
On the average sensitivity and density of k-CNF
formulas ?

Dominik Scheder1 and Li-Yang Tan2??

1 Aarhus University
2 Columbia University

Abstract. We study the relationship between the average sensitivity
and density of k-CNF formulas via the isoperimetric function ϕ : [0, 1]→
R,

ϕ(µ) = max

{
AS(F)

CNF-width(F)
: E[F (x)] = µ

}
,

where the maximum is taken over all Boolean functions F : {0, 1}∗ →
{0, 1} over a finite number of variables and AS(F) is the average sensitiv-
ity of F . Building on the work of Boppana [Bop97] and Traxler [Tra09],
and answering an open problem of O’Donnell, Amano [Ama11] recently
proved that ϕ(µ) ≤ 1 for all µ ∈ [0, 1]. In this paper we determine ϕ ex-
actly, giving matching upper and lower bounds. The heart of our upper
bound is the Paturi-Pudlák-Zane (PPZ) algorithm for k-SAT [PPZ97],
which we use in a unified proof that sharpens the three incomparable
bounds of Boppana, Traxler, and Amano.

We extend our techniques to determine ϕ when the maximum is taken
over monotone Boolean functions F , further demonstrating the utility of
the PPZ algorithm in isoperimetric problems of this nature. As an ap-
plication we show that this yields the largest known separation between
the average and maximum sensitivity of monotone Boolean functions,
making progress on a conjecture of Servedio.

Finally, we give an elementary proof that AS(F) ≤ log(s)(1 + o(1)) for
functions F computed by an s-clause CNF, which is tight up to lower
order terms. This sharpens and simplifies Boppana’s bound of O(log s)
obtained using H̊astad’s switching lemma.

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
this work was performed.

?? Part of this research was completed while visiting KTH Royal Institute of Technol-
ogy, partially supported by ERC Advanced Investigator Grant 226203.

1 Introduction

The average sensitivity of a Boolean function F : {0, 1}n → {0, 1} is a funda-
mental and well-studied complexity measure. The sensitivity of F at an input
x ∈ {0, 1}n, denoted S(F, x), is the number of coordinates i ∈ [n] of x such
that F (x) 6= F (x⊕ ei), where x⊕ ei denotes x with its i-th coordinate flipped.
The average sensitivity of F , denoted AS(F), is the expected number of sensi-
tive coordinates of F at an input x drawn uniformly at random from {0, 1}n.
Viewing F as the indicator of a subset AF ⊆ {0, 1}n, the average sensitivity
of F is proportional to the number of edges going from AF to its complement,
and so AS(F) may be equivalently viewed as a measure of the normalized edge
boundary of AF .

The average sensitivity of Boolean functions was first studied in the com-
puter science literature by Ben-Or and Linial [BL90] in the context of dis-
tributed computing. Owing in part to connections with the Fourier spectrum
of F established in the celebrated work of Kahn, Kalai, and Linial [KKL88], this
complexity measure has seen utility throughout theoretical computer science,
receiving significant attention in a number of areas spanning circuit complexity
[LMN93,OW07,BT13]3, learning theory [BT96,OS08,DHK+10], random graphs
[Fri98,Fri99,BKS99], social choice theory, hardness of approximation [DS05],
quantum query complexity [Shi00], property testing [RRS+12], etc. We remark
that the study of average sensitivity in combinatorics predates its introduction
in computer science. For example, the well-known edge-isoperimetric inequality
for the Hamming cube [Har64,Ber67,Lin64,Har76] yields tight extremal bounds
on the average sensitivity of Boolean functions in terms of the number of its
satisfying assignments.

The focus of this paper is on the average sensitivity of k-CNF formulas, the
AND of ORs of k or fewer variables; by Boolean duality our results apply to
k-DNF formulas as well. Upper bounds on the average sensitivity of small-depth
AC0 circuits are by now classical results, having been the subject of study in
several early papers in circuit complexity [LMN93,Man95,Bop97,H̊as01]. Despite
its apparent simplicity, though, gaps remain even in our understanding of the
average sensitivity of depth-2 AC0 circuits. The starting point of this research
was the following basic question:

Question 1. What is the maximum average sensitivity of a k-CNF formula F :
{0, 1}n → {0, 1} that is satisfied by a µ fraction of assignments?

An easy folkloric argument (first appearing explicitly in [Bop97]) gives an upper
bound of 2(1−µ)k. The maximum of 2k attained by this bound is a multiplicative
factor of 2 away from the lower bound of k witnessed by the parity function over
k variables, leading O’Donnell to ask if there is indeed a matching upper bound of

3 Though couched in different terminology, Khrapchenko’s classical lower bound
[Khr71] on the formula size of Boolean functions also relies implicitly on average
sensitivity.

k [O’D07]. O’Donnell’s question was answered in a sequence of works by Traxler
[Tra09] and Amano [Ama11], with Traxler proving a bound of 2µ log2(1/µ)k
(attaining a maximum of ∼ 1.062k at µ = 1/e), followed by Amano’s bound
of k independent of µ. These three incomparable bounds are shown in Figure 1
where they are normalized by k.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.25

0.5

0.75

1

1.25

Amano

Traxler

Boppana

Fig. 1. The upper bounds of Boppana, Traxler, and Amano, normalized by k.

The natural question at this point is: what is the true dependence on µ? In
this work we answer this question by giving matching upper and lower bounds.
Traxler’s upper bound of 2µ log2(1/µ)k is easily seen to be tight at the points
µ = 2−I for all positive integers I ∈ N, since the AND of I variables is a 1-CNF
with average sensitivity 2µ log2(1/µ), but we are not aware of any other matching
lower bounds prior to this work. Like Traxler and Amano, the main technical tool
for our upper bound is the Paturi-Pudlák-Zane (PPZ) randomized algorithm for
k-SAT. We remark that this is not the first time the PPZ algorithm has seen
utility beyond the satisfiability problem; in their original paper the authors use
the algorithm and its analysis to obtain sharp lower bounds on the size of depth-3
AC0 circuits computing the parity function.

We extend our techniques to determine ϕ when the maximum is taken over
monotone Boolean functions F , further demonstrating the utility of the PPZ
algorithm in isoperimetric problems of this nature. As an application we show
that this yields the largest known separation between the average and maximum
sensitivity of monotone functions, making progress on a conjecture of Servedio.
Finally, we give an elementary proof that AS(F) ≤ log(s)(1+o(1)) for functions
F computed by an s-clause CNF; such a bound that is tight up to lower order
terms does not appear to have been known prior to our work.

1.1 Our results

Our main object of study is the following isoperimetric function:

Definition 1. Let ϕ : [0, 1]→ R be the function:

ϕ(µ) = max

{
AS(F)

CNF-width(F)
: E[F (x)] = µ

}
,

where the maximum is taken over all Boolean functions F : {0, 1}∗ → {0, 1} over
a finite number of variables.

Note that E[F (x)] = a2−b for a, b ∈ N, and thus ϕ(µ) is well-defined only at those
points. However, these points are dense within the interval [0, 1] and thus one can
continuously extend ϕ to all of [0, 1]. As depicted in Figure 1 the upper bounds of
Boppana, Traxler, and Amano imply that ϕ(µ) ≤ min{2(1− µ), 2µ log(1/µ), 1}.
In this paper we determine ϕ exactly, giving matching upper and lower bounds.

Theorem 1. ϕ(µ) : [0, 1] → R is the piecewise linear continuous function that
evaluates to 2µ log2(1/µ) when µ = 2−I for some I ∈ N = {0, 1, 2, . . .}, and is
linear between these points4. That is, if µ = t · 2−(I+1) + (1 − t) · 2I for some
I ∈ N and t ∈ [0, 1], then

ϕ(µ) = t · (I + 1)

2I
+ (1− t) · I

2I−1
.

We extend our techniques to also determine the variant of ϕ where the max-
imum is taken only over monotone Boolean functions. The reader familiar with
the PPZ algorithm will perhaps recall the importance of Jensen’s inequality in
its analysis. Jensen’s inequality is very helpful for dealing with random variables
whose correlations one does not understand. It turns out that in case of mono-
tone CNF formulas, certain events are positively correlated and we can replace
Jensen’s inequality by the FKG inequality [FKG71], leading to a substantial
improvement in the analysis.

Theorem 2 (Upper bound for monotone k-CNFs). Let F be a monotone
k-CNF formula and µ = E[f(x)]. Then AS(F) ≤ 2kµ ln(1/µ)(1 + εk) for some
εk that goes to 0 as k grows.5

Theorem 3 (Lower bound for monotone k-CNFs). Let µ ∈ [0, 1] and
k ∈ N. There exists a monotone k-CNF formula F with E[F (x)] = µ ± εk and
AS(F) ≥ 2kµ ln(1/µ)(1− εk) for some εk that goes to 0 as k grows.

We apply Theorem 2 to obtain a separation between the average and max-
imum sensitivity of monotone Boolean functions, making progress on a con-
jecture of Servedio [O’D12]. Our result improves on the current best gap of
AS(f) ≤

√
2/π · S(f)(1 + o(1)) ≈ 0.797 · S(f)(1 + o(1)), which follows as a

corollary of an isoperimetric inequality of Blais [Bla11].

Corollary 1. Let f be a monotone Boolean function. Then AS(F) ≤ ln(2) ·
S(F)(1 + o(1)) ≤ 0.694 · S(f)(1 + o(1)), where o(1) is a term that goes to 0 as
S(F) grows.

4 We use the fact that 0 log2(1/0) = 0 here.
5 Note that the additive term of εk is necessary since AS(F) = 1 when F = x1.

1
2

1

1
4

1
8

1
2

Fig. 2. Our matching bounds for all functions (top), and for monotone functions (bot-
tom).

Finally, we give an elementary proof that AS(F) ≤ log(s)(1 + o(1)) for
functions F computed by an s-clause CNF, which is tight up to lower order
terms by considering the parity of log s variables. This sharpens and simplifies
Boppana’s bound of O(log s) obtained using H̊astad’s switching lemma.

Theorem 4. Let F be an s-clause CNF. Then AS(F) ≤ log s+log log s+O(1).

1.2 Preliminaries

Throughout this paper all probabilities and expectations are with respect to the
uniform distribution, and logarithms are in base 2 unless otherwise stated. We
adopt the convention that the natural numbers N include 0. We use boldface
letters (e.g. x, π) to denote random variables.

For any Boolean function F : {0, 1}n → {0, 1}, we write µ(F) ∈ [0, 1] to
denote the density Ex∈{0,1}n [F (x)] of F , and sat(F) ⊆ {0, 1}n to denote the
set of satisfying assignments of F (and so |sat(F)| = µ · 2n). The CNF width of
F , which we will denote CNF-width(F), is defined to be the smallest k ∈ [n]
such that F is computed by a k-CNF formula; similarly, DNF-width(F) is the
smallest k such that F is computed by a k-DNF formula. Note that by Boolean
duality, we have the relation CNF-width(F) = DNF-width(¬F).

Definition 2. Let F : {0, 1}n → {0, 1} and x ∈ {0, 1}n. For any i ∈ [n], we
say that F is sensitive at coordinate i on x if F (x) 6= F (x ⊕ ei), where x ⊕ ei
denotes x with its i-th coordinate flipped, and write S(F, x, i) as the indicator
for this event. The sensitivity of F at x, denoted S(F, x), is #{i ∈ [n] : F (x) 6=
F (x ⊕ ei)} =

∑n
i=1 S(F, x, i). The average sensitivity and maximum sensitivity

of F , denoted AS(F) and S(F) respectively, are defined as follows:

AS(F) = E
x∈{0,1}n

[S(F,x)], S(F) = max
x∈{0,1}n

[S(F, x)].

We will need the following basic fact:

Fact 11 Let F : {0, 1}n → {0, 1} and µ = E[F (x)]. Then Ex∈sat(F)[S(F,x)] =
AS(F)/2µ.

Proof. This follows by noting that

AS(f) = E
x∈{0,1}n

[S(F,x)] = E
x∈{0,1}n

[2·S(F,x)·1[F (x)=1]] = 2µ E
x∈sat(F)

[S(F,x)].

Here the second identity holds by observing that for any x ∈ sat(F) and coordi-
nate i ∈ [n] on which F is sensitive at x, we have that x⊕ ei /∈ sat(F) and F is
sensitive on i at x⊕ ei. ut

We remark that Boppana’s bound follows easily from 11 and Boolean duality.
For any k-CNF F with density E[f(x)] = µ, its negation ¬F is a k-DNF with
density (1−µ) and AS(¬F) = AS(F). Applying Fact 11 to ¬F and noting that
every satisfying assignment of a k-DNF has sensitivity at most k, we conclude
that AS(F) = AS(¬F) ≤ 2(1− µ)k.

2 The PPZ Algorithm

The main technical tool for our upper bounds in both Theorems 1 and 2 is the
PPZ algorithm (Figure 3), a remarkably simple and elegant randomized algo-
rithm for k-SAT discovered by and named after Paturi, Pudlák, and Zane [PPZ97].
Perhaps somewhat surprisingly, the utility of the PPZ algorithm extends beyond
its central role in the satisfiability problem. Suppose the PPZ algorithm is run
on a k-CNF F , for which it is searching for an satisfying assignment x ∈ sat(F).
Since the algorithm is randomized and may not return a satisfying assignment,
it defines a probability distribution on sat(F) ∪ {failure}.

The key observation underlying the analysis of PPZ is that a satisfying
assignment x for which S(F, x) is large receives a higher probability under
this distribution than its less sensitive brethren; the exact relationship depends
on CNF-width(F), and is made precise by the Satisfiability Coding Lemma
(Lemma 2). Since the probabilities of the assignments sum to at most 1, it fol-
lows that there cannot be too many high-sensitivity assignments. This intuition
is the crux of the sharp lower bounds of Paturi, Pudlák, and Zane on the size of
depth-3 AC0 circuits computing parity; it is also the heart of Traxler’s, Amano’s,
and our upper bounds on the average sensitivity of k-CNF formulas.

Let us add some bookkeeping to this algorithm. For every satisfying assign-
ment x ∈ sat(F), permutation π : [n]→ [n], and coordinate i ∈ [n], we introduce
an indicator variable Ti(x, π, F) that takes value 1 iff the assignment xi to the
i-th coordinate was decided by a coin Toss, conditioned on PPZ returning x on
inputs F and π (which we denote as ppz(F, π) = x). We also introduce the dual
indicator variable Ii(x, π, F) = 1− Ti(x, π, F), which takes value 1 if the the as-
signment xi was Inferred. We define T (x, π, F) = T1(x, π, F) + · · ·+ Tn(x, π, F)

The ppz algorithm takes as input a k-CNF formula F and a permutation
π : [n]→ [n].

1. for i = 1 to n:
2. if xπ(i) occurs in a unit clause in F then set xπ(i) ← 1 in F .
3. else if xπ(i) occurs in a unit clause in F then set xπ(i) ← 0 in F .
4. else toss a fair coin and set xπ(i) to 0 or 1 uniformly at random.

If F ≡ 1, the algorithm has found a satisfying assignment and returns it.
Otherwise the algorithm reports failure.

Fig. 3. The PPZ k-SAT algorithm

to be the total number of coin tosses, and similarly I(x, π, F) = I1(x, π, F) +
. . .+ In(x, π, F) = n−T (x, π, F) to be the number of inference steps. Note that
if x ∈ sat(F) and we condition on the event ppz(F, π) = x, then all coin tosses
of the algorithm are determined and T = T (x, π, F) becomes some constant in
{0, 1, . . . , n}; likewise for I = I(x, π, F). The next lemma follows immediately
from these definitions:

Lemma 1 (Probability of a solution under PPZ [PPZ97]). Let F be a
CNF formula over n variables and x ∈ sat(F). Let π be a permutation over the
variables. Then

Pr[ppz(F, π) = x] = 2−T (x,π,F) = 2−n+I(x,π,F) , (1)

where T (x, π, F) is the number of coin tosses used by the algorithm when finding
x.

For completeness, we include a proof of the simple but crucial Satisfiability
Coding Lemma:

Lemma 2 (Satisfiability Coding Lemma [PPZ97]). Let F be a k-CNF for-
mula and let x ∈ sat(F). If F is sensitive at coordinate i on x then Eπ[Ii(x,π, F)] ≥
1/k, and otherwise Ii(x, π, F) = 0 for all permutations π. Consquently, by lin-
earity of expectation Eπ[I(x,π, F)] ≥ S(F, x)/k.

Proof. Without loss of generality we assume that x = (1, . . . , 1), and since we
condition on ppz(F, π) = x, all coin tosses made by the algorithm yield a 1. If
F is sensitive to i at x, then certainly there must exist a clause C in which xi is
the only satisfied literal. That is, C = xi ∨xi2 ∨ · · · ∨xik . With probabilitiy 1/k,
variable i comes after i2, . . . , ik in the permutation π and in this case, the PPZ
algorithm has already set the variables xi2 , . . . , xik to 1 when it processes xi.
Thus, F will contain the unit clause {xi} at this point, and PPZ will not toss a
coin for xi (i.e. the value of xi is forced), which means that Ii(x, π, F) = 1. Thus,
Eπ[Ii(x,π, F)] ≥ 1/k. On the other hand if F is not sensitive to i at x, then
every clause containing xi also contains a second satisfied literal. Thus, PPZ will
never encounter a unit clause containing only xi and therefore Ii(x, π, F) = 0
for all permutations π. ut

3 Average sensitivity of k-CNFs: Proof of Theorem 1

3.1 The upper bound

Let g : R→ R be any monotone increasing convex function such that g(I) ≤ 2I

for I ∈ N. Choose a uniformly random permutation π of the variables of F and
run PPZ. Summing over all x ∈ sat(F) and applying Lemma 1, we first note
that

1 ≥
∑

x∈sat(F)

Pr[ppz(F,π) = x] =
∑

x∈sat(F)

E
π

[
2−T (x,π,F)

]
= 2−n

∑
x∈sat(F)

Eπ

[
2I(x,π,F)

]
= µ E

x∈sat(F),π

[
2I(x,π,F)

]
. (2)

Next by our assumptions on g, we have

µ E
x∈sat(F),π

[
2I(x,π,F)

]
≥ µ E

x∈sat(F),π
[g(I(x,π, F))] ≥ µ·g

(
E

x∈sat(F),π
[I(x,π, F)]

)
,

where the first inequality holds since g satisfies g(I) ≤ 2I for all I ∈ N, and
the second follows from Jensen’s inequality and convexity of g. Combining these
inequalities and applying the Satisfiability Coding Lemma (Lemma 2), we get

1 ≥ µ ·g
(

E
x∈sat(F),π

[I(x,π, F)]

)
≥ µ ·g

(
E

x∈sat(F)

[
S(F,x)

k

])
= µ ·g

(
AS(F)

2µk

)
.

Here we have used the assumption that g is monotone increasing in the second
inequality, and Fact 11 for the final equality. Solving for AS(F), we obtain the
following upper bound:

AS(F) ≤ 2µg−1(1/µ) · k. (3)

At this point we note that we can easily recover Traxler, Amano, and Boppana’s
bounds from Equation (3) simply by choosing the appropriate function g : R→
R that satisfies the necessary conditions (i.e. monotone increasing, convex, and
g(I) ≤ 2I for all I ∈ N).

– If g(I) = 2I , then (3) becomes AS(F) ≤ 2µ log(1/µ) · k, which is Traxler’s
bound.

– If g(I) = 2I, we obtain AS(F) ≤ k, which is Amano’s bound.
– If g(I) = 1 + I, we obtain Boppana’s bound of AS(F) ≤ 2(1− µ) · k.6

We pick g to be the largest function that is monotone increasing, convex, and
at most 2I for all integers I. This is the convex envelope of the integer points(
I, 2I

)
:

6 This observation was communicated to us by Lee [Lee12].

2I

2 · I

g(I)

That is, g is the continuous function such that g(I) = 2I whenever I ∈ N, and
is linear between these integer points. Thus, the function g−1(1/µ) is piecewise
linear in 1/µ, and 2µg−1(1/µ) · k is piecewise linear in µ. Therefore we obtain
an upper bound on ϕ(µ) that is 2µ log(1/µ) if µ = 2−I for I ∈ N and piecewise
linear between these points. This proves the upper bound in Theorem 1.

3.2 The lower bound

We will need a small observation:

Lemma 3. Let k, ` ∈ N0, and set µ = 2−`. There exists a Boolean function
F : {0, 1}n → {0, 1} with CNF-width(F) = k and AS(F) = 2µ log(1/µ) · k.

Proof. We introduce k · ` variables x
(i)
j , 1 ≤ i ≤ `, 1 ≤ j ≤ k and let F be

(k, `)-block parity, defined as

F :=
∧̀
i=1

k⊕
j=1

x
(i)
j .

Note that F has density E[F (x)] = 2−` = µ, and every satisfying assignment has
sensitivity exactly k`. Thus by Fact 11, AS(F) = 2µEx∈sat[S(F,x)] = 2k`2−` =
2kµ log(1/µ) · k. ut

By Lemma 3, for every k ∈ N there is a k-CNF which is a tight example for
our upper bound whenever µ = 2−` and ` ∈ N. The main idea is to interpolate
ϕ linearly between µ = 2−`−1 and 2−` for all integers `. If µ is not an integer
power of 1/2, we choose ` such that µ ∈

(
2−`−1, 2−`

)
, and recall that we may

assume that µ = a2−b for some a, b ∈ N (since these points are dense within
[0, 1]). Choose k ≥ b and let F be a (k, ` + 1)-block parity. We consider the
last block x`+1

1 , . . . , x`+1
k of variables, and note that F contains 2k−1 clauses

over this last block. Removing 0 ≤ t ≤ 2k−1 clauses over the last block of
variables linearly changes µ from 2−`−1 at t = 0 to 2−` at t = 2k−1. Every

time we remove a clause from the last block, 2(k−1)` formerly unsatisfying x
become satisfying. Before removal, F at x was sensitive to the k variables in
the last block (flipping them used to make x satisfying) whereas after removal,
F at x is not sensitive to them anymore (change them and x will still satisfy
F). However, F at x is now sensitive to the `k variables in the first ` blocks:
changing any of them makes x unsatisfying. Thus, each time we remove a clasue,
the number of edges from sat(F) to its complement in {0, 1}n changes by the
same amount. Therefore, AS(F) moves linearly from 2(`+ 1)k2−`−1 at t = 0 to
2`k2−` at t = 2k−1. At every step t, the point (µ(F),AS(F)/k) lies on the line
from

(
2−`−1, 2(`+ 1)2−`−1

)
to
(
2−`, 2`2−`

)
, i.e., exactly on our upper bound

curve. Choosing t = a2k+`−b − 2k+1 ensures F has density exactly µ = a2−b.

4 Average sensitivity of monotone k-CNFs

Revisiting Equation (2) in the proof of our upper bound in Section 3.1, recall
that we used Jensen’s inequality to handle the expression Eπ[2I(x,π,F)], where
I(x, π, F) =

∑n
i=1 Ii(x, π, F) is the number of inference steps made by the PPZ

algorithm. The crux of our improvement for monotone k-CNFs is the observation
that when F is monotone the indicator variables I1(x, π, F), . . . , In(x, π, F) are
positively correlated, i.e. E

[
2I
]
≥
∏n
i=1 E

[
2Ii
]
, leading to a much better bound.

Lemma 4 (Positive correlation). If F is monotone then the indicator vari-
ables Ii(x, π, F) are positively correlated. That is, for every x ∈ sat(F),

E
π

[
2I(x,π,F)

]
≥

n∏
i=1

E
π

[
2Ii(x,π,F)

]
. (4)

Proof (Proof of Theorem 2 assuming Lemma 4). We begin by analyzing each
term in the product in the right-hand side of Equation (4). Let x ∈ sat(F) and
i ∈ [n]. If F is sensitive to coordinate i at x then Prπ[Ii(x,π, F) = 1] ≥ 1/k by
Lemma 2, and so

E
π

[
2Ii(x,π,F)

]
= Pr

π
[Ii(x,π, F) = 0] · 1 + Pr

π
[Ii(x,π, F) = 1] · 2

= (1−Pr[Ii(x,π, F) = 1]) + Pr[Ii(x,π, F) = 1] · 2

= 1 + Pr[Ii(x,π, F) = 1] ≥ 1 +
1

k
.

On the other hand if F is not sensitive to coordinate i at x, then Ii(x, π, F) is
always 0, and so Eπ

[
2Ii(x,π,F)

]
= 1. Combining this with Lemma 4 shows that

E
π

[
2I(x,π,F)

]
≥

n∏
i=1

E
π

[
2Ii(x,π,F)

]
≥
(

1 +
1

k

)S(F,x)
. (5)

With this identity in hand Theorem 2 follows quite easily. Starting with Equation
(2), we have

1 ≥ µ E
x∈sat(F),π

[
2I(x,π,F)

]
(by Equation (2))

≥ µ E
x∈sat(F)

[(
1 +

1

k

)S(F,x)]
(by (5))

≥ µ
(

1 +
1

k

)Ex∈sat(F)[S(F,x)]

(by Jensen’s inequality)

= µ

(
1 +

1

k

)AS(F)/2µ

. (by Fact 11)

Solving for AS(F), we get

AS(F) ≤ 2µ ln (1/µ)

ln
(
1 + 1

k

) =
2µ ln (1/µ) · k
ln
(
1 + 1

k

)k = 2kµ ln(1/µ)(1 + εk) ,

for some εk that goes to 0 as k grows. This proves Theorem 2. ut

4.1 Proof of Lemma 4: Positive Correlation

Fix a satisfying assignment x of F . If F is insensitive to coordinate j on x (i.e.
S(F, x, j) = 0) then Ij(x, π, F) = 0 for all permutations π, and so we first note
that

E
π

[
2I(x,π,F)

]
= E

π

 ∏
i : S(F,x,i)=1

2Ii(x,π,F)

 . (6)

Fix an i such that S(F, x, i) = 1. At this point, it would be convenient to adopt
the equivalent view of a random permutation π as a function π : [n] → [0, 1]
where we choose the value of each π(k) independently and uniformly at random
from [0, 1] (ordering [n] according to π defines a uniformly random permutation).
From this point of view 2Ii(x,π,F) is a function from [0, 1]n → {1, 2}. The key
observation that we make now is that the n functions 2Ii(x,π,F) for 1 ≤ i ≤ n
are monotonically increasing in the coordinates at which x is 1, and decreasing
in the coordinates at which x is 0.

By monotonicity, we know that Ii(x, π, F) = 1 if only if there is a clause
C = xi ∨ xi2 ∨ . . . ∨ xik′ in F , where xi2 = . . . = xik′ = 0 (note that xi = 1 by
monotonicity) and π(i2), π(i3), . . . , π(ik′) < π(i). By this characterization, we
see that

– Increasing π(i) can only increase Ii(x, π, F), and decreasing π(i) can only
decrease Ii(x, π, F).

– Increasing π(j) for some j where xj = 0 can only decrease Ii(x, π, F), and
decreasing π(j) can only increase Ii(x, π, F).

– Finally, Ii(x, π, F) is not affected by changes to π(j) when j 6= i and xj = 1.

Therefore, the functions 2Ii(x,π,F) where S(F, x, i) = 1 are all unate with the
same orientation7 and so by the FKG correlation inequality [FKG71], they are
positively correlated. We conclude that

E
π

 ∏
i : S(F,x,i)=1

2Ii(x,π,F)

 ≥ ∏
i : S(F,x,i)=1

E
π

[
2Ii(x,π,F)

]
=

n∏
i=1

E
π

[
2Ii(x,π,F)

]
,

where in the final inequality we again use the fact that Ij(x,π, F) = 0 for all π
if S(F, x, j) = 0. This proves Lemma 4.

4.2 Proof of Theorem 3: The Lower Bound

In this section we construct a monotone k-CNF formula with large average sen-
sitivity. We will need a combinatorial identity.

Lemma 5. Let k, ` ≥ 0. Then
∑m
s=0

(
m
s

)
ks`m−ss = mk(k + `)m−1.

Proof. First, if k + ` = 1, then both sides equal the expected number of heads
in m coin tosses with head probability k. Otherwise, we divide both sides by
(k + `)m and apply that argument to k

k+` and `
k+` . ut

Proof (Proof of Theorem 3). This function will be the tribes function F :=
Tribeskm over n = km variables:

(x
(1)
1 ∨ x

(1)
2 · · · ∨ x

(1)
k) ∧ (x

(2)
1 ∨ x

(2)
2 · · · ∨ x

(2)
k) ∧ · · · ∧ (x

(m)
1 ∨ x(m)

2 · · · ∨ x(m)
k)

This is a k-CNF formula with E[F] =
(
1− 2−k

)m
. We setm :=

⌈
ln(µ)/ ln

(
1− 2−k

)⌉
,

which yields µ
(
1− 2−k

)
≤ E[F] ≤ µ. Let us compute AS(F). For a satisfying

assignment x, S(F, x) is the number of clauses in Tribeskm containing exactly
one satisfied literal. The number of satisfying assignments x of sensitivity s is

exactly
(
m
s

)
ks
(
2k − k − 1

)m−s
, as there are 2k−k−1 ways to satisfy more than

one literal in a k-clause. Thus,

AS(F) = 2−n+1
∑

x∈sat(F)

S(F, x) = 2−mk+1
m∑
s=0

(
m

s

)
ks
(
2k − k − 1

)m−s
s

Applying Lemma 5 with ` = 2k − k − 1, we get

AS(F) = 2−mk+1mk(2k − 1)m−1 =

(
2k − 1

)m
2km

2mk

2k − 1
=

2 E[F]mk

2k − 1

Recall that m ≥ ln(µ)
ln(1−2−k)

and E[F] ≥
(
1− 2−k

)
µ. Thus,

AS(F) =
2 E[F]mk

2k − 1
≥

2kµ
(
1− 2−k

)
ln(µ)

(2k − 1) ln (1− 2−k)
=

2kµ ln(µ)

2k ln(1− 2−k)
= 2kµ ln

(
1

µ

)
(1−εk) ,

for some εk that quickly converges to 0 as k grows. This proves Theorem 3. ut
7 This means for each 1 ≤ i ≤ n, they are either all monotonically increasing in π(i)

or all decreasing in π(i).

4.3 A gap between average and maximum sensitivity

Recall that the maximum sensitivity S(F) of a Boolean function F is the quantity
maxx∈{0,1}n [S(F, x)]. Clearly we have that AS(F) ≤ S(F), and this inequality
is tight when F = PARn, the parity function over n variables. Servedio con-
jectured that unlike the case for PARn, the average sensitivity of a monotone
Boolean function F is always asymptotically smaller than its maximum sensi-
tivity [O’D12]:

Conjecture 1 (Servedio). There exists universal constants K > 0 and δ < 1 such
that the following holds. Let F : {0, 1}n → {0, 1} be any monotone Boolean
function. Then AS(F) ≤ K · S(F)δ.

In addition to being an interesting and natural question, Servedio’s conjecture
also has implications for Mansour’s conjecture [Man94] on the Fourier spectrum
of depth-2 AC0, a longstanding open problem in analysis of Boolean functions and
computational learning theory [O’D12,GKK08]. The conjecture can be checked
to be true for the canonical examples of monotone Boolean functions such as
majority (AS(MAJn) = Θ(

√
n) whereas S(MAJn) = dn/2e), and the Ben-Or-

Linial Tribes function (AS(Tribesk,2k) = Θ(k) whereas S(Tribesk,2k) = 2k).
O’Donnell and Servedio have shown the existence of a monotone function F
with AS(F) = Ω(S(F)0.61) [OS08], and this is the best known lower bound on
the value of δ in Conjecture 1.

The current best separation between the two quantities is AS(F) ≤
√

2/π ·
S(F)(1 + o(1)) ≈ 0.797 · S(F)(1 + o(1)) where o(1) is a term that tends to 0
as S(F) grows8, which follows as a corollary of Blais’s [Bla11] sharpening of an
isoperimetric inequality of O’Donnell and Servedio [OS08]. We now show that
our upper bound in Theorem 2 yields an improved separation. We recall a basic
fact from [Nis91] characterizing the maximum sensitivity of a monotone Boolean
function by its CNF and DNF widths:

Fact 41 Let F : {0, 1}n → {0, 1} be a monotone Boolean function. Then

S(F) = max{DNF-width(F),CNF-width(F)}.

Corollary 2. monotone-sepration Let F be a monotone Boolean function. Then
AS(F) ≤ ln(2) · S(F)(1 + o(1)) ≤ 0.694 · S(f)(1 + o(1)), where o(1) is a term
that goes to 0 as S(F) grows.

Proof. By Fact 41, we have CNF-width(F) ≤ S(F) and CNF-width(¬F) =
DNF-width(F) ≤ S(F). Applying the upper bound of Theorem 2 to both F
and ¬F , we get

AS(F) ≤ min{2µ ln(1/µ), 2(1− µ) ln(1/(1− µ))} · S(F)(1 + o(1)),

where µ = µ(F). The proof is complete by noting that min{2µ ln(1/µ), 2(1 −
µ) ln(1/(1− µ))} ≤ ln(2) for all µ ∈ [0, 1]. ut
8 Note that this additive o(1) term is necessary as AS(F) = S(F) = 1 for the mono-

tone function F (x) = x1.

5 Average sensitivity of s-clause CNFs

Let F be computed by an s-clause CNF. It is straightforward to check that
Pr[F (x) 6= G(x)] ≤ ε and AS(F) ≤ AS(G) + ε · n, if G is the CNF obtained
from F by removing all clauses of width greater than log(s/ε). When s = Ω(n)
we may apply Amano’s theorem to G and take ε = O(1/n) to conclude that
AS(F) = O(log s). Building on the work of Linial, Mansour and Nisan [LMN93],
Boppana employed H̊astad’s switching lemma to prove that in fact AS(F) =
O(log s) continues to hold for all values of s = o(n). Here we give an elementary
proof of Theorem 4 that sharpens and simplifies Boppana’s result. A bound of
AS(F) ≤ log(s)(1 + o(1)), which is tight up to lower order terms by considering
the parity function over log s variables, does not appear to have been known
prior to this work.9

Proof (Proof of Theorem 4). We write F = G ∧ H, where G consists of all
clauses of width at most τ and the threshold τ ∈ [s] will be chosen later. By the
subadditivity of average sensitivity, we see that

AS(F) ≤ AS(G) +AS(H) ≤ τ +
∑
C ∈ H

AS(C) = τ +
∑
C∈H

|C|
2|C|−1

≤ τ + s · τ

2τ−1
.

Here the second inequality is by Amano’s theorem applied to G and the sub-
additivity of average sensitivity applied to H, and the last inequality holds be-
cause z 7→ z/2z−1 is a decreasing function. Choosing τ := log s+ log log s yields
AS(F) ≤ log s+ log log s+ 2 + o(1) and completes the proof. ut

6 Acknowledgements

We thank Eric Blais and Homin Lee for sharing [Bla11] and [Lee12] with us.
We also thank Rocco Servedio and Navid Talebanfard for helpful discussions.

References

Ama11. Kazuyuki Amano. Tight bounds on the average sensitivity of k-CNF. Theory
of Computing, 7(4):45–48, 2011. 1, 1

Ber67. Arthur Bernstein. Maximally connected arrays on the n-cube. SIAM Journal
on Applied Mathematics, pages 1485–1489, 1967. 1

BKS99. Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean
functions and applications to percolation. Publications Mathématiques de
l’IHÉS, 90(1):5–43, 1999. 1

BL90. Michael Ben-Or and Nathan Linial. Collective coin flipping. In Silvio Micali
and Franco Preparata, editors, Randomness and Computation, volume 5 of
Advances in Computing Research: A research annual, pages 91–115. JAI
Press, 1990. 1

9 Working through the calculations in Boppana’s proof one gets a bound of AS(F) ≤
3 log s.

Bla11. Eric Blais. Personal communication, 2011. 1.1, 4.3, 6
Bop97. Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Inf.

Process. Lett., 63(5):257–261, 1997. 1, 1, 1
BT96. Nader Bshouty and Christino Tamon. On the Fourier spectrum of monotone

functions. Journal of the ACM, 43(4):747–770, 1996. 1
BT13. Eric Blais and Li-Yang Tan. Approximating Boolean functions with depth-2

circuits. In Conference on Computational Complexity, 2013. 1
DHK+10. Ilias Diakonikolas, Prahladh Harsha, Adam Klivans, Raghu Meka, Prasad

Raghavendra, Rocco Servedio, and Li-Yang Tan. Bounding the average
sensitivity and noise sensitivity of polynomial threshold functions. In Pro-
ceedings of the 42nd Annual ACM Symposium on Theory of Computing,
pages 533–542, 2010. 1

DS05. Irit Dinur and Samuel Safra. On the hardness of approximating minimum
vertex cover. Annals of Mathematics, 162(1):439–485, 2005. 1

FKG71. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on
some partially ordered sets. Comm. Math. Phys., 22:89–103, 1971. 1.1, 4.1

Fri98. Ehud Friedgut. Boolean functions with low average sensitivity depend on
few coordinates. Combinatorica, 18(1):27–36, 1998. 1

Fri99. Ehud Friedgut. Sharp thresholds of graph properties, and the k-SAT prob-
lem. Journal of the American Mathematical Society, 12(4):1017–1054, 1999.
1

GKK08. Parikshit Gopalan, Adam Kalai, and Adam Klivans. A query algorithm for
agnostically learning DNF? In Proceedings of the 21st Annual Conference
on Learning Theory, pages 515–516, 2008. 4.3

Har64. Lawrence Harper. Optimal assignments of numbers to vertices. Journal of
the Society for Industrial and Applied Mathematics, 12(1):131–135, 1964. 1

Har76. Sergiu Hart. A note on the edges of the n-cube. Discrete Mathamatics,
14(2):157–163, 1976. 1

H̊as01. Johan H̊astad. A slight sharpening of LMN. Journal of Computer and
System Sciences, 63(3):498–508, 2001. 1

Khr71. V. M. Khrapchenko. A method of determining lower bounds for the com-
plexity of π-schemes. Math. Notes Acad. Sci. USSR, 10(1):474–479, 1971.
3

KKL88. Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on
Boolean functions. In Proceedings of the 29th Annual Symposium on Foun-
dations of Computer Science, pages 68–80, 1988. 1

Lee12. Homin Lee. Personal communication, 2012. 6, 6
Lin64. J. H. Lindsey. Assignment of numbers to vertices. Amer. Math. Monthly,

71:508–516, 1964. 1
LMN93. Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits,

Fourier transform and learnability. Journal of the ACM, 40(3):607–620,
1993. 1, 5

Man94. Yishay Mansour. Learning Boolean functions via the Fourier Transform.
In Vwani Roychowdhury, Kai-Yeung Siu, and Alon Orlitsky, editors, The-
oretical Advances in Neural Computation and Learning, chapter 11, pages
391–424. Kluwer Academic Publishers, 1994. 4.3

Man95. Yishay Mansour. An O(nlog logn) learning algorithm for DNF under the
uniform distribution. Journal of Computer and System Sciences, 50(3):543–
550, 1995. 1

Nis91. Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Com-
puting, 20(6):999–1007, 1991. 4.3

O’D07. Ryan O’Donnell. Lecture 29: Open problems. Scribe notes for a course on
Analysis of Boolean Functions at Carnegie Mellon University, 2007. 1

O’D12. Ryan O’Donnell. Open problems in analysis of boolean functions. CoRR,
abs/1204.6447, 2012. 1.1, 4.3, 4.3

OS08. Ryan O’Donnell and Rocco Servedio. Learning monotone decision trees in
polynomial time. SIAM Journal on Computing, 37(3):827–844, 2008. 1, 4.3

OW07. Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples
and counterexamples. In Proceedings of the 34th Annual Colloquium on
Automata, Languages and Programming, pages 195–206, 2007. 1

PPZ97. Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding
lemma. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, pages 566–574, 1997. 1, 2, 1, 2

RRS+12. Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri
Weinstein. Approximating the influence of monotone boolean functions in
o(n) query complexity. TOCT, 4(4):11, 2012. 1

Shi00. Y. Shi. Lower bounds of quantum black-box complexity and degree of ap-
proximating polynomials by influence of boolean variables. Inform. Process.
Lett., 75(1-2):79–83, 2000. 1

Tra09. Patrick Traxler. Variable influences in conjunctive normal forms. In SAT,
pages 101–113, 2009. 1, 1

	 On the average sensitivity and density of k-CNF formulas

