrarily. Let O be a minimum weight k-out-tree and I a minimum weight k-in-tree, both rooted at

r. Then H := I ∪O is k-EC and its weight is at most twice the weight of a minimum weight k-ECSS

of G.

Proof. First we show that H is k-EC. Consider any proper subset X of V . If X does not

contain r, then ρH(X) ≥ k, since H contains O, and O is a k-out-tree. If X does contain r, than

Y := V − X does not contain r. Since H contains the k-in-tree I, we have δH(Y ) ≥ k. Of course,

ρH(X) = δH(Y ). Hence any set X ⊆ V has an in-degree of at least k.

To prove the approximation ratio, fix any optimal k-ECSS OPT . Of course, OPT is both

k-entering and k-leaving. This means w(OPT ) ≥ w(O) and w(OPT ) ≥ w(I), hence we have

w(H) ≤ w(I) + w(O) ≤ 2w(OPT ). �
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Figure 3.1: Tight example for the factor-2 approximation algorithm on directed graphs with k = 1

This is currently the best known result, for any k ≥ 1, and the bound is tight for every k. We

give a tight example for k = 1 which can easily be generalized for higher k.

In Figure 3.1, the minimum weight 1-out-tree contains (r, u) and (r, v) and has weight 1. The

minimum weight 1-in-tree contains (u, r) and (v, r) and also has weight 1. The optimal 1-ECSS

(strongly connected spanning subgraph, in that case), is {(r, u), (u, v), (v, r)} and has weight 1 + ε,

with ε being an arbitrarily small positive real number. So the approximation ratio is arbitrarily close

to 2. This example easily generalizes to k by replacing each edge by k parallel copies.

3.2 Undirected Graphs

For the k-ECSS problem on undirected graphs, a slightly different algorithm works, but also here

a factor 2 is the best we know at this time. Of course, for k = 1, the k-ECSS problem on undirected

graphs is simply the minimum spanning tree problem, hence solvable in polynomial time. For k ≥ 2

though, the problem remains NP-hard also for undirected graphs.

Let G = (V,E) be a k-EC undirected graph. To achieve a factor-2 approximation, build D = ~G,

the directed version of G. Further, set w(u, v) = w(v, u) = w({u, v}). On D, choose the root vertex

r arbitrarily and find the minimum weight k-out-tree O rooted at r. Now, Ō ⊆ E is the set that

includes each edge of which O contains at least one direction.

Lemma 3.2 The undirected graph (V, Ō) is k-EC and its weight is at most twice the weight of the

optimal k-ECSS of G.
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Figure 3.2: Tight example for the factor-2 approximation algorithm on undirected graphs with k = 2

Proof. Since G is undirected, we do not distinguish between ρ and δ. Consider any set X ⊂ V .

If X does not contain the root, then at least k edges of Ō must be adjacent to X, since at least k

edges of O enter X. If X contains the root, the same argument holds for V −X, so V −X is adjacent

to at least k edges of Ō. But an edge adjacent to V −X is of course also adjacent to X. So (V, Ō) is

a k-ECSS of G.

To prove the approximation factor, let ~OPT be the directed version of OPT . ~OPTD is a k-ECSS

of D, hence is k-entering. Therefore we have w(O) ≤ w( ~OPT ). Since ~OPT contains two antiparallel

copies for each edge in OPT , we have w( ~OPT ) = 2w(OPT ). The approximation ratio follows. �

Also for this case we have a tight example. It is almost identical with the example for directed

graphs. Here, we have k = 2.

Note that the graph in Figure 3.2 has parallel edges. Our algorithm replaces each edge by two

antiparallel directed edges and finds the optimal 2-out-tree O, which is {(r, u)1, (r, u)2, (r, v)1, (r, v)2},
where we write (r, u)i to indicate that there are parallel edges between these vertices. The weight of

O is 2. The optimal 2-ECSS of course is {{r, u}1, {u, v}, {v, r}1} and has weight 1 + ε. Hence, ~OPT

has weight 2 + 2ε, slightly more expensive than O.

If one is uncomfortable with this example because it contains parallel edges, there is an ex-

ample without parallel edges, having uniform edge costs, on which the algorithm achieves a fac-

tor 2, too: let V = {u0, . . . , un−1}, n odd, and let E = C1 ∪ C2 := { {ui, ui+1 mod n}, 0 ≤ i <

n} ∪ { {ui, ui+2 mod n}, 0 ≤ i < n}, so G = (V,E) has two edge disjoint Hamiltonian cycles C1, C2.

For k = 2, the optimal k-ECSS is simply a Hamiltonian cycle, hence has weight n, whereas we can

assume that our algorithm is so unlucky that it chooses O = C1−{un−1, u0}∪C2−{un−2, u0}, which

has a weight of 2n− 2.
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We state here that while we can “simulate” undirected graphs by directed graphs by replacing

undirected edges by antiparallel copies, this can change the approximation ratio.

In fact, the problem of finding a minimum weight k-entering set is solvable in polynomial time

on directed graphs, but NP-hard on undirected graphs. On the other hand, the k-ECSS requires us to

construct a k-entering set as well as a k-leaving set in the directed case, whereas on undirected graphs,

we only have to construct one of these sets. A generalization that contains directed and undirected

graphs as special cases are mixed graphs, i. e. graphs in which some edges are directed and some are

undirected.

3.3 Mixed Graphs

Now we come to the central problem of this thesis, which is how to approximate the minimum

weight k-ECSS of a mixed graph. Finding a minimum weight k-out-tree of an undirected graph is

NP-hard, but on the other hand we do not have to find an additional k-in-tree in the undirected case,

since every out-tree works also as in-tree.

On directed graphs, the k-out-tree can be constructed optimally, but we do have to find an

additional k-in-tree. Thus, in the first case we have to solve one problem once, with an approximation

ratio of 2. In the latter case, we have to solve a problem twice, but with an approximation ratio of 1.

On mixed graphs, both disadvantages are present, and we must construct the k-out-tree and

the k-in-tree, both with an approximation ratio of 2, in the worst case. This yields an approximation

ratio of 4. We describe the algorithm more formally:

Given a mixed graph G = (V,E), construct the directed version ~G of G by replacing undirected

edges by two antiparallel directed copies having the same weight as the original edge, and leave directed

edges in G unchanged. On ~G, we construct O and I, the minimum weight k-out-tree and k-in-tree.

Return A = O ∪ I, the original mixed version of O ∪ I. We refer to this algorithm as the branching

algorithm, because it does nothing more than constructing the out-branchings and in-branchings O

and I.

Lemma 3.3 A is k-EC and its weight is at most four times the weight of the optimal k-ECSS.

Proof. The proof that A is k-EC is quite similar to the proofs above. So we only prove the

approximation ratio. We have w( ~OPT ) ≤ 2w(OPT ), since each directed edge in OPT contributes the

same to w( ~OPT ) as to w(OPT ), and each undirected edge in OPT contributes twice as much. As
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Figure 3.3: Tight example for the factor-4 approximation algorithm on mixed graphs, for k = 2. Edges
with arrows are directed, edges without arrows are undirected

usual, we have w(O), w(I) ≤ w( ~OPT ). Adding yields

w(A) ≤ w(Ō) + w(Ī) ≤ w(O) + w(I) ≤ 2w( ~OPT ) ≤ 4w(OPT )

Which is the approximation ratio of 4. �

The proof suggests how a tight example should look like: For the first inequality to come close to

equality, I and O should be disjoint, or have only very cheap (low-weight) edges in common. For the

second, neither set should include many antiparallel copies of undirected edges, while the forth says

OPT should have many of them. Indeed such an example exists (see Figure 3.3). Not surprisingly, it

is very similar to those we have seen before.



Chapter 4

Adapting the Weight Function

The previous example gives rise to an important question: the worst case of a ratio of 4 can

only be achieved if O and I use only one direction of an undirected edge (i. e. include only one of its

two antiparallel copies) and OPT uses many undirected edges in both directions.

This last point needs clarification. OPT is a mixed edge set, so it is not well-defined which undi-

rected edge is used in both or only in one direction (O and I are subgraphs of the directed graph ~G, so

here it is well-defined). We define that as follows: ~OPT is a k-ECSS of ~G, so it contains a k-out-tree

OOPT and a k-in-tree IOPT rooted at the vertex r our algorithm has chosen as root vertex. These

k-trees do not need to be unique, but if we fix some OOPT and IOPT arbitrarily, we can count how

often OPT uses an undirected edge e. An undirected edge can be used up to four times (remember

that the in-tree and the out-tree need not be edge-disjoint).

The example in Figure 3.3 is pathologically bad because the algorithm fails to use the very

valuable undirected edge {u, v}. It might now seem that our choice to set w(u, v) and w(v, u) in

~G equal to w({u, v}), the weight of the original undirected edge, was not optimal. The question

is whether we can improve the approximation ratio by using an adapted weight function w ′,

w′(u, v) = w′(v, u) = γw({u, v}), for some γ < 1. Unfortunately, the answer is no, for the time being,

but the approximation ratio does not increase, either:

Lemma 4.1 Let G = (V,E) be some mixed graph with edge weight function w. If we use an adapted

weight function w′ for any 1/2 ≤ γ ≤ 1, the branching algorithm achieves an approximation ratio of

4.

Proof. Two inequalities change: Before, we had w(A) ≤ w(I ∪O). This is no longer true, since

for an undirected edge {u, v}, we have w({u, v}) = 1
γw
′(u, v). So the weight might inflate by 1/γ when
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we build the mixed set A from the directed set I ∪O, and we have

w(A) ≤ 1

γ
w′(I ∪O)

On the other hand, we had the inequality w′( ~OPT ) ≤ 2w(OPT ) before, which means the weight of

OPT may inflate when building the directed version ~OPT , since an undirected edge is replaced by

two directed edges. But now, this inflation is diminished by a factor of γ, since the weight of both

directed copies is 2γ times the weight of the original undirected edge. We get

w′( ~OPT ) ≤ 2γw(OPT )

Note that this inequality will loose its validity for γ < 1/2, since then 2γ < 1, but the weight of OPT

need not deflate when changing to ~OPT , for example if OPT contains only directed edges.

Combining the two inequalities, we get

w(A) ≤ 1

γ
w′(I ∪O) ≤ 1

γ
(w′(I) + w′(O)) ≤ 1

γ
2w( ~OPT ) ≤ 1

γ
4γw(OPT )

Which again yields a factor of 4. �

From now on, we will always assume that the adapted weight function uses γ = 1/2. It is worth

to look more closely on how w′ and w change when switching between directed edge sets and mixed

sets.

If F ∈ E is a mixed edge set, then we have w′(~F ) = w(F ), since an undirected edge gets replaced

by two directed copies of half the weight each.

If F ∈ ~E is a directed edge set, we have w(F̄ ) = w(F ) − w(FUd )/2, since for a double undi-

rected edge in F , only one instance is counted in F̄ . For w′, we have the inequality w(F̄ ) =

w′(FD) + w′(FUd ) + 2w′(FUs ).

The above bound of 4 is tight, and in Figure 4.1 we give a tight example for k = 2. It is almost

identical to the example in Figure 3.3, though all edges are undirected here. On this graph, the choice

of γ obviously does not matter, because it multiplies all edge weights by the same factor.

The optimal 2-ECSS is of course the undirected Hamiltonian cycle {r, u}, {u, v}, {v, r} and has

weight 1 + ε. Our algorithm finds an optimal I containing the two edges {u, r}0, {v, r}0 having weight

0, and {u, r}1, {v, r}1, having weight 1 each. Now, we can assume that the algorithm unluckily includes

into O the edges {r, u}2, {r, v}2, which have not yet been included in I and have a weight of 1 each,

causing a ratio of 4. This seems pessimistic, since the algorithm might as well include {r, u}1, {r, v}1
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Figure 4.1: Tight example for the factor-4 approximation algorithm on mixed graphs for k = 2, using
adapted weight function w′

into O, which are already in I. But in the worst case the algorithm makes the unlucky choice.

This example is worth some remarks: The branching algorithm without adapted weight function

performs worst on graphs where the optimum uses many undirected edges in both directions. But

there are tight examples where A is purely undirected as well as purely directed.

On the contrary, if we use the adapted weight function, the algorithm performs worst if A has

mainly undirected edges and uses them in only one direction, whereas now OPT can be purely di-

rected, undirected or anything in between. Thus, in an example that is tight for both adapted and

nonadapted weight function, both A and OPT must contain mainly undirected edges.

The example in Figure 4.1 suggests that, after having constructed the k-in-tree I, we should

give O an incentive to re-use edges in I. This might be carried out in different ways:

1. After constructing I using the adapted weight function w ′, we set the weight of every edge

in I to 0. Here, if e ∈ IU , we set both directions of e to 0. To be more precise, write I ∗ := ~̄I, and set

w′′(e) =





0 e ∈ I∗

w′(e) e 6∈ I∗

Then we construct O for weight function w′′, so O is a minimum weight k-out-tree with respect

to w′′, and return A = I ∪O. We refer to this algorithm as the incentive algorithm.

Of course, lowering edge weights in I∗ cannot increase the cost of the optimal k-out-tree. Writing

O′ for the minimum weight k-out-tree with respect to w ′, we have w′′(O) ≤ w′(O), but w′(O) can be
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higher than w′(O′). Still, we have

w′(I ∪O) = w′(I) + w′(O \ I) ≤ w′(I) +w′′(O) ≤ w′(I) + w′(O)

This simply says that edges in I might or might not be useful for O. But we cannot do worse than

without setting the edges in I to 0.

2. As an alternative to the incentive algorithm, we can construct I and O as usual, i. e. using

the adapted weight function w′, and then explicitly try to use undirected edges in I to replace edges

in O. We refer to this as the simple replacement algorithm, and state it in a more precise way

later.

The simple replacement algorithm seems inferior to incentive algorithm, since it takes advantage

of “reusable” edges only in a local way, whereas the latter does a global optimization. This is true, as

we will see, but the simple replacement algorithm can more easily be analyzed and achieves a factor-3

approximation for a special case of our problem.

4.1 The Replacement Algorithm

Theorem 4.1 Given a mixed graph G = (V,E) in which all undirected edges have uniform weights,

and each directed edge has at least half the weight of an undirected edge. Then the simple replacement

algorithm achieves an approximation ratio of 3.

Proof. The proof is very simple in principle and a little bit more involved in detail. We will

show that an undirected edge in I \O can be used to replace an edge in O. This replacement does not

necessarily reduce w(A), since the edge that was replaced might have been also in I, thus leaving total

weight unchanged. But we will show that after iteratively using edges in IU \ O to replace edges in

O, we end up with sets I and O where IU ⊆ O, and w′(O) has not increased. Once we have achieved

this, we have

w(A)

≤ w(ID) + w(OD) + w(IU \ OU ) + w(OU )

= w(ID) + w(OD) + 0 + w(OU )

= w(ID) + w(O) ≤ w′(I) + 2w′(O)

≤ 3w′(OPT ) ≤ 3w(OPT )

So it remains to show how to transform I and O such that IU ⊆ O.
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Lemma 4.2 Given a mixed out-tree (in-tree) T rooted at r and an acyclic set of undirected edges F .

Let l = |F \T |. There is a set J ⊆ T \F with |J | = l such that T ∪F \J is still a valid mixed out-tree

(in-tree). We say we swap F into T .

Proof. We assume that T is an out-tree. The proof for in-trees is symmetric. First, we will

prove the Lemma for connected F , i. e. when F is an undirected tree.

Let u ∈ V (F ) be a vertex that is maximal with respect to the tree T , i. e. no other v ∈ V (F ) is

an ancestor of u in T . Taking u as the root of F automatically gives F an orientation. Now consider

some edge {x, y} in F , y being farther away from u in F than x. In T , y has a unique parent edge,

f = pT (y), and we say f is the parent edge of {x, y}.
Define pT (F ) := {pT (e), e ∈ F}. Of course, |pT (F )| = |F |, since no two parent edges can be

identical. Also note that T ∩F ⊆ pT (F ). To see this, let e = {x, y} ∈ T ∩F and assume w. l. o. g. that

x is closer to u in F than y. If e has the same orientation in T as in F , i. e. x is closer to r in T than

y, then e is its own parent edge and we are done.

Otherwise e is oriented (y, x) in T . Since F is a tree rooted at u, let e′ be the parent edge of x

in F . Then e is the parent edge of e′. e′ always exists since x cannot be identical to u: u was chosen

to be maximal in V (F ) with respect to T , but in T , y is an ancestor of x, so x is not maximal.

Now we define J = pT (F ) \ F and claim that it has the properties stated in the Lemma. Since

|F | = |pT (F )|, we have |F \ |pT (F )| = |pT (F ) \ F |. Thus, |J | = |F \ pT (F )| = |F \ T | = l. Also, we

must show that T ′ := T ∪ F \ J is 1-entering. For the sake of contradiction, suppose there is a set

X ⊆ V − r with ρT ′(X) = 0. We know that ρT (X) ≥ 1, since T is 1-entering. So there must be some

parent edge f = (x, y) ∈ J entering X. Hence, y ∈ X ∩ V (F ). If u ∈ X, then the T -path from r to u

enters X and does not contain any edges in J . If u 6∈ X, then F enters X. Both is a contradiction to

the assumption that ρT ′(X) = 0.

It remains to show that T ′ is a tree. But the number of edges that were removed, |J |, is equal

to the number of edges that were added, |F \ T |. So T ′ must be a tree.

Now consider the case that F is a forest consisting of several trees F1, . . . , Fs. For each Fi, we

have proven the existence of a set Ji. Note that the sets V (Fi) are pairwise disjoint. This implies that

the Ji are also pairwise disjoint, and so are the sets heads(Ji), the sets of all heads of the directed

edges in the Ji.
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This implies that the set Ji is still as required in the Lemma, even after having swapped

F1, . . . , Fi−1 into T . Thus, J :=

s⋃

i=1

Ji is as required in the Lemma. �

There are two points to remark: First, Lemma 4.2 does not hold any more when F contains

directed edges, since we used the fact that edges in F can be oriented in any direction.

Second, in our special case, a swap does not increase w ′(T ). This is because F contains only

undirected edges. They have uniform weights, and for any directed edge f and undirected e, we have

assumed w(f) ≥ w(e)/2, hence w′(f) ≥ w′(e). It follows that w′(F \ T ) ≤ w′(J).

Now we are ready to state the replacement algorithm in full detail:

(1) Let I = I1 ∪ · · · ∪ Ik and O = O1 ∪ · · · ∪ Ok be the decompositions of I and O, respectively,

in k edge disjoint in-trees (out-trees, resp.)

(2) while IU \ O not empty:

(a) pick some e ∈ IU \O and let e ∈ Ii

(b) set F = IUi \ (
⋃
j 6=iO

U
j ), i. e. F includes all undirected edges of IUi that are not contained

in an out-tree other than Oi.

(c) swap F into Oi

In Step 2b we swap some undirected edges of IUi into Oi. When doing this, we have to make sure

that these edges are not contained in any other Oj , because Oj and Oi still have to be edge-disjoint

after the swap.

As we stated before, w′(O) does not increase. Also, when the algorithm halts we have IU ⊆ O.

It remains to show that the algorithm ends after a polynomial number of iterations. To show this, we

define the potential function

Φ(I,O) :=
k∑

i=1

|Si|

Si := (IUi ∩OUi )−
⋃

j 6=i
OUj

The set Si is the set of all undirected edges in I that are contained also in Oi, but in no other

Oj . We claim that Φ increases in every iteration of the algorithm:

(1) The edge e chosen in Step 2a gets swapped into Oi and increases |Si| by one
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(2) An edge f that was in Si before the swap will be included in set F , which is chosen in Step

2b, and therefore will still be in Oi after the swap and contribute to Φ. Only the orientation

of f in Oi may be changed by the swap.

(3) Suppose edge f was in some Sl for some l 6= i. Then f will still be in Sl after the swap unless

it is contained in
⋃
j 6=lO

U
j after the swap. But the only Oj changed by the swap is Oi, hence

f is still in Sj unless f has been swapped into Oi. But this cannot happen, because F does

not contain f (remember in step 2b, we explicitly excluded edges from other Oj, j 6= i, from

F ).

So Φ increases by at least 1 every iteration and is bounded by
∑k

i=1 |IUi | ≤ 2|IU |. This proves

the Lemma.1 �

We can indeed go one step further: after having transformed O such that IU ⊆ OU , we can

repeat the procedure with the roles of O and I switched, i. e. swapping undirected edges in O\I into I.

After that, we will also have OU ⊆ IU , hence OU = IU . We call this the full replacement algorithm.

We get

w(Ā)

≤ w(ID) + w(OD) + w(IU ∪OU)

= w(ID) + w(OD) + w(IU )

≤ w′(ID) + w′(OD) + 2w′(IU )

= w′(I) + w′(O) ≤ 2w′(OPT )

≤ 2w(OPT )

where we use the fact that w(IU ) = w(OU ) = w(IU ∪ OU ). This proves the main result of this

Section:

Theorem 4.2 The full replacement algorithm achieves a factor 2 approximation for the special

case where undirected edges have uniform weights and directed edges have weights at least half of that

of an undirected edge. In particular the approximation ratio holds when all edges have equal weight.

4.2 Tight Examples for the Replacement Algorithm

One might ask if the replacement algorithm can be extended to more general cases, e. g. dropping

the requirement that undirected edges must have uniform weights. The obvious problem now is that

1 the factor 2 appears because an undirected edge can be contained in up to two sets Ii, in each direction once
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the swap procedure might replace very cheap edges in O by expensive edges in I, thus barely reducing

the weight of the solution.

There is a tight example on which the replacement algorithm fails to achieve anything better

than a ratio of 4. For the global structure see Figure 4.2. The example consists of a cycle of cells

C1, . . . , Cn. The cell C1 contains only the root vertex r, and two neighboring cells are connected by

four undirected edges. Every cell looks like the graph given in Figure 4.3. The edges drawn as coming

from above, i. e. e, f, g and h connect this cell to the previous cell, and the edges drawn as coming

from below connect it to the next cell. These edges act as the edges e′, f ′, g′ and h′ of the next cell.

Edges inside a cell have weight 0, edges between cells have weight 1, except those between Cn

and C1, which have weight 1 + ε. This is simply to prevent the algorithm from finding the optimal

2-ECSS, which is a Hamiltonian path containing 1 expensive edge per cell, thus having total weight

n+ ε. The different arcs parallel to the edges in Figure 4.3 indicate which edges are used by which of

the four sets I1, I2, O1, O2 and in which direction. The weight of I ∪O is easily seen to be 4(n− 1).

The replacement algorithm might now pick edge e as an edge in IU1 \ O and swap IU1 \ OU2 into

O1. In every cell the same now happens: the edges e, d are swapped into O1 and replace edge a. To

be more precise, edge a is the parent edge2 of e in O1, so e can replace a. On the other hand, d is its

own parent edge in O1, so d does not replace any edge.

Note that the edges c and d cannot be swapped into O1, since they are contained in O2, hence

explicitly excluded by the algorithm from the swapping set F .

Now, we see that e has replaced a in O1, i. e. a weight-0 edge was replaced by a weight-1 edge.

In a second step, f is picked by the algorithm, and IU2 \ OU1 is swapped into O2. Per cell, this means

edge f replaces c ∈ O2.

This does not reduce the cost of I ∪O. Swapping OU \ IU into I does not replace any expensive

edges in I, either. After that swap, we end up with OU = IU , and the algorithm halts. But there has

been no weight reduction, and the weight of A is still 4(n− 1).

One might ask whether the replacement algorithm acts too cautiously here: when swapping

IU1 \OU2 into O1, one might well include edge b into F , since O1 would use it in the other direction as

O2, which would still leave O1 and O2 edge disjoint. If we thus allowed F to grow beyond b, we could

replace the expensive edge g. On the example in Figure 4.3, this “refined” replacement algorithm

would achieve an approximation ratio of 2.

2 The notion of the parent edge of an edge with respect to some tree is defined in the proof of Lemma 4.2



22

Figure 4.2: Example of poor performance of the replacement algorithm, for k = 2. Global structure
of the example

Figure 4.3: Local structure of the example. The small arcs indicate which of the four trees I1, I2, O1, O2

use which edges. Edges in I1 are drawn grey/thin, in I2 black/thin, in O1 grey/bold and in O2

black/bold
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Figure 4.4: Example for poor performance of the refined replacement algorithm, for k = 2.

To state the refined algorithm more precisely, let e = {u, v} be some edge in IUi \ O that gets

swapped into Oi. We assume w. l. o. g. that v is no ancestor of u in Oi. So e gets inserted into Oi in

direction (u, v). From v, we can grow a search tree that contains edges in Ii∪Oi if they are not used by

some other Oj in the same direction. However, we allow them if Oj uses them in the opposite direction.

Unfortunately, this algorithm does not yield an improvement either, and the tight example is

only slightly more complicated. It is basically the same as for the normal replacement algorithm, only

that we replaced the widget in Figure 4.3 by that in Figure 4.4.

Explanation of the example: Suppose we try to swap e into O1. The search tree cannot grow

from u1 to u2, since this edge is blocked by O2. In can grow from u1 to u8 and u7, but from u7 it cannot

grow in any direction. Even if we allowed the search tree to use the edge f in upwards direction, we

would simply end up at the vertex corresponding to u7 in the previous (above) cell.

These examples suggest that we should prefer the incentive algorithm, which would find a factor-

2 approximation for both examples. But for now, let us examine another special case.

4.3 A Factor-3.75 Approximation Algorithm for a Special Case

In this section, we analyze the special case in which undirected edges are not more expensive

than directed edges, but we do not require undirected edges to have uniform weights. Also, we restrict
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our analysis to the case k = 2, since we suspect that a result for k = 2 should generalize to higher k

with some additional work.

On a given graph, we will run the incentive algorithm as well as the normal branching algorithm

with nonadapted weight function. We will show that the weight of the cheaper of the two solutions is

at most 3.75 times the weight of an optimal 2-ECSS.

Definition 4.1 Let E be some edge set that is k− 1-entering. F is called an augmenting set if E ∪F
is k-entering. Further, if each edge in F is nonredundant, i. e. for each edge f ∈ F , E ∪ (F − f) is not

k-entering any more, we call F a minimal augmenting set for E and k. If there is no ambiguity

about k, we simply call it a minimal augmenting set for E.

.

Definition 4.2 Let E be some edge set that is k-entering for some k. We call a set M ⊆ V − r
critical with respect to E if ρE(M) = k. If there is no ambiguity about E, we might simply call it

critical.

If M and N are both critical w. r. t. some edge set E and M ∩N is nonempty, then both M ∩N
and M ∪N are critical as well. This follows from the submodularity of ρ:

2k = ρE(M) + ρE(N) ≥ ρE(M ∪N) + ρE(M ∩N) ≥ 2k

where the first inequality follows from submodularity, and the second from the fact that E is k-entering.

Note that we have r 6∈M ∪N , so ρE(M ∪N) ≥ k. We get ρE(M ∪N) = ρE(M ∩N) = k.

Definition 4.3 Let F be a minimal augmenting set for E and k. Since F is minimal, E ∪ (F − f) is

not k-entering any more. Therefore, there is some set M with ρE∪(F−f)(M) = k − 1. This means, M

is critical w. r. t. both E and E ∪ F , and f is the only edge of F entering M . We call M a critical

set of f .

Note that not every set that is critical w. r. t. E needs to be a critical set for an f ∈M . Indeed,

this is the case if ρE(M) = k − 1 and ρF (M) ≥ 2.

Definition 4.4 Let f ∈ F , and M1, . . . ,Mn be all the critical sets of f . Then

Mf :=

n⋂

i=1

Mi
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is nonempty, since every Mi contains the head of f . Further, Mf is critical w. r. t. both E and E ∪ F ,

hence exactly one edge of F enters Mf , and this edge must be f . So Mf is also a critical set of f ,

and we call it the minimal critical set of f . From now on in this section, Mf will always denote the

minimal critical set of f .

Define MF := {Mf , f ∈ F}, the family of all minimal critical sets of edges in F . Then every

set M ∈ MF is entered by exactly one edge of F and by exactly k − 1 edges of E, and every f ∈ F
enters exactly one set in MF . Now we state in important fact about MF .

Proposition 4.1 MF is a laminar family of sets, i. e. no two sets M,N ∈MF cross.

Proof. First recall that we say two sets M,N cross if none of the three sets M ∩ N , M \ N
and N \M is empty. Sometimes, the definition of cross also requires M ∪N 6= V . But this trivially

holds, since neither M nor N contains the root r.

Now, a family M of sets is called laminar if no two sets in M cross.

To prove the Proposition , suppose Mf and Mg intersect. Further, let u = head(f) and v =

head(g). We observe that N := Mf ∩Mg is critical w. r. t. both E and E ∪ F .

If neither v ∈ Mf nor u ∈ Mg, then N neither contains u nor v. Since ρE(N) = k − 1, some

edge h ∈ F must enter it. This edge cannot be f or g, since N must contain the head of h. Also, h

enters at least one of Mf and Mg, which is a contradiction, because both Mf and Mg are entered by

exactly one edge of F .

So assume w. l. o. g. that v ∈ Mf . Then v ∈ N , so g enters N . Since ρE(N) = k − 1 and

ρE∪F (N) = k, we have ρF (N) = 1, hence N is a critical set of g. But Mg is the minimal critical set

entered by g, which implies N = Mg, hence Mg ⊆Mf . �

Now we apply these results to our algorithm. Let Aad be the solution returned by the incentive

algorithm using adapted weight function w′, and Ana the solution of the normal algorithm using

nonadapted weight function w. We construct Aad as before:

Construct the optimal 2-in-tree I, and let I∗ denote ~̄I, i. e. if (u, v) ∈ I comes from an undirected

edge {u, v} ∈ E, we include also (v, u) into I∗. Note that this makes sense, since if I contains an

undirected edge e, it will cause no additional cost if O uses it, no matter in which direction. Of course,

I∗ contains all the directed edges of I.

Then set w′′(e) = 0 for every e ∈ I∗ and w′′(f) = w′(f) for every f 6∈ I∗. For w′′, we construct

the optimal 2-out-tree O and return Aad = I ∪O. Now we state the main result of this section.
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Theorem 4.3 Let Aad be the solution returned by the incentive algorithm using adapted weight

function w′ and Ana the solution of the branching algorithm using nonadapted weight function w. Let

A be the cheaper solution. Then
w(A)

w(OPT )
≤ 3.75

Proof. Decompose O into O1 and O2. Since O1 and O2 are edge disjoint and we have w′(O) ≤
w(OPT ), we can assume w. l. o. g. w′(O1) ≤ w(OPT )/2.

Obviously, O1 ∪ I∗ is 1-entering. Hence, O1 contains a minimal augmenting set S1 that makes

I∗ 1-entering (this set can be empty).

Lemma 4.3 |ID| ≥ 2|S1|, where |ID| is the number of directed edges in I.

Proof. We defineMF to be the family of all minimal critical sets of the edges f ∈ S1. Therefore,

every Mf ∈MF has ρI∗(Mf ) = 0 and ρS1(Mf ) = 1.

Note that for Mf ∈ MF , no set Mg ∈ MF that is a proper subset of Mf can contain the head

of f , because otherwise f would enter Mg as well. So we see that the set

M∗f := Mf \
⋃

Mg∈MF ,Mg⊂Mf

Mg

is nonempty for every f . Of course, the M ∗f are pairwise disjoint.

Since M ∗f is nonempty and I∗ is 2-leaving, there are at least two edges e1, e2 ∈ I∗ leaving M ∗f .

If one of them leaves M ∗f to Mf \M∗f , it enters some set Mg ⊂ Mf , which contradicts the fact that

Mg is critical. So both edges leave Mf . If one of them was undirected, I∗ would also include the edge

in the other direction, which would enter Mf . This is again a contradiction, since ρI∗(Mf ) = 0.

So for every M ∗f , I∗ contains at least 2 directed edges leaving M ∗f . Since the M ∗f are pairwise

disjoint, the directed edges leaving them are all distinct, which completes the proof. �

Since we assumed w. l. o. g. that w′(O1) ≤ w(OPT )/2, we also have w(SD1 ) = w′(SD1 ) ≤
w(OPT )/2. Also, |ID| ≥ 2|S1|, which implies |ID| ≥ 2|SU1 |. Since we are analyzing the special case

where undirected edges are no more expensive than directed edges, this translates to w(SU1 ) ≤ w(ID)/2.

Hence, we derive

w(S1) = w(SD1 ) + w(SU1 ) ≤ w(OPT )/2 +w(ID)/2

Now define S2 := O \ (I∗ ∪ S1). Of course, S2 is augmenting for I∗ ∪ S1 and 2, i. e. it makes

I∗ ∪ S1 2-entering. Also, S2 is a minimum weight augmenting set for I∗ ∪ S1 with respect to the



27

weight function w′. To see this, suppose for the sake of contradiction that F is a minimal augmenting

set for I∗ ∪ S1 and 2, and w′(F ) < w′(S2). Then we have

w′(F ∪ S1) ≤ w′(F ) + w′(S1) < w′(S2) + w′(S1) = w′′(O)

The last equality follows from the fact that O might contain edges in addition to S2 ∪ S1, but they

have to be in I∗, so they do not add any weight to w′′(O). Also, since F and S1 are minimal, they do

not contain any edges from I∗, so w′′(F ∪ S1 ∪ I∗) = w′(F ∪ S1). Of course, F ∪ S1 ∪ I∗ is 2-entering.

This is a contradiction, because O was constructed as a minimum weight 2-entering set with respect

to w′′. So S2 is a minimum weight augmenting set. It need not be minimal, but if it is not, it contains

some redundant edges that have weight 0. So we can remove them and assume that S2 is also minimal.

As a result, every optimal solution must contain some minimal edge set F that makes I ∗ ∪S1 2-

entering, and w′(F ) ≥ w′(S2). Therefore, we have w(OPT ) ≥ w(F ). Since F is a minimal augmenting

set, we already know that MF , the family of all minimal critical sets of F , is laminar.

Proposition 4.2 Let l be the number of leaf sets of MF , i. e. the sets M ∈MF that are minimal in

this family. Then l ≤ |ID|.

Proof. The proof is somewhat similar to that of Lemma 4.3. First note that all leaf sets are

disjoint. Since I∗ is 2-leaving, it contains at least two edges e1, e2 leaving each leaf M ∈ MF . If

both of them are undirected, I∗ contains also two edges entering M , hence ρI∗(M) ≥ 2, which is a

contradiction, because M is of course critical w. r. t. I ∗ ∪ S1. Hence every leaf is left by at least one

directed edge of I, which proves the fact. �

We decompose F into the three sets FD, FUd and FUs . FD contains all edges of F that come

from a directed edge in G, F U
d contains an edge e = (u, v) of F if it comes from an undirected edge

and its twin edge, e = (v, u), is also in F , i. e. if e is used in both directions. Finally, F U
s contains all

edges that come from an undirected edge, but are used in only one direction. We will establish the

result |FUd | ≤ 2|ID|. Note that since we treat F as a directed edge set ⊆ ~OPT , |FUd | counts both two

instances of an undirected edge used in both directions.

Lemma 4.4 Suppose F is a minimal augmenting set for I ∗ ∪ S1 and 2, then |FUd | ≤ 2|ID|.

Proof. First, enhance the laminar family MF by the root set V . This set is of course neither

critical, nor entered by any edge. The resulting MF has a tree-like structure: for a non-root set M ,
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define the parent of M to be the minimal proper superset of M inMF . This parent is unique, because

MF is laminar.

Suppose F contains both f = (u, v) and f ′ = (v, u). Then we have u 6∈ Mf and v 6∈ Mf ′ , so

these sets must be disjoint (recall that MF is laminar). We claim that Mf and Mf ′ have the same

parent. Let N be the parent of Mf . If it is the root set, we trivially have Mf ′ ⊂ N . If N is not a

superset of Mf ′ , it is disjoint from Mf ′ , so f enters N as well. This cannot be, since f enters exactly

one set ofMF . So the parent of Mf is a superset of Mf ′ , and vice versa, hence their respective parents

must be the same set.

Now, let T be the tree that represents the parent-relation in MF . Every pair f = (u, v), f ′ =

(v, u) ∈ F causes a pair of sets, Mf ,Mf ′ that have the same parent N . Call N the parent of the edge

pair {f, f ′}, and let pairs(N) denote the number of edge pairs whose parent is N . Now, the number of

children of N in T , short d(N), is at least 2∗pairs(N). In the following calculation, N always denotes

a non-leaf set, i. e. an interior node in T . Let l be the number of leaves in T , then we get

l − 1

=
∑

N (d(N)− 1)

≥ ∑
N : pairs(N)≥1(d(N) − 1)

≥ ∑
N : pairs(N)≥1(2 ∗ pairs(N)− 1)

≥ ∑
N : pairs(N)≥1 pairs(N)

= |FUd |/2

This yields |FUd | ≤ 2l, and Proposition 4.2 states that l ≤ |ID|. This proves the Lemma. �

We can derive the inequality w′(FUd ) ≤ w(ID). This follows from the cardinality inequality of

Lemma 4.4 and the fact that under w′, an edge that comes from an undirected edge weighs at most

half the weight of a directed edge. Now, we can state an upper bound for w ′(S2):

w(OPT ) ≥ w(F ) = w′(FD) + w′(FUd ) + 2w′(FUs ) =

2w′(F )− w′(FD)− w′(FUd ) =⇒

2w′(F ) ≤ w(OPT ) + w′(FD) + w(ID)

Since w(S2) ≤ 2w′(S2) and w′(S2) ≤ w′(F ) and w(FD) ≤ w(OPTD), this yields

w(S2) ≤ w(OPT ) + w(OPTD) + w(ID) (4.1)

For S1, we already have an upper bound, which we state again here:

w(S1) ≤ 1

2
w(OPT ) +

1

2
w(ID) (4.2)
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Besides edges from S1 and S2, O contains only edges in I∗ or other edges of weight 0. This

follows because O is of minimum weight with respect to w ′′. Combining this fact with equation (4.1)

and (4.2), we get

w(O \ I) ≤ 3

2
w(OPT ) +

3

2
w(ID) + w(OPTD) (4.3)

Now we need to bound I. There are not many ways to do so, and the best we have is

w(I) ≤ w(ID) + 2w′(IU ) = 2w′(I)− w(ID) ≤ 2w(OPT ) − w(ID) (4.4)

Adding 4.3 and 4.4, we get

w(Aad) = w(I) + w(O \ I) ≤ 7

2
w(OPT ) +

1

2
w(ID) + w(OPTD) (4.5)

Combining the trivial bound w(O) ≤ 2w(OPT ) with (4.4), we get

w(Aad) ≤ 4w(OPT ) − w(ID) (4.6)

Writing w(ID) = αw(OPT ) and w(OPTD) = βw(OPT ) and rad = w(Aad)/w(OPT ), equations 4.5

and 4.6 yield the upper bound

rad ≤ min(
7

2
+
α

2
+ β, 4− α) (4.7)

That is not enough to derive an approximation guarantee. But we know that rna := w(Ana)/w(OPT ),

the approximation ratio of the branching algorithm using nonadapted weight function, is bounded by

w(Ana)

≤ w(I) + w(O)

≤ 2w( ~OPT )

= 2(w( ~OPTD + w( ~OPTU )

= 2w(OPTD) + 4w(OPTU )

= 4w(OPT )− 2w(OPTD)

So rna, the approximation ratio of the nonadapted algorithm, is

rna ≤ 4− 2β (4.8)

So if we run both algorithms, adapted and nonadapted, and return the cheaper solution, the

ratio is

r = min(
7

2
+
α

2
+ β, 4− α, 4 − 2β) (4.9)
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Figure 4.5: A factor-3 example for the incentive algorithm, k = 2, special case

It turns out that all three terms agree for α = 1/4 and β = 1/8. This yields an approximation guar-

antee of 4− 1/4, or 3.75, which proves the Theorem. �

This result is not a big improvement over the factor 4 we have from the beginning, but it is a

first step. I suppose the bound of 3.75 can further be tightened, especially since we did not even find

an example on which the incentive algorithm alone performs worse than a factor of 3. We will give

some examples in the next section.

4.4 Examples of Poor Performance of the Incentive Algorithm

In this section, we present two examples on which the incentive algorithm performs poorly. In

the first example, directed edges are more expensive than undirected. Here, the incentive algorithm

achieves an approximation ratio of 3. The second example is an instance of the general case, it contains

cheap directed edges. Here, the algorithm finds a factor 4 approximation. Still, the algorithm using

nonadapted weight function would find the optimal solution in this example.

For the factor-3 example see Figure 4.5. The optimal I is

I1 = {(un, un−1), . . . , (u2, u1), (u1, r)} ∪ {(vn, vn−1), . . . , (v2, v1), (v1, r)}

I2 = {(u1, u2), . . . , (un−1, un), (un, r)} ∪ {(v1, v2), . . . , (vn−1, vn), (vn, r)}

and has weight w(I) = n − 2ε. Of course, I only includes the cheap (weight 0) edges between

the ui and vi.
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Figure 4.6: A factor-4 example for the incentive algorithm, k = 2, general case

Now, the optimal O with respect to w′′ is

O1 = {(un, un−1), . . . , (u2, u1), (u1, r)} ∪ {(vn, vn−1), . . . , (v2, v1), (v1, r)},

edges of weight 0

O2 = {(r, u1), (u1, u2), . . . , (un−1, un)} ∪ {(r, v1), (v1, v2), . . . , (vn−1, vn)},

edges of weight 1

This is optimal w. r. t. w′′ only because w′ assigns weight 1/2 to the expensive undirected edges,

making this option cheaper than using the two undirected edges (un, vn) and (vn, un). We have

w(O) = 2n, which yields w(A) = 3n− 2ε. The optimal solution is easily seen to consist of all weight-0

edges plus the two directed edges (un, vn) and (vn, un). This gives w(OPT ) = n+ 2ε.

Thus, the incentive algorithm achieves a ratio of 3 on this example. That is the worst example

we have found. Also note that the branching algorithm would achieve a factor 2 approximation here.

The second example is a factor 4 example for the incentive algorithm on the general case, i. e. we

allow directed edges to be cheaper than undirected. The example is given in Figure 4.6. The unlabelled

edges have weight 0. OPT , I and O are less obvious on this example than on the example before.

I is given in Figure 4.7. The grey and black edges are those of I1 and I2, respectively, the dashed

edges are those not in I. Similarly, see Figure 4.8 for the set O. The edges included by I either have

weight 0 or are of no use for O. The same holds for the edges of O. Together, I and O have a weight of 4.

The optimal solution (See Figure 4.9) has a weight of 1 + 2ε, so the approximation ratio comes

arbitrarily close to 4. Here, the branching algorithm with nonadapted weight function would find the

optimal solution.
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Figure 4.7: The set I of the factor-4 example

Figure 4.8: The set O of the factor-4 example

Figure 4.9: The optimal 2-ECSS of the factor-4 example
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4.5 Cheap Directed Edges

In the last section, we have examined the special case that undirected edges are no more expen-

sive than directed edges (or have at least half the weight of the latter). Now, we restrict ourselves to

the case where every directed edge has weight 0 and every undirected edge has weight 1. Gabow [4]

proved that Jain’s iterated rounding algorithm [6] achieves a factor 2 approximation for the directed

Steiner network problem where all directed edges have cost 0, which of course implies a factor 2 ap-

proximation for the problem in this section.

I have not found a proof that the incentive algorithm achieves anything better than a ratio of

4 in this special case, and did not find a tight example, either. However, I got some results that

might be useful. Again, we restrict our attention to the case k = 2, since we suspect once a better

approximation for k = 2 has been found, it will generalize to higher k.

As before, let I be a minimum weight 2-in-tree and O a minimum weight 2-out-tree, let I = I1∪I2

and O = O1 ∪O2 be the partition of I and O into 2 edge disjoint in-trees and out-trees, respectively.

The replacement algorithm uses the fact that after I and O have been constructed, several edges

in I ∪O might be redundant. What pushes the approximation ratio above 2 is the possibility of A

containing many undirected edges which are used only once in the four sets I1, I2, O1 and O2. At this

point, we must change our previous notion of a single edge. From now on, we call an edge single if it

is in only one set of I1, I2, O1 and O2. Note that it is possible that a non-single edge is used in only

one direction, say, by I1 and O1, since these sets need not be disjoint.

Since all directed edges are assumed to have weight 0, we simply include all of them in A.

Suppose now we remove redundant single undirected edges (edges of weight 1) in an arbitrary order,

then we are left with a solution A = I ∪ O where every single undirected edge e in O (in I) enters

(leaves) a set Ce with ρA(Ce) = 2 (δA(Ce) = 2). We call Ce the critical set of edge e. Since the

intersection of two critical sets is either empty or itself critical, every single undirected edge enters a

unique minimal critical set. From now on, Ce will denote this minimal critical set which e enters (or

leaves, respectively, if e ∈ I), and e will always denote a single undirected edge.

Also, we only write Cf for some edge f if f is a single undirected edge. In this section, e will

always denote an edge in O1. For all other cases the results and proofs are similar.

We now list several facts about the Ce.
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Proposition 4.3 Ce does not contain the root r.

Proof. Suppose r ∈ Ce. Since Ce 6= V , V \ Ce is non-empty and does not contain the root.

Therefore ≥ 2 edges of I leave V \ Ce, hence enter Ce. Those edges cannot be identical to e, since e

is a single edge. So ρA(Ce) ≥ 3, which is a contradiction. �

Proposition 4.4 Besides e, there is exactly one edge of A entering Ce. This edge belongs to O2 and

is called enter(Ce).

Proof. O2 enters Ce because r 6∈ Ce. �

As a consequence, O1 enters Ce only once, therefore Ce is a subset of the subtree of O1 rooted

at the head of e.

Proposition 4.5 Let Ce be the minimal critical set of e = (u, v) and enter(Ce) = (x, y). Then there

are two directed edge disjoint paths inside Ce from y to v.

Proof. This follows from the minimality of Ce. If Ce did not contain two such paths, there

would be a (y-v)-cut Ce = C1
e ∪ C2

e containing only one edge, so Ce would not be minimal3 . �

A similar argument shows that for every vertex x ∈ Ce there is a path inside Ce from x back

to v. Also, since O1 enters Ce exactly once, there is a path from v to x inside Ce, containing only

O1-edges. Further, only one directed edge of G can enter Ce. This is because e is an undirected edge

entering Ce, and every further directed edge in G entering Ce increases ρA(Ce) by one (because we

included all directed edges into A). So if a directed edge enters Ce, it must be enter(Ce). This implies

that every 2-ECSS, especially OPT , must contain at least one undirected edge adjacent to Ce.

Now we state the main result of this section, which says that the minimal critical sets are

“almost” laminar.

Lemma 4.5 Let Ce and Ce′ be the minimal critical sets of two single undirected edges e ∈ O1

and e′ ∈ A. Then Ce and Ce′ can cross only if e′ ∈ O2, e is outside Ce′ , e
′ outside Ce, and then

Ce,e′ := Ce ∪ Ce′ is critical itself and does not cross with any Cf . In this case, we call C a heavy

critical set. Note that Ce,e′ is not a minimal critical set any more.

3 it might be that y = v. But in this case, we have the empty path, which is trivially edge disjoint with itself.
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Of course, a similar result holds if e is in O2, I1 or I2. Note also that Ce and Ce′ for e ∈ O1 and

e′ ∈ O2 can be identical. Then we also call Ce = Ce′ a heavy set.

If we unify all crossing Ce to heavy critical sets, the resulting family

C = {Ce, not heavy } ∪ {Ce,f ,heavy} is weakly laminar in the sense that a set can occur more than

once (at most twice, though).

Also, for every set C ∈ C, heavy or not, OPT contains at least as many undirected edges adja-

cent to C as A does. Unfortunately, I did not succeed deriving an approximation guarantee from this

fact, since there is no upper bound on the number of sets C an undirected edge in OPT can leave.

To prove Lemma 4.5, we need to establish three facts:

(1) Ce cannot cross with Ce′ if e′ ∈ O1

(2) Ce cannot cross with Ce′ if e′ ∈ I

(3) if e′ ∈ O2 and Ce, Ce′ cross, then only under the conditions described in the Lemma.

During the proof, we will always write e′ = {u′, v′} and e = {u, v}.

Proposition 4.6 If e and e′ are in O1, then their critical sets cannot cross.

Proof. Since O1 is a tree, the subtrees of v and v′ cannot cross. If they are disjoint, then so are

the critical sets and we are done. So we assume w. l. o. g. e′ is in the subtree of e. If e′ is outside Ce

or leaving Ce, then the critical sets are disjoint, and again we are done. So we assume that e ′ is inside

Ce.

Since both Ce and Ce′ are critical, their intersection, call it C, is also critical. Further, e′ enters

C. Since Ce′ is the minimal critical set e′ enters, we get C = Ce′ , hence Ce′ ⊂ Ce. �

Proposition 4.7 If e ∈ O1 and e′ ∈ I1, their critical sets cannot cross.

Proof. First note that Ce needs not be in-critical (there might be more than 2 edges leaving Ce,

and Ce′ needs not be out-critical. So we cannot say anything about their intersection being critical or

not.

e′ cannot be adjacent to Ce, otherwise both e′ and enter(Ce) would enter Ce (e′ and enter(Ce)

cannot be identical, otherwise e′ would not be a single undirected edge). Similarly, e cannot be adja-

cent to Ce′ . Note that an undirected edge adjacent to a set C always counts as entering C as well as
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Figure 4.10: e = (uv) ∈ O1 and e′ = (v′u′) ∈ I1, with e′ being outside Ce

leaving it.

Case 1: e is outside Ce′ and e′ is outside Ce (See Figure 4.10. Edges in O are drawn black,

edges in I grey). Pick some vertex x ∈ Ce ∩Ce′ . There is a path from v′ to x in Ce′ . This path enters

Ce via f = enter(Ce). Let f = (a, b). There are two edge disjoint paths in Ce from b to v. Since

b ∈ Ce′ and v 6∈ Ce′ , both are leaving Ce′ , and neither of them can be e′, implying δA(Ce′) ≥ 3, which

is a contradiction.

Case 2: See figure 4.11. We can assume w. l. o. g. that e′ is inside Ce, the other case is similar.

Now pick some vertex x ∈ Ce′ \ Ce. Since I1 is an in-tree, there is an I1-path from x to v′ in

Ce′ . This path enters Ce via some edge f . This edge is in I1, hence cannot be e, so this edge must be

enter(Ce). Now consider f ′ = leave(I2), the unique edge of I2 leaving Ce′ . Say f ′ = (a, b) and suppose

b ∈ Ce. Then the I2-path from x to r must leave Ce′ at some point via f ′. Hence it enters Ce via

some edge that cannot be identical to f , since f is already in I1, and I1, I2 are disjoint. It cannot be

e, either, since e is single. This again implies ρA(Ce) ≥ 3, which is a contradiction.

So suppose b 6∈ Ce. Then the O2-path from r to some y ∈ Ce \ Ce′ enters Ce via f , which is

inside Ce′ . Hence the O2-path must leave Ce′ again on its way to y. Since this path stays in Ce once it

has entered it, it cannot leave Ce′ via f ′, but neither via e′, since e′ is single. This implies δA(T2) ≥ 3,

leading again to a contradiction. �

Proposition 4.8 If e ∈ O1 and e′ ∈ O2, then they can only cross if e′ is outside Ce and e is outside

Ce′ , and then Ce,e′ := Ce ∪ Ce′ is a heavy set, i. e. it is entered by no edges of A besides e and e′.

Proof. Again, we distinguish two cases. In Case 1, we assume that e′ is inside Ce or entering
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Figure 4.11: e = (uv) ∈ O1 and e′ = (v′u′) ∈ I1, with e′ being inside Ce

it, i. e. v′ ∈ C− e. Note that e′ cannot leave Ce, since O2 also enters Ce, implying ρA(Ce) ≥ 3, (even if

e′ leaves Ce, it is also counted as entering Ce, since it is undirected). In Case 2, we assume u, v 6∈ Ce′
and u′, v′ 6∈ Ce.

Case 1: v′ ∈ Ce (the case v ∈ Ce′ is similar). Then C := Ce ∩ Ce′ is critical, i. e. δ(C) = 2.

Since v′ ∈ Ce as well, e′ enters C. Since Ce′ was chosen to be the minimal set that e′ enters, we get

C = Ce′ , hence Ce′ ⊆ Ce. Indeed, we can even have Ce′ = Ce.

Case 2: e is outside Ce′ , and e′ is outside Ce

Since the intersection of the two sets is nonempty, their union Ce,e′ := Ce ∪ Ce′ is also critical,

i. e. δ(Ce,e′) = 2. The two edges entering Ce,e′ are of course e and e′ themselves. So there are no edges

in A besides those two entering Ce,e′. Also, no directed edge of G, hence none of OPT , either, enters

it.

The heavy set Ce,e′ cannot cross with any Cf , f ∈ O, since this would increase the number of

edges entering it. Neither can it cross with Cf , f ∈ I, since then either Ce or Ce′ would cross with

Cf , which has already been shown to be impossible.

This proves the Lemma. �



Chapter 5

Summary

The incentive algorithm seems to be a natural approach to the k-ECSS problem on mixed graphs.

Unfortunately, both the proof of the factor 2 approximation in Section 4.1 and the proof of the factor

3.75 in Section 4.3 contain a counting argument, therefore they have to make assumptions about the

weights of undirected edges, which makes it difficult to generalize to arbitrary edge weights.

As stated before, the ratio of 3.75 seems far from being tight, and I neither managed to find an

example on which the incentive algorithm as well as the branching algorithm achieve an approxima-

tion ratio strictly larger than 2. For the incentive algorithm alone, we gave a factor 3 example for the

special case of cheap undirected edges and a factor 4 example for the general case.

We conclude this thesis with the conjecture that the combined incentive / branching algorithm

achieves a ratio of less than 4 in the general case, and that the incentive algorithm alone performs

better than 4 on the special case of cheap undirected edges.
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