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Abstract. A pair of clauses in a CNF formula constitutes a conflict if
there is a variable that occurs positively in one clause and negatively
in the other. A CNF formula without any conflicts is satisfiable. The
Lovász Local Lemma implies that a CNF formula with clauses of size
exactly k (a k-CNF formula), is satisfiable unless some clause conflicts

with at least 2k

e
clauses. It does not, however, give any good bound on

how many conflicts an unsatisfiable formula has globally. We show here
that every unsatisfiable k-CNF formula requires Ω(2.69k) conflicts and
there exist unsatisfiable k-CNF formulas with O(3.51k) conflicts.

1 Introduction

A boolean formula in conjunctive normal form (short a CNF formula) is a con-
junction (AND) of clauses, which are disjunctions of literals. A literal is either
a boolean variable x or its negation x̄. SAT, the problem of deciding whether a
CNF formula is satisfiable is a central problem in theoretical computer science,
and was one of the first problems to be proven NP-complete. How can a CNF
formula become unsatisfiable? Roughly speaking, there are two possibilities: Ei-
ther some clause itself is impossible to satisfy – this is only the case for the empty
clause. Or, each clause is individually satisfiable, but there are conflicts between
the clauses, making it impossible to satisfy all of them simultaneously. When
we consider k-CNF formulas, where each clause consists of exactly k literals (we
require that literals in a clause do not repeat), then each clause is extremely
easy to satisfy: Of the 2k possible truth assignments to its variables, all but one
satisfy it. If a k-CNF formula is unsatisfiable, we expect it to have many conflicts.

To give a formal setup, we say two clauses conflict if there is at least one
variable that appears positively in one clause and negatively in the other. For
example, the two clauses (x ∨ y) and (x̄ ∨ u) conflict. Similarly, (x ∨ y) and
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(x̄∨ ȳ) do. Suppose F is a CNF formula without the empty clause, and without
any conflicts. Then clearly F is satisfiable. For a formula F we define the conflict
graph CG(F ), whose vertices are the clauses of F , and two clauses are connected
by an edge if they conflict. ∆(F ) denotes the maximum degree of CG(F ) and
e(F ) the number of conflicts in F , i.e. the number of edges in CG(F ). Our above
observation now reads as follows: If F does not contain the empty clause, and
e(F ) = 0, then F is satisfiable. In fact, any k-CNF formula is satisfiable un-
less ∆(F ) and e(F ) are large. How large? A quantitative result follows from the
Lopsided Lovász Local Lemma [1–3]: A k-CNF formula F is satisfiable unless

some clause conflicts with 2k

e or more clauses, i.e., unless ∆(F ) ≥ 2k

e . Up to a
constant factor, this is tight: Consider the formula containing all 2k clauses over
the variables x1, . . . , xk. We call this a complete k-CNF formula and denote it
by Kk. It is unsatisfiable, and ∆(Kk) = 2k − 1.

As its name suggests, the Lopsided Lovász Local Lemma implies a local
result: A k-CNF formula F is satisfiable, unless somewhere in F there are many
conflicts. We want to obtain a global result: F is satisfiable unless the total
number of conflicts is very large. We define two functions:

lc(k) := max{d ∈ N0 | every k-CNF formula F with ∆(F ) ≤ d is satisfiable} ,
gc(k) := max{d ∈ N0 | every k-CNF formula F with e(F ) ≤ d is satisfiable} .

The abbreviations lc and gc stand for local conflicts and global conflicts, respec-

tively. From the above discussion, 2k

e − 1 ≤ lc(k) ≤ 2k − 2, hence we know
lc(k) up to a constant factor. In contrast, it does not seem to be easy to prove
nontrivial upper and lower bounds on gc(k). Let us see what we get: Surely,

gc(k) ≥ lc(k) ≥ 2k

e − 1. For an upper bound, gc(k) ≤ e(Kk) − 1 =
(

2k

2

)
− 1.

Ignoring constant factors, gc(k) lies somewhere between 2k and 4k. This leaves
much space for improvement. In [4], Zumstein and I proved that gc(k) ∈ Ω(2.27k)

and gc(k) ≤ 4k

log3 k
k. In this paper, we significantly improve upon these bounds.

Somehow surprisingly, gc(k) is exponentially smaller than 4k.

Theorem 1. Any unsatisfiable k-CNF formula contains Ω
(
2.69k

)
conflicts. On

the other hand, there is an unsatisfiable k-CNF formula with O
(
3.51k

)
conflicts.

We obtain the lower bound by a more sophisticated application of the idea
used in [4]. The upper bound follows from a construction that is partially prob-
abilistic, and inspired in parts by Erdős’ construction in [5] of small k-uniform
hypergraphs that are not 2-colorable.

1.1 Related Work

Let F be a CNF formula and u be a literal. We write occF (u) := |{C ∈ F | u ∈
C}|. For a variable x, we write dF (x) = occF (x) + occF (x̄). So dF (x), the degree
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of x, counts the number of clauses containing the variable x, irrespective of its
polarity. We write d(F ) = maxx dF (x). It is easy to see that for a k-CNF formula,
∆(F ) ≤ k(d(F )− 1). We define

f(k) := max{d ∈ N0 | every k-CNF formula F with d(F ) ≤ d is satisfiable} .

The function f(k) has been subject of some research. By an application of Hall’s
Theorem, Tovey [6] showed that every k-CNF formula F with d(F ) ≤ k is
satisfiable, hence f(k) ≥ k. Later, Kratochv́ıl, Savický and Tuza [7] showed that

f(k) ≥ 2k

ek : In our terminology, they showed that lc(k) ≥ 2k

e − 1 and then used
the fact that ∆(F ) ≤ k(d(F ) − 1). As for an upper bound, in [7] the authors
show that f(k) ≤ 2k−1−2k−4−1. This was improved by Savický and Sgall [8] to

f(k) ∈ O(k−0.262k), by Hoory and Szeider [9] to f(k) ∈ O
(

log(k)2k

k

)
, and only

recently, by Gebauer [10] to f(k) ≤ 2k+2

k − 1 clauses, closing the gap between
lower and upper bound on f(k) up to a constant factor. Finally, Gebauer, Szabó,
Tardos [11] proved that f(k) = (1 ± o(1))2k+1/ek, which even determines the
constant factor.

1.2 Conflicts Generated by a Single Variable

Let F be a CNF formula and x a variable. Every clause containing x conflicts
with every clause containing x̄, thus e(F ) ≥ occF (x) · occF (x̄). In fact,

e(F ) ≥ 1

k

∑
x

occF (x) · occF (x̄) (1)

where the 1
k comes from the fact that each conflict might be counted up to

k times, if two clauses contain several complementary literals. By [7], every

unsatisfiable k-CNF formula F contains a variable x with dF (x) ≥ 2k

ek . If this

variable is balanced, i.e. occF (x) and occF (x̄) are both at least 2k

poly(k) , then

e(F ) ≥ 4k

poly(k) . Indeed, in the formulas constructed in [10], all variables are

balanced. The same holds for the complete k-CNF formula Kk. Thus, it might
be the case that in every unsatisfiable k-CNF formula, there is a single variable
that already generates many conflicts:

Conjecture 1. There exists a number a > 2 such that every unsatisfiable k-CNF
formula F contains a variable x such that occF (x) · occF (x̄) ≥ Ω

(
ak
)
.

We do not know whether this conjecture is true. However, we will give non-
trivial upper bounds on occF (x) · occF (x̄):

Theorem 2. For all sufficiently large k, there is an unsatisfiable k-CNF formula
with occF (x) · occF (x̄) ≤ 3.01k for all variables x.
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2 Notation and Tools

Throughout the paper, we regard formulas as sets of clauses and clauses as sets
of literals. This is purely to simplify notation. For a truth assignment α and a
clause C, we will write α |= C if α satisfies C. Similarly α 6|= C if it does not. If
α satisfies a formula F , we write α |= F .

We will state a version of the Lopsided Lovász Local Lemma formulated in
terms of satisfiability. For a derivation of this version see [12].

Lemma 1 (SAT Version of the Lopsided Lovász Local Lemma). Let F
be a CNF formula not containing the empty clause. Sample a truth assignment
α by independently setting each variable x to true with p(x) ∈ [0, 1]. If for any
clause C ∈ F , it holds that ∑

D∈F : C and D conflict

Pr[α 6|= D] ≤ 1

4
(2)

then F is satisfiable.

In our proofs, it will be difficult to apply Lemma 1 to a formula F which we
want to prove satisfiable. Instead, we apply it to a formula F ′ we obtain from F
in the following way:

Definition 1. Let F be a CNF formula. A truncation of F is a CNF formula
F ′ that is obtained from F by deleting some literals from some clauses.

For example, (x ∨ y) ∧ (ȳ ∨ z) is a truncation of (x ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z). A
truncation of a k-CNF formula is not a k-CNF formula anymore. It is easy to
see that any truth assignment satisfying a truncation F ′ of F also satisfies F . In
our proofs, we will often find it easier to apply Lemma 1 to a special truncation
of F than to F itself. We need a technical lemma on the binomial coefficient.

Lemma 2. Let a, b ∈ N with b/a ≤ 0.75. Then

ab

b!
≥
(
a

b

)
>
ab

b!
e−b

2/a .

Proof. The upper bound is trivial and true for all a, b. The lower bound follows
like this.(

a

b

)
=
a(a− 1) · · · (a− b+ 1)

b!
=
ab

b!

b−1∏
j=0

a− j
a

>
ab

b!
e−

2
a

∑b−1
j=0 j >

ab

b!
e−b

2/a ,

where we used the fact that 1− x > e−2x for 0 ≤ x ≤ 0.75. ut
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3 Upper Bounds – Probabilistic Constructions of
Unsatisfiable Formulas

As we have argued in Section 1.2, in order to improve significantly upon the
upper bound gc(k) ≤ 4k, we must construct a formula that is very unbalanced,
i.e. occF (x) is exponentially larger than occF (x̄). The central idea is that we do
not construct an unsatisfiable k-CNF formula, but allow certain clauses to be
smaller. In a second step, we expand these clauses to size k.

Definition 2. Let F be a CNF formula with clauses of size at most k. For
each k′-clause C with k′ < k, construct a complete (k− k′)-CNF formula Kk−k′
over k − k′ new variables yC1 , . . . , y

C
k−k′ . We replace C by C ∨ Kk−k′ . Using

distributivity, we expand it into a k-CNF formula G called the k-CNFification
of F .

For example, the 3-CNFification of (x∨ y)∧ (x̄∨ y ∨ z) is (x∨ y ∨ y1)∧ (x∨
y ∨ ȳ1) ∧ (x̄ ∨ y ∨ z). It is easy to see that a truth assignment satisfies F if and
only if it satisfies its k-CNFification G.

Definition 3. Let `, k ∈ N0. An (`, k)-CNF formula is a formula consisting of
`-clauses containing only positive literals, and k-clauses containing only negative
literals.

If F is an (`, k)-CNF formula, we write F = F+ ∧ F−, where F+ consists of
purely positive `-clauses and F− of purely negative k-clauses.

Proposition 1. Let ` ≤ k, and let F = F+∧F− be an (`, k)-CNF formula. Let
G be the k-CNFification of F . Then

(i) e(G) ≤ 4k−`|F+|+ 2k−`|F+| · |F−|,
(ii) occG(x) · occG(x̄) ≤ max{4k−`, 2k−`|F+| · |F−|} for every variable x.

Proof. Every edge in CG(F ) runs between a positive `-clause C and a negative
k-clause D. Thus, e(F ) ≤ |F+| · |F−|. In G, this edge is replaced by 2k−` edges,
since C is replaced by 2k−` copies. Replacing C by 2k−` copies introduces less
than 4k−` edges. This proves (i). To prove (ii), there are two cases. First, if
x appears in F , then occG(x̄) = occF (x̄) and occG(x) = occF (x)2k−`, thus
occG(x)occG(x̄) ≤ 2k−`|F+| · |F−|. Second, if x does not appear in F , it has
been introduced in the k-CNFification. Then occG(x) = occG(x̄) = 2k−`−1, and
occG(x) · occG(x̄) ≤ 4k−`. ut

We will explore for which values of |F+| and |F−| there are unsatisfiable
(`, k)-CNF formulas. Then we use Proposition 1 to derive the upper bounds of
Theorem 1 and Theorem 2.

Lemma 3. (i) For any ρ ∈ (0, 1), there is a constant c such that for all k
and ` ≤ k, there exists an unsatisfiable (`, k)-CNF formula F = F+ ∧ F− with
|F−| ≤ ck2ρ−k and |F+| ≤ ck2(1− ρ)−`.

(ii) Let F = F+ ∧ F− be an (`, k)-CNF formula. If there is a ρ ∈ (0, 1) such
that |F+| < 1

2 (1− ρ)−` and |F−| < 1
2ρ
−k, then F is satisfiable.

5



Proof. We begin with (ii), which is easier. Sample a truth assignment α by
setting each variable independently to true with probability ρ. For a negative
k-clause C, it holds that Pr[α 6|= C] = ρk. Similarly, for a positive `-clause D,
Pr[α 6|= D] = (1 − ρ)`. Hence the expected number of clauses in F that are
unsatisfied by α is ρk|F−|+ (1− ρ)`|F+| < 1

2 + 1
2 = 1. Therefore, with positive

probability α satisfies F .

For (i), we choose a set V = {x1, . . . , xn} of n = k2 variables. Let c be a
constant, to be determined later. We form F− by sampling, with replacement,
ck2ρ−k negative k-clauses from all

(
n
k

)
possible. Similarly, we form F+ by sam-

pling ck2(1−ρ)−` positive `-clauses. We claim that for a suitable choice of c this
formula is unsatisfiable with high probability. Let α be any truth assignment.
There are two cases. First, suppose α sets at least ρn variables to true. For a
random negative clause C,

Pr[α 6|= C] ≥
(
ρn
k

)(
n
k

) ≥ (ρn)k

k! · e
−k2/(ρn)

nk

k!

= ρke−1/ρ = c′ρk

By independence, Pr[α |= F−] ≤ (1 − c′ρk)ck
2ρ−k

< e−cc
′k2 . Second, suppose

α sets at most ρn variables to true. By a similar argument, Pr[α |= F+] ≤
(1 − c′′(1 − ρ)`)ck

2(1−ρ)−`

< e−cc
′′k2 . For suitable c, we obtain Pr[α |= F ] <

e−k
2

= e−n for any α. The expected number of satisfying assignments of F is
thus less than 2ne−n < 1. With high probability F is unsatisfiable. ut

It should be pointed out that for k = `, an (`, k)-CNF formula is just a
monotone k-CNF formula. The size of a smallest unsatisfiable monotone k-CNF
formula is the same – up to a factor of at most 2 – as the minimum num-
ber of hyperedges in a k-uniform hypergraph that is not 2-colorable. In 1963,
Erdős [13] raised the question what this number is, and proved a 2k−1 lower
bound (this is easy, simply choose a random 2-coloring). One year later, he [5]
gave a probabilistic construction of a non-2-colorable k-uniform hypergraph us-
ing ck22k hyperedges. For ` = k and ρ = 1

2 , the above proof is basically the same
as Erdős’ proof.

Proof (Proof of Theorem 2). Combining Lemma 3 and Proposition 1, we con-
clude that for any ρ ∈ (0, 1) and 0 ≤ ` ≤ k, there is an unsatisfiable k-CNF
formula F with

occF (x) · occF (x̄) ≤ max{4k−`, 2k−`c2k4ρ−k(1− ρ)−`} ,

for every variable x. The constant c depends on ρ, but not on k or `. The term
ρ−k(1−ρ)−` is minimized for ρ = k

k+` . Choosing ` = d0.2055ke, we get ρ ≈ 0.83

and occF (x) · occF (x̄) ∈ O(3.01k). ut
Proof (Proof of the upper bound of Theorem 1). As in the previous proof, Propo-
sition 1 together with Lemma 3 yield an unsatisfiable k-CNF formula F with

e(F ) ≤ 4k−`ck2(1− ρ)−` + 2k−`c2k4ρ−k(1− ρ)−` .

For ρ ≈ 0.6298 and ` = d0.333ke, we obtain e(F ) ∈ O(3.51k). ut
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4 A Lower Bound on the Number of Global Conflicts

Proof (of the lower bound in Theorem 1). Let F be an unsatisfiable k-CNF
formula and let e(F ) be the number of conflicts in F . We will show that e(F ) ∈
Ω
(
2.69k

)
. In the proof, x denotes a variable and u a positive or negative literal.

We assume occF (x̄) ≤ occF (x) for all variables x. We can do so since otherwise
we just replace x by x̄ and vice versa. This changes neither e(F ), nor satisfiability
of F . Also we can assume that occF (x) and occF (x̄) are both at least 1, if x
occurs in F at all. For x, we define

p(x) := max

{
1

2
, k

√
occF (x)

16e(F )

}
.

We define a random truth assignment α by setting x to true with probability
p(x), independently for each variable. Since occF (u) ≤ e(F ), we have p(x) ≤ 1.
We set p(x̄) = 1− p(x). By definition p(x) ≥ p(x̄). Let us list some properties of
this distribution. First, if p(u) < 1

2 for some literal u, then u is a negative literal

x̄, and p(x) = k

√
occF (x)
16e(F ) > 1

2 . Second, if p(u) = 1
2 , then both k

√
occF (x)
16e(F ) ≤

1
2

and k

√
occF (x̄)
16e(F ) ≤

1
2 hold. We distinguish two types of clauses: Bad clauses, which

contain at least one literal u with p(u) < 1
2 , and good clauses, which contain only

literals u with p(u) ≥ 1
2 .

Lemma 4. Let B ⊆ F denote the set of bad clauses. Then
∑
C∈B Pr [α 6|= C] ≤

1
8 .

Proof. For each clause C ∈ B, let uC be the literal in C minimizing p(u), breaking
ties arbitrarily. This means Pr[α 6|= C] ≤ p(ūC)k. Since C is a bad clause,

p(uC) < 1
2 , uC is a negative literal x̄C , and p(xC) = k

√
occF (xC)

16e(F ) . We can calculate

∑
C∈B

Pr[α 6|= C] ≤
∑
C∈B

p(xC)k =
∑
C∈B

occF (xC)

16e(F )
. (3)

Since clause C contains x̄C , it conflicts with all occF (xC) clauses containing xC ,
thus

∑
C∈B occF (xC) ≤ 2e(F ). The factor 2 arises since we count each conflict

possibly twice—once from each side. Combining this with (3) proves the lemma.
ut
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We cannot directly apply Lemma 1 to F . Therefore we apply the following
sparsification process to F :

Algorithm: Sparsification Process

Let G = {D ∈ F | p(u) ≥ 1
2
, ∀u ∈ D} be the set of good clauses in F .

G′ := G
while ∃ a literal u :

∑
D:u∈D∈G′ Pr[α 6|= D] > 1

8k
do

Let C be some clause maximizing Pr[α 6|= C] among all clauses in G′
containing u.

C′ := C \ {u}
G′ := (G′ \ {C}) ∪ {C′}

end
return F ′ := G′ ∪ B

Lemma 5. If F ′ does not contain the empty clause, then F is satisfiable.

Proof. We will prove this using Lemma 1, the SAT version of the Lopsided Lovász
Local Lemma. Fix a clause C ∈ F ′. After the sparsification process, every literal
u fulfills

∑
D:u∈D∈G′ Pr[α 6|= D] ≤ 1

8k . We combine this with Lemma 4 to show
that the condition (2) of the Local Lemma holds:∑
D∈F ′: C and D conflict

Pr[α 6|= D] =
∑
D∈B

Pr[α 6|= D] +
∑

D∈G′: C and D conflict

Pr[α 6|= D]

≤ 1

8
+
∑
u∈C

∑
D∈G′:ū∈D

≤ 1

8
+ k · 1

8k
=

1

4
.

Hence (2) holds and by Lemma 1, F ′ is satisfiable, and clearly F as well. ut

If F is unsatisfiable, the sparsification process produces the empty clause. We
will show that in this case, e(F ) is large (at least Ω

(
2.69k

)
). If the sparsification

process produces the empty clause, then there is some C ∈ G all whose literals
are being deleted during the sparsification process. Write C = {u1, u2, . . . , uk},
and order the ui such that occF (u1) ≤ occF (u2) ≤ · · · ≤ occF (uk). Since C is a
good clause, the definition of p(x) implies that p(u1) ≤ p(u2) ≤ · · · ≤ p(uk). Fix
any ` ∈ {1, . . . , k} and let uj be the first literal among u1, . . . , u` that is deleted
from C. Let C ′ denote what is left of C just before that deletion, and consider
the set G′ at this point of time. Then {u1, . . . , u`} ⊆ C ′ ∈ G′. By the definition
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of the process,

1

8k
<

∑
D: uj∈D∈G′

Pr[α 6|= D] ≤
∑

D: uj∈D∈G′
Pr[α 6|= C ′] ≤

≤ occF (uj) Pr[α 6|= C ′] ≤

≤ occF (u`)
∏̀
i=1

(1− p(ui)) .

Since p(u) ≥ k

√
occF (u)
16e(F ) for all literals u in a good clause, it follows that

1
128ke(F ) ≤ p(u`)

k
∏`
i=1(1− p(ui)), for every 1 ≤ ` ≤ k.

Let (q1, . . . , qk) ∈ [ 1
2 , 1]k be any sequence satisfying the k inequalities 1

128ke(F ) ≤
qk`
∏`
i=1(1 − qi) for all 1 ≤ ` ≤ k. The p(ui) are such a sequence. We want to

make the q` as small as possible: If q` >
1
2 and 1

128ke(F ) < qk`
∏`
i=1(1 − qi),

we can decrease q` until one of the inequalities becomes an equality. The other
k−1 inequalities stay satisfied. In the end we get a sequence q1, . . . , qk satisfying

1
128ke(F ) = qk`

∏`
i=1(1− qi) whenever q` >

1
2 . This sequence is non-decreasing: If

q` > q`+1, then q` >
1
2 , and 1

128ke(F ) ≤ qk`+1

∏`+1
i=1(1 − qi) < qk`

∏`
i=1(1 − qi) =

1
128ke(F ) , a contradiction.

If all qi are 1
2 , then the kth inequality yields 128ke(F ) ≥ 4k, and we are

done. Otherwise, there is some `∗ = min{i | qi > 1
2}. For `∗ ≤ j < k both

qj and qj+1 are greater than 1
2 , thus qkj+1

∏j+1
i=1 (1 − qi) = qkj

∏j
i=1(1 − qi), and

qj = qj+1
k
√

1− qj+1. We define

fk(t) := t k
√

1− t ,

thus qj = fk(qj+1). By f
(j)
k (t) we denote fk(fk(. . . (fk(t)) . . . )), the j-fold iter-

ated application of fk(t), with f
(0)
k (t) = t. In this notation, qj = f

(k−j)
k (qk) > 1

2
for `∗ ≤ j ≤ k. The figure below shows the graph of f4(t).

Proposition 2. For k ≥ 2 and any t ∈ (0, 1], f
(k−1)
k (t) ≤ 1

2 .
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We will prove this in the appendix. By Proposition 2, f
(k−1)
k (qk) ≤ 1

2 , thus
`∗ ≥ 2. Therefore q1 = · · · = q`∗−1 = 1

2 , and the (l∗ − 1)st inequality reads as

1

128ke(F )
≤ qk`∗−1

`∗−1∏
i=1

(1− qi) = 2−k−`
∗+1 .

We obtain e(F ) ≥ 2k+`∗−1

128k . How large is `∗? Define Sk := min{` ∈ N0 | f (`)
k (t) ≤

1
2 ∀t ∈ [0, 1]}. By Part (v) of Proposition ??, Sk is finite. Since f

(k−`∗)
k (q1) =

q`∗ >
1
2 , we conclude that k − `∗ ≤ Sk − 1, thus e(F ) ≥ 22k−Sk

128k .

Lemma 6. The sequence Sk

k converges to limk→∞
Sk

k = −
∫ 1

1
2

1
x ln(1−x)dx <

0.572.

The proof of this lemma is technical and not related to satisfiability. We

prove it in the appendix. We conclude that e(F ) ≥ 2(2−0.572)k

128k ∈ Ω
(
2.69k

)
. ut

5 Conclusion

We want to give some hindsight why a sparsification procedure is necessary in
both lower bound proofs in this paper. The probability distribution we define is
not a uniform one, but biased towards setting x to true if occF (x)� occF (x̄).
The set of clauses conflicting with a specific clause C may contain many clauses
containing some x with x̄ ∈ C. If x is the only literal in these clauses with
p(x) > 1

2 , then each such clause is unsatisfied with probability not much smaller
than 2−k, and the sum (2) is greater than 1

4 By removing x from these clauses,
we reduce the number of clauses conflicting with C, making the sum (2) much
smaller. However, for other clauses C ′, this sum might increase by removing
x. We think that one will not be able to prove a tight lower bound using just
a smarter sparsification process. We want to state some open problems and
questions.

Question: Does limk→∞
k
√
gc(k) exist?

If it does, it lies between 2.69 and 3.51. One way to prove existence would be
to define “product” taking a k-CNF formula F and an `-CNF formula G to a
(k+ `)-CNF formula F ◦G that is unsatisfiable if F and G are, and e(F ◦G) =
e(F )e(G). With 2 and 4 ruled out, there seems to be no obvious guess for the
value of the limit.

Question: Is there an a > 2 such that every unsatisfiable k-CNF
formula contains a variable x with occF (x) · occF (x̄) ≥ ak?

Where do our methods fail to prove this? The part in the proof of the lower
bound of Theorem 1 that fails is Lemma 4. On the other hand, Lemma 4 proves
more than we need for Theorem 1: It proves that Pr[α |= D], summed up over
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all bad clauses gives at most 1
8 . We only need that the bad clauses conflicting

with a specific clause sum up to at most 1
8 . Still, we do not see how to apply or

extend our methods to prove that such an a > 2 exists.
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