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The theory of error-correcting codes and more broadly, information theory, originated in Claude
Shannon’s monumental work A mathematical theory of communication, published over 60 years
ago in 1948. Shannon’s work gave a precise measure of the information content in the output of a
random source in terms of its entropy. The noiseless coding theorem or the source coding theorem
informally states that n ii.d. random variables each with entropy H(X) can be compressed into
n(H(X) + €) bits with negligible probability of information loss, and conversely compression into
n(H(X) — €) bits would entail almost certain information loss.

More directly relevant to this course is Shannon’s noisy coding theorem which considered com-
munication of a message (say consisting of k£ bits that are output by a source coder) on a noisy
communication channel whose behavior is given by a stochastic channel law. The noisy coding
theorem states that every such channel has a precisely defined real number called capacity that
quantifies the maximum rate at which reliable communication is possible on that channel. More
precisely, given a noisy channel with capacity C, if information is transmitted at rate R (which
means k = nR message bits are communicated in n uses of the channel), then if R < C then
exist coding schemes (comprising an encoder/decoder pair) that guarantee negligible probability
of miscommunication, whereas if R > C, then regardless of the coding scheme, the probability of
error at the receiver is bounded below by some constant (which increased as R increases). (Later,
a strong converse to the Shannon coding theorem was proved, which shows that when R > C, the
probability of miscommunication goes exponentially (in k) to 1.) Shannon’s theorem was one of
the early uses of the probabilistic method; it asserted the existence of good coding schemes at all
rates below capacity, but did not give any efficient method to construct a good code or for that
matter to verify that a certain code was good.

We will return to Shannon’s probabilistic viewpoint and in particular his noisy coding theorem in
a couple of lectures, but we will begin by introducing error-correcting codes from a more combina-
torial /geometric viewpoint, focusing on aspects such as the minimum distance of the code. This
viewpoint was pioneered by Richard Hamming in his celebrated 1950 paper Error detecting and
error correcting codes. The Hamming approach is more suitable for tackling worst-case/adversarial
errors, whereas the Shannon theory handles stochastic/probabilistic errors. This corresponds to a
rough dichotomy in coding theory results — while the two approaches have somewhat different goals
and face somewhat different limits and challenges, they share many common constructions, tools,
and techniques. Further, by considering meaningful relaxations of the adversarial noise model or
the requirement on the encoder/decoder, it is possible to bridge the gap between the Shannon and
Hamming approaches. (We will see some results in this vein during the course.)

The course will be roughly divided into the following interrelated parts. We will begin by results
on the existence and limitations of codes, both in the Hamming and Shannon approaches. This
will highlight some criteria to judge when a code is good, and we will follow up with several
explicit constructions of “good” codes (we will encounter basic finite field algebra during these
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constructions). While this part will mostly have a combinatorial flavor, we will keep track of
important algorithmic challenges that arise. This will set the stage for the algorithmic component
of the course, which will deal with efficient (polynomial time) algorithms to decode some important
classes of codes. This in turn will enable us to approach the absolute limits of error-correction
“constructively,” via explicit coding schemes and efficient algorithms (for both worst-case and
probabilistic error models).

Codes, and ideas behind some of the good constructions, have also found many exciting “ex-
traneous” applications such as in complexity theory, cryptography, pseudorandomness and explicit
combinatorial constructions. (For example, in the spring 2009 offering of 15-855 (the graduate com-
plexity theory course), we covered in detail the Sudan-Trevisan-Vadhan proof of the Impagliazzo-
Wigderson theorem that P = BPP under a exponential circuit lower bound for E, based on a highly
efficient decoding algorithm for Reed-Muller codes.) Depending on time, we may mention/discuss
some of these applications of coding theory towards the end of the course, though given that there
is plenty to discuss even restricting ourselves to primarily coding-theoretic motivations, this could
be unlikely.

We now look at some simple codes and give the basic definitions concerning codes. But before
that, we will digress with some recreational mathematics and pose a famous “Hat” puzzle, which
happens to have close connections to the codes we will soon introduce (that’s your hint, if you
haven’t seen the puzzle before!)

Guessing hat colors

The following puzzle made the New York Times in 2001.

15 players enter a room and a red or blue hat is placed on each person’s head. The color of each
hat is determined by a coin toss, with the outcome of one coin toss having no effect on the others.
Each person can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy session before the game
begins. Once they have had a chance to look at the other hats, the players must simultaneously
guess the color of their own hats or pass. The group wins the game if at least one player guesses
correctly and no players guess incorrectly.

One obvious strategy for the players, for instance, would be for one player to always guess ”"red”
while the other players pass. This would give the group a 50 percent chance of winning the prize.
Can the group achieve a higher probability of winning (probability being taken over the initial
random assignment of hat colors)? If so, how high a probability can they achieve?

(The same game can be played with any number of players. The general problem is to find a
strategy for the group that maximizes its chances of winning the prize.)

1 A simple code

Suppose we need to store 64 bit words in such a way that they can be correctly recovered even
if a single bit per word gets flipped. One way is to store each information bit by duplicating it
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three times. We can thus store 21 bits of information in the word. This would permit only about
a fraction % of information to be stored per bit of the word. However, it would allow us to correct
any single bit flip since the majority value of the three copies of the bit gives the correct value of
the bit, even if one of the copies is flipped.

Hamming in 1950 introduced a code, now called the “Hamming code,” which could also correct
1-bit errors using fewer redundant (or extra) bits. The code is defined in such a way that a chunk
of 4 information bits x1, x2, x3, x4 gets mapped (or “encoded”) to a “codeword” of 7 bits as

T1, T2, T3, T4, T2 B X3 D Ty, T1 D T3 D T4T1 D T2 D Xy,

This transformation can equivalently be represented as a mapping from = to Gz (the operations
are done modulo 2) where x is the column vector [x1 22 =3 1‘4]T and G is the matrix

1000
0100
0010
0001
01 11
101 1
11 0 1

It is easy to verify that two distinct 4-bit vectors x and y get mapped to codewords Gz and Gy
which differ in at least 3 bits. (Define w = x — y so that w # 0. Now check that for each non-zero
w, Gw has at least 3 bits which are 1.) It follows that the above code can correct all single bit flips,
since for any 7-bit vector there is always at most one codeword which can be obtained by a single
bit flip. (As we will see soon, these codes also have the remarkable property that for y € {0,1}7
which is not a codeword, there is always a codeword which can be obtained by a single bit flip.)

2 Some basic definitions
Let us get a few simple definitions out of the way.

Definition 1 (Hamming distance) The Hamming distance between two strings x and y of the
same length over a finite alphabet 2, denoted A(x,y), is defined as the number of positions at which
the two strings differ, i.e., A(x,y) = |{i|lz; # yi}|. The fractional Hamming distance or relative
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distance between x,y € X" is given by §(x,y) = -

It is trivial to check that the Hamming distance defines a metric on ™.

Definition 2 (Hamming weight) The Hamming weight of a string x over alphabet ¥ is defined
as the number of non-zero symbols in the string. More formally, the Hamming weight of a string
wt(x) = [{i|z; # 0}|. Note that wt(z —y) = A(z,y).

Given a string x € X", the Hamming ball or radius r around z is the set {y € ¥" | A(z,y) < r}.



Definition 3 (Code) An error correcting code or block code C' of length n over a finite alphabet
Y is a subset of X", The elements of C are called the codewords in C, and the collection of all
codewords is sometimes called a codebook.

The alphabet of C is X, and if |X| = q, we say that C is a q-ary code. When q = 2, we say that C
is a binary code. The length n of the codewords of C is called the block length of C.

Associated with a code is also an encoding map E which maps the message set M, identified in
some canonical way with {1,2,...,|C|} say, to codewords belonging to X™. The code is then the
image of the encoding map.

We now define two crucial parameters concerning a code: its rate which measures the amount of
redundancy introduced by the code, and its mintmum distance which measures the error-resilience
of a code quantified in terms of how many errors need to be introduced to confuse one codeword
for another.

Definition 4 (Rate) The rate of a code C C X", denoted R(C), is defined by

log |C|

R(©) = nlog|¥|

Thus, R(C) is the amount of non-redundant information per bit in codewords of C.

The dimension of C 1is defined to ig?lg\‘ ; this terminology will make sense once we define linear

codes shortly. Note that a g-ary code of dimension ¢ has ¢° codewords.

Definition 5 (Distance) The minimum distance, or simply distance, of a code C, denoted A(C),
is defined to be the minimum Hamming distance between two distinct codewords of C. That is,

A(C) = ClI!IC12iI€10 A(Cl,CQ) .
c1#cg

In particular, for every pair of distinct codewords in C the Hamming distance between them is at
least A(C).

The relative distance of C, denoted §(C), is the normalized quantity %C), where n is the block
length of C'. Thus, any two codewords of C differ in at least a fraction 6(C) of positions.

Example 1 The parity check code, which maps k bits to k + 1 bits by appending the parity of the
message bits, is an example of distance 2 code. Its rate is k/(k + 1).

Example 2 The Hamming code discussed earlier is an example of distance 8 code, and has rate
4/7.

The following simple fact highlights the importance of distance of a code for correcting (worst-case)
errors. The proof follows readily from the definition of minimum distance.

Lemma 6 For a code, the following statements are equivalent:



1. C has minimum distance 2t + 1.
2. C' can be used to correct all t symbol errors.
3. C can be used to detect all 2t symbol errors.

4. C can be used to correct all 2t symbol erasures. (In the erasure model, some symbols are
erased and the rest are intact, and we know the locations of the erasures. The goal is to
fill in the values of the erased positions, using the values of the unerased positions and the
redundancy of the code.)

3 Linear codes

A general code might have no structure and not admit any representation other than listing the
entire codebook. We now focus on an important subclass of codes with additional structure called
linear codes. Many of the important and widely used codes are linear.

Linear codes are defined over alphabets ¥ which are finite fields. Throughout, we will denote by I,
the finite field with ¢ elements, where ¢ is a prime power. (Later on in the course, it is valuable to
have a good grasp of the basic properties of finite fields and field extensions. For now, we can safely
think of ¢ as a prime, in which case [, is just {0,1,...,¢ — 1} with addition and multiplication
defined modulo q.)

Definition 7 (Linear code) If ¥ is a field and C C X" is a subspace of X" then C' is said to be
a linear code.

As C is a subspace, there exists a basis c¢1, ¢, . . ., ¢ where k is the dimension of the subspace. Any
codeword can be expressed as the linear combination of these basis vectors. We can write these
vectors in matrix form as the columns of a n X k matrix. Such a matrix is called a generator matrix.

Definition 8 (Generator matrix and encoding) Let C' C Iy be a linear code of dimension k.
A matrix G € ]FZILX]“ is said to be a generator matrixz for C if its k columns span C'.

The generator matriz G provides a way to encode a message x € ]Ff; (thought of as a column vector)
as the codeword Gz € C' C Fy. Thus a linear code has an encoding map E : IF’; — Fy which is a
linear transformation x — Gu.

Comment: Many coding texts define the “transpose” version, where the rows of the k xn generator
matrix span the code. We prefer the above definition since it is customary to treat vectors as column
vectors (even in these coding texts) and it is therefore nice to multiply by vectors on the right and
avoid taking transposes of vectors.

Note that a linear code admits many different generator matrices, corresponding to the different
choices of basis for the code as a vector space.

Notation: A g-ary linear code of block length n and dimension k will be referred to as an [n, k|,
code. Further, it the code has minimum distance d, it will be referred to as an [n, k, d|; code. When
the alphabet size ¢ is clear from the context, or not very relevant to the discussion, we omit the
subscript.



Example 3 Some simple examples of binary linear codes:

e The binary parity check code: This is an [n,n —1,2]y code consisting of all vectors in Fy of
even Hamming weight.

e The binary repetition code: This is an [n,1,n|y code consisting of the two vectors 0" and 1™.

e The Hamming code discussed above is a [7,4,3]s linear code.

Exercise 1 Show that for a linear code C, its minimum distance equals the minimum Hamming
weight of a nonzero codewords of C, i.e.,
A(C) = minwt(c) .

ceC
c#0

Exercise 2 (Systematic or standard form) Let C be an [n, k], linear code. Prove that after
permuting coordinates if necessary, C has a generator matriz of the form [I, | G')T where I}, is the
k x k identity matriz and G' is some k X (n — k) matriz.

A generator matrix in the form [I; | G']* is said to be in systematic form. When such a generator
matrix is used for encoding, the encoding is called systematic: the first k symbols of the codeword
are just the message symbols, and the remaining n — k symbols comprise redundant check symbols.
Thus, after permuting coordinates if needed, every linear code admits a systematic encoding. The
above-mentioned encoding map for the [7,4, 3] Hamming code was systematic.

3.1 Parity check matrices

The following is a good way to flex your basic linear algebra muscles (Exercise 2 is a useful way to
proceed):

Exercise 3 Prove that C' is an [n,k]q code if and only if there is a matriz H € an_k)xn of full
row rank such that

C={celFy|Hc=0}.

In other words, C is the nullspace of H. Such a matrix H is called a parity check matriz for C.
A linear code can thus be compactly represented by either its generator matrix or its parity check
matrix. The minimum distance of a code has the following characterization in terms of the parity
check matrix.

Lemma 9 If H is the parity check matriz of a linear code C, then A(C) equals the minimum
number of columns of H that are linearly dependent.



3.2 Hamming code revisited

The Hamming code is best understood by the structure of its parity check matrix. This will also
allow us to generalize Hamming codes to larger lengths.

We defined the Cyam = [7, 4, 3] Hamming code using generator matrix

1 0 00

0100

0010

G=1]10 0 0 1

01 11

1 01 1

1101

If we define the matrix
0001111
H={(0 11001 1],

1 010101

then one can check that HG = 0 and that H is a parity check matrix for Cyam. Note that H has
a rather nice structure: its columns are the integers 1 to 7 written in binary.

Correcting single errors with the Hamming code: Suppose that y is a corrupted version of
some (unknown) codeword ¢ € Ciam, with a single bit flipped. We know by the distance property
of Cam that c is uniquely determined by y. In particular, a naive method to determine ¢ would
be to flip each bit of y and check if the resulting vector is in the null space of H.

A more slick (and faster) way to correct y is as follows. We know that y = ¢ + e; where e; is the
column vector of all zeros except a single 1 in the i'th position. Note that Hy = H(c + ¢;) =
Hc+ He; = He; = the ith column of H. The ¢th column of H is the binary representation of ¢,
and thus this method recovers the location ¢ of the error.

Definition 10 (Syndrome) The vector Hy is said to be the syndrome of y.

Generalized Hamming codes: Define H, to be the r x (2" — 1) matrix where column i of H,
is the binary representation of ¢. This matrix must contain e; through e,, which are the binary
representations of all powers of two from 1 to 2", and thus has full row rank.

Now we can define the r’th generalized Hamming code

C(T)

Ham

={ceFs ' | H.c=0}.

to be the binary code with parity check matrix H,.

Lemma 11 C)_ s an [27 —1,2" — 1 — r,3] code.

PROOF: Since H, has rank r, it follows that the dimension of C’I(Qm equals r. By Lemma 9, we

need to check that no two columns of H, are linearly dependent, and there are 3 linearly dependent



columns in H,. The former follows since the columns of H, are all distinct. For the latter, note
that the first 3 columns of H,, being the binary representations of 1,2,3, add up to 0. [J

Despite its simplicity, the Hamming code is amazing in that it is optimal in the following sense.

Lemma 12 If C is a binary code of block length n and minimum distance 3, then

2n
Cl < . 1
1< = (1)
It follows that the Hamming code CI(Qm has the mazimum possible number of codewords (and thus
has largest rate) amongst all binary codes of block length 2" — 1 and minimum distance at least 3.

PRroOOF: This is a special case of the “Hamming volume” (upper) bound on the size of codes. For
each ¢ € C, define its neighborhood N(c) = {y € {0,1}" | A(y,c) < 1} of all strings that differ in
at most one bit from c. Since C' has distance 3, by the triangle inequality we have N(¢)NN () =0
for ¢ # ¢’ € C. Therefore

2> [|J N = SIIN@| = [C]- (n+1)

ceC ceC

giving the desired upper bound on |C|. Note that ngm has dimension 2" — 1 — r, and therefore

size 22" ~1/2" which meets the upper bound (1) for block length n = 2" — 1. O

The obvious generalization of the above argument to arbitrary distances d gives the following bound.
This is called the Hamming bound (also sometimes called the Volume bound). We will meet this
bound again and also discuss some more sophisticated combinatorial bounds a few lectures down.

Lemma 13 (Hamming bound) Let C be a binary code of block length n and distance d. Then
27’L

= mT
g ()

: (2)

Note that for equality to hold in (2) something remarkable must happen. Hamming balls of radius
| %51 ] around the codewords must cover each point in {0,1}" ezactly once. Thus we would have a
perfect packing of non-overlapping Hamming spheres that cover the full space. (There is no way to
pack balls in Euclidean space in such a way, with no “holes” in between!) Codes which meet the
bound (2) are therefore called perfect codes.

By Lemma 12, Hamming codes are perfect. It turns out that perfect codes are a rare phenomenon.
The following theorem (which is beyond the scope of this course) enumerates all (binary) perfect
codes:

Theorem 14 (Tietavainen and van Lint) The following are all the binary perfect codes:

e The Hamming codes ngm



o The [23,12,7]y Golay code

o The trivial codes consisting of just one codeword, or the whole space, or the repetition code

{0, 1™} for odd n

The Golay code Golas is a remarkable object with many equivalent definitions. The following defines
it as a so-called “cyclic” code: Golas consists of (cg,cy,...,co2) € {0,1}?® when the polynomial
c(X)=co+c1 X + -+ c20X* is divisible by g(X) =1+ X + X° + X% + X7+ X + X! in the
ring Fo[X]/(X% —1).

3.3 Dual of a code

Since a linear code is a subspace of Fy we can define its dual or orthogonal space.

Definition 15 (Dual code) If C C Fy is a linear code, then its dual, denoted C*, is a linear

code over F, defined as
Ct={z€Fl|(z-¢c)=0V ceC}.

where (z,¢) =Y 1" | zic; is the dot product over Fy of vectors z and c.

Using Exercise 3, verify the following.

Exercise 4 1. If C is an [n, k|, linear code, then C+ is an [n,n — k|, linear code.
2. (CHt=0.

3. If H is a parity check matriz for C, then HT is a generator matriz for C+. Equivalently, if
G is a generator matriz for C, then GT is a parity check matriz for C+.

Unlike vector spaces over R, where the dual (or orthogonal complement) W of a subspace W C R™
satisfies W N WL = {0} (and W 4+ W+ = R"), for subspaces of Fy, C and C* can intersect non-
trivially. One can have C*+ C C (such a code C is called self-orthogonal) or even C = C* (called
self-dual codes).

Exercise 5 For every even n, give an example of a self-dual binary linear code of block length n.

A rather mysterious phenomenon in coding theory is that for many constructions of good codes,
their dual also has some nice properties. We will now discuss the dual of the Hamming code, a
code called the Hadamard code which has been highly influential and played a fundamental role in
the computer-scientists’ study of coding theory.

3.4 Hadamard code

The dual of the Hamming code ngm has as generator matrix G, = (H,)T, which is a (2" — 1) x r
matrix whose rows are all non-zero bit vectors of length r. This is a [2" — 1,7]2 code and is called
the simplex code. The Hadamard code is obtained by adding the all-zeroes row to G,..



Definition 16 (Hadamard code) The binary Hadamard code Had, is a [2", 7|2 linear code whose
2" x r generator matriz has all r-bit vectors as its rows. Thus the encoding map for the Hadamard
code encodes x € Fy by a string in F%T consisting of the dot product (x,a) for every a € F%.

The Hadamard code can also be defined over IFy, but encoding a message in F’; with its dot product
with every vector in IF’;.

We note that the Hadamard code is the most redundant linear code in which no two codeword
symbols are equal in every codeword. Hadamard codes have excellent distance property:

Lemma 17 The Hadamard code Had, (as well as the Simplex code) has minimum distance 271,
The q-ary Hadamard code of dimension r has distance (1 —1/q)q".

PROOF: We prove that for z # 0, (z,a) # 0 for exactly 2"~! (i.e., half of the) elements a € F%.
Assume for definiteness that 1 = 1. Then for every a, (x,a) + (z,a + e1) = x1 = 1, and therefore
exactly one of (z,a) and (x,a + e1) equals 1. The proof for the g-ary case is similar. O

We will later see that binary codes cannot have relative distance more than 1/2 (unless they only
have a fixed constant number of codewords). Thus the relative distance of Hadamard codes is
optimal, but their rate is (necessarily) rather poor.

Comment: The first order Reed-Muller code is a code that is closely related to the Hadamard
code. Linear algebraically, it is simply the subspace spanned by the Hadamard code and the
all 1’s vector (i.e., the union of the Hadamard code H and its coset H 4+ 1). It maps a message
My, M2y« .y My, My 10 (Myag+- - '+mrar+mr+1)aemg, or equivalently the evaluations (M(a))a@pg
of the r-variate polynomial M (X1, Xo,..., X;) = >i_, m;X; +myy1. Itis a [27, 7+ 1,277 1]5 code.
We will later see that no binary code of block length n and relative distance 1/2 can have more
than 2n codewords, so the first order Reed-Muller code is optimal in this sense.

Code families and Asymptotically good codes

The Hamming and Hadamard codes exhibit two extremes in the trade-off between rate and distance.
Hamming codes have rate approaching 1 (and in fact optimal rate) but their distance is only 3.
Hadamard codes have (optimal) relative distance 1/2, but their rate approaches 0. A natural
question this raises is whether there are codes which have both good rate and good relative distance
(say, with neither of them approaching 0 for large block lengths).

To formulate this question formally, and also because our focus in this course is on the asymptotic
behavior of codes for large block lengths, we consider code families. Specifically, we define a family
of codes to be an infinite collection C = {C;|i € N} where Cj is a ¢;-ary code of block length n; with
n; > n;—1 and ¢; > ¢;_1. Most of the constructions of codes we will encounter in this book will
naturally belong to an infinite family of codes that share the same general structure and properties
(and it is usually these asymptotic properties that will often guide our constructions).

We have defined the alphabet sizes g; of the codes in the family to also grow with i (and n;). Code
families where ¢; = ¢ for all ¢ for some fixed ¢ will be of special interest (and turn out to be more

10



challenging to understand and construct). We will call such families as code families over a fized
alphabet or more specifically as g-ary code families.

The notions of rate and relative distance naturally extend to code families. The rate of an infinite
family of codes C is defined as

R(C) = liminf {k} .

7 T,

The (relative) distance of a family of codes C equals

5(©) = timint { S

7 n;

A g-ary family of codes is said to be asymptotically good if both its rate and relative distance are
bounded away from zero, i.e., if there exist constants Ry > 0 and §y > 0 such that R(C) > Ry and
4(C) > do.

In this terminology, the question raised above concerning (binary) codes with both good rate and
good distance, can be phrased as: “Are there asymptotically good binary code families?”

For a code family, achieving a large rate and large relative distance are naturally conflicting codes,
and there are fundamental trade-offs between these. We will study some of these in the course. A
good deal is known about the existence (or even explicit construction) of good codes and as well as
limitations of codes, but the best possible asymptotic trade-off between rate and relative distance
for binary codes remains a fundamental open question. In fact, the asymptotic bounds have seen
no improvement since 1977!
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1 Asymptotically good codes and Gilbert-Varshamov bound

We begin by answering the question raised at the end of the previous notes on the existence of
asymptotically good codes.

Suppose we are interested in g-ary codes (not necessarily linear) of block length n and minimum
distance d that have many codewords. What is the largest size such a code can have? This is a
fundamental quantity for which we define a notation below.

Definition 1 Let Ay(n,d) be the largest size of a g-ary code of block length n and minimum distance
d. The binary case is of special importance, and in this case Az(n,d) is denoted simply as A(n,d).

There is a natural greedy approach to construct a code of distance at least d: start with any
codeword, and keep on adding codewords which have distance at least d from all previously chosen
codewords, until we can proceed no longer. Suppose this procedure halts after picking a code C.
Then Hamming balls in {0, 1,...,¢—1}" of radius d — 1 centered at the codewords of C' must cover
the whole space. (Otherwise, we can pick one more codeword which has distance at least d from
every element of C, and the process would not have terminated.)

Definition 2 For integers q,n, ¢, denote by Voly(n,¢) the volume of (i.e., the number of strings
in) a Hamming ball of radius ¢ in {0,1,...,q—1}. Note that this number does not depend on where
the ball is centered and equals

Volg(n, £) = i (Z‘) (q—1)7 .

j=0
Therefore, the greedy procedure terminates with a code C satisfying
|C| - Voly(n,d —1) > ¢" .

We therefore have the following lower bound.

Lemma 3 (Gilbert-Varshamov bound) The mazimal size of a g-ary code of block length n and

distance d satisfies
n n

q _ q
A d) = G =1y~ s (a—-1) L
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There also exist linear codes of size given by the Gilbert-Varshamov bound:

Exercise 1 By a suitable adaptation of the greedy procedure, prove that there also exists a linear
code over Fy of dimension at least n — |log, Voly(n,d —1)].

The Gilbert-Varshamov bound was actually proved in two independent works (Gilbert, 1952) and
(Varshamov, 1957). The latter actually proved the existence of linear codes and in fact got a slightly
sharper bound stated below. (You can verify that the Hamming code in fact attains this bound for
d=3.)

Exercise 2 For every prime power q, and integers n, k, d, prove that there exists an [n, k,d], linear

code with
d—2

kzn—Uogq<Z<n;1>(q_1)J)J_1.

=0

In fact, one can prove that a random linear code almost matches the Gilbert-Varshamov bound
with high probability, so such linear codes exist in abundance. But before stating this, we will
switch to the asymptotic viewpoint, expressing the lower bound in terms of the rate vs. relative
distance trade-off.

1.1 Entropy function and volume of Hamming balls

We now give an asymptotic estimate of the volume Vol,(n,d) when d = pn for p € [0,1 — 1/¢]
held fixed and n growing. This volume turns out to be very well approximated by the exponential
g where hq() is the “entropy function” defined below.

Definition 4 (Entropy function) For a positive integer ¢ > 2, define the q-ary entropy function
hq :[0,1] — R as follows:

hy(z) = zlog,(q — 1) — xlog, x — (1 — z)log,(1 — ) .

Of special interest is the binary entropy function

1 1
h(z) = zlog — + (1 — z)log 1
T

where we use the notational convention that log = logs.

If X is the {0,1}-valued random variable such that P[X = 1] = p and P[X = 0] = 1 — p, then
the Shannon entropy of X, H(X), equals h(p). In other words, h(p) is the uncertainty in the
outcome of a p-biased coin toss (which lands heads with probability p and tails with probability
1 —p). The function hg is continuous and increasing in the interval [0,1 — 1/¢] with h4(0) = 0 and
hg(1—1/q) = 1. The binary entropy function is symmetric around the = 1/2 line: h(1—z) = h(x).

We can define the inverse of the entropy function as follows. For y € [0, 1], the inverse h;l(y) is
equal to the unique x € [0,1 — 1/¢] satisfying h,(z) = y.



Lemma 5 For an integer ¢ > 2 and p € [0,1 —1/¢],

Vol,(n,pn) < g

Proor: We have

Voly(n,pn) ?io (?) (¢—1)
qhq(p)n o (q — 1)Pnp—lm(1 — p)_(l_p)”
(7 j (1-p)
= — 1) _ —pn, pn _ —p)n
;)(j)w g = )7 (1~p)

- S (a-wow (i)

Since p < 1-—1/gq, q’%l < 1 — p, and therefore the above quantity is at most

ol ) LI S o

j=0 7=0

The latter sum is at most .

]z:; <?> (1—p)"p/ =1

by the binomial theorem. [J

The above upper bound is tight up to lower order terms. The quantity Vol,(n,pn) is at least as
large as (pib) (g — 1)P™. By Stirling’s formula m! = v2rm(m/e)™(1 + o(1)), it follows that

pn (1-p)n
()= () () ooteotan = o

)(q — 1) > qhq(p)n—f)(n) ]

and therefore
Vol,(n,pn) > <n

pn

For a self-contained derivation of the entropy estimate for the binomial coefficients, we can work
with a crude estimate of m! given by the integral estimate

m—1 m m
Zlnig/ lnxSZIni
i=1 1 i=2

which gives

This immediately gives the lower bound

<”> Sohoin LS ohon—otm)

pn en \/m

We summarize the above discussion in the following important estimate.
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Lemma 6 For positive integers n,q > 2 and real p, 0 <p <1—1/q,
gtha®)—e)n < Vol,(n,pn) < AL

1.2 Asymptotic form of GV bound

Combining the greedy construction of Lemma 3 with the estimate of the Hamming volume from
Lemma 6 gives the following asymptotic version of the Gilbert-Varshamov bound.

Theorem 7 (Asymptotic Gilbert-Varshamov bound) For every q and § € [0,1—1/q|, there
exists an infinite family C of q-ary codes with rate

R(C) > 1—hg(d) —o(1) .
(In fact, such codes exist for every block length.)

Since hg(d) < 1 for § < 1 — 1/q, the above implies that for every § < 1 — 1/¢ there exists an
asymptotically good family of g-ary codes of rate at least Ry(d) > 0 and relative distance at least
0. By Exercises 1 and 2 this also holds for linear codes over F,. We now give an alternate proof
based on the probabilistic method.

1.3 Random linear codes attain the GV bound

Theorem 8 For every prime power q, 6 € [0,1 —1/q), 0 < € < 1— hy(p), and sufficiently large
positive integer n, the following holds for k = [(1 — hy(0) —e)n]. If G € }FZX’“ is chosen uniformly
at random, then the linear code with G as generator matriz has rate at least (1 — hy(5) — €) and
relative distance at least & with probability at least 1 — e~ M)

PROOF: The claim about rate follows whenever G has full column rank. The probability that the
i’th column is in the span of the first (i — 1) columns is at most ¢*~*/¢". By a union bound, G has
rank k with probability at least 1 — —£¢ > 1 — e~ %™,

qnfk -

For each nonzero = € F];, the vector Gz is a uniformly random element of IF’;. (Indeed, say that
xp # 0, then conditioned on the choice of the first &k — 1 columns G’ of G, Gx = G'x + ggxy is
uniformly distributed since the k’th column g is chosen uniformly at random from FZ) Therefore
the probability that wt(Gxz) < dn is at most

Voly(n, dn) < gha®-1n
qTL
Now a union bound over all nonzero x implies that the probability that the code generated by the
columns of G has distance at most dn is bounded from above by

We conclude that with probability at least 1 —e (™ the code generated by G has relative distance
at least ¢ and rate at least 1 — hy(6) —e. O

Exercise 3 Establish a similar result by picking a random (n — k) X n parity check matriz for the
code.



1.4 Some comments on attaining/beating the GV bound

We have seen that there exist binary linear codes that meet the Gilbert-Varshamov bound, and thus
have rate approaching 1 — h(d) for a target relative distance of 4, 0 < § < 1/2. The proof of this was
non-constructive, based on an exponential time algorithm to construct such a code (by a greedy
algorithm), or by picking a generator matrix (or a parity check matrix) at random. The latter
leads to a polynomial time randomized Monte Carlo construction. If there were a way to ascertain
if a randomly chosen linear code has the claimed relative distance, then this would be a practical
method to construct codes of good distance; we will have a Las Vegas construction that picks a
random linear code and then checks that it has good minimum distance. Unfortunately, given a
linear code, computing (or even approximating) the value of its minimum distance is NP-hard.

A natural challenge therefore is to give an explicit (i.e., deterministic polynomial time) construction
of a code that meets the Gilbert-Varshamov bound (i.e., has rate R and relative distance close
to hy'(1 — R)). Giving such a construction of binary codes (even non-linear ones) remains an
outstanding open question.

For prime powers ¢ = p?* for ¢ > 49, explicit constructions of g-ary linear codes that not only attain
but surpass the GV bound are known! These are based on algebraic geometry and a beautiful
construction of algebraic curves with many rational points and small genus. This is also one of the
rare examples in combinatorics where we know an explicit construction that beats the parameters
obtained by the probabilistic method. (Another notable example is the Lubotzky-Phillips-Sarnak
construction of Ramanujan graphs whose girth surpasses the probabilistic bound.)

What about codes over smaller alphabets, and in particular binary codes? The Hamming upper
bound on size of codes (Lemma 13 in Notes 1) leads to the asymptotic upper bound R < 1—h(§/2)
on the rate. This is off by a factor of 2 in the coefficient of § compared to the achievable 1 — h(J)
rate. We will later see improvements to the Hamming bound, but the best bound will still be
far from the Gilbert-Varshamov bound. Determining the largest rate possible for binary codes of
relative distance 6 € (0,1/2) is another fundamental open problem in the subject. The popular
conjecture seems to be that the Gilbert-Varshamov bound on rate is asymptotically tight (i.e., a
binary code of relative distance § must have rate 1 — h(d) + o(1)), but arguably there is no strong
evidence that this must be the case.

While we do not know explicit constructions of binary codes approaching the GV bound, it is still
interesting to construct codes which achieve good trade-offs. This leads to the following questions,
which are the central questions in coding theory for any noise model (once some existential bounds
are established on the trade-offs, the questions below pertaining to the worst-case or adversarial
noise model where we impose no restriction on the channel other than a limit on the total number
of errors caused):

1. Can one explicitly construct an asymptotically good family of binary codes with a “good”
rate vs. relative distance trade-off?

2. Can one construct such codes together with an efficient algorithm to correct a fraction of
errors approaching half-the-relative distance (or even beyond)?

We will answer both the questions in the affirmative in this course.
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We now turn to the basic elements of Shannon’s theory of communication over an intervening noisy
channel.

1 Model of information communication and noisy channel

To quote Shannon from his paper A Mathematical theory of communication: “The fundamental
problem of communication is that of reproducing at one point either exactly or approximately a
message selected at another point.” The basic setup of the communication problem consists of
a source that generates digital information which is to reliably communicated to a destination
through a channel, preferably in the most efficient manner possible. This “destination” could be
spatially separated (eg., a distant satellite is sending images of Jupiter back to the space station
on Earth), or could be temporally separated (eg., we want to retrieve date stored on our hard disk
at a later point of time).

The following is a schematic of the communication model:

Source Source Channel
Encoder Encoder

Channel
Destination Source Channel
Decoder Decoder

The first step in the communication model is to exploit the redundancy in the output of the source
and compress the information to economize the amount of “raw, non-redundant” data that must
be transmitted across the channel. This data compression step in called source coding. If at each
time step the source outputs an i.i.d copy of a random variable Z supported on a finite set Z, then



Shannon’s source coding theorem states that one can compress its output to H(Z) bits per time
step (on average, over n i.i.d samples from the source Z, as n — o). In other words n samples from
the source can be coded as one of M ~ 2H(%)" possible outputs. Here H(Z) is the fundamental
Shannon entropy defined as

H(Z)=> P[Z=z]log

RZ=4 v

where log is to the base 2. Thus the entropy of a fair coin toss is 1, and that of a p-biased coin toss
is h(p) = —plogp — (1 — p)log(1 — p). The source decoder at the other end of the communication
channel then decompresses the received information into (hopefully) the original output of the
source.

The output of the source coder, say m, must then be communicated over a noisy channel. The
channel’s noisy behavior causes errors in the received symbols at the destination. To recover from
the errors incurred due to the channel, one should encode the information output by the source
coder by adding systematic redundancy to it. This is done through channel coding which maps
m to a codeword c¢ of some suitable error-correcting code (the study of channel coding will be our
focus in this course).

m__l Channel | e, Channel | Channel . o
Encoder Decoder (hopefully)

1.1 Modeling the noisy channel

The basic channel model consists of an input alphabet X and output alphabet ). We will focus on
memoryless channels — for each z € X there is a distribution D, on ) such that when input z € X
is fed at one end of the channel, the channel distorts it to y € ) according to an independent sample
drawn according to D,. (In particular, the channel has no “state,” and its behavior is independent
of the history of previously transmitted symbols.) The collection of the distributions D, comprise
the “channel law” for the behavior of the channel. In a discrete memoryless channel (DMC), given
by a triple A = (X, Y, 1I), the input and output alphabets X, ) are finite, and therefore the channel
law can be specified by a |X'| x |Y| conditional probability matrix IT which is a stochastic matrix
where each row sums to 1:

V|

|| 1(y|x)

The (z,y)’th entry II(y|z) is the conditional probability P(Y = y|X = x) of the receiving y when
2 was transmitted on the channel.



1.2 Noisy coding and joint source-channel coding theorems

Suppose at the output of the source coder, we have a message m from one of M ~ 2/ (Z)n possible

messages (that encode n samples from the source Z), which is to be communicated across a channel
(X,Y,1I). Then the channel encoder it into a sequence x = (z1,x2,...,2,) € C C X" for some
error-correcting code C' and the information is sent via n uses of the channel. At the other end, a
sequence y = (y1,Y2,--.,Yn) € V" is received with conditional probability

p(ylx) = [ M(yil) (2)
i1

(due to the memoryless nature of the channel). The decoder must then map this sequence y into
a legal codeword ¢ € C (or equivalently into a message m € M).

A piece of notation: For a DMC (X, Y, II), a positive integer n, and x € X", let us denote by II(x)
the above distribution (2) on Y™ induced by the II on input sequence x.

Theorem 1 (Shannon’s noisy coding theorem) For every discrete memoryless channel A =
(X, Y,1I), there exists a real number Cy = Co(A) called its channel capacity, such that the following
holds for every R < Cy. For all large enough n, there exists an integer M > 28" and

1. an encoding map Enc : {1,2,..., M} — X™ (of some error-correcting code over alphabet X

of rate R/log|X|), and

2. a decoding map Dec : Y" — {1,2,..., M} U {fail}
such that for every m € {1,2,..., M}
P [Dec(II(Enc(m))) = m] > 1 — 27 r.co(?)

where the probability is over the behavior of the channel IL (on input Enc(m)).
Further, the capacity Cy is given by the expression
max H(Y)—- H(Y|X)
p€EDist x

where the maximum is taken over all probability distributions p on X. In the above, H(Y) is the
entropy of the Y-valued random variable Y with distribution function

=Y P(Y =y|X =a)p(x) = Y _ T(yl)p(x

zeX TEX
and H(Y|X) is the conditional entropy

HY|X)=> p@)HY|X =z)= > pla Zﬂy|xlog \)

zeX reX yey




Remark 2 The quantity H(Y) — H(Y|X) is called the mutual information between X and Y,
and denoted I(X,Y). It represents the decrease in uncertainty of a random variable Y given the
knowledge of random variable X, which intuitively captures how much information X reveals about
Y. If Y is independent of X, then H(Y|X) = H(Y), and [(X,Y) = 0. On the other hand if Y =
f(X) for some function f (i.e., Y is determined by X ), then H(Y|X) =0 and I(X,Y) = H(Y).

Combining Shannon’s source coding and noisy coding theorems, and the two-stage communication
process comprising a separate source coding stage followed by channel coding stage, one can con-
clude that reliable communication of the output of a source Z on a noisy channel A is possible as
long as H(Z) < Cy(A), i.e., the source outputs data at a rate that is less than the capacity of the
channel. This result has a converse (called the converse to the joint source-channel coding theorem)
that says that if H(Z) > Co(A) then reliable communication is not possible.

Together, these imply a “separation theorem,” namely that it is information-theoretically optimal
to do source and channel coding separately, and thus one can gain modularity in communication
system design without incurring any loss in rate of data transfer. While this converse to the joint
source-channel coding theorem is rather intuitive in the setting of point-to-point communication
between a sender and a receiver, it is worth remarking that the separation theorem breaks down in
some scenarios with multiple users and correlated sources.

We will not prove Shannon’s theorem in the above generality here, but content ourselves with
establishing a special case (for the binary symmetric channel). The proof for the general case
follows the same general structure once some basic information theory tools are set up, and we
will remark briefly about this at the end. But first we will see some important examples of noisy
channels.

2 Examples of channels

A discrete channel with finite input and output alphabets X and ) respectively, specified by
the conditional probability matrix II(y|z), can also be represented pictorially by an input-output
diagram, which is a bipartite graph with nodes on left identified with X and nodes on right identified
with ) and a directed edge between z € X and y € Y with weight II(y|x).

2.1 Binary symmetric channel

The Binary Symmetric Channel (BSC) has input alphabet X = {0,1} and output alphabet Y =
{0,1}. The BSC is parameterized by a real number p, 0 < p < 1/2 called the crossover probability,
and often denoted BSC,,. The channel flips its input with probability p, in other words,

ify==x
p ify=1—=x

o) = { | ?

Pictorially, BSC, can be represented as



If a uniform input X € {0,1} is fed as input to BSC,, then the output Y is also uniformly
distributed. Given X = z, Y is distributed as a p-biased coin, and H(Y|X = z) = h(p). Thus
H(Y|X) = h(p), and therefore I(X,Y) = H(Y) = H(Y|X) =1 — h(p). It can be checked that the
uniformly distributed X maximizes I(X,Y’), and so Shannon’s theorem implies that 1 — h(p) is the
capacity of BSC,. We will shortly prove this special case of Shannon’s theorem.

2.2 Binary erasure channel

The Binary Erasure Channel (BEC) is parameterized by a real ¢, 0 < € < 1, which is called the
erasure probability, and is denoted BEC,. Its input alphabet is X = {0,1} and output alphabet
is Y = {0,1,7}. Upon input = € X, the channel outputs = with probability 1 — €, and outputs
? (corresponding to erasing the symbol) with probability e. (It never flips the value of a bit.)
Pictorially:

When a bit string of length n for large n is transmitted across BEC,, with high probability only
~ (1 — €)n bits are received unerased at the other end. This suggests that the maximum rate at
which reliable communication is possible is at most 1 —e. It turns out that a rate approaching 1 —e¢
can be achieved, and the capacity of BEC, equals 1 — e.

2.3 Noisy Typewriter Channel

The noisy typewriter channel is given by the following diagram:



If we restrict the code to send only one of the symbols {A,C, E, ..., Y} in each channel use, we can
communicate one of 13 possible messages with zero error. Therefore the capacity of the channel
is at least logy 13. One can prove that this rate is the maximum possible and the capacity of the
channel is exactly log13. (Indeed, this follows from Shannon’s capacity formula: Since |Y| = 26,
H(Y) is at most log26. Also H(Y|X) = 1 for every distribution of the channel input X. Hence
H(Y)— H(Y|X) <log13.)

Note that we can achieve a rate equal to capacity with zero probability of miscommunication. For
the BSC,, with p > 0 on the other hand, zero error communication is not possible at any positive
rate, since for every pair of strings z, 2’ € {0,1}", there is a positive probability that x will get
distorted to z’ by the noise caused by the BSC,,.

The study of zero error capacity of channels was introduced in another classic work of Shannon.
Estimating the zero error capacity of even simple channels (such as the 5-cycle) has led to some
beautiful results in combinatorics, including Lovasz’s celebrated work on the Theta function.

2.4 Continuous Output Channel

We now see an example of a continuous output channel that is widely used to model noise and
compare the performance (typically via simulation) of different coding schemes. The binary input
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additive white Gaussian noise (BIAWGN) channel has input alphabet X = {1,—1} (it is more
convenient to encode binary symbols by +1 instead of {0,1}) and output alphabet } = R. The
input z € {1,—1} is “modulated” into the real number Sz and the channel adds additive noise
distributed according to N(0,0?) to Sz. Thus the output distribution is a Gaussian with mean Sz
and variance o2. Formally

Yy
PY <ylX =a]= / L G/ gy

—x V27o?

The quantity (3/0)? is commonly referred to as the signal-to-noise ratio (SNR. for short), with 32
corresponding to the energy per input bit and ¢? corresponding to the amount of noise. The SNR
is usually measured in decibel units (dB), and expressed as the value 10log;(3/c)?. As one might
expect, the capacity of the AWGN channel increases as its SNR increases.

3 Shannon’s capacity theorem for the binary symmetric channel

We now turn to establishing the capacity of BSC, to be 1 — h(p).

3.1 Connection to minimum distance

First, let us connect this question to the Hamming world. If we have a family of binary codes of
relative distance more than (2p + €), then we claim that this enables communicating on the BSC,
with exponentially small probability of miscommunication. The reason is that by the Chernoff
bound for independent Bernoulli random variables (stated below), the probability that at least
(p + €/2)n are corrupted out of n bits transmitted on a BSC,, is exponentially small. When the
number of errors is less than (p+e€/2)n, the received word has a unique closest codeword in Hamming
distance, which is also the original transmitted codeword.

Lemma 3 (Chernoff bound for i.i.d. Bernoulli random variables) If X;, Xs,... X, are i.i.d.
{0, 1}-valued random variables with P[X; = 1] = p, then for every € > 0, for large enough n the

following tail estimates hold:

—6277/

P[En:Xi >(p+e)n] <273
i=1

2

—€e“n

P> X;<(p—€n] <273
=1

Together with the Gilbert-Varshamov bound, we conclude the existence of codes of rate at least
1 — h(2p) for reliable communication on BSC,. This rate is positive only for p < 1/4, and falls
short of the bound 1 — h(p) which we “know” to be the capacity of BSC, from Shannon’s general
theorem.

The Hamming upper bound on rate for codes of relative distance 2p was also equal to 1 — h(p). So
if the Hamming bound could be attained, we could achieve the capacity of BSC, simply by using

7



codes of relative distance 2p. However, we will soon see that the Hamming upper bound can be
improved, and there are no codes of positive rate for relative distance 2p for p > 1/4 or of rate
1 —h(p) for p < 1/4.

3.2 Intuition: mostly disjoint packings

The key to Shannon’s theorem is that we do not need every pair of codewords to differ in a fraction
2p of locations, but only that for most (as opposed to for all) points obtained by flipping about a
p fraction of bits of a codeword ¢ have no other codeword closer than c. In other words, it suffices
to be able to pack ~ 2(=h@E)" “postly-disjoint” Hamming balls of radius pn so that most points
in {0,1}" belong to at most one such Hamming ball. Indeed, we will show below (Theorem 4) that
such a packing exists, and therefore one can reliably communicate on BSC,, with rate approaching
1= h(p).

The intuition for the case of general discrete memoryless channels as stated in Theorem 1 is similar.
For a typical sequence z € X™ (chosen according to the product distribution p®™), when x is trans-
mitted, there are ~ 21X possible received sequences in )" (call this the “neighborhood” of x),
out of a total volume of 273" Tt turns out it is possible to pick a collection of ~ 2(HY)-H Y [X)n

sequences in X" whose neighborhoods are mostly disjoint. This enables reliable communication at
rate approaching H(Y) — H(Y|X).

3.3 Converse to capacity theorem for BSC

We now give an explanation for why 1 — h(p) ought to be an upper bound on capacity of the BSC,,.
Suppose a code C' C {0,1}" achieves negligible error probability for communication on BSC,, with
some decoding rule D : {0,1}" — C'U{fail}. When c is transmitted, with overwhelming probability
the received word belongs to a set Typical, of ~ 2h(P)n possible strings whose Hamming distance
to ¢ is close to pn (say in the range [(p — o(1))n, (p+ o(1))n], and these possibilities are all roughly
equally likely. Therefore, in order to ensure that c¢ is recovered with high probability from its noisy
version, the decoding rule D must map most of the strings in Typicakl, to c¢. Thus we must have
|ID=1(c)| = 2MP)" for each ¢ € C, leading to the upper bound |C] < 2(1=h)+e()n,

A different way to argue about the 1 — h(p) upper bound is related to a discussion in our very
first lecture. It is based on the observation that when communication is successful, the decoder not
only recovers the transmitted codeword but also the locations of the (typically around pn) errors.
The former carries log |C| bits of information, whereas the latter typically conveys & h(p)n bits of
information. Since the total amount of non-redundant information that can be reliably conveyed
by n bits cannot exceed n, we again get the upper bound |C| < 2(1=h(p)+o(L)n

Exercise 1 Develop the above arguments into a formal proof that communication at a rate of

1 — h(p) + € on BSC, incurs a probability of error bounded below by an absolute constant, and in
fact by 1 — 2=R2(") where n is the block length of the code.

3.4 The theorem

We conclude these notes with the formal statement and proof of the capacity theorem for BSC,,.



Theorem 4 For every p € (0,1/2) such that 0 < p < %, and every 0 < v < 1/2 —p and all large

enough integers n, there exists a 6 = §(vy,p) and a code with encoding map Enc : {0,1}* — {0,1}"
for k= (1—h(p+~))n and a decoding rule D : {0,1}"* — {0, 1}* U {fail} such that

P.[D(E(m)+z)=m]>1—2""

where the probability is over the noise z caused by BSC,,.

PRrROOF: The construction is by the probabilistic method. Let £ = k + 1. The encoding function
Enc : {0,1}¥ — {0,1}" is chosen uniformly at random from all possible functions. In other words,
for every message m € {0, 1}¢, the corresponding codeword, Enc(m) is chosen uniformly at random
from {0,1}". (Note that this might assign the same codeword to two different messages but this
(tiny) probability will be absorbed into the decoding error probability.)

Pick € = €(y) > 0 to be a small enough constant. The decoding function D is defined as follows:
D(y) = m if Enc(m) is the unique codeword such that A(y, Enc(m)) < (p+ €)n and D(y) = fail
otherwise.

For z € {0,1}", let prob(z) denote the probability that the noise caused by BSC,, on input the all
0’s vector equals z (note that prob(z) = p*t(?)(1 — p)n—wt(2)),

Fix a message m. For each possible Enc, the probability that D(Enc(m) + z) # m taken over the
noise z caused by BSC,, is at most

P.[D(Enc(m) + z) #m)] < P,wt(z) > (p+e€)n] + Z prob(z)1(D(Enc(m) + z) # m)
z€B(0,(p+e)n)

< 274 N prob(z) Y 1(A(Enc(m) + z,Enc(m) < (p + €)n)
z€B(0,(p+e)n) m'#Em

where the notation 1(E) stands for the indicator random variable of the event E, the first estimate
follows from the Chernoff bound, and the second estimate because when the decoding is unsuccessful
when at most (p + €)n errors occur, there must be some other codeword besides Enc(m) that is
close to the received word Enc(m) + z.

Now let us bound the expected value of this probability of miscommunication over the random
choice of Enc. For each fixed z, and m # m/,

Egnc[1(A(Enc(m) + z,Enc(m’))] < Pgue[A(Enc(m) + z, Enc(m')) < (p + €)n]
Vol(n, (p + €)n)
2n
< 9= (1=h(p+e)n

Therefore, by linearity of expectation

EgncP.[D(Enc(m) + z) #m)] < 9~ ) 4 Z prob(z)2f2~(1=hpte)n
z€B(0,(p+e)n)

1

9~=e*n) | 9. 9= (hp+y)—h(pte)n - 2  g-dn

IN



for some § = 6(~y,p) > 0 when € is chosen small enough.

We can conclude from the above for each fixed m that the probability over Enc that the error
probability in communicating m (over the channel noise) exceeds 2-9/2 is 279%/2_ We would like
to find an encoding Enc for which the error probability is low for every m simultaneously. The
bound is too weak to do a union bound over all 2¢ messages. So we proceed as follows.

Since EgncP,[D(Enc(m) + z) # m)] < 271797 for each fixed m, this also holds on average over all
choices of m. That is

EmEgncP. [D(Enc(m) + z) # m)] < 2717
Changing the order of expectations

EencEmP. [D(Enc(m) + z) # m)] < 2717

Therefore there must exist an encoding Enc* for which

EnP.[D(Enc*(m) + z) # m)] < 2717

By an averaging argument, for at most 1/2 the messages m € {0, 1}¢ one can have P,[D(Enc*(m) +
z) # m)] > 279", Expurgating these messages, we get an encoding Enc’ : {0,1}*"* — {0,1}" and
a decoding function D’ such that for every m’ € {0,1}*, P,[D'(Enc’(m/) + z) # m'] < 279", This
finishes the proof of the theorem. [J

We remark that neither the encoding function nor the decoding function in the above proof are
efficiently computable. The challenge put forth by Shannon’s work is to “constructivize” his result
and find explicit codes with polynomial time encoding and decoding that achieve capacity.

Exercise 2 Prove that Theorem / also holds with a linear code, and that a random linear code
achieves capacity of the BSC with high probability. (In fact, the proof becomes easier in this case,
as no expurgation is needed at the end.)

We end these notes by noting another connection between the Shannon and Hamming worlds.
Though minimum distance is not the governing factor for achieving capacity on the BSC, a large
minimum distance is necessary to to have a positive error exponent (i.e., achieve exponentially
small error probability). We leave it as an exercise to justify this claim.

10
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We now turn to limitations of codes, in the form upper bounds on the rate of codes as a function of
their relative distance. We will typically give concrete bounds on the size of codes, and then infer
as corollaries the asymptotic statement for code families relating rate and relative distance. All
the bounds apply for general codes and they do not take advantage of linearity. However, for the
most sophisticated of our bounds, the linear programming bound, which we discuss in the next set
of notes, we will present the proof only for linear codes as it is simpler in this case.

We recall the two bounds we have already seen. The Gilbert-Varshamov bound asserted the ex-
istence of (linear) g-ary codes of block length n, distance at least d, and size at least WH’#D.
Or in asymptotic form, the existence of codes of rate approaching 1 — hy(d) and relative distance
5. The Hamming or sphere-packing bound gave an upper bound on the size (or rate) of codes,
which is our focus in these notes. The Hamming bound says that a g-ary code of block length n
and distance d can have at most WM codewords. Or in asymptotic form, a g-ary code
of relative distance ¢ can have rate at most 1 — hq(6/2) + o(1).

As remarked in our discussion on Shannon’s theorem for the binary symmetric channel, if the
Hamming bound could be attained, that would imply that we can correct all (as opposed to most)
error patterns of weight pn with rate approaching 1 — h(p). Recall that there are perfect codes
(such as the Hamming codes) that meet the Hamming bound. However, these codes have very
small distance (3 in the case of Hamming codes). A generalization of Hamming codes called binary
BCH codes (the acronym stands for the code’s independent inventors Hocquenghem (1959) and
Bose and Ray-Chaudhuri (1960)) show that when d is a fixed constant and the block length is
allowed to grow, the Hamming bound is again tight up to lesser order terms. However, we will
improve upon the Hamming bound and show that its asymptotic form (for any relative distance
bounded away from zero) cannot be attained for any fixed alphabet. The proof method has some
connections to list decoding, which will be an important focus topic later in the course.

1 Singleton bound

We begin with the simplest of the bounds:

Theorem 1 Let C be a code of block length n and minimum distance d over an alphabet of size q.
Then |C| < g+,

PROOF: Suppose not, and |C| > ¢"~%+1. By the pigeonhole principle there must be two codewords
c1,c2 € C, ¢1 # co that agree on the first n — d + 1 locations. But then A(ey,c0) < d—1 < d,
contradicting the hypothesis that C' has minimum distance d. U



This gives an alphabet-independent asymptotic upper bound on the rate as a function of relative
distance.

Corollary 2 The rate R and relative distance § of a code satisfy R <1— 6+ o(1).

Though really simple, the Singleton bound is tight in general — we will later see an algebraic
family of codes called Reed-Solomon codes which achieve the Singleton bound and have dimension
n —d+ 1 and minimum distance d. The family of codes which meet the Singleton bound are called
mazximum distance separable (MDS) codes.

However, Reed-Solomon and other MDS codes will be (necessarily) defined over an alphabet that
grows with the block length. For code families over a fixed alphabet such as binary codes, substantial
improvements to the Singleton bound are possible. We turn to such bounds next.

2 The Plotkin bound

The Gilbert-Varshamov bound asserts the existence of positive rate binary codes only for relative
distance 6 < 1/2. The Hamming bound on the other hand does not rule out positive rate binary
codes even for § > 1/2, in fact not even for any § < 1. Thus there is a qualitative gap between
these bounds in terms of identifying the largest possible distance for asymptotically good binary
codes. We now prove an upper bound which shows that the relative distance has to be at most 1/2
(and thus the Hamming bound is quite weak for large ) unless the code has very few codewords
(and in particular has vanishing rate).

While the same underlying ideas are involved, the proofs are simpler to present for the binary case,
so we will focus on binary codes. We will state the bound for the g-ary case and leave the details as
an exercise. Our proofs reduce the task of bounding the size of the code to bounding the number
of pairwise far-apart unit vectors in Euclidean space, and then use a geometric argument for the
latter task.

We first state the geometric lemma we need.

Lemma 3 Let vy, vo,..., v, be m unit vectors in R".

1. Suppose (vi,vj) < —e for all1 <i<j<m. Thenm <1+ %
2. Suppose (vi,v;) <0 for all1 <i<j<m. Then m < 2n.
PROOF: We only prove the first part, and leave the second as an (interesting) exercise. Note that

bound of 2n is best possible, as we can take n orthonormal vectors and their negations. For the
first part, we have

m m m
0< O v > vy = Juil*+2 > (vi,v;) <m—m(m—1)e,
i=1 i=1 i=1 1<i<j<m

which gives m <1+ 1/e. O



Using the above, we can prove that a binary code of block length n and distance d > n/2 cannot
have too many codewords.

Theorem 4 Let C be a binary code C' of block length n and distance d.

1. Ifd>n/2, then |C| < 324

2. If d > n/2, then |C| < 2n.

PrROOF: Let m = |C| and let ¢1,co,...,¢, € {0,1}™ be the codewords of C. By hypothesis
A(ci,cj) > dfor 1 < i < j < m. We will map the codewords into unit vectors v; € R”, i =
1,2,...,m, such that the angle between every pair of vectors is at least 90 degrees (i.e., their dot
product (v;,v;) < 0). These vectors are defined as follows:

]‘ P Cj Ci [T
v; = 7((_1)@[1]’ (-1) il (1) i ]) ’

vn
where ¢;[¢] is the £’th bit of the codeword ¢;. It is easy to check that

1 n — 2d
(v, v5) = E(n —2A(¢,¢5)) < —

When d > n/2, these dot products are non-positive, and by the second part of Lemma 3, we can
bound m < 2n.

For the first part, if 2d > n, then (v;,vj) < —QdT*" < 0, and therefore by the first part of Lemma

3, we can bound
<14 n 2
= 2d—n  2d—n '

O

The above shows that a code family of relative distance § > 1/2 + « can have at most O(1/7)
codewords. Thus a code family cannot have relative distance strictly bounded away from 1/2 with
a number of codewords that is growing with the block length. In particular, such code families
have zero rate. We now prove that this is also the case if the relative distance is 1/2.

We now use a “puncturing” argument, which implies that the complement of the feasible rate vs
relative distance region is convex, to derive an upper bound of rate for relative distances 6 < 1/2.

Theorem 5 If a binary code C has block length n and distance d < n/2, then |C| < d - 272442,

PROOF: Let £ =n —2d+ 1 and S = {1,2,...,¢}. For each a € {0,1}¢, define the subcode C, to
be the subcode of C' consisting of all codewords which have a in the first £ positions, projected on
S¢={1,2,...,n}\ 8. Formally, C, = {¢|gc | ¢; = a; for 1 <i < {}. Each C, is a binary code of
block length n — ¢ = 2d — 1. Note that since C has distance at least d, so does C,. By Theorem 4,
|Cal < 2d. Of course, [C| =3 ,cq013¢ |Cal- So we conclude |C] < 2d - 2t =d.2n—2d+2 O

We record the asymptotic implication of the above upper bound as:



Corollary 6 The rate R of a binary code of relative distance § must satisfy R <1 —2§ + o(1).

The above arguments can be extended to the g-ary case. The idea is to map ¢ symbols to ¢ unit

vectors whose pairwise dot product is exactly —qfll.

Exercise 1 Let C' be a g-ary code of block length n and minimum distance at least d.

1. Ifd> (1—-1/q)n, then |C| < qd—(%id—l)n‘

3
2. Whend < (1—1/g)n, |C| < %qnfqd/(qfl)_
Deduce that the R of a q-ary code of relative distance & must satisfy R <1 — q%é +o(1).

Here is a plot of the Gilbert-Varshamov lower bound on rate, and the Hamming and Plotkin upper
bounds on rate, for binary codes. On the horizontal axis is the relative distance ¢ € [0,1] and
the vertical axis is the rate R € [0,1]. Any (R,d) point under the leftmost curve (the Gilbert-
Varshamov bound) is achievable, and any (R, d) point above either the Plotkin bound (the straight
line) or the Hamming bound is not achievable. Notice that the Hamming bound is stronger than
the Plotkin bound for low distances (or high rates). We now proceed to a bound that improves
both the Hamming and Plotkin bounds.
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3 Johnson and Elias-Bassalygo bounds

Recall that A,(n,d) denotes the size of the largest g-ary code of block length n and distance d. We
denote by Ag(n,d, w) the size of a largest constant weight code of block length n and distance d all
of whose codewords have Hamming weight w. We also denote by A;(n, d,w) the largest size of a
code of block length n and distance d all of whose codewords have Hamming weight at most w. For
the case ¢ = 2, we just denote these quantities by A(n,d), A(n,d,w), and A'(n,d,w) respectively.

On your problem set, you are asked to prove the following (just for the binary case).

Exercise 2 Prove that A(n,d) < %A(n, d,w). More generally, prove that Aq(n,d) < (n)(‘;in_l)w/lq(n,d,w)

The above gives a method to upper bound the size A4(n,d) of unrestricted codes via upper bounds
on the size A4(n,d,w) of constant weight codes. Note that when w < d/2, Ay(n,d, w) =1, so the

Hamming like upper bound A,4(n,d) < M]%lw is a special case of this. In general the larger the

w as a function of d for which we can prove a good upper bound on A(n,d,w) (as either a constant
or a polynomial function of n), the better the upper bound on A,(n,d).

We will now prove such an upper bound, in fact for the more general quantity A;(n, d,w). Such a
bound, called the Johnson bound, is intimately connected to list decoding. Proving that A;(n, d,w)
is small, say at most L which is either a constant or bounded by n®®), implies that for every
g-ary code C of block length n and distance d, every Hamming ball of radius w contains at most
L codewords of C'. In other words, if a codeword is transmitted and at most w errors corrupt it,
then one can list decode a small list of at most L candidate codewords one of which must equal the
original codeword. Of course, for w < d/2, we have L = 1, and the key here is that one can have

w > d/2 and still ensure a small worst-case list size L.

Once we prove the Johnson bound, we will deduce our desired bound on A,4(n, d), called the Elias-
Bassalygo bound after their inventors, by appealing to Exercise 2. Our proofs of the Johnson bound
will be geometric in nature, relying on Lemma 3. We prove the bounds for binary codes, and leave
the extension to larger alphabets as exercises.

3.1 Binary codes

Theorem 7 (Binary Johnson bound) Forintegers1 <w < d < n/2, ifw < (n—+/n(n — 2d)),
then A'(n,d,w) < 2n. (We will often refer to the quantity 3(n —\/n(n —2d)) as Jo(n,d), the (bi-
nary) Johnson radius.)

PRrROOF: Let C = {c1,...,¢m} € {0,1}" be a code such that A(c;,cj) > d for i # j, and wt(c;) < w
for each ¢ = 1,2,...,m. We will map the codewords ¢; into vectors v; € R™ similarly to the proof
of the Plotkin bound (Theorem 4), except we won’t normalize them to unit vectors here:

Uy = ((_1>Ci[1}7 (_1)‘%‘[2]’ Ty (_1)01[’”]) )

where ¢;[¢] is the £’'th bit of the codeword ¢;. Likewise the all 0’s vector is mapped to the vector
r € R"



7“:(1,1,"',1).

Let a > 0 be a parameter to be picked later. The parameter a will be picked so that all the pairwise
dot products (v; — ar,v; — ar) are nonpositive for ¢ # j. Now

(vi —ar,v; —ar) = n—2A(c,¢j) +a’n+ a@wt(c;) — n + 2wt(c;) — n)
< n—2d+a®n+2a2w—n) .

The latter quantity is at most 0 provided

—2d
4w§2n—<an+n > .
«

The choice a = y/n(n — 2d) maximizes the right hand side, and leads to the requirement

n n(n — 2d)
w<L — — —m—
-2 2
which is met by hypothesis about w. Therefore, for this choice of o, (v; — ar,v; —ar) < 0 for
1 < i < j < m. are nonpositive for i # j. Appealing to (the second part of) Lemma 3, we can
conclude m < 2n, and thus A'(n,d,w) < 2n. O

Remark 8 It is possible to improve the upper bound on A'(n,d,w) for w < Jao(n,d) from 2n to
n by noting that for the choice of parameters (v; — ar,r) > 0 for each i. This together with the
nonpositive pairwise dot products can be used to improve the geometric upper bound on the number
of vectors from 2n to n.

For w slightly less than the Johnson radius Ja(n, d), one can sharpen the upper bound on A’(n, d, w)
to a constant independent of n.

Exercise 3 Prove that when w < § — —Vn(n_QQ(Md/L), A'(n,d,w) < L.
(Hint: Follow the above proof, and pick parameters so that the first part of Lemma 3 can be used.)

Together with Exercise 2, we thus have the following upper bound, called the Elias-Bassalygo
bound, on the size (rate) of codes of certain distance (relative distance).

Theorem 9 For integers 1 < d < n/2,

where Ja(n,d) = (n — /n(n — 2d))/2.

Thus a binary code family of relative distance § has rate at most



1—h(1_m

3.2 Statement for larger alphabets

As with the Plotkin bound, we leave the extension of the Johnson and Elias-Bassalygo bounds to
larger alphabets exercises. The hint is to map ¢ symbols into appropriate vectors in R? so that large
distance between codewords translates into small dot product between their associated vectors.

Exercise 4 For all integers ¢ > 2 and 1 < d < (1 —1/q)n, Aj(n,d,w) < n(q— 1) provided

w<Jq(n,d):n(1—;) (1— 1_(qu1)n> .

Further, if

then Ag(n,d,w) < 1/e.
Together with Exercise 2, this gives the Elias-Bassalygo upper bound for g-ary codes:

Theorem 10 A q-ary code family of relative distance § has rate at most

1 hy ((ll/q)(lﬂqujl)) +o(1) .

3.3 Alphabet oblivious bound for Johnson radius
When discussing list decoding of codes such as Reed-Solomon codes which are defined over an
alphabet size that grows with the block length, it will be useful to have the following ”alphabet

oblivious” version of the Johnson bound. (This version is also a simpler and often good enough
approximation to the g-ary Johnson radius when ¢ is somewhat large.)

Theorem 11 Let C' C X™ be a code of block length n and distance d. Then the following hold:

1. Every Hamming ball of radius at most

J(n,d) =n—+/n(n—d)

in X" has at most O(n|X|) codewords of C.



2. Every Hamming ball of radius at most n — \/n(n —d + de) in £" has at most 1/e codewords
of C.

The above statement follows from Exercise 4 by verifying that for every ¢ > 2 and 0 <z <1-1/q,

1-Vi—z<(1-1/q), /1 qxl .
q J—
We conclude with a plot that adds the Elias-Bassalygo upper bound to the earlier plot. Note

that this bound improves on both the Hamming and Plotkin bounds, but for small distances the
difference between the Hamming the Elias-Bassalygo bounds is small.

ro.8
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We will discuss the last and most sophisticated of our (upper) bounds on rate of codes with
certain relative distance, namely the first linear programming bound or the first JPL bound due
to McEliece, Rodemich, Rumsey, and Welch, 1977 (henceforth, MRRW). This bound is the best
known asymptotic upper bound on the rate of a binary code for a significant range of relative
distances (which is roughly § € (0.273,1/2)). We will present a complete and self-contained proof
of the this bound. A variant called the second JPL bound gives the best known upper bound for
the remainder of the range, and we will mention this bound (without proof) at the end.

The linear programming bound is so-called because it is based on Delsarte’s linear programming
approach which shows that the distance distribution of a binary code satisfies a family of linear
constraints whose coefficients are the evaluations of a certain family of orthogonal polynomials (in
this case, the Krawtchouk polynomials). The optimum (maximum) of this linear program gives an
upper bound on A(n,d). MRRW constructed good feasible solutions to the dual of linear program
using tools from the theory of orthogonal polynomials, and their value gave an upper bound on
A(n,d) by weak duality.

In these notes, we will use Fourier analysis of functions defined on the hypercube to derive a
relationship between the weight distribution of a linear code and its dual, called the MacWilliams
identifies. These give the linear constraints of the above-mentioned linear program.

Instead of the using the linear program or its dual and the theory of orthogonal polynomials (and
specifically properties of Krawtchouk polynomials), in the second part of these notes, we will give
a self-contained proof of the first linear programming bound for binary linear codes using a Fourier
analytic approach. This is based on the methods of Friedman and Tillich, which was later extended
also to general codes by Navon and Samorodnitsky, that shows that the dual of a linear code of
large distance must have small “essential covering radius” (which means that Hamming balls of
small radii around the dual codewords will cover a large fraction of the Hamming space {0,1}").
This shows that the dual must have large size, and therefore the code itself cannot be too large.
The method can be extended to non-linear codes, but we will be content with deriving the linear
programming bound for (binary) linear codes.

1 Fourier analysis over the Boolean hypercube

Let F,, be set of all real-valued functions over the boolean hypercube, i.e., F, = {f : {0,1}"" — R}.
Then the following characterization is straightforward.

Exercise 1 Show that F,, forms a vector space with dimension 2". In fact, show that {e, : o €


http://en.scientificcommons.org/19956593
http://en.scientificcommons.org/43572616
http://www.springerlink.com/content/524k611n7j626140/

{0,1}"} forms a basis for Fy,, where eq : {0,1}" — R is defined by:

1, ifr=«

0, otherwise

ea(x) = 0pa = {
In fact, the above exercise views a function f € F, as simply a vector of dimension 2", indexed by

the ”coordinates” « € {0,1}". This motivates us to define an inner product on F,:

Definition 1 For f,g € F,, define the inner product between f and g to be:

(F.9) = 50 3 F@)g(x) = Bu [F()g(x)

(This is just the standard inner product for vectors over reals, but suitably normalized.)

Now, we will define another basis for F,,, called the Fourier basis. This needs the following simple
lemma.

Lemma 2 For every binary linear code C C {0,1}",

e C|, if a€Ct,
> —{’0'

oyt otherwise.

where - denotes the dot product modulo 2.

PROOF: If a € Ct, then the claim is obvious. Suppose that o ¢ C-. Then, there exists a ¢y € C
such that o - ¢y = 1. Now, for each c € C,

(_1)a-c + (_1)a-(c+co) — (_1)a-c (1 4 (_1)(1-60) =0 (1)

Summing Equation 1 for all ¢ € C, we get:

0= 3 (=1 4 (e} = 3 (a4 3 —ayeera) = o 3 (pye,

ceC ceC ceC ceC

giving the claim. [J

Corollary 3 We have

2 ifa=0
_1 a-C _ ’ )
> o f

cefoa}n otherwise.

PROOF: In Lemma 2, take C to be the whole vector space {0,1}", so that C*+ = {0}. O



Remark 4 In this lecture, the notation 0 is typically overloaded to mean either a single alphabet
symbol, or the zero vector (0™) of the vector space. However, the right definition should be clear
from the context.

For each a € {0,1}", define x4 : {0,1}" — R by xa(z) = (—1)*?* (where - refers to the inner
product between vectors, taken modulo 2). The function y, is often called a character function.
We show that the set of all character functions also forms an orthonormal basis for F,.

Lemma 5 (xa,X3) = 0as

PROOF:

(X X) = B (—1)0"96(_1)@35} _ 1 S (—plede = {17 if a—p=0,

Toon - 0, otherwise
using Corollary 3. The claim follows from the definition of d,5. O

Corollary 6 Let B be the set of character functions, i.e., B = {xq : a € {0,1}"}. Then, B is an
orthonormal basis for Fy, called its Fourier basis.

PRrROOF: From Lemma 5, it follows that B is a linearly independent set. Also the cardinality of
B is 2™, which equals the dimension of the whole space F,,. Therefore, B must be a basis. The
orthonormality of B is directly implied again by Lemma 5. O

By the definition of a basis, any function f € F,, can be expressed uniquely as a linear combination
of the character functions. That is, there exist f(a) € R such that

f:Zf(a)Xa .

(We use the notation f (), instead of the conventional ¢, to remind us that the coefficients depend
on f.) Note that this is equivalent to saying

@) =3 Fl@)xa()
for all z € {0,1}".
The following are some immediate consequences of this fact.
Lemma 7 Let f,g € F,. Then the following hold.
1. (f,xa) = f(a)
2. (Parseval’s identity) (f,g) =, fla@)g(e)

3. £(0) = E.f(2)



Proor: Each of the above claims can be shown by a straightforward calculation.

A~

L (f.xa) = (5 F(B)X8: Xa) = 35 F(B)(X8: Xa) = 35 F(B)0ap = fla)
2. (f.9) = (£, 0 8(@)xXa) = X0 8(a)(f, Xa) = X4 fla)d(a)
3. f(0) = (f,x0) = E; [f(2)(—1)**] = E, f()

lQ)

O

2 Dual codes, Fourier analysis, and MacW.illiams identities

Let us introduce the following notation: for any S C {0,1}", define 1g : {0,1}" — R, called the
characteristic function of S, by
1, ifxes,
15(:(}) = {

0, otherwise.

We will now show that Fourier transform of the characteristic function of a code is essentially the
same (up to a constant scaling factor) as the characteristic function of its dual. This is useful
because the Fourier transform can be viewed as a notion of duality for functions. Fortunately,
there is a natural correspondence between the two notions (dual codes and Fourier transforms).

Lemma 8 For any linear code C C {0,1}",

—~ |C
lc = ‘271‘ 1cJ_
PROOF: For every a € {0,1}",
—~ 1 L|C|, if aeCt
1 (1c, = 1 = — —1)*r =2 ’
cla) = (1c, Xa) 2n Z o(®)Xalx 2n (—1) {0’ otherwise
zeC
using Lemma 2. Therefore,
T~ C]
lo(a) = 27ch (@),

for all a € {0,1}", giving the claim. O

Definition 9 For any S C {0,1}", let
=#{x e 5:wt(x) =i},

that is, WS denotes the number of pomts in S of weight i. Further, by weight distribution of S, we
denote the (n +1)-tuple WS = (W5, W, ... ,W2).



Now, our goal is to relate the “weight distribution” of a code C' to that of its dual C*. Let
¢e€{0,1,...,n}. Then,

we = Y 1pi(a)

a:wt(a)=¢

omn —~
= — 1
e > 1e(a)
a:wt(a)=~

= & X Ellel)(-1]

a:wt_(a):é )

2" a-x
= @Ex > le(@)(-1)

| cowt ()=

2n a-T
= @Ex lo(z) Z (-1

oewt(a)=~

For completeness, we calculate the sum - . (0)=¢(—1)** in the following lemma. The exact sum
is not of any significance for our purposes in this course. We will however use the fact that this
sum depends only on the weight of .

Lemma 10 For any x € {0,1}" with wt(z) =1,

= B ()6

a:wt ()=~ J J

The latter quantity will be denoted as Ky(i) — the value of the Krawtchouk polynomial at i.

PrOOF: Notice that summation is taken over all « of a given weight £. So, by symmetry, it depends
only the number of 1’s in =, and not on their positions. Hence, without any loss in generality, assume
that z = 1°0" . A vector « of weight ¢ must have j 1’s in the first i positions, and ¢ — j in the
last n — i positions, for some j € {0,1,...,¢}, and in this case (—1)* = (—1)7. The number of a’s

satisfying this condition for any particular j € {0,1,...,¢} equals (;) (?__j’) The claim thus follows.
U

Remark 11 (Krawtchouk polynomial) The quantity Z?ZO(—l)j (;) (Z:;), denoted Ky(i), can
be regarded as the evaluation of a polynomial K, at wt(z) = i. K, is usually called the (*®
Krawtchouk polynomial and is defined as

-5 () ()

(The function Ky also depends on n, but we supress this dependence for notational convenience.)
Note that Ky is a polynomial of degree ¢ and Ko(X) =1 and K1(X) =n —2X, etc.



Now, we will complete the calculation of VVEL
c+ 2" 1 a-x
W, = @27 Z lo(z) Z (—1)
1
= @Zlc(x)Ke(Wt(x))
= \C! Z Ky(wt(x

xEC’
= Z > K(i)
1=0 zeC,wt(z)=i

giving
W |ZW% (2)

for every £ =0,1,2,...,n

Equation 2, called the MacWilliams identity, tells us that the weight distribution of the dual code
C* is completely determined once we are given the weight distribution of the code C.

Remark 12 We can write the MacWilliams identitities (2) equivalently as:

1
Wi = Evec [Ke(wt(@))]
or as a functional equation
+ - i n—i
Z W2 = |wa‘(1—z)(1+z) .

1=0

Exercise 2 Extend the MacWilliams identities to linear codes over any finite field Fy. Specifically,

if C is a g-ary linear code of block length n, and as before WZC (resp. WiCL) denote the number of
codewords of C (resp. C*) of Hamming weight i, then

1 n
Wt = i S WK
i=0
where the q-ary Krawtchouk polynomial is defined as
¢
~ X\ (n—X
K000 =S cwa- (D) (527
e J —J
[[ Hint: When the field size q equals a prime p, replace (—1)*Y in the proof for the binary case

by ¢ where ¢, = e2™i/P s g primitive p’th root of unity and x -y is, as usual, computed over the
underlying field .



When q = p" for a prime p, the role of (=1)™¥ can be played by Czr)ﬁ(my) where Tr is the trace map
from Fy to ¥, ={0,1,2...,p—1}: Tr(z) = PR N |

Exercise 3 Using the above, compute the weight distribution of the [¢™—1,¢™ —1—m, 3], Hamming
code.

3 A linear program bounding A(n,d)

In this section, we will use the MacWilliams identity to derive a linear program that bounds the
size of every code with a given minimum distance d, and thus bounds A(n,d). (Recall that A(n,d)
is the maximum size of any binary code with block length n and minimum distance d.)

For the moment, we will focus on linear codes C. Consider the linear program:

n
Maximize g A;

1=0
s.t. Ao =1
AZ Z 07 2_17 y
Ai = 0, i=1,...,d—1
Y Ky(i)A; > 0, L=1,....n

We claim that for any linear code C' of distance at least d, the assignment A; = WZC is a feasible
solution. Indeed, the first two constraints are satisfied trivially. The constraint A; =0for 1 <i < d
enforces that the minimum distance of the code (that is, the minimum Hamming weight of any
nonzero code word) is at least d. The last set of constraints follow from the MacWilliams identities
for any ¢ € {1,2,...,n},

STWEK) =W >0
=0

For this assignment, the objective function takes the value

n

Z Wic =1C|

i=0
Therefore, the optimum of the linear program upper bounds the size of any linear code C' of distance

at least d.

Now, we consider general codes C', and prove that they satisfy the same bound. Without loss of
generality, assume that 0" € C. Define:

o Hzy) € CP| Al y) = i}
' C]




We claim that AZC is a feasible solution to the linear program. The first three sets of constraints are
trivially satisfied as before, whereas the last set of constraints can be verified in a straightforward
manner:

> AT () = Z > Ko(i)
i=0

=0 (z,y)eC?:A(z,y)=i

- mz y -1y

(z,y)€C2:A(z,y)=i \z:wt(z)=L

- = (z—y)-z
z,y) 602 2 wt(z
=)
(zy)€ 02
( ) Z(_l)y~z
zeC yeC
(mGC )

Py
- &>
oL

> 0

The value of the objective function is:

S \C,z > )= X 1=l

z,y)€C2:A(z,y)=1 (z,y)eC?

Therefore, the optimum value of the linear program upper bounds the size of any code with mini-
mum distance at least d.

3.1 Dual program and the MRRW bound

Consider the dual program for the above linear program. The dual program has variables 31, (o, . . ., Bn
(where 5; > 0). Define 5(X) to be the polynomial

n
BX) =14 BeKi(X
=0
Then the dual program is given by:
Minimize (3(0)

s.t. 5
B(7)

IN IV



By the weak duality theorem, the value of any feasible solution to the dual program upper bounds
the optimum value of the linear program, and hence also upper bounds A(n,d). Hence, in order to
upper bound the size of the code, it suffices to exhibit a dual feasible solution with a small objective
function. This was, in fact, the approach followed by MRRW, leading to the first linear program-
ming bound. However, this involves studying several properties of Krawtchouk polynomials. In the
second installment of these notes, we will prove the same bound by following a different approach
based on Fourier analysis.
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1 Fourier analytic proof of the first MRRW bound

We develop a proof of the first MRRW (JPL) bound for binary linear codes based on a covering
argument. Our main theorem (Theorem 1) states that the dual code C* has a small essential
covering radius. From this, we conclude that the size of the dual code |C| is large, and equivalently,
the size of the code C' is small.

Theorem 1 (Dual codes have a small ”essential covering radius”) Let C be a binary lin-
ear code of distance at least d. Then,

U B =2 &)

forr=3n—/d(n—d)+ o(n).

Remark 2 We say that a set S has a covering radius at most r if every point in {0,1}" is inside
B(z,r) for some z € S. Theorem 1 asserts that the dual code satisfies a relazed version of the
property: for large enough r, at least a n= W fraction of the points are inside B(z,r) for some
z € C+. This is sufficient for establishing an asymptotic bound on the rate of the codes, as shown
in Corollary 3.

Before we prove Theorem 1, we observe that it directly implies an asymptotic upper bound on the
rate of codes.

Corollary 3 Let C be a binary linear code with distance at least d = dn. Then,
1. |C| < nVol(n,r)

2. R(C) < (3= 6(1=9)) +o(1)

PRrROOF: The covering condition (Equation 1) gives us that:

|CH| - Vol(n,r) > | | Blz,r)| >
zeCL

2n
n



since the volume of each ball B(z,r) is exactly Vol(n,d). But, the sizes of C' and C* are related
as follows (see Exercise 1): |C*|-|C| = 2". Combining the two observations, we directly obtain a

bound on the code size: N

2

IC| = GEE nVol(n, )
To obtain the bound on the rate, we need to translate the above bounds to asymptotic notation.
Writing d = on,

1
r:n<2— 5(1—5)+0(1)>
so that,
1 0o
‘C’ S nVOl(’I’L7’]“) = n2nh<2 o(1 6)4’0(1))

Taking logarithms, and noting that (logn)/n = o(1) gives the claimed bound.
Exercise 1 Show that |C|-|C+| = 2",

Hint: What is the relation between the dimensions of a code and its dual? How many points lie
on a subspace of dimension k7 [

We now need to establish Theorem 1. But, at first we introduce some notation. Let A denote the
adjacency matrix of the boolean hypercube; that is, for z,y € {0,1}", A,, =1 if and only if z and
y differ in exactly one coordinate. We now extend the concept of maximum eigenvalue to a set
B C{0,1}".

Definition 4 For B C {0,1}", define its mazimum eigenvalue to be

A = max{ %{f}? ‘ £ 540,11 — R, Supp(f) B}

Proposition 5 The mazimum eigenvalue of the whole hypercube is Ajg13n = n.

In order to establish Theorem 1, we observe that B(z,7) = z + B(0,r); that is, B(z,r) is really a
translate of B(0,) by z. Now, we break the proof down into two parts. First, we show that for any
B C {0,1}" with sufficiently large maximum eigenvalue, |J,.o. (2 + B) covers a significant (i.e.,
n~OW) fraction of the whole space. We then show that B(0,7) achieves the required maximum
eigenvalue, even when r is not too large.

Theorem 6 Let C be a binary linear code with block length n and distance d. Suppose B C {0,1}"
has mazrimum eigenvalue Ap > n — 2d + 1. Then,



Theorem 7 (Hamming balls have a large maximum eigenvalue)

AB(or) = 2Vr(n—71) —o(n)

Now, our main theorem follows as a corollary of Theorems 6 and 7.

PROOF:(For Theorem 1) We just need to pick an r large enough such that
)\B(er) 2 n—2d+1

This is satisfied provided:
2yr(n—r)—o(n) >n—2d+1

Neglecting o(n) terms, we get:
2y/r(n—r)>n—2d

which is true for: )
r=gn- d(n —d) + o(n)

O

Remark 8 We cannot hope to improve the above bound simply by employing a “better” choice for
B. Hamming balls are so-called “Faber-Krahn” minimizers for the Hamming cube. That is, of all
sets B with a given volume, Hamming balls have almost optimum value of the mazximum eigenvalue:

if |B] = Vol(n,r), then Ap < (14 0(1))Ap(o,)-

2 Proof of Theorem 5

We recall the following facts on Fourier transforms from the first installment of these notes. For
f:4{0,1}" = R,

fla) = Qizf

~
—~~
8
~
QM

The Parseval identity says that for f,g:{0,1}" — R,

E, [f(2)g(x)] = Y f(a)g(e)

Also, we have a natural correspondence between the Fourier transform of a code and its dual:

o) = g () 2
- L
fer(@) = < e

The following lemma is a direct consequence of Equation 2.


http://errorcorrectingcodes.wordpress.com/2010/02/07/notes-5-1-fourier-transform-macwillams-identities-and-lp-bound/

Lemma 9 Let C be a binary linear code with distance at least d. Suppose that o € {0,1}"™ such
that a # 0 and wt(a) < d. Then, e
10L (Oé) =0.

We are now equipped to prove the required claim. Let fp : {0,1}" — R be a function with
Supp(fp) C B, such that

(AfB, fB) = A\B(fB: [B)

(In other words, fp is a function that maximizes (Af, f)/(f, f).) Since the set B is understood
from the context, for notational ease, we simply set A = Ap and f = fp.

The following exercises make many simplifying observations.
Exercise 2 For g: {0,1}" — R, show that Ag(z) =Y 1, g(x + ;).
Exercise 3 Prove the following statements.

1. f is nonnegative: for every x, f(x) > 0.
2. For all x € B, we have Af(z) = Af(z).
3. For all x, we have Af(x) > Af(x). Equivalently, Af > \f.

Hint for part (3): For x € B, equality holds. On the other hand, for x ¢ B, f(x) =0, and hence
the inequality is trivially satisfied. (Note that all the terms in the left hand side are nonnegative.)

For z € {0,1}", define f, : {0,1}" — R by f.(x) = f(z + x). Finally, define Fz : {0,1}" — R by:

FB::é% 2: ﬂ

zeC+

Again, for convenience, we set F' to be F. Note that Supp(F) C U,co. (2 + B).

We will sketch the high-level idea of the proof. In order to lower bound the |, -1 (2 + B), we show

that the F' must have a large support. We establish this by showing that E [F’ ]2 is comparable to
E [F?].
For this we will focus on the quantity (AF, F') and establish lower and upper bounds on it.

Lemma 10 (Lower bound on (AF, F))

(AF,F) > AE [F?]

Lemma 11 (Upper bound on (AF, F'))

(AF,F) < nE[F|* + (n — 2d)E [F?]

Before proving the above lemmata, we will show how to obtain Theorem 6 using them.



Corollary 12 (F' has a large support)

)\—(n—2d)2n
n

U (z+ B)| >

zeC+

PRrOOF: The lower and upper bounds (Lemmata 10 and 11) together imply
AE [F?] < nE[F]* + (n — 2d)E [F?],

giving

A — (n—2d)

E[F]* > -

E [F?] 3)
On the other hand, note that F' is supported on S = (J,cc1 (2 + B). Therefore,

( > F(x) ) (15, F)> <E[14]E [F?] = |26;|E [F?], (4)

€S
using the Cauchy-Schwartz inequality.
Finally, Equations (3) and (4) together give the required bound:
A—(n—2d
5> A= =2d) o,
n
O
For A > n —2d+ 1 (as assumed in Theorem 6), this bound simplifies to

2"1

2.1 Lower bound on (AF, F)

In this section, we prove Lemma 10. The proof is based on the spectral property of B. Fix an
x € {0,1}"™. Then,

AF(z) = Z:Ferez —an Z fo(z +€) —Qn Z ZfI+Z+GZ
=1

i zeCt 2€CL+ 1
= ZAfx+z>—Z)\fx+z anfz ) = AF (),
zeCL 2€C+ zeC+

Therefore,

(AF,F) = E, [AF(2)F(2)] > AE; [(F(2))*] = AE [F?]

which gives the claim.



2.2 Upper bound on (AF, F)

In this section, we prove Lemma 11. The proof is based on the properties of the Fourier transform
of F.

The following simple result is a crucial ingredient in calculating F.

Lemma 13 For g : {0,1}" — R and z € {0,1}", define g, : {0,1}" — R by g.(z) = g(z + ).
Then,

ProOF: We have

1 1 1
~ _ = 1\ 1\ 1\ (y+2)
o) = 3o L0 = g D+ AN = 50 gl (1)
where we make the substitution y = x + z. Therefore,
~ -z 1 [0} -z A
g:(a) = (-1)*" 5 Y9y = (-1)**4(a)
y
O
Lemma 14 (Fourier transform of F)
. _ R |C+| .
F(a) =1¢1(a)f(a) = —-1c(a) f(a)

PROOF: From Lemma 13, we know that f.(a) = (—=1)*Zf(a). Therefore,

Fla) = 5o 3 Fle) =5 30 (-1 fla) =y fla) 3 (-1

z€C+ z€C+ z€C+
= F@E.[1o1(2)(=1)*7] = f(a)Tci(a) -

The full claim follows since 1/01 = ‘62: e, O

Remark 15 Lemma 14 can be directly obtained as follows. Note that

Fl@)= ) fle+z)= Y lo(@)f(z+2)=(lcw*f) ()

zeCt z€{0,1}m

where * represents the ‘convolution’ operation. It is a well known property that the Fourier transform
of a convolution is the product of the Fourier transforms. Formally, for f,g:{0,1}" — R, we have

m = f-g. This establishes the claim.



Corollary 16 Let C' be a binary ljnear code of distance at least d. Suppose a € {0,1}" is such
that oo # 0 and wt(a) < d. Then, F(a) = 0.

PROOF: Since wt(«) < d, it follows that a ¢ C. Therefore, from Lemma 14, F'(a) = 0. O

Lemma 17 (Fourier transform of AF) For g:{0,1}" — R,

Ag(a)

g(@)(n — 2wi(a))

Proor: We know that

Ag = dei

)

Therefore,

Ag(a) = nge\i(a) =g(a) ) (-1 =g(a) ) (-1)™

i i
where a = (a1, a2, ...,a,)T. Tt is easy to check that for o; € {0,1}, (—1)% = 1 — 2q;. Plugging
this in the previous equation, we get

Ag(a) = §(@) 32 (1 - 2a5) = g(a)(n — 2wt(a)).

O

With these claims in place, we can establish an upper bound on (AF, F).

(AF,F) = Y AF(a)F(a)
= Y F(a)’(n—2wt(a))

= nF(0’+ > F(o)?(n—2wt(a))

a:wt(a)>d
using Corollary 16. We now complete the upper bound.

(AR F) < nF(0P+m—-2d) > F(o)’

a:wt(a)>d

nF(0)® + (n—2d) Y F(a)?

= nE[F]* + (n—2d)E[F?],

IN

using F(0) = E[F].



3 Lower bound on the maximum eigenvalue of Hamming balls

We are interested in lower bounding the maximum eigenvalue of the Hamming ball B(0,r), where
r = n for v < 1/2. We will restrict ourselves to an f : {0,1}" — R, such that f(z) depends on
only on the weight of =, and has support {z : r — M < wt(z) < r} C B(0,r), for some M = o(n).
(For instance, we could choose M = n3/%.) Define f as follows:

%, if wt(z)=1d¢€[r—M,r],
flz) =4 V()

0, otherwise.

For convenience, we will denote by f(i) the evaluation of f at any z with weight i. Let us now
compute (f, f) and (Af, f) respectively.

.S > ser= 3 (s =asrsmaron) 6

i=r—M z:wt(x i=r—M

~—

On the other hand,

"(Af, f) = ZAf => > Af(

i zwt(z)=

Fix an z € {0,1}" of weight i. Therefore, of the n neighbors of z, i have a weight i — 1, and the
remaining n — i have a weight ¢ + 1. Therefore,

Af () f(x) = f(x) Z fla+ej) = f(i) (if(i — 1)+ (n—i)f(i+1))

Therefore,

n

runs = Y (i(}) o0+ e-0(7) o)

R =)
= 2 W 2 T

i=r—M+1 i=r—M i+1
r r—1
= > WViln—i+D+ Y Vin—i)(i+1)
i=r—M+1 i=r—M
T
=2 Y Wiln—i+1)
i=r—M+1

For the values of r and i we are interested in, it is easy to see that
in—i+1)>(r—M+1)(n—r+M)>r(n—r)—o(n?).
Hence,

2Af. f) = M (2/r(n—r) = o(n)) (6)

8



Combining Equations (6) and (5), we get

(Af.f) _ 2/r(n—1) - oln)
ABON 2 T 2 T T o(l)

=2y/r(n—r)—o(n)

For r = yn, this gives the bound

AB(or) = 2ny/ (1 =) — o(n)

4 Some remarks and the second MRRW bound

Though we proved the bound only for linear codes, the bound holds also for general codes, and in
fact can be proved within the same Fourier analytic framework; see the final section of the paper
by Navon and Samorodnitsky for the details.

The first MRRW bound can also be generalized to larger alphabets, giving the following statement.

Theorem 18 (First MRRW bound for larger alphabets) The rate of a g-ary code of relative
distance 0, 0 < § <1 —1/q, is at most

hq<(11(q— 1= (g—2)0 = 2/la = D31 = 9))) +0(1) .

Below is a plot of the best bounds on the best possible rate R(§) as a function of relative distance
d we have seen so far for binary codes: the Gilbert-Varshamov lower bound R(J) > 1 — h(J), the

Elias-Bassalygo bound R(§) < 1—h(1=Y1=2 Vzl_%), and the first MRRW bound R(8) < h(3—+/6(1 = §)).


http://www.springerlink.com/content/524k611n7j626140/

Note that the first MRRW bound is weaker than the Elias-Bassalygo bound for é smaller than about
0.15 (in fact it is even weaker than the Hamming bound for § < 0.11). There is a strenghtening of
the bound, called the second MRRW bound, which uses the inequality

2n
A(n,d) < mA(n,d, w)

w
together with an upper bound on the size A(n,d,w) of constant-weight codes via Delsarte’s linear
programming approach applied to the “Johnson” association scheme. We state the bound here
without proof. This bound beats the Elias-Bassalygo bound for the entire range 6 € [0,1/2]. The
bound coincides with the first MRRW bound for § > 0.273. The second MRRW bound gives the
best upper bound on R(J) for the entire range of § and has not been improved upon in over three
decades!

Theorem 19 (Second MRRW bound for binary codes) Let 0 < § < 1/2. The largest rate
of a binary code of relative distance 6 is at most MRRW(Q)(cS) + o(1) where

MRRW®)(9) = | min {1 -h(&) + Rew (¢, )} (7)

with

h(;<1_ \/1_ (VAE(1 =€) — 26 + 62 —5)2>> if §<26(1-¢)

0 otherwise.

RCW(§7 5) =

10



The above bound encompasses the Hamming, Elias-Bassalygo, and first MRRW bounds.

Exercise 4 1. Verify that the choice & = 1/2 in the the minimization in (7) yields the first
MRRW bound.

2. Verify that the choice £ = 6/2 in the minimization in (7) yields the Hamming bound.

3. Verify that picking £ so that 2£(1—&) = & in the minimization in (7) yields the Elias-Bassalygo
bound.

As far as I am aware the second MRRW bound only applies for binary codes and has not been
extended to larger alphabets.
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In this lecture, we begin the algorithmic component of the course by introducing some explicit
families of good algebraic codes. We begin by looking at Reed-Solomon codes.

1 Reed-Solomon codes
Reed-Solomon codes are a family of codes defined over large fields as follows.

Definition 1 (Reed-Solomon codes) For integers 1 < k < n, a field F of size |F| > n, and a
set S =A{aiy,...,a,} CF, we define the Reed-Solomon code

RS]F,S["% k] = { (p(Oﬂ),p(OéQ), R 7p(an)) eF" |
p € F[X] is a polynomial of degree <k —1}.

A natural interpretation of the RSp g[n, k] code is via its encoding map. To encode a message
m = (mo,M1,...,M_1) € F*, we interpret the message as the polynomial

p(X) =mo+miX + - +my_1 X" € F[X].

We then evaluate the polynomial p at the points ay, as, ..., a, to get the codeword corresponding
to m.
To evaluate the polynomial p on the points ai,as,...,a,, we multiply the message vector m on

the left by the n x k& Vandermonde matrix

1 a1 af -- ozlkfl

1 ar af - 042’“_1
G= .

1 ap a2 - af!

The matrix G is a generator matrix for RSg g[n, k], so we immediately obtain that Reed-Solomon
codes are linear codes over F.

1.1 Properties of the code

Let’s now examine the parameters of the above Reed-Solomon code. The block length of the code
is clearly n. As we will see, the code RSp g[n, k] has minimum distance n — k + 1. This also means
that the encoding map is injective and therefore the code has dimension equal to k.



The key to establishing the minimum distance of Reed-Solomon codes is the ‘degree mantra’ that
we saw in the previous lecture: A non-zero polynomial of degree d with coefficients from a field F
has at most d roots in .

Theorem 2 The Reed-Solomon code RSg g[n, k] has distance n — k + 1.

PROOF: Since RSy g[n, k] is a linear code, to prove the theorem it suffices to show that any non-zero
codeword has Hamming weight at least n — k + 1.

Let (mg,m1,...,mg_1) # 0. The polynomial p(X) = mqg +m1 X + -+ +mp_1 X*1 is a non-zero
polynomial of degree at most £k — 1. So by our degree mantra, p has at most & — 1 roots, which
implies that (p(ay),...,p(ay)) has at most k — 1 zeros.

By the Singleton bound, the distance cannot exceed n — k + 1, and therefore must equal n — k + 1.
The upper bound on distance can also be seen by noting that the codeword corresponding to the
polynomial Hf:_ll (X — ;) has Hamming weight exactly n —k+ 1. O

Note that the minimum distance of Reed-Solomon codes meets the Singleton bound. This is quite
interesting: Reed-Solomon codes are a simple, natural family of codes based only on univariate
polynomials, and yet their rate is optimal.

In our definition above, we have presented Reed-Solomon codes in the most general setting, where
S can be any arbitrary subset of F of size n. This presentation highlights the flexibility of Reed-
Solomon codes. In practice, however, there are two common choices of S used to instantiate
Reed-Solomon codes:

1. Take S =T, or

2. Take S = F* to be the set of non-zero elements in F.

These two choices attain the best possible trade-off between the field size and the block length.

1.2 Alternative characterization

We presented Reed-Solomon codes from an encoding point of view. It is also possible to look at
these codes from the “parity-check” point of view. This approach is used in many textbooks, and
leads to the following characterization of Reed-Solomon codes.

Theorem 3 (Parity-check characterization) For integers 1 < k < n, a field F of size |F| =
q =n+1, a primitive element o € F*, and the set S = {1,a,a?,...,a" "'}, the Reed-Solomon code
over F with evaluation set S is given by

RSp s[n, k] = { (co,c1, - oycno1) €F" | e(X)=co+ a1 X+ +cp1 X1

satisfies c(a) = c¢(a?) =---=c(a"F) =01 (1)

In other words, Theorem 3 states that the codewords of the Reed-Solomon code with evaluation

points 1,a,...,a" ! correspond to the polynomials of degree n — 1 that vanish at the points
2 n—k
o, ... o r,



The characterization of Reed-Solomon codes in Theorem 3 has the same dimension as the code
obtained with our original definition; to complete the proof of Theorem 3, we only need to check
that every codeword obtained in Definition 1 satisfies the parity-check condition (1).

Exercise 1 Complete the proof of Theorem 3. (Hint: The proof uses the fact that for every x # 1

. n—-1_¢ _  1—x™ __
inF*, > "y ot =52 =0.)

1.3 Applications

Reed-Solomon codes were originally introduced by Reed and Solomon in 1960 [6]. There have been
many other codes introduced since — we will see some of those more recent codes soon — and yet
Reed-Solomon codes continue to be used in many applications. Most notably, they are extensively
used in storage devices like CDs, DVDs, and hard-drives.

Why are Reed-Solomon codes still so popular? One important reason is because they are optimal
codes. But they do have one downside: Reed-Solomon codes require a large alphabet size. In a
way, that is unavoidable; as we saw in Notes 4, any code that achieves the Singleton bound must
be defined over a large alphabet.

The large alphabet brings to the fore an important issue: if we operate on bits, how do we convert
the codewords over the large field in the binary alphabet? There is one obvious method. Say, for
example, that we have a code defined over Fos6. Then we can write an element in this field as an
8-bit vector.

More precisely: if we have a message that corresponds to the polynomial p(X) in F[X], its encoding
in the Reed-Solomon code is the set of values p(a1),p(a2), ..., p(am,). We can simply express these
values in a binary alphabet with log|F| bits each. So provided that the Reed-Solomon code is
defined over a field that is an extension field of Fo, then this simple transformation yields a code
over [Fo. In fact, there is way to represent field elements as bit vectors so that the resulting code is
a binary linear code.

This method is in fact what is done in practice. But then it leads to the natural question: What
are the error correction capabilities of the resulting binary code?

Let’s look at an example: say we have a Reed-Solomon code with n = 256 and k = 230. The distance
of this code is d = 27, so the code can correct 13 errors. The transformation to a binary code yields
a binary code where n’ = 256 - 8 and k' = 230 - 8, since all we have done in the transformation
is scale everything. And at worst the distance of the resulting binary code is d’ > d = 27, so the
binary code can also correct at least 13 errors.

Let us now generalize the example. If we have a [N, K, D]p code where |F| = N and N is a power
of 2, then the transformation described above yields a [N log N, K log N, D']5 binary linear code,
where D’ > D. Writing n = N log N and considering the case where K = N —D+1, we observe that
the transformation of a Reed-Solomon code to a binary code results in a [n,n— (D —1)log N, > D],
code.

The resulting binary code has a decent rate, but it is not optimal: BCH codes are even better, as
they are [n,n — [2:1]log(n + 1), > D]y codes. BCH codes are very interesting in their own right,
and we will examine them in the next section. But first we return to the question that we posed at



the beginning of this section: why are Reed-Solomon codes still so popular? If BCH codes have the
same distance guarantees as Reed-Solomon codes and a better rate, one would expect these codes
to have completely replaced Reed-Solomon codes.

The main reason that Reed-Solomon are still frequently used is that in many applications — and in
particular in storage device applications — errors often occur in bursts. Reed-Solomon codes have
the nice property that bursts of consecutive errors affect bits that correspond to a much smaller
number of elements in the field on which the Reed-Solomon code is defined. For example, if a binary
code constructed from the RSp,.,[256, 230] code is hit with 30 consecutive errors, these errors affect
at most 5 elements in the field Fo54 and this error is easily corrected.

2 BCH codes

BCH codes were discovered by independently by Bose and Ray-Chaudhuri [1] and by Hocquenghem [3]
in the late 1950s. As we saw in the previous section, BCH codes have better rate than binary codes
constructed from Reed-Solomon codes. In fact, as we will see later in the section, the rate of BCH
codes is optimal, up to lower order terms.

BCH codes can be defined over any field, but for today’s lecture we will focus on binary BCH codes:

Definition 4 (Binary BCH codes) For a length n = 2™ — 1, a distance D, and a primitive
element o € F5,., we define the binary BCH code

BCH[n,D] = {(Co, R ,cn_l) € an ’ C(X) =co+ca X+ + Cn_anfl

satisfies c(a) = c¢(a®) = - = (a1 =0}.

This definition should look familiar: it is almost exactly the same as the alternative characterization
of Reed-Solomon codes in Theorem 3. There is one important difference: in Theorem 3, the
coefficients ¢y, ...,cp—1 could take any value in the extension field, whereas here we restrict the
coefficients to take values only from the base field (i.e., the coefficients each take values from Fy
instead of Fom).

The BCH codes form linear spaces. The definition gives the parity-check view of the linear space,
as it defines the constraints over the elements. The constraint c¢(o) = 0 is a constraint over the
extension field Fom, but it can also be viewed as a set of m linear constraints over Fs.

The last statement deserves some justification. That each constraint over Fom corresponds to m
constraints over s is clear from the vector space view of extension fields. That the resulting
constraints are linear is not as obvious but follows from the argument below.

Consider the (multiplication) transformation Mult, :  +— az defined on Fom. This map is Fo-
linear, since a(x + y) = ax + ay. Using the additive vector space structure of Fom, we can pick a
basis {1 = 1,02, . .., Bm} C Fam of Fam over F, and represent each element x € Fam as the (column)
vector (z1,2,...,2m)" € F* where = z161 + 2202 + - - + T fm. The Fa-linear multiplication
map Mult, then corresponds to a linear transformation of this vector representation, mapping
x = (x1,... ,mm)T to M,z for a matrix M, € Iﬁ‘g”m. And the coefficients ¢; € Fy correspond
to vectors (c;,0,...,0)7 € F* so the constraint c(a) = cg + c1a + caa® + -+ + 10" L = 0 is



equivalent to the constraint

Co C1 Cn—1 0

0 0 L 0 0
+My | |+ M ) =1.1,

0 0 0 0

which yields m linear constraints over Fs.

2.1 Parameters of BCH codes

The block length of the BCH[n, D] code is n, and its distance is at least D. The latter statement
is seen most easily by noting that the BCH code is a subcode of Reed-Solomon codes (i.e., the
codewords of the BCH code form a subset of the codewords of the corresponding Reed-Solomon
code), so the distance of the BCH code is bounded below by the distance of the Reed-Solomon
code.

The dimension of the BCH[n, D] code is a bit more interesting. The dimension of the code is at
least n — (D — 1) log(n + 1), since in our definition we have D — 1 constraints on the extension field
that each generate m = log(n+ 1) constraints in the base field. But this bound on the dimension is
not useful: it is (almost) identical to the dimension of Reed-Solomon codes converted to the binary
alphabet (for a similar distance and block length), so if this bound were tight we would have no
reason for studying BCH codes. This bound, however, can be tightened, as the following more
careful analysis shows.

Lemma 5 For a length n =2™ — 1 and a distance D, the dimension of the BCH[n, D] code is at
least n — [2:1] log(n +1).

PROOF: In order to establish the tighter bound on the dimension of BCH codes, we want to show
that some of the constraints in Definition 4 are redundant. We do so by showing that for any
polynomial ¢(X) € Fo[X] and any element v € Fy, if we have ¢(y) = 0, then we must also have
c(v?) = 0. We establish this fact below.

Let ¢(X) € Fo[X] and vy € Fy be such that c(y) = 0. Then we also have ¢(v)? = 0, so
(co+ary+ey’ +- -+ ey ) =0.

For any two elements «, 3 € Fom, (a + 3)% = a? + 2, so ¢(y) = 0 also implies

2+ @)+ ()2 + 4 (1™ H? = 0
< Cg + 61272 + 622(72)2 + ce + 05_1("}/2)’”_1 e 0
Since the coefficients cg, c1, ..., c,—1 are in Fa, ¢ = ¢; for alli = 0,1,...,n—1. Therefore, ¢(y) =0

implies that

2

co+ery:+ (V) 4 e (Y =e(?) =0,

which is what we wanted to show.



To complete the proof, we now observe that the fact we just proved implies that the constraints
c(a¥) =0forj =1,2,..., L%J are all redundant (and implies by c(a?) = 0); we can remove
these constraints from the definition without changing the set of codewords in a BCH code. Doing

this operation leaves [%]m = [%1 log(n + 1) constraints. [J

Remark 6 The bound in Lemma 5 is asymptotically tight; the 2 can not be improved to 2 — € for
any € > 0.

The asymptotic tightness of the bound in Lemma 5 follows from the Hamming bound.

2.2 Alternative characterization

Another interpretation of the BCH[n, D] code is that it is equivalent to taking the definition of
Reed-Solomon codes, and modifying it to keep only the polynomials where all the evaluations lie
in the base field. In fact, this interpretation leads to the following corollary to Theorem 3. The
proof follows immediately from Theorem 3 and Definition 4 of BCH codes.

Corollary 7 BCH codes are subfield subcodes of Reed-Solomon codes. Specifically,

BCH[n, D] = RS]F,F* [n, n—D+ 1] NEFy.

An important implication of Corollary 7 is that any decoder for Reed-Solomon codes also yields a
decoder for BCH codes. Therefore, in later lectures, we will only concentrate on devising efficient
algorithms for decoding Reed-Solomon codes; those same algorithms will immediately also give us
efficient decoding of BCH codes.

2.3 Analysis and applications

Just like Hamming codes, BCH codes have a very good rate but are only useful when we require a
code with small distance (in this case, BCH codes are only useful when D < @) In fact, there
is a much closer connection between Hamming codes and BCH codes:

Exercise 2 For n = 2™ — 1, show that the BCH[n, 3] code is the same (after perhaps some coor-
dinate permutation) as the Hamming code [2™ — 1,2 — 1 — m, 3]a.

As we mentioned above, we are not particularly interested in BCH codes from an algorithmic point
of view, since efficient decoding of Reed-Solomon codes also implies efficient decoding of BCH codes.
But there are some applications where the improved bound in the dimension of BCH code is crucial.

In particular, one interesting application of BCH codes is in the generation of k-wise independent
distributions. A distribution over n-bit strings is k-wise independent if the strings generated by this
distribution look completely random if you look only at k positions of the strings. The simplest way
to generate a k-wise independent distribution is to generate strings by the uniform distribution.
But this method requires a sample space with 2" points. Using BCH codes, it is possible to generate
k-wise independent distributions with a sample space of only = nk/2 points.



3 Reed-Muller codes

The BCH codes we introduced were a generalization of Hamming codes. We now generalize the
dual of Hamming codes — Hadamard codes. The result is another old family of algebraic codes
called Reed-Muller codes. We saw in Notes 1 that Hadamard codes were related to first-order
Reed-Muller codes; we now obtain the full class of Reed-Muller codes by considering polynomials
of larger degree.

Reed-Muller codes were first introduced by Muller in 1954 [4]. Shortly afterwards, Reed provided
the first efficient decoding algorithm for these codes [5]. Originally, only binary Reed-Muller codes
were considered, but we will describe the codes in the more general case. The non-binary setting
is particularly important: in many applications of codes in computational complexity, Reed-Muller
codes over non-binary fields have been used to obtain results that we are still unable to achieve with
any other family of codes. We saw one such example, of hardness amplification using Reed-Muller
codes, in the Introduction to Computational Complexity class last year.

Definition 8 (Reed-Muller codes) Given a field size q, a number m of variables, and a total
degree bound r, the RMy[m,r] code is the linear code over Fy defined by the encoding map

f(X17 s 7Xm) - <f(a)> |oz€]Fl;ﬂ

applies to the domain of all polynomials in Fy[X1, Xo,...,Xy,] of total degree deg(f) < r.

Reed-Muller codes form a strict generalization of Reed-Solomon codes: the latter were defined
based on univariate polynomials, while we now consider polynomials over many variables.

There is one term in the definition of Reed-Muller codes that we have not yet defined formally: the
total degree of polynomials. We do so now: the total degree of the monomial X lleQkQ D LT
k14 ko + -+ - + kp,, and the total degree of a polynomial is the maximum total degree over all its
monomials that have a nonzero coefficient.

3.1 Properties of the code

The block length of the RM,[m, r| code is ¢™, and the dimension of the code is the number of
polynomials in F,[X7, Xo, ..., X,] of degree at most r.

When ¢ = 2, the size of the RMa[m, r] can be computed explicitly: there are () 4 (1) +---+ ()
(=~ m") such polynomials.

In general, for any g > 2 the number of polynomials on m variables of total degree at most r is

When ¢ > 2 this count does not have a simple expression.

As with Reed-Solomon codes, the interesting parameter of Reed-Muller codes is their distance.
To compute the distance parameter, we look for the minimum number of zeros of any non-zero



polynomial. Since a? = « for a € I, when considering m-variate polynomials over F, which will
be evaluated at points in Fg*, we can restrict the degree in each variable X; to be at most ¢—1. The
distance property of Reed-Solomon codes was a consequence of the following fundamental result: a
non-zero univariate polynomial of degree at most d over a field has at most d roots. The Schwartz-
Zippel Lemma extends the degree mantra to give a bound on the number of roots of multi-variate
polynomials.

Theorem 9 (Number of zeroes of multivariate polynomials) Let f € F,[X1,...,X] # 0
be a polynomial of total degree r, with the maximum individual degree in the X;’s bounded by q — 1.
Then

Pr [f(a) # 0] > q%<1_g>

aeF;ﬂ

where r =a(q—1)+b,0<b<qg—1.

The proof of the Schwartz-Zippel Lemma follows from two slightly simpler lemmas. The first lemma
provides a good bound on the number of roots of a multi-variate polynomial when its total degree
is smaller than the degree of the underlying field.

Lemma 10 (Schwartz [7]) Let f € F,[X1,..., Xy] be a non-zero polynomial of total degree at
most £ < q. Then
Pr [f(a,...,am)=0] <

(alym:am)E]qu

Qs

PRrOOF: The proof of Lemma 10 is by induction on the number of variables in the polynomial.
In the base case, when f is a univariate polynomial, the lemma follows directly from the degree
mantra.

For the inductive step, consider the decomposition
F(X1, 0 X)) = X0 g( Xy, Xg) + -
+ X g1(X1, o, Xone1) + 90( X1, o0, Xino1)

where d,, is the degree of f in X,,,. Then g,, is a non-zero polynomial of total degree at most
{ — d,,. By the induction hypothesis,

{—d
Pr [gm (a1, ..., am—1) = 0] < . (2)
(al,...,am_l)EFg"71 q
Also, when g, (ai,...,m-1) # 0, then f(au,...,am—1,X;n) is a non-zero univariate polynomial
of degree at most d,,, so we have
d
Pr [f(a17"‘7am):0|gm<a17"'7am—1)7é0]Sﬂ (3)
(10,0 ) EF q
Therefore,
Pr [f(al,...,am) :0] < Pr [gm(ala'--)amfl) :0]
(al,...,am)eﬂ“(;" (Oz1,...,0¢m_1)€qu71

+ Pr [flar,...,am) =0 gm(aa,...,cm—1) # 0]

(0417~--,04m)€]qu
ol
q q q




O

Remark 11 A version of Lemma 10 can also be stated for infinite fields (or integral domains).
Specifically, the same proof shows that for any field F and any subset S C F, the probability that
a non-zero polynomial of total degree £ is zero is at most %‘ when the values of the variables are
chosen independently and uniformly at random from S.

In many computer science applications, the field size ¢ is very large, and the bound of Lemma 10
is sufficient. As a result, that lemma is often presented as the Schwartz-Zippel Lemma. For our
analysis of Reed-Muller codes, however, we also need to bound the probability that a multi-variate
polynomial is zero when the degree of the underlying field is small. The following lemma gives us
a good bound in this setting.

Lemma 12 (Zippel [8]) Let f € Fy[Xy,..., Xy] be a non-zero polynomial with mazimum degree
degy, (f) <d; fori=1,...,m. Then

Pr [f(a,...,am) #0] >

[T (g — di)
(a1,...am)EF qm
PRrROOF: We again proceed with a proof by induction on the number of variables. When f is
univariate, the lemma follows since a degree d polynomial has at most d zeroes.

For the inductive step, consider again the decomposition
F(X1se o Xin) = X0 (X1, oo, Xint) 4+
+ Xm g1 (X1, Xin1) + 90(Xa, .o, X))

The decomposition say that we can think of the (multi-variate) polynomial f as a univariate
polynomial in Fy[X7, ..., X;,—1][Xp]. That is, f can be viewed as a polynomial on the variable X,
with coefficients coming from K = Fy(Xy,..., X;,—1), the field of rational functions in variables
X1,Xo,...,X,,—1. By the degree mantra for univariate polynomials, we get that there are at most
d, values § € K for which f(X1, Xs,..., X;n—-1,8) = 0 (in the field K). Thus there are certainly at
least ¢ — d, values a € F; that can be assigned to X,,, such that f(Xi,...,X,,—1, ) is a non-zero
polynomial (on m — 1 variables). Applying the induction hypothesis to this polynomial completes
the proof of the lemma. [J

To complete the proof of Theorem 9, we can apply Lemma 12 repeatedly to a polynomial, removing
one variable at a time, until the total degree ¢ of the polynomial on the remaining variables satisfies
{ < g, and then we can apply Lemma 10. We leave the details of the proof to the reader.

It is reasonable to ask if the bound of Theorem 9 could be improved. In general, it can’t. Consider
the polynomial

FX o Xe) =[] [] Xi-e) ] (Kes1-8)

i=1 a€F} BELB1,-..,B}CF2

The polynomial f(X1,...,X,t1) has total degree r = a(q — 1) + b and maximum degree q — 1.
The value of f(Xi,...,Xq+1) is non-zero only when X; = -+ = X, =0 and X,41 € {01,..., 0}
The first condition is satisfied with probability q% and the second with probability (1 — g). So the
bound of Theorem 9 is tight.



4 Reed-Muller codes

We can now use the Schwartz-Zippel Lemma to establish the distance parameter of binary Reed-
Muller codes.

Recall that the RM(m, r) binary Reed-Muller code is defined by
RM(m,r) = {<f(a)>aeF2m | f has total degree < r}.

The block length of this code is n = 2™, and the dimension of this code is

(50 ()

which is can be roughly approximated by k ~ m".

Applying Theorem 9 (or Lemma 12) to ¢ = 2, we can conclude that the distance of RM(m,r) is at
least 2™~". We will reprove with a more specialized argument and also show that the distance is
exactly 27",

4.1 Decoding Reed-Muller codes

The Reed-Muller codes were first introduced by Muller in 1954 [4]. Muller showed that the family
of codes he introduced had good distance parameters, but he did not study the problem of decoding
these codes efficiently.

The naive method of decoding the RM(m, r) code is to enumerate all the codewords, compute their
distance to the received word and to output the one with the minimum distance. This algorithm
runs in time 28 ~ 2m" = 2(°8")" " The running time of the naive decoding algorithm is therefore
quasi-polynomial (but not polynomial!) in the block length n.

Reed introduced the first efficient algorithm for decoding Reed-Muller codes [5] shortly after the
codes were introduced by Muller. Reed’s algorithm also corrects up to half the minimum distance
(i.e., up to 2™~"~1 — 1 errors) and further runs in time polynomial in the block length n.

We will not cover Reed’s decoding algorithm for Reed-Muller codes in this class. At a very high
level, the idea of the algorithm is to apply a majority logic decoding scheme. The algorithm was
covered in previous iterations of this class; interested readers are encouraged to consult those notes
for more details on the algorithm.

4.2 Distance of Reed-Muller codes

Let us now give a self-contained argument proving that the distance of the RM(m, ) code is 2™~ ".

We begin by showing that the distance of binary Reed-Muller codes is at most 2™~". Since Reed-
Muller codes are linear codes, we can do so by exhibiting a non-zero codeword of RM(m,r) with
weight 27", Consider the polynomial

F(X1, o Xm) = X1 Xa - X,

10



The polynomial f € Fo[ X1, ..., X,,] is a non-zero polynomial of degree r, and clearly f(a, ..., o) #
0 only when ay = a9 = --- = a, = 1. There are 2™~" choices of a € FJ" that satisfy this condition,

50 Wh({f(0))gerp) = 27

Let us now show that the distance of binary Reed-Muller codes is at least 2"~ by showing that the
weight of any non-zero codewords in RM(m, r) is at least 2"~". Consider any non-zero polynomial
f(X1,..., X)) of total degree at most r. We can write f as

f(Xla"'aXm):X1X2"'Xs+g(X17"'7Xm)

where X1 Xs -+ X, is a maximum degree term in f and s < r. Consider any assignment of values
to the variables X 11,..., X,,. After this assignment, the resulting polynomial on Xi,..., X is a
non-zero polynomial, since the term X; X5 --- X cannot be cancelled. Therefore, for each of the
2™~5 possible assignment of values to the variables Xsi1,..., X, the resulting polynomial is a
non-zero polynomial.

When you have a non-zero polynomial, then there is always at least one assignment of values
to its variables such that the polynomial does not evaluate to 0. Therefore, for each assignment
Qst1,-- -,y to the variables X1, ..., X, there exists at least one assignment of values aq, . .., as
to X1,..., Xs such that f(aq,...,an) # 0. This implies that Wt((f(()[)>a€]F2m) =2m78 > 2mTT,

In summary, when the maximum degree r is constant, binary Reed-Muller codes have good distance,
but a poor rate (= m"2™" — 0 for large m). Increasing the parameter r increases the rate of the
code but also decreases the distance of the code at a faster pace. So there is no setting of r that
yields a code with constant rate and constant distance.

In the following section, we introduce a family of binary codes that can be constructed efficiently
and has both a good rate and a good distance simultaneously.

5 Concatenated codes

Concatenated codes were introduced by Forney in his doctoral thesis in 1966 [2]. In fact, Forney
proved many wonderful properties about these codes; in this lecture we only give a brief overview
of the definitions and key properties of concatenated codes.

The starting point in our search for binary codes with good rate and good distance is the idea
that we have already seen codes with good rate and good distance when we have large alphabets:
the distance of Reed-Solomon codes meets the Singleton bound, so they in fact are optimal codes.
So let’s start with Reed-Solomon codes and see if we can use them to construct a family of good
binary codes.

We already saw in the last lecture a simple transformation for converting Reed-Solomon codes to
binary codes. In this transformation, we started with a polynomial f of degree k — 1 and evaluated
it over a, . .., @y, to obtain the values f(a1), ..., f(am) € Fom. We then encoded each of the values
f(a;) in the binary alphabet with m bits.

The binary code obtained with the simple transformation has block length N = nm and distance
D >d=n—k+ 1. This distance is not very good, since the lower bound on the relative distance

% > ”;7];:1 is quite weak. Still, the lower bound D > d follows from a very simple analysis; one
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may hope that a better bound — ideally of the form D > Q(dm) — might be obtained with a more
sophisticated analysis or by applying some neat trick (like, say, by encoding the bits in some clever
basis). Unfortunately, that hope is not realizable: there is a nearly tight upper bound showing that
with the simple transformation, the distance of the resulting binary code is at most D < 2d.

So if we hope to obtain a binary code with good distance from the Reed-Solomon code, we need
to introduce a new idea to the transformation. One promising idea is to look closely at the step
where we took the values from the field Fom and encoded them with m bits in the binary alphabet:
instead of using the minimum number of bits to encode those elements in the binary alphabet, we
could use more bits — say 2m bits — and use an encoding that adds more distance to the final code.
That is indeed the idea used to obtain concatenated codes.

5.1 Binary concatenated codes

The concatenated code C' = Coyt ©Cip, is defined by two codes. The outer code Coy C X' converts
the input message to a codeword over a large alphabet 3, and the inner code Cj, C ¥3? is a much
smaller code that converts symbols from 3; to codewords over 9. When X9 = {0, 1}, the code C
is a binary concatenated code.

’ | Cou ‘
[ a | [ e |
l ¢ l o | G
Cin(c))|  |Cinlea)] -+ [Clnlcn)

Figure 1: Binary concatenated codes.

A key observation in the definition of concatenated codes is that the inner code Cj, is a small code,
in the sense that it only needs one codeword for each symbol in ;. The size of the alphabet ¥4
is (typically) much smaller than the total number of codewords encoded by C, and will let us do a
brute-force search for good inner codes in our construction of good concatenated codes. But first,
let us examine the rate and distance parameters of general concatenated codes.

5.2 Facts of concatenated codes

The rate of the concatenated code C' = Cyyt © Cyp, i

log |[Cout|  log |Cout log | %]

R(C) = = )
() ninglog |¥a|  nylog|X1| molog|Xs|

- R(Cout) : R(Czn)7

where the last equality uses the fact that |Ci,| = |Z1].

The simple transformation of Reed-Solomon codes to binary codes used an inner code Cj, with
rate 1 (which did not add any redundancy). The rate equation R(C) = R(Cout) - R(Ciy) says that
we can replace the trivial inner code with any other code and incur a rate cost proportional to the
rate of Cj,.
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Let’s now look at the distance of concatenated code. We do not get an exact formula for the
distance of these codes, but a simple argument does give us a lower bound that will be sufficient
to construct concatenated codes with good distance:

Proposition 13 The distance of the concatenated code C' = Cpyr © Cypy satisfies

A(C) > A(Cout) - A(Cip).

PROOF: Let x and y be two distinct messages. The distance property of the outer code guarantees
that the encodings Cyyui(2) and Coyye(y) will differ in at least A(Cyyt) symbols. For each of the
symbols where they differ, then the inner code will encode the symbols into codewords that differ
in at least A(Cj,) places. O

The lower bound of Proposition 13 is not tight, and in general the distance of concatenated codes
can be much larger. This may seem counter-intuitive at first: at the outer level, we can certainly
have two codewords that differ in only A(Cl,:) places, and at the inner level we can also have two
different symbols in ¥; whose encodings under Cj, differ in only A(Cj,) places. But the two events
are not necessarily independent — it could be that when there are two codewords at the outer level
that differ at only A(Cyyt) symbols, then they must differ in a pattern that the inner code can take
advantage of so that for those cases, the inner code does much better than its worst case.

In fact, a probabilistic argument shows that when the outer code is a Reed-Solomon code and
the inner codes are “random projections” obtained by mapping the symbols of »; to codewords
in Yo with independently chosen random bases, then the resulting concatenated code reaches the
Gilbert-Varshamov bound with high probability. (And thus has distance much larger than the
lower bound suggested by Proposition 13.) This construction is randomized; it is an interesting
problem to give a family of explicit codes for which the inequality of Proposition 13 is far from
tight. (There are some codes called multilevel concatenated codes where the Zyablov bound can be
improved, but this still falls well short of the GV bound.)

5.3 Constructing good concatenated codes

In this section, we construct a family of binary concatenated codes with good rate and good
distance. Fix 0 < R < 1 to be our target rate. We will build a code with rate R and distance as
large as possible.

For our construction, take Cyy = [n,k,n — k + 1]am to be the Reed-Solomon code with block
length n = 2. The rate of this outer code is R,y = % and the relative distance of this code is
Oout = "771”1 > 1 — Rout- Take Cy, to be a binary linear code with parameters [, m, d]2, so that
the rate of the inner code is R(Cj,) = r. The rate of the concatenated code C = Cyyt © Cjpy i
R = Rout -7, 80 Royt = g.
We now have a partial construction. The outer code is the Reed-Solomon code, which we know is
optimal so we’re done with this part of the construction. The inner code, however, is not yet defined:
we have only specified that we want Cj;, to be a linear code with rate r. For our concatenated code
C to have good distance, we want the distance of Cj;, to be as large as possible.
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The asymptotic Gilbert-Varshamov bound guarantees that there exists a linear code C;, with rate
r > 1 — h(d;n). Rearranging the terms, this means that there is a code with rate r and distance
Sin > h™1(1 — 7). So if we find an inner code that matches this distance bound, we obtain a
concatenated code C' with distance

§(C) > out * 6in > (1= Rowe) -h (1 —7) = (1= &) - n71(1 - 7).

The question remains: how can we find an inner code Cj, with minimum distance &;, > h~(1—7)?
Since Oy, is a small code, so we can do a brute force search over the linear codes to find one with
large distance.

We have to be a little careful in the algorithm that we use to search for Cj,. A naive searching
algorithm simply enumerates all the possible generator matrices for Cj, and checks the distance of
each corresponding code. But there are 2m*™/" = plog(n)/r hogsible generator matrices G, so this
search does not run in time polynomial in the block length of the code.

There is a more efficient algorithm for finding an inner code Cj, with minimum distance d. The
algorithm uses the greedy method to build a parity check matrix H such that every set of d — 1
columns in H is linearly independent: Enumerate all the possible columns. If the current column
is not contained by the linear span of any d — 2 columns already in H, add it to H.

The greedy algorithm examines 2™/7~™ = n1/7=1 columns, and as long as 2™/7~™ > Z?:_OQ (";1),
the process is also guaranteed to find a parity-check matrix H of distance d. So this method can
be used to find a linear code that meets the Gilbert-Varshamov bound in time polynomial in the

block length.

This completes our construction of a binary concatenated code with good rate and good distance. In
the next section, we examine the best rate-distance trade-off obtained by optimizing the parameters
of the concatenated code. But first, we mention one more useful property of the code we have
constructed: it is a linear code.

Exercise 3 Prove that the concatenated code C' is linear over Fq.

5.4 Zyablov radius

In our construction of good concatenated codes, we are free to set the rate r of the inner code.
Optimizing the value of  over all the choices that guarantee an overall rate of R for the concatenated
code yields the following result.

Theorem 14 Let R € (0,1). Then it is possible to efficiently construct a code of rate R and
distance

5Zyablov(R) = RH<I?§1(1 — g)h_l(l _ ,r)‘

The function dzyapien is called the Zyablov trade-off curve, or sometimes the Zyablov bound, and

is named after Zyablov, who first observed it in 1971 [9]. For any value of R € (0,1), the value of
0 Zyablov(R) is bounded away from 0, so we get the following corollary.

14



Corollary 15 Asymptotically good codes of any desired rate R € (0,1) can be constructed in poly-
nomial time.

So how good is the resulting bound? Quite a bit weaker than the Gilbert-Varshamov bound, as
the figure shows.

Zyablov and Gilbert-Varshamov bounds
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Another aspect of our construction of concatenated codes that is somewhat unsatisfactory is that
whilt it it is constructed in polynomial time, it involves brute-force search for a code of logarithmic
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block length. It would be nice to have an explicit formula or description of how the code looks like.
From a complexity view point, we might want a linear code the entries of whose generator matrix
we can compute in polylogarithmic time.

In the next lecture, we will see an asymptotically code that is constructedexplicitly without any
brute-force search of smaller codes, and which further achievs the Zyablov trade-off between rate
and relative distance for rates more than 0.31.
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1 Review - Concatenated codes and Zyablov’s tradeoff

In the last class we saw (Theorem 14) that it is possible to efficiently construct an (asymptotically
good) concatenated code of rate R with distance meeting the Zyablov trade-off between relative
distance § and rate R:

Ry
0zyablov () = Rnglfél(l - ?)h (1-r) (1)
Given a specified rate target R, the construction involved a brute force search for the inner code
Cin of rate r that met the Gilbert-Varshamov bound and had relative distance h~1(1 — r). Once
such an inner code was found, it was used to encode each symbol of the outer Reed-Solomon code.

This use of a search step left open the question of constructing fully explicit codes, with no brute-
force search for a smaller code, with similar trade-offs.

2 Justesen’s code

Justesen [9] provided an explicit concatenated code construction that achieved the Zyablov tradeoff
over a range of rates (approximately rates R > .31) and was aymptotically good for any desired
rate R € (0,1). The construction was based on the following insights:

1. A inner codes Cz-in do not have to be the same

2. Tt is sufficient if most (a fraction 1 — o(1)) of the inner codes meet the Gilbert-Varshamov
bound.

How can we exploit these insights 7 We fix the outer code Cyy; as the [n =2™ — 1, k,n — k + 1]om
Reed Solomon code RSy p+[n, k] over the field F = Fam. Each symbol in the resulting code can be
mapped (bijectively) into a binary sequence of length m using an Fo-linear map o : Fom — F3".
We code each sequence i (for i = 1,...,n) with a different binary rate half inner code C¢,. That is
each C! maps the binary sequence of length m to a binary sequence of length 2m. Suppose that
most (at least (1 — o(1))n) of the inner codes C?, have a relative distance &; > d,.

This concatenated code has rate g = % and relative distance at least (1 — 2R — o(1))d4. If most

of the inner codes (almost) meet the GV bound for rate 1/2 codes, so that

5y = dav(1/2) —o(1) = h~1(1/2) — o(1) , (2)



then the overall code has relative distance given by

§(R) = (1 -2R)h™1(1/2) — 0(1) . (3)

In the Exercise 1 below, we will construct a family of codes such that all but a small fraction of
them asymptotically meet the GV bound.

Exercise 1 Show that there is a family F of [2m,m|y binary linear codes such that the following
hold

1. |F|l=2m-1

2. Most of the codes C € F have relative distance at least h=(1/2) — o(1)
(Hint: Consider the code family from HW 1, Question 5.b. For o € Fom, a # 0, consider the map

Lo : F' — F2™ defined as
La(x) = (x;0(a e 07! (x))) (4)

and the family of codes F = {Lqy : o # 0}. We showed that there exist codes in this family that
asymptotically meet the GV bound. The same argument can actually show that this is true for most
codes in the family.)

Using these codes as the different inner codes C’fn’s with outer code RSy g+ [n, k] gives us the following
result:

Lemma 1 There are explicit binary linear codes of rate R < 1/2 and relative distance

(1 — 2R (5) —o(1) (5)

Remark 2 In the above concatenated code, the message is a polynomial f € Fom|[X] of degree at
most k — 1 and it is encoded by the evaluations of both f(X) and X f(X) at the nonzero elements
of the field, which are then expressed as elements of 3" as per some basis.

We see that the above only gives codes of overall rate less than 1/2 (since the inner code itself
has rate only 1/2). For larger rates we modify the construction in Exercise 1 to construct a small
family of codes of any desired rate r € (1/2,1) that meet the GV bound.

Exercise 2 For any 1 < s < m, show that there is a family F of [m + s, mla binary linear codes
such that the following hold

1. |Fl=2m—1

2. Most of the codes C € F have relative distance at least h='(s/(m + s)) — o(1)



(Hlnt Modify the code family from FExercise 1 as follows. Define o " Fom — F3 such that
o (x) = first s bits of o(x). For a € Fom, o # 0, consider the map L Fm — FJ"" defined as

(a0 07! (x))) (6)

Lo(x) = (x;0'
and the family of codes F = {L/a fa# 0}. Use volume arguments to show that most codes in this

family have relative distance > h™1(=2-) — o(1).

s+m

By concatenating the outer Reed-Solomon code of length 2™ — 1 with all the different codes in the
above family, we get the following;:

Theorem 3 For any R € (0,1), there are explicit binary lineat codes of rate at least R and relative
distance at least

R _
5Justesen(R) = > ma(% R)(l - ?)h 1(1 - T) - 0(1) (7)
r>max(z,

We compare the two bounds constructive results: the Zyablov tradeoff (Eq. 1) and the explicit
construction Justesen tradeoff (Eq. 7) in the figure below.

T T T
Zyablov tradeoff |/
— — —Justesen tradeoft

03

L) e U ............. ............. o .............. ............. ............. ............. ............. _

01 o ............ ............. .............. ............. ............. ............. ............. ............. _

008 Lnsamewmsis ............. ........... R ............. ............. ............. ............. ............. _
. —
0.8 09 1



Exercise 3 Show that the 0zyabion(R) =  justesen(R) for R > .31.

Hint: Differentiating the expression (1 — R/r)h=Y(1 —r) w.r.t r, one finds that the r mazimizing
this expression (and thus leading to the Zyablov trade-off in (1)) satisfies

T'2

R = .
1+1logy (1 —h=H1—71))

For R > 0.31, the solution r to the above equation lies in the range [1/2,1], and thus the Zyablov
bound can be met by the Justesen construction.

2.1 Meeting the Zyablov trade-off at lower rates

The Justesen construction in the previous section used a good ensemble of codes of rate r = % for
the inner code, with the size of the ensemble |F| < 2™. The reason that the same construction
does not work for rates R < .31 is that we do not know small enough inner code ensembles with
rate r < % where most of the codes are meet the GV bound.

For example, for R ~ 0.15, the optimal choice of the inner rate r in the Zyablov bound is ~ 1/3.
Consider the following map, similar to the ones used in Exercises 1 and 2,

Lay (%) = (x;0(a1 8 071 (x));0(02 0 071 (x))) (8)

and the family of codes defined by this map for all pairs of nonzero field elements a1, as. One can
show, via a similar counting argumemt, that this is a family of at most 22 codes where most of
the codes meet the GV bound and have relative distance § = h~'(2) — o(1).

To use these rate 1/3 codes in a Justesen-like construction, we need an outer code over alphabet
Fym that has block length about 22, and which nearly meets the Singleton bound. Reed-Solomon
codes are limited to a block length of 2™ and thus are not long enough. The solution around
this predicament is provided by algebraic-geometric (AG) codes. As we briefly mentioned earlier,
AG codes over F, are a generalization of RS curves based on evaluation of functions with few
“poles” at the rational points of an appropriately chosen algebraic curve which has > ¢ points
with coordinates in F,. Shen [12] proposed an explicit family of AG codes over F, which can have
block length at least ¢¢ for any desired ¢, and whose relative distance as a function of the rate R is
1 — R —o04(1). Using these codes as outer codes in place of RS codes and the appropriate extension
of the above rate 1/3 code ensemble in a Justesen-like construction, he was able to give an explicit
construction achieving the Zyablov trade-off for the entire range of rates R € (0, 1). Discussing the
details of these AG codes are beyond the scope of this course, and the interested reader can find
the details in the original paper [12].

3 Decoding algorithms

We now turn to algorithmic aspects of error-correction. We first consider the (relatively benign)
erasure channel and then move on to channels that arbitrarily corrupt a constant fraction of the
transmitted codeword symbols. We will see that Reed-Solomon codes admit efficient decoding
algorithms matching the combinatorial bounds possible by virtue of its minimum distance.



3.1 Erasure decoding of linear codes

Consider a [n, k, d], code with message € IF"qC and corresponding codeword y = Gz € Fy. Suppose
a subset S C {1,...,n} is received (uncorrupted) and the rest of the positions are erased. The
location of the erasures are known at the receiving end. Decoding the message involves solving the
linear system

Gsl‘ =1Ys (9)

We reorder the indices so that the first |S| entries in y are the uncorrupted entries, resulting in the
following matrix system,

Gs ys
r | = (10)

Gg Vs

As long as the rank of Gg is k, the solution to Ggx = yg is uniquely determined. When the number
of erasures is less than d, i.e., |S| > n — d, the distance property of the code implies that Gg has
full rank. Thus one can correct any pattern of d — 1 or fewer erasures by solving the linear system
Gsz = ys in O(n?) time. However, specific structured G matrices can allow much faster solution of
the linear system (even linear time in certain cases as we will see later on when discussing expander
codes), leading to faster erasure recovery algorithms.

3.2 Erasure decoding of Reed Solomon Codes

We recall the interpretation of Reed Solomon codes from the previous lecture,

Definition 4 Reed-Solomon codes
For integers 1 < k < n, field F of size |F| > n, and a set S = {aq,...,an} C F, we define the
Reed-Solomon code

RSrsin, k] = {(p(a1),...,p(an)) € F"|p € F[X] a polynomial of degree <k —1} (11)
To encode a message m = (mo,...,Mg_1) € F*, we interpret the polynomial as
p(X)=mo+miX +...+mp_ 1 X" 1 € FIX] (12)

Suppose a codeword from a Reed Solomon code is transmitted over an erasure channel and all but
t symbols are erased. Then the decoder must reconstruct the message m from ¢ pairs of values
{(au, f(an)), ..., (cu, f(ar))}. Since the polynomial p(X) is a degree k— 1 polynomial it is uniquely
determined by its value at any ¢ > k points. This can be done using FFTs in nlogo(l) n time or
using polynomial interpolation in O(n?) time. Suppose ¢t = k and nonerased locations correspond
to {on, g, ..., ax}. Note that if we define the polynomials p; for 1 < j <k

k

ST | (13)




the interpolated polynomial is then

k

FX) =" flag)pi(X) - (14)

J=1

The number n — k of erasures corrected by RS codes is optimal, since to have any hope of recovering
the k£ message symbols, one must receive at least k£ symbols at the receiving end.

3.3 Decoding Reed-Solomon codes from errors

We now turn to the more challenging problem of decoding Reed-Solomon codes from worst-case
errors. Specifically, we would like to decode the RS code RS[n, k] up to 7 = L"T_kj errors. (Recall
that the code has distance n — k + 1, so the correct codeword is uniquely determined as the closest
codeword to the received word if up to 7 errors occur.)

Suppose a polynomial f € F,[X] of degree k — 1 is encoded as the RS codeword (f(a1),..., f(an))
and transmitted, but it is received as the noisy word y = (y1,...,yn) satisfying y; # f(«;) for at
most 7 values of i. The goal is to recover the polynomial f(X) from y.

We now discuss an algorithm due to Welch and Berlekamp [15] for solving this problem. (The
streamlined and simplified presentation discussed here is due to Gemmell and Sudan [7].) Note
that if we knew the location of the errors, i.e., the set E = {i | y; # f(a;)}, then the decoding is
easy, as we can erase the erroneous and interpolate the polynomial on the rest of the locations.

To this end, let us define the error locator polynomial (which is unknown to the decoder):

EX) = [ X-a) (15)
flas)#yi

The degree of E(X) is < 7. Clearly E(X) has the property that for 1 < i < n, E(a)y; =
E(a;)f(c;). Define the polynomial

N(X) = E(X)F(X) , (16)
which has degree at most 7 + £ — 1. Now the bivariate polynomial
P(X,)Y)=FEX)Y — N(X) (17)

satisfies P(ay, y;) = 0, Vi. We will use the existence of such a P to find a similar bivariate polynomial
from which we can find f(X).

Formally, the algorithms proceeds in two steps.

Step 1 : Find a non-zero polynomial Q(X,Y") such that,
1. Q(X,Y)=Ei(X)Y — N1 (X)
2. deg By <Ttanddeg N1 <7+k—-1

3. Qay,y;) =0, Vi



Step 2 : Output gigg as f(X)

Proposition 5 A non-zero solution @Q to Step 1 exists.

Proo¥: Take By = B, Ny = N. O

Proposition 6 Any solution (E1, N1) must satisfy % = f.

PRrROOF: Define the polynomial
R(X) = E1(X) f(X) — Ni(X) (18)

Fact 1: deg R <7+ k — 1. This follows immediately from the conditions imposed on the degree
of E1 and Nl.

Fact 2: R has at least n—7 roots. Indeed, for each locations i that is not in error, i.e., f(o;) = y;,
we have R(a;) = Q(ay,y:) = 0.

Using the above two facts, we can conclude that if n — 7 > 7+ k — 1, then R is identically 0, which
means that f(X) = NX)/E1(X). Since 7 = | 2%, this condition on 7 is met, and we conclude
that the algorithm successfully recovers f(X). O

We now argue that the above algorithm can be implemented in polynomial time. Clearly the second
step is easy. For the first interpolation step, note that it can be solved by finding a non-zero solution
to a homogeneous linear system with unknowns being the coefficients of the polynomials Ny, Fq,
and n linear constraints Q(«;,y;) = 0. Since we guaranteed the existence of a nonzero solution,
one can find some nonzero solution by Gaussian elimination in O(n?) field operations.

The interpolation step is really rational function interpolation and near-linear time algorithms are
known for it. Also one can do fast polynomial division in nlogo(l) n field operations. Thus overall
the algorithm can also be implemented in near-linear time.

We conclude by recording the main result concerning decoding RS codes up to half the distance.

Theorem 7 There is a polynomial time decoding algorithm for an [n, k], Reed-Solomon code that

can correct up to ("7_’“} worst-case errors.

Thus, for a given rate R we can correct a % fraction of errors (using RS codes and the above
algorithm) which is the best possible by the Singleton bound. Later in the course we will look at
list decoding algorithms that can improve on these parameters by allowing the decoder to output
a (small) list of candidate codewords.

The primary disadvantage of RS codes are that they are defined over very large alphabets (of size
at least the codeword length). We will soon see efficiently decodable binary codes constructed via
code concatenation. But next we see a different algorithm for decoding RS codes up to half the
distance, which was historically the first such algorithm.



4 Peterson Algorithm for decoding RS codes

The Peterson Algorithm from 1960 [11] is another algorithm to decode Reed Solomon codes up to
half the minimum distance. One interesting feature of its discovery is that it is a non-trivial poly-
nomial time algorithm for a non-trivial problem proposed before polynomial time was formalized
as the theoretical standard for efficient computation!

The Peterson Algorithm works with the parity check view of RS codes which we recall here

Definition 8 (Parity-check characterization) For integers 1 < k < n, a field F of size |F| =
q = n+ 1, a primitive element o € Fy, and the set S = {1,a,02, ..., 0" 1}, the [n,k,n —k + 1],
Reed-Solomon code over F with evaluation set S is given by

RSps[n k] = {(co,c1,.en1) EF|e(X) =co+ X + ...+ cp1Xn
satisfies c(a) = c¢(a®) = ... = c¢(a™ %) = 0}

Suppose a codeword ¢ € RSp g[n, k| is transmitted and an error vector e € F” of Hamming weight

at most
_|n— k
T

is added to ¢, so that it is received as y = ¢+e = (yo, y1,---,Yn—1). The goal is to efficiently recover
¢ (or the polynomial f € F[X] of degree < k that it encodes).

Forl € {1,...,n — k}, we can compute the syndrome

n—1 n—1 n—1
S; = Zyjalj = c(al) + Z ejalj = Zejo/j (19)
=0 =0 =0

since c¢(a!) =0 for 1 <1 <n — k. Let us define the syndrome polynomial S(X)
n—k
S(X) =) gx'-t. (20)
=1

This polynomial and its properties play a key role in the development and analysis of the decoding
algorithm. Note that the syndrome polynomial can be efficiently computed from the received word.

We define T'C {0, 1,...,n — 1} be the set of error locations, i.e., T'= {i | e; # 0}. Define the Error
Locator Polynomial as follows (note that 7" and the error locator polynomial are not known at the
decoder, and computing them is at the heart of the decoding task).

EX)=]]1-dX) (21)

JET

This polynomial is defined so that it has roots exactly at a7 for those indices j where the received
vector y is in error. The degree of E is |T'| < 7.



We now simplify the expression for the syndrome polynomial:

n—k
S(X) = ZS,Xl‘l

_ ZXZ 126]

jGT
= Zejaj ZXl_laJ(l_l)
jET
B Z 1— (adX)nF
B G\ T1oawix
JET
Hence
BE(X)S(X) = (H(1 - an)>S(X) =Y e (1-(@x)"F) J[ (1-a'X).
JET jeT i€Ti#]
Defining
= Zejozj H (1-a'X)
jeT iE€T i#j

leads us to the equation (often called the Key Equation)
E(X)S(X)=T(X) (mod X" %) (22)

We would like to use the above equation to solve for E(X). Once we do that we can find the roots
of E to determine the error locations, and then find the message polynomial by interpolation using
the non-erroneous locations. Note that in the Key Equation, we know S(X) but do not know either
E(X) or T'(X). However, we observe the following property of I'(X): it has degree at most 7 — 1.
Therefore the Key Equation implies that the coefficients of the X7 for 7 < j < n—k—11in E(X)S(X)
all equal 0. The decoder will use this to find the coefficients of F(X) by solving a homegeneous
linear system. Specifically, the algorithm will solve for unknowns a; where E(X) =1+ 7_; a; X".

The decoding algorithm proceeds as follows. (Since the system solved by the decoder could have
multiple solutions, we will denote the candidate error locator polynomial found by the decoder
as Fp and later prove that Fy must be divisible by F, which suffices to locate all the erroneous
positions.)

Step 1: Compute the syndrome polynomial S(X).

Step 2: Solve for {a;}7_; to find Ey(X) = 1+ Y.I_, a;X" such that the coefficients of X/ in
E((X)S(X) all equal 0 for j = 7,7+ 1,...,n —k — 1. (This is a system of n — k — 7
homogeneous linear equations in the a;’s.)

Step 3: Find all roots of E1(X) using brute force search (we also later describe an optimization
called Chien search which is faster for hardware implementations.) Suppose the roots are
a~, ... o~ for some [ < T.



Step 4: Erase the locations {i1,42,...,4;} in the received word y and then interpolate a degree
< k polynomial f(X) through the unerased positions. If this is not possible, declare decoding
failure. Otherwise, return f(X) as the message polynomial.

We now prove that assuming at most 7 errors occurred, the polynomial F;(X) found in Step 2 will
be divisible by E(X) and hence all the error locations will be roots of E;(X) as well.

Proposition 9 The error locator polynomial E(X) divides the polynomial E1(X) found by the
algorithm.

PROOF: Recall that F(X) = HjET

inverse modulo X™* (for example the polynomial X has no inverse mod X" *). However, E(X)
has an inverse modulo X”~ %, namely

(1—a’ X). In general polynomials may not have a multiplicative

ENX)=J[A+ /X +.. + (@ X)"F 1)
jeT

Therefore we can solve for the syndrome (modulo X" %) as
S(X)=T(X)E~YX) (mod X" 7). (23)
Let I'(X) be the polynomial of degree at most 7 — 1 such that
By(X)S(X) = [1(X)  (mod X"F). (24)
Combining (23) and (24), we get
Ey(X)D(X) = B(X)Iy(X) (mod X"F) |

Both the polynomials E;(X)['(X) and E(X)I';(X) have degree at most 7+ (7 — 1) = 27 — 1 <
n — k — 1, therefore we can conclude that they are in fact equal as polynomials:

E1(X)T(X) = B(X)T1(X) . (25)

We now note that ged(E(X),I'(X)) = 1. This follows from the following two observations: (i)
the elements a7 for j € T are all the roots of E(X), and (ii) by definition of I'(X), it follows
that T(a™) = ¢ [Ticriz; (@@ —a') # 0. By (25) we know that E(X) divides E1(X)T'(X), and
since ged(E(X),['(X)) = 1, we conclude that F(X) must divide E1(X). O Since both E and F;

have constant term equal to 1, it follows from Proposition 9 that if instead of finding a degree T
polynomial E;(X), we try to find a polynomial of degree 1,2, ..., 7 successively till the algorithms
succeeds, then in fact we will recover the error locator polynomial E(X) as E;(X). This is an
alternate way to implement the algorithm, which will in fact be faster when the number of errors
is much smaller than 7.

Corollary 10 If we find E1(X) of the smallest degree that satisfies the Key Equation Ey (22) then,
E(X) = E(X).

10



Remark 11 We can find the roots of E1(X) in Step 3 of the Peterson Algorithm by brute force
search over all elements of the field checking if E1(a?) =0 for j = 0,1,2,...,n—1. An optimization
called “Chien search” leads to more practical hardware implementations. Chien search [4] is based
on the following observation (our description is from [16])

If E1(X) has degree T, then E1(a'™1) can be computed from Ei(at) by T multiplications
of variables with constants as opposed to T multiplications of variables with variables
needed in the brute force search.

This is because of the following relationship between the evaluations Ey(a’) and Ey(a't1). If

Ei(a') = ey+ e + ...+ el = Y0, +71,i+ ..+, then
B = et+ea +. +eaIT =90, Fya .+ ral

Exercise 4 (Forney’s formula) Once the error locations T' are computed, show that the error
values are given by the following formula. For every j € T,

(= =Ll -

where E'(X) is the derivative of E(X). This can be used in place of the interpolation step for
recovering the codeword.

Remark 12 For binary BCH codes, once we know the exact error locations (say by finding a
solution Ey(X) with smallest degree), we can just flip those locations to get the true codeword, and
no separate step is needed to compute the error values.

Remark 13 (Complexity the algorithm) The naive implementation of the algorithm takes cu-
bic time, with the dominant step being solving the linear system to find E1(X). Sugiyama, Kasahara,
Hirasawa and Namekawa [14] gave a quadratic time implementation using Euclid’s algorithm for
solving the Key equation.

Berlekamp [2] gave an iterative quadratic time implementation of the solution to the key equation,
which was later generalized by Massey [10] to give an algorithm for finding the shortest linear
feedback shift register (LFSR) that generates a given sequence. This method is now referred to as
the Berlekamp-Massey algorithm and is widely used in practice for decoding Reed-Solomon codes.
Blahut [3] gave a method to accelerate the Berlekamp-Massey algorithm through recursion, resulting
in a near-linear (n logo(l) n) time algorithm for decoding RS codes.

5 Decoding concatenated codes

5.1 A Naive algorithm

As we noted at the beginning of this class, RS codes require large alphabets and are therefore
not suited for applications where we need, for example, binary codes. We also saw in previous
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lectures the method of code concatenation which can be used to reduce the alphabet size to while
preserving a good rate vs distance trade-off. We now consider efficient decoding algorithms for
decoding concatenated codes with outer Reed-Solomon code. We start with a naive decoder, and
later improve upon it.

Suppose that x is the message to be transmitted, coded with a Reed-Solomon outer code Cyyt to
obtain symbols ¢y, . . ., ¢,. Each of these is coded with an inner code Cj;, resulting in the transmitted
codeword, whose i’'th block is Cj,(c;). As before assume that the outer code has distance D and
inner codes have distance d. In theory, we should be able to correct up to 42 errors since the

2
distance of the concatenated code is at least dD.

| x
l Cout

| cin | ¢ : | Cin
Cin(c1) Cin(c2) e Cin(cn)
channel | noise channel | noise : channel |noise

Figure 1: Decoding concatenated codes.

Suppose (due to errors) we receive z; for i = 1,...,n instead of Cj,(c;). Note that the total number
of errors introduced equals Z?:l A(Cin(ci), zi). A simple decoder tries to reverse the encoding as
follows.

Step 1 : Find a; such that A(Cip(a;), ) is minimized.

Step 2 : Decode (ai,...,a,) as per the decoder for the outer code Cy,t which can correct < D/2
errors.

Lemma 14 The above algorithm recovers the correct codeword if the number of errors is less than
aD
T.

PRrROOF: Note that for each i for which < % errors occur in it" block, the inner decoding succeeds
and we have a; = ¢;. If less than dTD errors occur in total, then the number of blocks with at least
d/2 errors is less than %. Therefore the string (a1, ..., a,) passed to the outer decoder differs from
the true outer codeword (ci,ca,...,¢,) in < D/2 locations. The outer decoder then succeeds is

recovering (c1,...,c¢,). O

5.2 Generalized Minimum Distance (GMD) Decoding of concatenated codes :
Randomized version

Forney [6] gave a better algorithm for decoding that can correct a number of errors < % €rTors.
This method is called Generalized Minimum Distance (GMD) decoding, and is based on using an
errors-and-erasures decoder for the outer code. Recall that the Welch-Berlekamp algorithm that
we discussed for Reed-Solomon can handle 7 errors and s erasures as long as 27 + s < D.
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The naive algorithm discussed above is sub-optimal because all the guesses a; from the inner decoder
are treated on equal footing regardless of how far their inner encodings were from z;. Intuitively,
the outer decoder should place higher confidence in symbols whose inner encodings are close to
z;. This is achieved by assigning a measure of confidence to each a; and erasing symbols whose
confidence is below some threshold. Running such an algorithm for various choices of the threshold
leads gives the GMD algorithm.

We first present a randomized version of GMD decoding that is easier and more intuitive to analyze,
and then discuss how the algorithm can be derandomized to give a deterministic version. Below is
the algorithm description.

Step 1: Decode z; to a; as before by finding the a; that minimizes A(Cjy,(a;), 2;)

Step 2: Set w; = min[A(C}, (a;), ), 3].

Step 3: With probability 22“ set a; to be an erasure symbol ‘7.

Step 4: Run the errors-and-erasures decoder (say Welch-Berlekamp in the case of Reed-Solomon
codes) on the resulting sequence of a;s and 7s.

We assume that the total number of errors, > 1" ; A(Cin(c;), z;) < dD/2 and study the conditions
under which this algorithm successfully decodes to the true codeword. Define 7 as the number of
errors and s as number of erasures in the outer codeword after the (randomized) inner decoding.

Lemma 15 E[27 + s] < D where the expectation is taken over the random choices of erasures.

ProOOF: Let Z7™" and Z;"**“"*% be indicator random variables for the occurrence of an error and
declaration of an erasure respectively in the decoding of the i’th block z;. We have

n n

T = § ZiET'T s = § ZETQSUT‘GS .

i=1 i=1

Claim 16 E[2Z{" + Zraswres] < 24 where e; = A(z;, Cin(a;)) is the number of errors introduced
by the channel in the i*" block introduced by the channel.

Note that once we prove the claim, by linearity of expectation

25" ey
E[27 + 5] < Z’d:l G <D,

so that Lemma 15 would be proved. [
PRrROOF: (Of Claim 16) We consider two cases.

Case 1 : a; = ¢; (i’th block is correctly decoded)
In this case, trivially E[Z{""] = 0 and

]E[ZST’GS’U/TES] — Pr[ZfTGSUT'GS — 1] — — 7
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since w; = min{A(Cin(a;), 2;), 4} = min{e;, 4} < ;. Thus E[2Z¢™ + Zgrasures] < 2§i.

Case 2 : a; # ¢; (i’th block is incorrectly decoded)
In this case

2w; 2w;
E[Zierasures] — d7« and E[Zierr] —1— dl
so that
err erasures 2w;

Since a; # ¢;, we have
d < A(Cin(ci), Cin(ai)) < A(Cinlci), zi) + Az, Cin(a;)) = €; + A(zi, Cin(as)) -

Thus if w; = A(z;, Cin(a;)), then w; + e; > d. On the other hand if w; = d/2, then e; > w; > d/2,
so w;+e; > d as well. Thus w; > d —e;. Plugging this into (27) we get E[2Z{"" 4+ Z£*5%7¢%] > 2e; /d
as desired.

The two cases together complete a proof of the claim. [J

5.3 GMD Decoding: Deterministic version

We now see how to derandomize the previously presented GMD decoder. We first recall that the
randomness was used when we declared a particular block to be an erasure with probability 22‘”.
The derandomization is based on the following observation.

Claim 17 There exists some threshold © such that if we declare an erasure in the i’th location if
0 < % for every i, then 27+ 5 < D, where T and § as the number of errors and erasures when ©
1s used as the threshold.

PROOF: Suppose we pick © € [0, 1] uniformly. For each ¢ declare erasure for block if 6 < %.
Define 7 and 5 as the number of errors and erasures when O is used as the threshold. The previous
argument shows that

Eo[27+5] < D (28)

since all that was required for the argument was that at location ¢ we declared an erasure with
probability 2w;/d. Thus,there exists a © for which 27 + 5 < D. O Now the derandomization

problem reduces to one of searching for an appropriate value for ©. Since © takes value in the
continuous range [0, 1], we cannot try out all possibilities in the range. However, note that if we
order the wj; in increasing order so that (with notational abuse) 0 < wy < ... < wy. All values of
© in the range [22”, 2“@%) lead to the same set of erasure decisions (the first ¢ locations are erased,
and the last n — ¢ are not). Thus, our search for the right threshold © only needs to be over the
discrete set of values © € {0,1}(J{Z4",...,2%2}. Noting that w; is an integer in the range [0, )
(or d/2 itself), there are only O(d) relevant values of © to search over. We have thus proved the
following.

Theorem 18 For a concatenated code with outer code of block length N, alphabet size Q, and
distance D and an inner code of distance d and block length n, we can correct any pattern of
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< dD/2 errors using O(d) calls to an errors-and-erasure decoder for the outer code that can correct
any pattern of T and s erasures provided 2T + s < D. The runtime of the decoding algorithm is
O(NQnO(l) + NT,ut) where Toyg is the running time of the outer errors-and-erasures decoder.

Together with our construction of concatenated codes with outer Reed-Solomon code that meet
the Zyablov bound, we can conclude the following.

Corollary 19 For any R € (0,1) and v > 0, there is a polynomial time constructible family of
binary codes of rate R that can be decoded from up to a fraction

1 -1
5 pnax (1= R/r)h=(1—r) =

of errors.

Remark 20 The above result implies the following for the two extremes of low rate and high rate
codes. For e — 0, we can correct up to a fraction (i — €) errors in polytime with explicit binary
codes of rate Q(e), and we can correct a fraction € of errors with explicit binary codes of rate
1 — O(y/elog(1/e)). (We leave it as an exercise to check these calculations.) Note that the non-
constructive rate bounds guaranteed by the Gilbert-Varshamov bound for these regimes are Q(€?)

and 1 — O(elog(1/€)) respectively.

6 Capacity achieving codes for the BSC and BEC

We will now use concatenation with outer code that can correct a small fraction of worst-case
errors to construct codes that achieve the Shannon capacity of the BEC and BSC, together with
polynomial time encoding/decoding. First, let us recall the definition of the Binary erasure channel.

Definition 21 (The Binary Erasure Channel (BEC)) is parameterized by a real o, 0 < av <
1, which is called the erasure probability, and is denoted BEC,,. Its input alphabet is X = {0,1}
and output alphabet is Y = {0,1,7} . Upon input x € X, the channel outputs x with probability
1 — «, and outputs 7 (corresponding to erasing the symbol) with probability «. (It never flips the
value of a bit.)

The capacity of BEC, equals 1—a. Recall that, if we have a [n, k, d], code with message © € F’; and

corresponding codeword y = Gz € . Suppose a subset S C {1,...,n} is received (uncorrupted).
Decoding the message involves solving the linear system
Grs = yg (29)

We reorder the indices so that the first |S| entries in y are the uncorrupted entries, resulting in the
following matrix system,

Gs ys
x| = (30)
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As long as rank(S) > k, then this linear system can be solved exactly in O(n?) time by Gaussian
Elimination. As long as the matrix Gg is full column rank then the solution is unique. We have
the following.

Proposition 22 Using a binary matriz of size n x n(1 — «) with entries chosen i.i.d uniform from
{0,1} as the generator matriz G achieves the capacity of the BEC with high probability.

The drawbacks with this solution are the cubic time and randomized nature of the construction.
in addition, for a given choice of G it is hard to certify that (most) (1 + )k x k sub-matrices of G
have full (column) rank. We will use the idea of concatenation to make this constructive.

Let a be the erasure probability of the BEC and say our goal is to construct a code of rate (1—a—¢)
that enables reliable communication on BEC,,. Let Cy be a linear time encodable/decodable binary
code of rate (1 —¢/2) that can correct a small constant fraction v = y(e) > 0 of worst-case erasures.
Such codes were constructed in [13, 1]. For the concatenated coding, we do the following. For some
parameter b, we block the codeword of C; into blocks of size b, and then encode each of these blocks
by a suitable inner binary linear code Cy of dimension b and rate (1 — a — €/2). The inner code
will be picked so that it achieves the capacity of the BEC,, and specifically recovers the correct
log(l/v)>
€2

message with success probability at least 1 — v/2. For b = b(¢,y) = Q ( , a random code

meets this goal with high probability, so we can find one by brute-force search (that takes constant
time depending only on €).

The decoding proceeds as one would expect: first each of the inner blocks is decoded, by solving
a linear system, returning either decoding failure or the correct value of the block. (There are
no errors, so when successful, the decoder knows it is correct.) Since the inner blocks are chosen
to be large enough, each inner decoding fails with probability at most /2. Since the noise on
different blocks are independent, by a Chernoff bound, except with exponentially small probability,
we have at most a fraction v of erasures in the outer codeword. (For R = 1 — o — ¢, we have
Pr(decoder failure, error) < 2™ < ~). These are then handled by the linear-time erasure
decoder for C7. We thus have,

Theorem 23 For the BEC,, we can construct codes of rate 1 — a — €, i.e., within € of capacity,
that can be encoded and decoded in n/e9M) time.

While this is pretty good, the brute-force search for the inner code is unsatisfying, and the BEC is
simple enough that better runtimes (such as O(nlog(1/¢))) are achieved by certain irregular LDPC
codes.

A similar approach can be used for the BSC),. We recall the definition of the BSC.

Definition 24 (The Binary Symmetric Channel (BSC)) has input alphabet X = {0,1} and
output alphabet Y = {0,1}. The BSC' is parameterized by a real number p, 0 < p < % called the
crossover probability, and often denoted BSCp. The channel flips its input with probability p.

For the BSC, the outer code C; must be picked so that it can correct a small fraction of worst-

case errors — again, such codes of rate close to 1 with linear time encoding and decoding are
known [13, 8]. Everything works as above, except that the decoding of the inner codes, where we
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find the codeword of Cs closest to the received block, requires a brute-force search and this takes
20 = 22(1/¢*) time. This can be improved to polynomial in 1/e by building a look-up table, but
then the size of the look-up table, and hence the space complexity and time for precomputing the
table, is exponential in 1/e. Thus,

Theorem 25 For the BSC),, we can construct codes of rate 1 — H(p) —¢, i.e., within € of capacity,
that can be encoded in n/e9M) time and which can be reliably decoded in n2Y<°Y time.

It remains an important open question to obtain such a result with decoding complexity n/ O
or even poly(n/e).!

We also want to point out that recently an alternate method using LP decoding has been used to
obtain polynomial time decoding at rates arbitrarily close to capacity [5]. But this also suffers from
a similar poor dependence on the gap € to capacity.
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In this lecture, we shall look at Expander Codes, Tanner Codes which are a generalization of
Expander Codes and Distance amplification codes. These codes visualize the code as a graph
where the value of the i*” bit of a codeword corresponds to, for example, the value associated with
the i*" vertex or the i*" edge of the graph. The properties of the graph determine the properties
such as distance and efficient decodability of the code. Further, the constraints such as parity
checks put on the codewords manifest as local constraints on vertices or edges such as constraints
on the set of the values the edges incident to a vertex can take.

The motivation to view linear codes as graphs and use a graph-theoretic approachto construct
them comes from the parity-check and generator matrix view of the code. For a [n,n — m]s, we
can interpret the parity check matrix as representing a n x m bipartite graph and then describe
the properties of the code from the properties of the graph. An interesting class of codes are Low
Density Parity Check (LDPC) codes which have a small number of 1’s in each row and column of
the parity-check matrix and hence manifest, under the graph view, as sparse graphs.

Let us start with a few notations and definitions.

1. G(V, E) denotes a graph G with vertex set V' and edge set E. For a bipartite graph G, we
shall denote by L the set of vertices in the left partition of G and by R the set of vertices in
the right partition of G. A bipartite graph G will usually be denoted as G(L U R, E).

2. A graph G is said to be d-regular if each vertex of G has degree d. A bipartite graph G is
said to be d-left reqular if all vertices in the left partition of G have degree d. Similarly, we
can define a bipartite graph to be d-right regular.

3. For any vertex set S C V in a graph G(V, E), a vertex g € V'\ S is said to be a neighbour of
S if it is adjacent to some vertex in S. We denote by N(S) the set of neighbours of S. For a
bipartite graph G(L U R, E), if S C L, then N(S) C R and vice-versa.

4. For any vertex set S C V in a graph G(V, E), a vertex ¢ € V\S is said to be a unique
neighbour of S if it is adjacent to exactly one vertex in S. We denote by U(S) the set of
unique neighbours of S. For a bipartite graph, if S C L, then U(S) C R and vice-versa.

1 Expander Codes

We first give the definition of a bipartite expander graphs. A bipartite expander graph essentially
has the property that every ‘small’ set of vertices in the left partition has a significantly ‘large’
neighbourhood in the right partition. Formally,



Definition 1 A (n,m, D,~,«a) bipartite expander is a D-left-reqular bipartite graph G(L U R, E)
where |L| =n and |R| = m such that VS C L with |S| < ~yn, N(S) > «|S].

In the above definition, v gives the measure of a ‘small’ set and « gives the measure of a ‘large’
neighbourhood. « is called the expansion factor. Note that o < D trivially. The following theorem
shows the existence of expander graphs that approach this optimal bound.

Theorem 2 Ve > 0,m <n, 3y >0 and D > 1 such that a (n,m,D,~, D(1 — €)) expander exists.
Additionally, D = (8™ 4nd yn = ©(42).

Some remarks about the above expanders:

1. Note that m < n, so we want expansion from the larger side to the smaller side. This is the
harder direction as there is less room to expand into.

2. For a given value of m and n, the parameters of the the above expander are optimal up to
O(1) factors and the expansion factor can be brought as close to D at the cost of increasing
D.

3. ynD is a trivial lower bound on m since sets of size up to yn expand by a factor of almost
D. The above result achieves a value of m that is 1/e times larger than this trivial bound.

The proof of the above theorem is through the probabilistic method. Explicit constructions were
also known for a ~ D/2, but for a long time there was no explicit construction known with
expansion better than D/2. Capalbo, Reingold, Vadhan, and Wigderson [2] in 2002 gave an
explicit construction of a constant degree expander with expansion D(1 — €) for any desired € > 0,
and any desired imbalance ratio m/n.

We now come to the connection between expanders and codes. For this let us define Factor Graphs.
For an [n,n — m]a linear code, construct the bipartite graph F' corresponding to the (n —m) x n
parity-check matrix of C' as follows

e there is a node in the left partition Lr corresponding to each bit of a codeword in C' (|Lp)| =
n),

e there is a node in the right partition Rp corresponding to each parity check (|Rp|=mn —m),

e and there is an edge between a node u in Ly and node v in Rp if and only if the bit
corresponding to u participates in the parity check corresponding to v in C.

Such a bipartite graph F' is called the factor graph of C. We can see that the above construction
establishes a correspondence between linear codes and bipartite graphs. The nodes on the left are
the bits of the code and the nodes on the right are the parity checks. Each codeword assigns each
node on the left the value of the corresponding bit. An assignment of values to the nodes on the left
is a valid codeword if and only if it satisfies all parity checks i.e. if we denote by V; the value of the
node ¢ on the left, then V corresponds to a valid codeword if and only if Vu € Rp, ZjEN(u) Vi =0.
The above construction also indicates how we can construct a parity-check matrix corresponding
to a bipartite graph that has fewer nodes in the right partition compared to the left partition.



Expander codes are linear codes whose factor graphs are bipartite expander graphs. Let us denote
the code corresponding to an expander graph G by C(G).

We now establish a useful property of bipartite expander graphs with expansion close to degree D.

Lemma 3 Let G be a (n,m,D,~,D(1 —¢€)) expander graph with ¢ < 1/2. For any S C Lg such
that |S| < n, U(S) > D(1 — 2¢)|S|.

PROOF: The total number of edges going out of S is D|S| by virtue of G being D-left-regular. By
the expansion property, N(S) > D(1 — €)|S|. Hence, out of D|S| edges emanating out of S, at
least D(1 —¢€)|S| go to unique vertices which leaves at most eD|S| edges. Therefore, at most eD|S]|
vertices out of the at least D(1 — €)|S| vertices in N(S) can have more than one incident edge.
Hence, U(S) > D(1 — 2¢)|S|. O

The above already implies that the distance A(C(G)) of the code satisfies A(C(G)) > yn. (Why?)
The next theorem indicates this bound by roughly a factor of two.

Theorem 4 Let G be a (n,m,D,~,D(1 —¢€)) expander. Then A(C(G)) > 2v(1 — €)n.

PROOF: Since C(G) is a linear code, it is sufficient to establish that the weight of any non-zero
codeword is at least 2y(1 — €)n. For contradiction, let p be a codeword of Hamming weight less
than 2v(1 — €)n. Let S be the set of nodes in G which are set to 1 in p.

Clearly, the parity check of any node in U(.S) cannot be satisfied since the parity-check-node shares
an edge with exactly one node in set S and this node has value 1 by virtue of being in S and edges
to nodes in L \ S cannot satisfy the parity since the value of those nodes is 0. Hence, if we show
that U(S) is non-empty, we have shown that the purported codeword does not satisfy all parity
checks which is a contradiction.

If |S| < yn, then we are through since by Lemma 3, |[U(S)| > D(1—2¢)|S|. If |S| > yn, then choose
a subset @ of S having exactly yn nodes. By Lemma 3, |[U(Q)| > D(1 — 2¢)|Q| = D(1 — 2¢)yn.

Now S\ @] < v(1 — 2¢)n since |S| < 2y(1 — €)n. Hence, there are less than Dvy(1 — 2¢)n edges
emanating out of S\ @ and since |U(Q)| > D(1 — 2¢)yn, there cannot be an edge incident to each
node in U(Q) from S\ Q. Hence, there exists a node in U(Q)) which has exactly one edge incident
to it from S and therefore U(S) # () which completes the proof. [

The rate of expander code is at least 1 — m/n and hence if m is smaller by a constant factor
compared to n, the expander code has rate bounded away from 0. Thus codes whose factor grpahs
are unbalanced expanders with expansion factor (1 — €)D for € < 1/2 are asymptotically good,
and therefore explicit constructions of such expanders immediately gives an explicit construction
of asymptotically good odes. This was the first constructive method for asymptotically good codes
that did not rely on code concatenation. This is in itself a nice feature, but we will now see that
these expander codes also admit very efficient (linear time) decoding algorithms.



1.1 Decoding algorithm for Expander Codes

We now present a decoding algorithm for correcting all error patterns of Hamming weight less than
(1 — 2¢)n assuming € < 1/4 (i.e., when the expansion factor exceeds 3D /4). Let r be the received
word and let V, be the value assigned to node ¢ in Lg by r. Each parity check in R¢ is either
satisfied or unsatisfied. The algorithm proceeds by flipping the value of those nodes in Lg which
have more unsatisfied checks in their neighbourhood than satisfied checks. This process continues
till there no unsatisfied checks left.

Algorithm

While there exists a node y in Lg with more unsatisfied than satisfied checks in N (y)
e Ilip V,, and update the list of satisfied and unsatisfied checks in Rq.

This completes the description of the algorithm. We now prove the correctness and analyze the
time complexity of the algorithm. First we prove that if the number of errors is at most vyn, there
must exist a node on the left whose neighbourhood of D check nodes has more unsatisfied checks
than satisfied checks. This ensures that the algorithm will get started.

Lemma 5 If the number of errors is at most than yn (and at least 1), then there exists a node in
L which is adjacent to more then D /2 unsatisfied checks. (This assumes that e < 1/4.)

PROOF: Let T' # () be the set of error locations. Since |T'| < yn, by Lemma 3, |U(T)| > D(1 —
26)|T| > 2|T| if e < 1/4. All checks in U(T) are clearly unsatisfied. Hence, there exists a node in
T that is adjacent to more than D/2 unsatisfied checks. Since each node in Lg has D neighbours,

therefore the above lemma implies that the node would have more unsatisfied than satisfied checks.
O

Lemma 6 If we start with a received word having less than (1 — 2€e)n errors then we can never
reach a word with yn errors in any interim step of the algorithm.

ProoFr: We flip a node on the left only when the number of unsatisfied checks is greater than the
number of satisfied checks in its neighbourhood. Thus with each flip the number of unsatisfied
checks decreases by at least 1.

The received word has less than (1 — 2¢)n errors and therefore it has less than D~v(1 — 2¢)n
unsatisfied checks (by D-left-regularity of the graph) to begin with. If we ever reach an intermediate
string with yn errors, then the set of error locations would have at least D(1 — 2¢)yn unique
neighbours (by Lemma 3) and hence there would be at least as many unsatisfied checks. This
contradicts the facts that we start with less than D~y(1 — 2¢)n unsatisfied checks and this number
cannot increase. [



1.1.1 Correctness of the algorithm

By Lemmas 5 and 6, we see that if we start with an erroneous codeword with less than (1 — 2¢)n
errors, the algorithm will always find a node (participating in more unsatisfied checks than satusfied
checks) to flip. With each node flip, the number of unsatisfied checks goes down by at least 1 and
hence the algorithm terminates in at most m iterations. Lemma 6 proves that during the course
of the algorithm, there won’t be any stage at which the number of errors in the current word
(compared to the originally closest codeword) is at least yn. Since the distance of the code is at
least 2v(1 — e)n > yn (" € < 1/2), the final codeword to which the algorithm converges must be
the original closest codeword.

1.1.2 Running Time of the algorithm
Let d be the maximum degree of a node in Rg.

1. Preprocessing Stage: The computation of all unsatisfied nodes in R as a preprocessing step
takes O(md) time. As part of preprocessing step, we also associate with each node in Lg the
number of unsatisfied checks it is part of and make a list, call it @), of nodes in Lg which have
more unsatisfied than satisfied checks. This takes an additional O(Dn) = O(Dmd) time.

2. Time complexity of each iteration: In each iteration instead of searching for a node with more
unsatisfied than satisfied checks, we remove an element from list (). Further, after flipping the
node, we update the list of unsatisfied checks in Rg in O(D) time. We take further O(Dd)
time to update the number of unsatisfied checks associated with each element in L and to
insert any element which now have more unsatisfied than satisfied check into @) and to remove
elements from () which due to the flip have lesser unsatisfied than satisfied checks. Hence,
each iteration can be implemented in O(Dd) time.

3. Number of Iterations: The original number of unsatisfied checks can be at most m. As argued
above, in each iteration the number of unsatisfied checks reduces by at least 1. Thus the total
number of iterations is at most m.

Hence the algorithm can be implemented to run in O(Ddm) = O(n) time when D, d are constants.

Note: These codes being linear can be encoded in O(n?) time by multiplying the message vector
by the generator matrix.

2 Tanner Codes

Let G be a n x m bipartite graph which is d-right regular and let Cy C F4 be a binary linear code.

Definition 7 (Tanner code) The Tanner code X (G,Cy) is defined as the set
{C S FQ‘VU € Rg, CIN(u) € C()}

where ¢|n () € Fg denotes the subsequence of ¢ formed by the bits corresponding to the neighbours
of u in Lg.



Remark 8 We note the following:

1. Tanner codes are linear codes since Cy is a linear code.

2. Tanner Codes are a generalization of expander codes since in expander code Cy was chosen
to be the [d,d — 1,2]y parity check code.

We claim that the dimension of X(G,Cy) is at least n — m(d — dim(Cp)). This is because for
each i € Rg, the condition that ¢y € Co imposes d — dim(Cp) independent linear constraints
on the bits of c¢. Therefore, the condition Vi € Rg,c ¢y € Co imposes at most m(d — dim(Co))
independent linear constraints and hence the claim follows.

The usefulness of Tanner codes comes from the fact that they require a much lower expansion factor
through the choice of an appropriate Cy. In expander codes which are a special case of Tanner
codes, we used parity check codes for Cy. Since parity check codes have distance 2, we required
that all sets of size at most yn expand by a factor of more than D/2 in order to argue that the code
had distance at least yn. However, if we use a local code Cy of distance dy, then we only require
an expansion factor exceeding D/dy to ensure the same code distance. Hence a good choice of Cy
allows us to construct explicit Tanner codes using graphs with weaker expansion properties which
are therefore easier to construct.

In order to construct codes with a high rate, we require a highly unbalanced bipartite graph so that
there are much fewer parity checks than the number of bits in a code word. One way of achieving
this is through the construction of Edge Vertex Incidence Graph which we define next.

Definition 9 The Edge Vertex Incidence Graph of a graph G = (V, E) is defined as the bipartite
graph Hy = (L U R, E’) where L has a node corresponding to each edge in E, R has a node
corresponding to each node in'V and an edge exists in E' between each node e in L and corresponding
Ue and ve in R where ue and v, are the nodes in R corresponding to the end-points of edge e in E.

In the graph-code correspondence which we had so far, the bits of the codeword used to sit on nodes
in the left partition and the constraints used to be imposed by nodes in the right partition. The
edges of graph G form the left partition of Hy and the nodes of graph G form the right partition
of Hy. Hence, we can equivalently view the codeword bits as “sitting” on the edges of the graph
G, with each node of the graph G imposing a local constraint on the values on the d edges incident
at that node.

Let G be a d-regular graph with N vertices and Nd/2 edges. Under the modified view of code-bits
sitting on the edges of the graph, the Tanner code X (Hp, Cp) can alternately been defined directly
in terms of G as

Nd
T(G, C()) = {C S IFQQ |VU S V(H),qp(v) S Co} .

(We use the notation T'(-,-) instead of X (-,-) to highlight this distinction.) Again, T'(G,C)) is a
linear code of dimension at least Nd/2 — N(d — dim(Cp)) and a sufficient condition for positive

dimension is that dim(Cp) > 4.

We will now use for G a good “spectral” expander.



Definition 10 A graph G = (V, E) is said to be a (n,d,\)-expander if G is a d-regular graph on
n vertices and A = min{\a, |\,|} where A\; > Ao > -+ > A, are the eigenvalues of the adjacency
matriz of H.

What makes (n,d, \) expander useful? This is because of Expander Mixing Lemma, which we state
next and crucially use in our analysis. We do not prove this lemma here, but it is not hard to prove
and a proof can be found in several places (eg. the book by Alon and Spencer).

Lemma 11 (Expander mixing lemma) Let G = (V,E) be a (n,d,\) expander graph. Then

VS, T CV we have
E(S,1 —w < M/ |S||1 1

where |E(S,T)| is the number of edges between sets S and T with the edges in (SNT) x (SNT)
counted twice.

Remark 12 Some comments:

1. Since G is a d-regular bipartite graph, therefore the highest eigen value A1 would be d.

2. Since G is a d-reqular graph, we know that there are d|S| edges coming out of S. Now, if it
were a purely random graph, we would expect that |T'|/n fraction of these edges to end up in
T. Thus the expected value of |E(S,T')| would be %. The expander mizing lemma upper
bounds the deviation of |E(S,T)| from the random graph expected value in terms of how small
the second largest eigenvalue (in absolute value) is in comparison to d. Note that the lemma
bounds this deviation for all pairs of sets S,T.

For technical reasons, we will find it convenient to work with a “bipartite version” of G called its
double cover instead of G itself.

Definition 13 (Double cover) The Double Cover of a graph G = (Vg, Eg) is defined as the
bipartite graph H = (L U Ry, Err) with both left and right partitions of graph H being equal to Vg
i.e. Ly = Ry = Vg and V(u,v) € Eq, there is (u,v) and (v,u) in Eg. Hence, the double cover
H of graph G has two copies of each node of G, one in the left partition and the other in the right
partition, and there are two copies of each edge (u,v) of G.

Our final code will be T'(H, Cy) for suitable Cy where H is the double cover of an (n, d, \)-expander
G. Working with the bipartite graph H (instead of G) makes the description and analysis of the
decoding algorithm simpler and cleaner.

Hence, if G is (n,d, \) expander, we now take H, the double cover of G. The code-bits still sit on
the edges of H as they were in G and the constraints on the values which the edges can take are
also essentially the same as they were in G. However, as we will see the analysis becomes a lot
more simplified.

Clearly H is a n x n d-regular bipartite graph i.e. there are n nodes in both left and right partition
and each node has d neighbours. What is the analogue of expander mixing lemma for H? It is



essentially the same. Consider the n x n matrix corresponding to H that has 1 in (4, )" position
if there is an edge in H between the i*" node in left partition and j** node in right partition else
it is 0. This is exactly the adjacency matrix of G. Hence d = A1 > Ay > A3--- > A, would be the
eigenvalues of the matrix (same as that of adjacency matrix of G) and define A = min{\a, |A,|}.

Lemma 14 (Expander mixing lemma: bipartite version) Let H be a n x n d-regular bipar-
tite graph with A as defined above. Then VS C L, T C R,

d|S||T
.1 - P < s

n

where E(S,T) is the set of edges between sets S and T'. The double counting which we had stated
explicitly in Lemma 11 is implicit here.

Theorem 15 Let Cy C Fg have distance > dpd. Then the relative distance of T(H,Cyp) is >
So(d0 — %)

PRrROOF: Since T'(H, Cp) is a linear code, it will be sufficient to prove that no non-zero codeword
has weight less than dg(dg — %)nd.

Let ¢ be a codeword in T'(H, Cy) and let F' be the set of edges in H which have their corresponding
bits non-zero in ¢. Let S be the set of nodes in L which have at least one edge belonging to F
incident on them. Similarly, let T" be the set of nodes in R which have at least one edge from F
incident on them.

Since the distance of Cy is dpd any node in H which is incident to a non-zero edge (i.e., an edge
of F') should have at least dpd edges from F' incident to it. (This is because we know that any
codeword ¢ € T'(H, Cy) satisfies the condition that for each node in H, the values assigned to the
edges incident to the node forms a codeword in Cj.)

This implies that each vertex in S and T must have at least dpd non-zero edges incident to it.
Hence, |F| > §pd|S| and |F| > 60d|T'| and therefore, |F'| > dod+/|S||T].
Now, |F| < |E(S,T)| and by Expander Mixing Lemma, |E(S,T)| < d'“gTHTl +Ay/|S||T|. From above

we get,
d|S||T
sod/19TT] < WEINTL | /15T

n

which implies that /|S||T| > (o — %)n Recalling that |F| > dod+/|S||T|, we conclude |F| >
9o (0o — %)nd which completes the proof. [

Remark 16 Note that when H is the n x n complete bipartite graph, the code T'(H, Cy) is simply
the tensor product of Cy with itself and thus has relative distance exactly 58. The above theorem
states that for a good expander with A = o(d), in the limit of large degree d, the relative distance
becomes = 58. Thus we can obtain distance as good as the product construction, but we can get
much longer codes (compared to the product construction, which only gives a code of block length
d? starting with a code of block length d).



2.1 Rate-Distance Tradeoff

Denote the rate of code Cy by R. Then rate of T'(H, Cy) is at least

nd —2nd(1 — R)

=2R—-1.
nd

Let § = 62 be approximately the relative distance of T(H, Cp) in the limit of large d. By picking
Cy to satisfy R > 1 — h(dp) (meeting the Gilbert-Varshamov bound), we obtain the following rate
vs relative distance for T'(H, Cp):

R(T(H,Cy) > 2(1 — h()) — 1 ~ 1 —2h(\3) .

The rate is positive 6 < 0.01. This implies that we get a positive rate for T'(H, Cy) only when the
relative distance of T'(H, Cp) is rather small.

2.2 Algorithm for Decoding

Sipser and Spielman in 1995 [3] introduced the above construction Tanner codes and gave an
algorithm to correct a fraction 63/48 of errors. Zémor in 2001 [4] gave an improved algorithm to
correct a fraction 58 /4 of errors for T (H, Cy) by exploiting the bipartiteness of H. We describe this
algorithm and its analysis now.

Specifically, we will give an algorithm to decode a received word to the correct codeword assuming

that the number of errors is at most (1 — e)%o(‘s—o - %)nd which is roughly a quarter of the distance
of the code.

2

Let y € IF‘QE| be the received word which we wish to decode. Denote by yp(,) € JF% the subsequence
of y formed by the bits corresponding to the edges incident to w.

Define a Left-decoding iteration to be the following step performed in parallel for all left nodes:
Vv € L replace yjr, by ¢ € Cp such that A(c, yp(,)) is minimized.
We can efficiently find the closest ¢ to yr, by brute force since code Cp is a small sized code. Note

that since this is a bipartite graph, therefore, no two v’s in L share an edge and hence there are no
conflicts when changing the value of an edge. Similarly, we can define Right-decoding iteration.

The algorithm for decoding is as follows:
alternately perform left-decoding and right-decoding iterations for Alogn iterations

for a large enough constant A < co.

2.2.1 Correctness of the decoding algorithm

Lemma 17 Assume that A\/d < d9/3. When the number of errors is at most (1 — e)%o(%o - %)nd,
the above algorithm converges to the correct codeword when run for A(e)logn iterations.



PRrROOF: We use the terminology that an error is incident to a vertex if the value associated with
at least one edge incident to the node is incorrect in comparison to the correct codeword. Let

S1 = {v € Ly|3 an error incident to v after the first left side decoding step} .

After the first left-decoding step a node v in Ly has an error incident onto itself only if it had more

dod/2 error edges incident onto itself before the decoding step. This is because any v which had

less than dpd/2 incident error edges would, after the decoding step, have corrected all the incident

errors. Let Fy denote the number of errors in y before the decoding step.

,M
2

Since each node in S7 had more than dpd/2 errors incident on itself, therefore Ey > |S; . However,

from assumption Ey < (1 — e)%o(%‘) - %)nd and therefore, |S1| < n(%(’ - %)(1 —€).

Now we run the right-side decoding over Ryy.
Let T1 = {v € Ry|3 an error incident to v after the first right side decoding step}.
We want to show that |T1| < «|S;| for some a < 1.

Using the same reasoning as above, after the right-decoding step, a node in Ry would have error
incident onto itself only if it had more than dyd/2 errors incident onto itself before the right-decoding
step. Now, |E(S1,T1)| is clearly an upper bound on the number of error edges incident onto the
nodes in T before the right-decoding step. Since each node in T} had at least dod/2 errors incident
onto itself before the right decoding step, therefore, %\Tﬂ < |E(S1,Ty)|.

However, by Expander Mixing Lemma, we can upper bound |E(S,T1| by w + A/|S1|Th .

On using the fact that [S;| < n(%‘) - %)(1 —¢) and AM-GM inequality, % > /|S1|Ty|, we
can change the upper bound to

dé Si| + 1T
(5. 7)] < TR~ N — g + A2
Together with %Td]Tll < |E(S1,T1)|, we get
dod dé Si|+|T:
) < (22 - - o+ AR
which upon rearranging yields
A |51
T < S| <
Tl =< 650d+(1—26))\| =97

provided dgd > 3.

Hence, in each iteration set of nodes on which the error-edges are incident decreases geometrically
by a factor of (1 + €). Therefore in Oc(logn) rounds, no error edges remain. [J
2.2.2 Running Time

The above decoding algorithm can clearly be implemented in O(nlogn) time since each iteration
takes O(n) time and the number of iteration by the Lemma 17 above is O(log(n)). We now show a

10



linear time implementation of the decoding algorithm.The key observation is that in each iteration,
the only vertices (in the relevant side for that iteration) that need to be locally decoded are those
that are adjacent to some vertex of the opposite side which had some incident edges flipped in the
local decoding of the previous iteration. The latter set shrinks geometrically in size by Lemma
17. Let us be somewhat more specific. After the first (left) iteration, for each v € L, the local
subvector y|r(,) of the current vector y € {0, 1}¥ belongs to the code Cy. Let T'(y) C R be the set
of right hand side vertices u for which yp(,) does not belong to Cp. Let z € {0, 1}¥ be the vector
after the running the right side decoding on y. Note that for each w € L that is not a neighbor of
any vertex in T'(y), its neighborhood is untouched by the decoding and hence the incident edges
on such nodes still form a valid codeword in Cy. This means that in the next iteration (left side
decoding), all these vertices w need not be examined at all.

The algorithmic trick therefore is to keep track of the vertices whose local neighborhoods do not
belong to Cy in each round of decoding. In each iteration, we only perform local decoding at a subset
of nodes D; that was computed in the previous iteration. (This subset of left nodes gets initialized
after the first two rounds of decoding as discussed above.) After performing local decoding at the
nodes in D;, we prepare the stage for the next round by computing D;; for the opposite side as
the set of neighbors of all nodes in D; some of whose incident edges were flipped during the current
iteration. Using an argument similar to Lemma 17 one can show that the D;’s are geometrically
decreasing in size. This implies that the total number of nodes whose local neighborhoods have to
be examined over all iterations is O(n). As each local decoding step can be performed in Og(1)
time, overall we get a linear time implementation of the decoding algorithm.

3 Distance Amplification of Codes

The expander codes constructed so far have rather small relative distance. We now see a way to
boost the distance of a code by combining it with certain expander-like graphs. The construction
is originally due to Alon, Bruck, Naor, Naor, and Roth [1].

Let G = (L, R, E) be a bipartite graph with L = {1,2,...,n} and R = {1,2,...,m} which is
D-left-regular and d-right-regular. Let C' be a binary linear code of block length n = |L|, so that
bits of codewords of C' can be “placed” on the left vertices of G.

We define the distance amplified code G(C) C ¥™ where ¥ = {0,1}¢ as follows. Note that the
alphabet size of the code G(C) is 2.

Definition 18 For c € {0,1}", define G(c) € ({0,1})™ by

G(c)j = (ery(j)s Cra(i)s** + Cra(i))

for 3 =1,2,...,m where I';(j) € L denotes the i’th neighbor of j € R. Now define the code G(C)
as

G(C)={G(c)|ceC} .

Since each bit of a codeword ¢ € C' is repeated D times in the associated codeword G(c) € G(C),
we get the following.

11



Lemma 19 Rate of Code G(C) is 1/D times the rate of C.
Lemma 19 follows from the definition of distance amplification code G(C).

Definition 20 A bipartite graph G = (L, R, E) is said to be (v,[3) disperser if VS C Lg with
S| = yn, [N(S)| = pm.

The lemma below follows from the definition of a (v, 3) disperser.

Lemma 21 If G is a (v, ) disperser and A(C) > yn, then A(G(C)) > Bm.
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1 Distance amplification of codes (continued from last lecture)

1.1 Code construction

Recall some definitions and lemmas introduced from last lecture.

Definition 1 (distance amplified code G(C)) Let G = (L, R, E) be a bipartite graph with L =
[n], R = [m], which is D-left-reqular and d-right-regular. Let C' be a binary linear code of block
length n = |L|. For ¢ € {0,1}", define G(c) € ({0,1}%)™ by

G(e)j = (ery() Crati)s =+ Crai))s
for j € Im], where T';(j) € L denotes the i-th neighbor of j € R. Now define the code G(C) as
G(C)={G(c)|c € C}.

Since each bit of a codeword ¢ € C' is repeated D times in the associated codeword G(c) € G(C),
we have

Lemma 2 R(G(C)) = % "R(C) .

To make the (relative) distance of G(C') larger than that of C, we would like to use a special class
of graphs to be GG, which is defined as follows.

Definition 3 (dispersers) A bipartite graph G = (L, R, E) is said to be a (v, 3)-disperser if for
all subset S C L with |S| > yn, we have |T'(S)| > pm.

The following lemma follows from the definition of dispersers.
Lemma 4 If G is a (v, 3)-disperser and A(C) > yn, then A(G(C)) > fm.

Thus, if we can get a “good” disperser (say, with large # and small 7), then we can use it to amplify
the distance of a code. The follow lemma says that such a “good” disperser exists.

Lemma 5 There exists an explicit (poly-time constructible) (v,1 — €)-disperser with D = d =

O(1/(ve))-



PrOOF: Let G = (L, R, E) be the double cover of Ramanujan expander (an (n,d,\ < 2v/d)-
expander). Le. take a Ramanujan graph H = (V, Ey), let L and R be two independent copies of
V, and for each edge (u,v) € Ey, make two edges (u;,vy), (v, u,) for E.

Now we only need to prove that for each S C L with |S| = yn, we have I'(S) > (1 —¢)n. Fix S, let
T = R\ T'(S), it suffices to prove that |T'| < en. By Expander Mixing Lemma, we have

d|S||T
— 5.1 = P s
S d2|suT\<A2 2

)\2
= &|T| < T (IS] =n)
A\/d
5 < Y92,
v
4
T < — <2
= Tl < n (A < 2Vd)

To make |T'| < en, it suffices that d > 4/(ve). O

Use Tanner code (or any explicit code with positive relative rate and relative distance) as C, plug
Lemma 5 into Lemma 2 and Lemma 4, we get the following codes, whose rate-distance tradeoff
matches the Singleton bound, up to a constant factor.

Corollary 6 There are explicit codes of relative distance (1—¢) and relative rate Q(€), over alphabet
size 2001/€)

Remark 7 We compare the codes in Corollary 6 with algebraic geometry codes (with the same
relative distance, and the same relative rate up to a constant factor), the latter one has alphabet
size O(1/€?) (where the current lower bound is QU(1/€)). But the combinatorial construction of
distance amplification codes is much simpler.

If we use the code in Corollary 6 as outer code, and concatenate it with constant-size binary codes
with relative rate Q(€?) and relative distance (1/2 — €) (i.e. random code that matches Gilbert-
Varshamov bound), we get a binary code with large distance.

Corollary 8 There are explicit binary codes of relative distance (1/2¢) and relative rate Q(e3),
which matches the Zyablov bound, up to a constant factor.

1.2 Decoding algorithm for G(C)

Let G = (L,R,E) be a double cover of Ramanujan (n,d,\ < 2v/d)-expander constructed by
Lemma 5. (Indeed we need the fact that G is a double cover of Ramanujan expanders, rather than
its disperser properties). Let C' € {0,1}" be a binary code that can be decoded against yyn errors
in linear time (say, Tanner codes).

We address our decoding problem for G(C) C X" (where ¥ = {0,1}9) as follows, for each y € X"
such that there exists some ¢ € C with A(G(c),y) < (1 — €)n/2, the decoding algorithm should
output G(c). Note that since the distance of G(C') is (1 — €)n, if such ¢ € C exists, it is unique.



We describe the algorithm as follows, and then explain the idea and give the proof of it.

Decoding algorithm for G(C)

(1) Compute ¢ € {0,1}" : for each i € L, set ¢, as the majority vote for the value of i-th bit
from its d-neighbors.

(2) Decode ¢ from ¢ (by the decoder of C).
(3) Output G(c).

The idea of the decoding algorithm is as follows. Note that A(G(c),y) < (1 — €)n/2 means that
more than a half of coordinates of y are correct (i.e. agree with G(C)). Fix a vertex ¢ € L, think
of its d neighbors I'(7) are randomly sampled from R (expanders simulate this in a deterministic
way). Then, with high probability, more than a half of yr(;) will be correct. Taking the majority
votes (namely ¢}) of the values of ¢; recorded by yr(;), we will be able to recover the real ¢; with
high probability. Thus A(c, ¢) is small (hopefully smaller than yon), and we are able to decode ¢
from ¢ by the decoder of C.

Lemma 9 There are codes of relative rate 2(e?) such that we can correct a fraction (1 —¢€)/2 of
errors in linear time.

PrOOF: Use G(C') and the algorithm described above.

We claim that after the first step in the algorithm, A(c/,¢) < yon. To see this, let S = {i € L :
¢, # ¢}, i.e., S be the set of coordinates in which the majority voting get wrong. We only need to
prove that |S| < «on. The defintion of S implies that for each i € S, a majority of its neighbors
are corrupted, i.e., if we let 7' C R be the locations in which y is not corrupted (|T'| > (1 + €)n/2)
, then

Vie S,T(H)NT| <

N |

Thus, by Expander Mixing Lemma, we have

d|S| > |E(S,T)| > d|5”T‘ W
d|S d|Ss|(1
- '2'_ S0+ e (171> (1+ n/2)
ed
- fIS\SM/ISHTI
2d2
= —]S|<)\2\T|<)\2n
S |5 < 2VD7
€
16
=[S < o (r < 2vad)

Thus, to make |S| < yon, it suffices that d > 16/(yo€?).



If we start with a graph G with d > 16/(yp€?), in the second step of the algorithm, the decoder
finds the correct ¢, and then outputs the correct G(c). O

Exercise 1

(1) Extend the algorithm described above to correct T errors and s erasures when 27+s < (1—¢€)n.

(2) Use GMD decoding to give binary codes of rate Q(e®), which are linear-time decodable up to
a fraction (1 —€)/4 of errors.

1.3 Near-optimal linear time codes

We now discuss how the above scheme can be used to achieve a near-optimal trade-off between rate
and relative distance, together with linear time encoding/decoding algorithms.

Theorem 10 [G102] For every r, 0 < r < 1, and all € > 0, there is an explicit family of codes of
rate r and relative distance at least (1 —r — €) such that codes in the family can be encoded as well
as unique decoded from a fraction (1 —r — €)/2 of errors in time linear in the block length.

Proof Sketch: The construction of the code looks like a combination of concatenation of Tanner
codes and Reed-Solomon-based expander codes, but here the expander is used solely for simulation
of a random process, rather than for distance amplification. We start with Tanner codes, which
has relative rate 1/(1 + ) and can be decoded against O(y3) errors in linear time for some small
7 (indeed O(y2/log(1/7)), but O(+?) is enough for the proof).

Construction of the code. Let v = ¢/4. Let G = (L, R, E) be a double cover of Ramanujan
expanders (as constructed by Lemma 5), with degree d = ©(1/(3¢?)). Given a message, we encode
it by Tanner codes to be C, which is guaranteed to have relative rate 1/(1 + ) and be able to
decoded against a fraction 3 > O(v3) of errors in linear time. Then we break C into dr(1 + «)-
sized (constant-sized) blocks (say, n = |L| = |R| blocks in total). Let the i-th block be C®.
Then encode each block C'¥) with constant-sized Reed-Solomon codes (of relative rate r(14-+) and

relative distance 1 —r(1 4 +y)) into C(@). We see that the block length of each C(9) is exactly d. We
associate each C(9) with 4-th node in L. Then let each node in j € R collect the tuple

—_—— —_~— —_—~—

C] = (C(Fl(‘j))l—‘*l(rl(]),])7 C(FQ(J))Ffl(l—b(‘j)J), e ’C(Fd(]))l—\,l(l—\d(])d))’

where I'y(5) is the k-th neighbor of j, and I'"!(4, j) is the index of j among all the neighbors of i.

In English, each node i on the left distributes C'(?);, to its k-th neighbor. All the nodes on the right
collect the distributed letters, and write down from whom each letter comes from.

Finally, let C = C1Cs - - - C,, be the encoded codeword.

Rate. It is easy to see that the rate of the code is the product of the Tanner code and Reed-Solomon
code, which is 1/(1 +~) -r(1+~) =1.

Decoding algorithm. Given a (corrupted) codeword C’, the decoding algorithm put each Cg on
the j-th vertex on the right side of G. Then, similar to the encoding algorithm, the right nodes



distribute all the letters to the left side, and the left vertices collect the letters, gettlng C (Z) for each

vertex i € I/ Then, we run the Reed-Solomon unique decoder decode each C'* c() ) , getting C V' Put
all the C()" together, we get C’. Run the linear-time decoder for Tanner codes to get the orlginal
message.

It is easy to see that the algorithm runs in linear time (in terms of the block length of the codeword).

Now we prove that the decoding algorithm output the correct original message when at most
/

(1 —7r—¢)/2 errors occur. Indeed, we only need to prove that at most a fraction § of C@ contains
more than fraction (1 —r —¢€/4)/2 < (1 —r(1 ++))/2 of errors (which is the decoding capacity of
Reed-Solomon unique decoder).

Let T € R be the set of corrupted entries in codeword C’, where |T'| < (1 —r —¢)n/2. Let S € L
be the set of vertices on the left who receive more than fraction (1 —r —¢/4)/2 of corrupted letters
(surely from T'). Our objective is to prove that |S| < gn. By definition of S, we have

dIS|(1 —r — ¢/4)
2

|E(S,T)| >
On the other hand, by Expander Mixing Lemma, we have

(s < P s

Putting two inequalities together, we have

T
< 0 +)\\/]5'|| |

2
d(l—r—e/4) d|T)| 7|
= Py i)
N
dl—r—e/4) d1l—r— dIT
= ( ""2 6/)< ( 2r 6)+2 ]‘S]’ (|T|§(1—r—e)n/2and/\§2\/g)
- |T| 36[ evVd
|S\ 16 8
64\T| 64
= [5]< 2g = 2d n < fBn. (IT| <n and d > ﬁ)
This finishes the proof of the correctness of the algorithm. ]

Comments: The near-optimal trade-off (rate r for distance close to (1 — r)) that almost matches
the optimal Singleton bound comes from using the Reed-Solomon codes. The overall scheme can
be viewed as using several independent constant-sized RS codes; the role of the expander is then to
“spread out” the errors among the different copies of the RS code, so that most of these copies can
be decoded, and the remaining small number of errors can be corrected by the left code C'. Since
only a small fraction of errors needs to be corrected by C' it can have rate close to 1 and there is
not much overhead in rate on top of the Reed-Solomon code.

The above codes are defined over a large alphabet (whose size depends exponentially on 1/¢). But
they can be concatenated with constant-sized binary codes that lie on the Gilbert-Varshamov bound



to give constructions of binary codes which meet the so-called Zyablov bound. In particular, we
can have linear-time binary codes of rate (€?) to correct a fraction (1/4 —¢) of errors for arbitrary
€ > 0 (Exercise 1 (2)). We point the reader to [GI02, GI05] for further details.

2 List decoding — introduction

2.1 Motivation and definition

Recall that a random binary code C' € {0,1}" with size 2'~(4/")=(1) has distance d with high
probability. For such codes, we can uniquely decode against |(d — 1)/2] errors. And we also know
that when |(d + 1)/2] errors occur, it must be possible that two codewords get to the same string
— therefore we cannot decode against | (d + 1)/2] errors in the worst case assumption.

But on the other hand, Shannon’s theorem tells us that when d errors happens in a random way (in
BSCg/,, channel), such a code is decodable against (roughly) d errors with very high probability.
Thus, most d-error patterns are decodable. And this reminds us that the worst-case uniquely
decodable requirement, which leads to the limitation of |(d — 1)/2]-error decodability, might be
too pessimistic.

Since we still want to talk about worst-case model (in “Hamming world”, rather than “Shannon
world”), we can only choose to give up the requirement of uniqueness, and introduce the concept
of list decoding.

Definition 11 (list decoding problem of a code C) Fix a code C C X", giveny € X", the list
decoding problem (against a fraction p of errors) is to output all codewords of C within Hamming
distance pn from y.

Although in list decoding problem, we allow that a message y is “close” to more than one codewords,
but we still want the number of “close” codewords small — or just outputting all of them takes a
long time. Thus we come up with the following definition, which measures the list-decodability of
a code.

Definition 12 ((p, L)-list decodable) A code C' C ¥" is (p, L)-list-decodable if Vy € X", |B(y, pn)N
C|<L.

Remark 13 (p, 1)-list-decodability < unique-decodability < 6(C) > 2p .

2.2 Existence of codes that are decodable to a small list

In this section, we justify Definition 11 and Definition 12, by proving the following lemma, which
ensures that there exist codes that are decodable to a “small” list.

Lemma 14 Let |YX| =¢q, 0 <p <1—1/q. There exists a code C C X" of relative rate (1 — hq(p) —
1/L) that is (p, L)-list-decodable. In fact, a random C' C X" works with high probability.



PROOF: Let R =1 — hy(p) — 1/L, pick ¢%*" codewords from X" independently at random, and let
C be the (multi-)set of these codewords. When C' is not (p, L)-list-decoable, we know that there
exists y € ¥", and such that |B(y,pn)NC| > L + 1.

Therefore, fix y,

Prc(|B(y,pn)NC| > L+1] < (LE1>(W<BZEW)LH

(KWVbe%(yJ”U))L+1
q?’L
q(R-‘rhq(p)—l)n(L-‘rl)
gD/

IA A

Thus, by a union bound,

Prc[C is not (p, L)-list-decodable] = Pr¢[3y € ¥, |B(y,pn) NC| > L + 1]
< qann(L+1)/L — qfn/L‘

Thus, only with exponentially small probability C' fails to be (p, L)-list-decodable. [

The code given by Lemma 14 is not ensured to be linear code. If we want to get linear list-decodable
codes, we use the following fact,

Lemma 15 For each S C Fy \ {0} with size |S| = L, there always exists a subset T' C S such that
|T'| > log,(L + 1) and the elements in T are linearly independent.

Then, using similar proof as in Lemma 14, we get

Lemma 16 A random linear code C C Fy of rate (1 —hy(p) — m is (p, L)-list-decodable with
q
probability (1 — ¢&().

Remark 17 The T slack has been improved to Cy, /L recently.

_1
log,

On the other hand, assuming L is a large constant, we prove that the rate/distance tradeoff shown
in Lemma 14 and Lemma 16 is tight.

Lemma 18 A code C C [q]" of rate (1 — hy(p) + ¢€) is not (p, ¢%™)-list-decodable.

PROOF: Pick y € [¢]™ at random. Then,

E,[|B(y,pn) N C[] = |C|V01q75n»lm) > |C]g(ta®=1=0(D)n 5 gle=o()n.
q
Therefore, there exists y € [¢]", such that |B(y,pn) N C| > glceMn O

We also remark that for large sized alphabet, say for alphabet with size ¢ = 21/7, the capacity
(rate) of list decoding is almost

ﬂﬁdzl—@ Aiﬂ

=1l-p—r.
log q log q

L —hy(p) =1~ (plog,(¢—1) +



Comparing it to Reed-Solomon codes which matches the Singleton bound, we note that unique
decoding of Reed-Solomon code works for at most fraction (1 — R)/2 of errors (where R is the
relative distance). But list decoding (with constant-size list) can deal with p — 1 — R errors.

3 List decoding for Reed-Solomon codes (to be continued)

We have proved the optimal rate/distance tradeoff for list decoding. Thus, the main challenge
remains now is to approach the optimal rate of (1 — hy(p)) with

e explicit codes,

o cfficient list decoding algorithms.

In this section, we will show a list decoding algorithm for Reed-Solomon codes, under a general
framework using Johnson bound.

3.1 A general framework of constructing list-decodable codes

We have seen many clever construction of codes with good rate and good distance. One might ask
whether we can take the advantage of these codes to get codes with nice list-decodable properties.
The Johnson bound should come to mind at this stage, which allow us to say something about the

list-decodability just based on the distance of a code. Recall the Johnson bound as follows,

Theorem 19 (Johnson bound) A g-ary code with block length n, relative distance 0 is always
(J4(9), O(n))-list-decodable, where

In particular,

Indeed, we have also shown a slightly different version of Theorem 19, as follows.

Theorem 20 A q-ary code with relative distance ¢ is always

(- =) ). 0)

list-decodable. In particular, a binary code with relative distance § is

<1— \/1—225(1—1/L)’L)_

list-decodable.



For large g, we see that a code with relative distance § is (1 — /1 — (1 — 1/L), L)-list-decodable.
Thus, for Reed-Solomon codes with rate R and distance almost (1 — R), we want to decode it
against up to fraction (1 —+/R) of errors.

Remark 21 Note that since Reed-Solomon codes meet the Singleton bound, (1 — /R) is the best
tradeoff between the fraction of errors can be list decoded and rate, if we work under the framework
of Johnson bound (only appeal to distance and Johnson bound).

3.2 A toy problem

Before we go into the Reed-Solomon list decoding algorithm, we work on the following toy problem
as warmup.

The problem. [ALRS99] Fix pi(z),p2(x) € F[X] as two different degree-k polynomials. With a
parameter n (n > 4k, n even), the encoding procedure selects n different elements aq, g, -+, a, €
F, chooses a set S € [n] of size |S| = n/2, and computes y1,ya2, - , yn as follows,

. | m () i€8

The problem is to design a decoding algorithm, which, given (a1,y1), (a2,92), -+, (an, yn) output
by the encoding procedure, no matter what S the encoding procedure chooses, recovers the two
polynomials p;(x) and pa(x).

First try — unique decoding. One idea could be to treat p;i(x) as the real message, and all
the y;’s computed according to pa(z) as noise (errors). Then use unique decoder to decode p;(x),
and interpolate pa(x) from all the pairs (o, y;) that don’t agree with p;(z). But this idea doesn’t
work, because the codeword (aq,y1), (a2,y2), -+, (n,yn) is equally far away from the message
generated solely by pj(z) and the one generated solely by pa(z) (i.e., the Hamming distance are all
n/2). Therefore no unique decoder could figure out whether p;(z) or pa(x) is the “unique” original
message.

In particular, if we treat (a1, y1), (a2,y2), - , (n, Yn) as a variant of Reed-Solomon code, the Reed-
Solomon unique decoder requires at least (n + k)/2 agreements between p;(x) and the message to
be decoded. But this is not ensured in the problem.

Solution. We encode the fact that each y; is either p; (o) or pa(e;) as following algebraic statement.
Vi € [n], (yi — p1(ci))(yi — p2(ai)) = 0.
Therefore, if we let
Q(z,y) = (y = p1())(y — p2(2)) = v = (p1(x) + p2(2))y + pr(2)p2(2) = y* — B(a)y + C(a),

where B(x) is a degree k polynomial and C(z) is a degree-2k polynomial, we know that Q(x,y)
vanishes for each (z = «j,y = y;). Thus, our decoding algorithm works as follows.

The algorithm.
(1) By solving a linear system, find a polynomial of form Q(z,y) = y*> — B(x)y + C(x) such

that B(z) is a degree k polynomial, C'(x) is a degree-2k polynomial, and for each i € [n],
Q(ai,yi) = 0.



(2) Factorize Q(z.y) = (y — f1(x))(y — fo(2)), and output {f1(2), fo(x)} as {p(2), pa(2)}.

In the first step of the algorithm, we are always able to find a solution because (y —p1(z))(y —p2(z))
is a candidate solution. Thus, we need to prove that, on the other hand, we are always able to find
out p1(x) and po(x).

Lemma 22 For any Q(x,y) found in Step (1) of the algorithm, (y — p1(x))|Q(z,y), and (y —
p2(2))|Q(x, y).

PROOF: By symmetry, we only need to prove that (y — p1(z))|Q(x,y). Think of @ as Q(y), a
univariate polynomial on y, to prove that (y — () is a factor of Q(y), we only need to prove that
Q(B) = 0. Thus, it suffices to prove Q(z,pi(z)) = 0, which implies (y — p1(z))|Q(x, y).

Let R(x) = Q(x,p1(x)). We see that R(z) has degree at most 2k. Thus to prove R(x) = 0, we only
need to find out (2k + 1) roots for R(x). Note that there are n/2 > 2k «;’s with y; = pi(a;). For
these «;’s, we have R(«;) = Q(ay, p1(ay)) = Q(ay,y;) = 0. And this finishes the proof. [

Lemma 22 implies that p1(z),p2(x) € {f1(z), fo(x)}. Thus, when p;(z) and pa(z) are different, the
algorithm outputs the correct set.

3.3 List decode Reed-Solomon codes in general

The toy problem actually gives us an approach to decode Reed-Solomon codes into a list of size 2,
against n/2 errors — requiring ¢t > n/2 agreements (correct places), while unique decoder can only
deal with (n — k)/2 errors — requiring ¢t > (n + k)/2 agreements.

In general, to decode Reed-Solomon codes into a larger list, we consider the following polynomial
reconstruction problem. Given n distinct pairs (as, ;) € F2, find all polynomials f € F[X] of degree
at most k, such that the agreement f(«;) = y; holds for > ¢ values of i € [n].

In general, we would like ¢ to be small as possible — so that we can deal with more errors. Unique
decoding requires t > (n+k)/2. To match the Johnson bound (to decode into constant/O(n)-sized
list), we want solve the polynomial reconstruction problem for ¢ > v/ kn.

In next lecture, we will see a list decoding algorithm for ¢ > v/2kn [Sud97].
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DRAFT

Last class, we saw a toy version of recovering from a mixture of two Reed-Solomon codewords the
two polynomials in question. Now we turn to list decoding arbitrary received words with a bounded
distance from the Reed-Solomon code using Sudan’s [6] algorithm. This algorithm decodes close
to a fraction 1 of errors for low rates. Then we will see an improvement by Guruswami and Sudan
[4] which list decoded up to the Johnson radius.

1 List Decoding Reed-Solomon Codes

Let Crs be a [n,k + 1,n — k], Reed-Solomon code over a field F of size ¢ > n with a degree
k polynomial p(X) € F[X] being encoded as (p(ai1),p(a2),...,p(an)). We can reduce the list-
decoding problem to a polynomial reconstruction problem with agreement parameter t.

Remark 1 Ift > ”T‘H“, then the answer (if it exists) is unique.

Remark 2 Recall that Johnson Bound states that a code of distance k + 1 can be list decoded up
to n — vnk errors. Our goal is to try solve this for t > Vkn.

However it is an open question whether if one can do it for (say) t = 0.9vVkn. Another open

question is what can be done if we allow super polynomial list size fort = 7.

1.1 Polynomial Reconstruction

Given parameters n,t,k and n pairs (a;,y;) € F?, we want to find all degree < k polynomials
f € F[X] such that |{i|f(ci) =wi}| > t. Here we will present an algorithm due to Sudan [6] for
t > v/2kn. Later we will see how to remove /2.

Figure for comparison of relative distances.
1.1.1 Geometric Intuition

Example 1 Consider the following point configuration on which we want to find all the lines
passing through at least 5 points.



By inspecting the figure, we can see that there are only two such lines, fi(z) =z and fo(x) = —x:

Claim 3 Any total degree 4 polynomial Q(x,y) such that Q(cy,y;) = 0 for all i, must have these
two lines as factors.

PROOF: Both lines must intersect Q(z,y) = 0 in at least 5 distinct points. Let Q(a;, fi(a;)) =0
for 5 different points. Since Q(x, fi(z)) is a degree-4 polynomial in x, we have Q(x, fi(z)) = 0.
Therefore y — fi(z) | Q(z,y). O

Hence a possible factorization for these points is given by Q(z,y) = (v — y)(z +y)(2? + % — 1).
1.1.2 Sudan’s Algorithm
Armed with the above intuition, consider the following algorithm:

1. Find a low degree Q(z,y) # 0 € F[X, Y] such that Q(«;,y;) = 0 for all 7.

2. Find all factors of the form y — f(x) of Q(z,y). Output those with agreement at least ¢.



There are three questions we need to answer in order to show that this algorithm is correct. First
we need to make sure that such @ exists. Second we need to find out when y — f(z) is a factor
of Q(z,y). Third is how we can find such factors efficiently. We will touch upon a randomized
algorithm for this at the end of this section.

Lemma 4 Given positive integers dy, dy, n < (dg + 1)(dy + 1) and n points {(cu,y:i) 7y C F?,
the following holds: There exists Q(X,Y) # 0 € F[X,Y] such that Q(as,y;) = 0 for all i and
deg,(Q) < dg,deg, (Q) < dy. Moreover such Q can be found by solving a linear system.

PRrOOF: Notice that @ with deg,(Q) < di,deg,(Q) < dy has (d; + 1)(dy, + 1) many coefficients.
For each i, Q(«;,y;) = 0 is a homogeneous linear equation in terms of @’s coefficients. There are n
such equations and (d; + 1)(dy + 1) many unknowns. For (d, + 1)(dy + 1) > n, a non-zero solution
is guaranteed to exist. [

Having made sure that @) exists, we need to answer when y — f(z) ‘ Q.

Lemma 5 Given a polynomial f(x) € F[X] with f(c;) = y; for t different points (v, y;) € F? :
Q(aiayi) =0, th > degw(Q) + degm(f) degy(Q); then y — f(ZC) ‘ Q(x7y)
k

PRrOOF: Let R(z) := Q(z, f(x)). We have R(«a;) = Q(ai, f(a;)) = Q(a4,y;) = 0. Therefore R(x)
has t different roots. But R(x) has degree at most deg,(Q) + deg, (Q) deg,(f) < t, which implies
R(z) =0 = Q(z, f(z)) =0. Hence y — f(x) ‘ Qx,y). O

Remember, Q(z,y) can have at most deg, (Q) many different factors of the form y — f(x). Hence
deg, (Q) = ¢ is our list size. By Lemma 4, we can take d, = [7]. By Lemma 5, we need ¢t > 7 + (k.

This is minimized for £ = \/% , which yields ¢ > 2v/nk.

In order to get rid of a factor of v/2, we notice that the important quantity is d, + k - d,. As long
as all non-zero monomials ¢;;2'y’ of Q(x,y) has i + kj < t, Lemma 5 will hold.

Definition 6 ((1, k)-weighted degree) For a polynomial Q(X,Y) € F[X,Y], its (1, k)-weighted
degree is defined to be the mazimum value of i + kj over all non-zero monomials 'y’ of Q.

Lemma 7 Given positive integer D and kn < (DJQ) points { (o, yi)}i—y C F2, the following holds:

There ezists Q(X,Y) # 0 € F[X,Y] such that Q(cu,y;) = 0 for all i and (1, k)-weighted degree of
Q is D. Moreover such @ can be found by solving a linear system.

PRrROOF: The number of @)’s coefficients is:

L%J(D—ijrl):(DJrl) QII:J +1> _g V]:J QIIZJ +1> . (D+12)](€D+2)

J=0

Rest of this argument is exactly the same with Lemma 4. [J



Lemma 8 Given a degree-k polynomial f(x) € F[X]| with f(a;) = y; fort different points (e, y;) €
F2: Q(ay,y:) = 0, if (1, k)-weighted degree of Q is < t, then y — f(x) ‘ Qx,y).

PROOF: As usual, let R(x) := Q(z, f(z)) and note that R(z) has ¢ different roots. Now degree of
R is at most max;j.q, ;201 +deg,(f)j < maxj.g,.+07+kj <t. Here g;; is the coefficient of monomial
2y’ of Q(z,y). Hence y — f(z) | Q(z,y). O

Putting these together, we obtain:

Theorem 9 (6) Given parameters n,t,k and n pairs (g, y;) € F2, if t > /2kn, we can find all
degree < k polynomials f € F[X] such that Hz‘f(az) = yz}‘ > t in time polynomial in n, k and
|F|. Moreover there are at most \/2n/k many such f’s.

PROOF: Let D ¢ — 1. Then (PHBPEE) _ 41 o 20kt o oy By Lemma 77, a Q with (1, k)-
weighted degree < t—1 exists. By Lemma 8, we know that if f has > t-agreement, y— f(z) ‘ Q(x,y).
Assuming that we can find such factors in polynomial time, we are done. [J

1.1.3 Finding factors of Q(X,Y) of the form Y — f(X)

We will describe a simple randomized algorithm given in [1, Section 4.2]. We are given a bivariate
polynomial Q(X,Y) € F[X,Y] with ¢ = |F| and we want to find factors y — f(x) with deg,(f) < k.
If we can find an algorithm that either finds such polynomial f(z) or concludes that none exists,
we are done. We can run this algorithm, and if it finds f(x), we can recurse on the quotient

Q(z,y)/(y — f(2)).

Let E(X) € F[X] be an irreducible polynomial with degree > k + 1. An explicit choice is E(z) =
2971 — v where 7 is a generator of F. As we have seen in Homework 2, this is irreducible. Given
such E(z), we can view Q(z,y) mod E(z) as a polynomial, Q(Y) € F[Y] with coefficients in the
extension field F = F[X]/(E(X)) of degree ¢ — 1 over F. The problem reduces to finding roots of

Q(Y) in ﬁ‘, which can be done using Berlekamp’s algorithm in time polynomial in deg (@) and gq.

2 Method of Multiplicities

In this section, we will remove the factor v/2 and obtain a list decoding algorithm with ¢ > vkn
due to Guruswami and Sudan [4]. First we will see an example showing that we can’t hope to
improve the above parameters.

Example 2 Consider the following point configuration of n = 10 points. For k =1 (lines), having
t > v/nk implies t > 3. So we want to find lines passing through > 4 points.



Next figure shows set of all lines going through at least 4 points:

If we want to output all these 5 lines, Q) must have total degree at least 5. But the agreement
parameter t = 4 is smaller than 5, so Q(x, f(x)) (for one of these lines; y = f(x)) might not be
=0.

Note that in this example, each point has two lines crossing. Thus any Q(z,y) containing these
lines as factors must also contain each point twice.

Now we will try to understand what it means for Q(z,y) to contain each point twice.

Example 3 If Q(X,Y) € F[X,Y] has r zeroes at point (0,0), then it has no monomials of total
weight less than r.

Since we can translate @ by any (o, ) € F?, we can generalize the above example to a formal
definition:

Definition 10 (Multiplicity of zeroes) A polynomial Q(X,Y) is said to have a zero of multi-
plicity w > 1 at a point (o, B) € F? if Qa5 := Q(z + o,y + B) has no monomial of total degree less
than w.



Armed with this definition and an idea on how to put additional constraints on (), we will look at
what happens to Lemmas 7 and 8.

Corollary 11 Given positive integers D, w1, ..., wy, such that k), (wi;l) < (DQFQ), and points

{(cvi, yi) Y1y C F2, the following holds: There exists Q(X,Y) # 0 € F[X,Y] such that Q(z,y) has
a zero of multiplicity w; at («;,y;) for all i, and (1, k)-weighted degree of Q is D. Moreover such
Q can be found by solving a linear system.

ProOF: Notice that coefficient of z'y’ in Qo p is

N3N\ g
> ( et T gy
S\ ]

Hence we can express w;-multiplicity condition as (wl; 1) homogeneous linear equations. By pre-
vious calculation, we know that the number of )’s coeflicients is > %. Thus a non-zero

solution exists if n ), (wi;l) < (D;rz) O

Lemma 12 Suppose f(a) = 3 if Q(z,y) has r-zeroes at (a, B). Then (z — )" | Q(z, f(x)).

Proor: We have

R(z) = Q(z, f(2)) = Qap(r — a, f(x) = B) = Qap(z — o, f(2) = f())

Here Qq has no monomials of degree < r. Also (z — «) ’ (f(x) — f(a)). For any non-zero
monomial 2yl of Qq g, we have (z — ) | (z — a)'(f(x) — f(a))?. Since i +j > r, we have

(z—a)" | Qagpla —a, f(z) = B) = Q(z, f(z)). O

Lemma 13 If a degree k polynomial f has f(a;) = y; for >t values of i and Zi:f(oc,-)
then y — f(x) ‘ Q(z,y) assuming Q has (1, k) weighted degree < D.

—y; Wi > D,

ProoF: If f(o;) = y; and Q(x, y) had a multiplicity of w; zeroes at («;, ;) then (z—a;)"
by previous lemma. Therefore ;. ¢(q,)=y, (z—0:)"

is D, then Q(z, f(x)) =0 and y — f(x) | Q(z,y). O

Q(z, f(x))
Q(zx, f(z)). If (1, k) weighted degree of Q(x,y)

Putting all together, we obtain:

Theorem 14 The algorithm finds all polynomials f(x) such that Zi:f(ai):yi w; > 1\/2kY, (w";l).

In particular, if w; = w, then we can decode f up to n —t errors with t > y/nk (1 + i)

Corollary 15 (4) For a Reed-Solomon code of rate R, we can list decode up to 1 — VR fraction
of errors in time polynomial in the block length and the field size.



3 Soft Decoding

One reason we picked each w; individually is because we “encode” likelihood information. One might
think of w;’s representing a confidence value on the received symbol and placing more emphasis on
smaller values. This connection has been made formal by Koetter-Vardy [5], where it was shown
how to choose weights optimally based on channel observations and channel transition probabilities.

One important point is that this application requires dealing with non-negative real weights. This
is made precise in the following Theorem which appears in [2, Chapter 6]:

Theorem 16 For all non-negative rationals {wm}ie[n],a@g and non-negative real €, there is a
poly (n, ||, %)—time algorithm to find all degree k polynomials f such that

n
D Wisay 2 [k D wlo + Wna.
i=1 i

4 List Decoding of Binary Concatenated Codes

The main shortcoming of the above methods is that the alphabet size is polynomial in block length.
We will use concatenated codes to reduce alphabet size.

. R .
Assume we are given a Reed-Solomon code as our outer code Coy, : F5 — IF;L/ with rate R and an

inner code Cj, : F§* — IF;n/ " with rate r = rate(Ciy). Consider the basic composition:

I
| s/

2 C2

i (7‘171 l (va l (wm

('in(('l } ('in["‘.’] Sl ('in'(.n)

(.H

This code has rate Ry = R/r. First we will start with the most naive idea and work our way up.
Our main goal in this section is to get a binary code which is close to Zyablov’s bound.

4.1 Uniquely Decoding Inner Codes

Consider uniquely decoding each inner codes and then applying list decoding algorithm on the
—1
outer code. There will be > W

word. The list decoding capacity of Coyt is 1 — \/é = 1 — +/Ry. Hence this algorithm can list
decode up to (1 — \/Ro) W—frac‘cion of errors.

fraction of errors if an inner block is decoded to a wrong code

However this is quite bad, as we picked up a factor of % that we were trying to avoid by using list
decoding at the first place.



Lemma 17 Given positive reals 0 < r, R < 1, there exists a binary code which can be list-decoded

up to <1 — \/§> w fraction of errors in polynomial time.

4.2 List Decoding Inner Codes

Instead of uniquely decoding inner codes, consider list decoding them, by —say— brute force. Recall
that by Johnson Bound, any binary code can be list-decoded up to h=!(1 —r — €)-fraction of errors
with a list size of £ = £(e) < O(1/e).

A slight complication arises on how to apply Reed-Solomon list-decoding on a message where each
symbol is itself another list. During list-decoding algorithm, we only assumed all (v, y;) pairs were
distinct, and everything worked fine even if a; = o for different ¢, j as long as y; # y;. Using this
observation, we can apply our list decoding algorithm on the set {(a,yi;)}i;. This will return us
a list of messages which agrees with ¢ > VAN points where N < nf. Therefore this method will

give us list decoding up to (1 — ﬁ) h=(1 — 7 — ¢) fraction of errors.

Lemma 18 Given positive reals 0 < r, R < 1 and for any real 0 < € < r, there exists a binary

linear code which can be list-decoded up to (1 — \/E> h=Y(1 — 7 — €) fraction of errors.

In order to get a binary code list decodable up to I_TV fraction of errors, we can take £ = 1/4% and
r = O(y?), which implies € = O(7?). By taking R = 7%, we obtain:

Theorem 19 For any real 0 < v < 1, there exists a linear binary code of rate Q(%) list-decodable

up to 1777 fraction of errors with a list size of O (%)
Remark 20 Compare this to the optimal parameter of rate Q(v?) and list size O(1/~?).

4.3 Weighted List Decoding Inner Codes

One room for improvement to the previous algorithm is that, instead of treating each code in the
list equally, assigning different weights. If we remember Theorem 16, we can obtain a list decoding

with a (weighted) agreement of > " | w; f(a,) > \/k D ;4 wz o + €Wmax. In order to minimize this,
we need to ensure that the weights of inner codes around a point should decay in 5 norm rapidly.
Although it is not known how to get this for general binary codes, Hadamard codes have this
property.

5 Going beyond Reed-Solomon codes & Johnson radius

For Reed-Solomon codes, we showed that one can efficiently list decode up to a radius (fraction of
errors) equal to 1 — VR. However we know that list decoding up to a fraction 1 — R — € of errors



is possible non-constructively. In this section, we will construct better variants of Reed-Solomon
codes. The code we will describe was given by Guruswami and Rudra [3].

1 T T T T
—— Optimal
Reed-Solomon Codes [

09 h

08F % B

07t :
06 1
05 L \ .

04t ~ 4

List Decoding Radius

03} L _
02F S, 8

01F R A

The main difficulty in Reed-Solomon codes is that we need to be able to deal with any pattern of e
errors. Instead, we will “pack” parts of codeword together and decrease the error patterns we have
to handle considerably.

5.1 Folded Reed-Solomon Codes

Recall that a Reed-Solomon code RS r+[n, k] gives an encoding of a degree-k polynomial f(X) €
F[X] as

F@) = ()] ez )

H

n—1
= (), (), fOT)
where n = |F| —1 = ¢ — 1 and ~ is a generator of F.

Folded Reed-Solomon code F RSI(FS) [k] (a code over [F?) is the s-folded version of the above (for
convenience assume s | n):

f(1) f(r?) f(y"9)
f(y) fOh) fymmsth
f(l') — ’ : ) ) )
fO fO®h f(mh

The received word looks like following:



1 v ’75 ,yn—s—i-l
Tyt ysy1 Yn—s+2
Y1Y2 Ys+2 :
’YQ Ys Ys+3
Yy e Yn

N = n/s many columns

If we think of Reed-Solomon decoding as interpolating a polynomial over a plane (which led to
the v/R bound on agreement required), it might seem possible to decode with agreement fraction
about R¥(*t1) by interpolating in (s + 1)-dimensions.

Problem 21 We want to find a polynomial Q(X,Y1,Ys,...,Ys) # 0 € F[X,Y1,Ya,...,Ys] such
that Q(V**, Yis+1, Yis+2, - - - Y(i+1)s) = 0 for 0 < i <n/s.
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At the end of the previous notes, we defined folded Reed-Solomon codes, parameterized by an
integer folding parameter s > 1, as follows.

Definition 1 (s-folded RS code) Let[ be a field of size ¢ whose nonzero elements are {1,v,...,y" 1}
forn=q—1. Let s > 1 be an integer which divides n. Let 1 < k < n be the degree parameter.

The folded Reed-Solomon code FRSI(FS)[k:] s a code over alphabet F* that encodes a polynomial
f € F[X] of degree k as

o7 ][ A
FX) f(:v) | f(v: ) fly | ) . )
frh f(y*h fey"h

Observe that the folded RS code is a code of block length N = n/s and rate R = k/n (which is
the same as the original, unfolded Reed-Solomon code).

1 List decoding FRS codes

Now suppose such a codeword was transmitted and we received a string in y € (F*)" which we
view in matrix form as

Y1 Ys+1 Yn—s+2

Y2 Ys+2 ;

Ys Ys+3 5 (2)
Ys - Yn

We would like to recover a list of all polynomials f € F[X] of degree k whose folded RS encoding
(1) agrees with y in at least ¢ columns, for some agreement parameter t. The goal would be to
give an algorithm for as small a t as possible, as this corresponds to list decoding up to n — ¢t
errors. Note that we can solve this problem for t > /RN by simply unfolding the received word
and using the algorithm for Reed-Solomon codes. Our hope is to do better by exploiting the fact
that the agreements have some structure: when a column is correct we know the correct values of
all s values in the column. In other words, the number of errors patterns we have to worry about
is smaller and they have some structure, which could be potentially be exploited to correct from a
larger number of errors. This is in fact what we will do, exploiting in a crucial way the algebraic
structure of the folding.



As in the Reed-Solomon list decoding algorithm, we will use interpolation to fit a low-degree nonzero
polynomial @) through the data. The gain will come by interpolating in more than two dimensions.
This enables working with a smaller degree and offers the hope of leading to an algorithm that works
with smaller agreement. The fact that an entire column is correct when there is no error will be
used to argue that the interpolated polynomial ) and the message polynomial f must obey some
identity (the higher-dimensional analog of the identity Q(X, f(X)) = 0 from the Reed-Solomon
case). The algebraic crux is to argue that this identity suffices to pin down f to a small list of
possibilities, and to find this list efficiently.

1.1 Interpolation step

We will describe a decoding algorithm that can be viewed as a higher-dimensional generaliza-
tion of the Welch-Berlekamp algorithm. The algorithm will interpolate a “linear” polynomial
Q(X,Y1,Ys,...,Ys) which has degree 1 in the Y;’s through certain (s + 1)-tuples. We thank Salil
Vadhan for pointing out this variant of the algorithm, which is simpler to describe. The algorithm
described in the paper [1] uses higher degrees in Y;’s as well as multiplicities in the interpolation.
This leads to a stronger bound (as we will mention later), but the simpler “linear polynomial”
based algorithm suffices for the main message of this lecture. Jumping ahead, this message is the
explicit construction of codes of rate R which can be list decoded in polynomial time from a fraction
1 — R — € of errors, for any desired € > 0.

Given a received word as in (2) we will interpolate a nonzero polynomial
QX 11,Yz,...,Ys) = Ag(X) + A1 (X)Y1 + Ao (X)Ya + -+ - + A5(X)Y5

with the degree restrictions deg(A4;) < D — 1 for i = 1,2,...,s and deg(Ap) < D+ k — 1 for
a suitable degree parameter. The number of monomials in a polynomial ) with these degree
restrictions equals Ds+ D + k. The polynomial @ € F[X, Y, ..., Y;] must satisfy the interpolation
conditions

Q(Pyisvyis-‘rlvyis—&-%“' 7y(i+1)5) =0 fori:o:L"'an/S_l . (3)
Provided Ds + D + k > % = N, or in other words
N—k
D> : (4)

s+1

such a nonzero polynomial () must exist, and can be found in polynomial time by solving a homo-
geneous linear system. The following lemma shows that any such polynomial ) gives an algebraic
condition that the message polynomials f(X) we are interested in list decoding must satisfy.

Lemma 2 If f € F[X] is a polynomial of degree k whose FRS encoding (1) agrees with 'y in at
least t columns fort > D + k, then

QUX, f(X), f(vX),....f(* 'X)) =0 . (5)

PROOF: Define R(X) = Q(X, f(X), f(7X),..., f(7*71X)). Due to the degree restrictions on Q,
the degree of R(X) is easily seen to be at most D + k — 1. If the FRS encoding of f agrees with y
in the ¢’th column (for some i € {0,1,...,N —1}), we have

FO) =yt SO =iray - SO = g



Together with the interpolation conditions (3), this implies

R() = QU™ f(47*), F(1**1), -+ f(¥*H 1) =0

Hence R has at least t zeroes. Since deg(R) < D +k —1,if t > D + k, we must have R = 0. O

1.2 Root-finding step

The question that arises now is how restrictive is Equation (5) in terms of pinning down the number
of possible solutions f(X) to a small (polynomial in |F|) number? For purposes of illustration and
ease of notation, let us focus on the s = 2 case, so that we need to find the list of all degree k
solutions f(X) to

QX, f(X), f(X))=0. (6)

For this part we will have use the fact that v € F is not arbitrary but is a primitive element.
Indeed if v = 1, then for the polynomial Q(X,Y,Z) = Y — Z, every polynomial f will satisfy
Q(X, f(X), f(X)) = 0. Likewise, if ¥ = —1, then every polynomial f(X) = g(X?) will satisfy
QX,f(X), f(=X)) =0for Q(X,Y,Z) =Y — Z. This argument shows that if the order of ~ is
small, then there can be too many (|F|(%)) degree k solutions.

We will next prove that for primitive v, the number of f of degree less than ¢ — 1 (and hence also
number with degree at most k) satisfying (6) is at most ¢. For this we need two lemmas.

Lemma 3 Ifdeg(f) < q—1, then f(7X) = f(X)? mod (X% ! —~).

PROOF: We have X9 =X (mod X9~! —~), and therefore
F(XT) = f(3X)  (mod XT~' — 7).

For f € F[X], we have f(X9) = f(X)4. Therefore f(X?) = f(yX) (mod X9~ — ~). Since the
degree of f is less than ¢ — 1, the remainder of f(X)? mod X9~! — v must equal f(yX). O

The next lemma (in fact a more general statement) was on problem set 2.
Lemma 4 The polynomial X9 1 — ~ is irreducible over F, when vy is a primitive element of F,.

Denote E(X) = X9 ! — ~. Denote by L the extension field L = F[X]/(E(X)) (it is a field since
E(X) is irreducible), and for a polynomial f € F[X], let f denote its residue (modulo F(X)) in L.

Theorem 5 Given a nonzero Q € F[X,Y1,Ya] which is linear in Y1, Ya, the number of polynomials
f € F[X] of degree less than g — 1 such that Q(X, f(X), f(7X)) =0 is at most q. Moreover the list
of all such polynomials can be found in time polynomial in ¢ and the degree of Q.

PROOF: Factor out the largest power of F(X) that divides @, so that Q(X, Y1, Ys) = E(X)?Q1(X, Y1, Y?)

for some @ > 0 and polynomial @; that is not divisible by E(X). Define the polynomial S € L[Y]
as
SY)=@:1(X,Y, YY) mod E(X) .



Since 1 has degree in Y7, Ys less than ¢ (in fact it is linear in Y7, Y3), and it is not divisible
by E(X), we have S # 0. Clearly if Q(X, f(X), f(7X)) = 0, then Q1(X, f(X), f(vX)) = 0, so
certainly Q1 (X, f(X), f(vX)) mod E(X) = 0. By Lemma ??, this implies Q1(X, f(X), f(X)?)
mod E(X) =0, i.e., S(f) = 0. Thus f must be a root of S, which has degree at most ¢ in Y. This
implies that there are most g solutions for f. Since f has degree less than ¢ — 1, f can be uniquely
recovered from f, and hence there are at most g solutions f to Q(X, f(X), f(vX)) = 0, as desired.

The claim about the running time follows since the polynomial S can be computed efficiently from
@, and there are efficient root finding algorithms known over large extension fields. (One can either
have a randomized algorithm running in time polynomial in the degree and log of the field size, or
a deterministic algorithm running in time polynomial in the degree, log of the field size, and the
characteristic of the field. In our case, even the deterministic runtime will be polynomial in ¢.) O

The above approach generalizes readily to the larger variate case. Any solution f € F[X] to
QX, f(X), f(4X), ..., f(¥*71X)) = 0 will have its residue f as a root of (the nonzero polynomial)
SY)=Q(X,Y,Y4 ... ,qu_l) mod E(X). Therefore there will be at most ¢°~! such polynomials
f and they can all be found in polynomial (in ¢) time.

1.3 Decoding guarantee

Combining Lemma 2 and Theorem 5, and recalling the requirement (4) on the degree parameter

D we conclude that we have a polynomial time list decoding algorithm for FRSI(FS) [k] to find all
message polynomials whose encoding has agreement ¢ with an input y € (F*)" provided

—k N
Tk 5

t> =
s+1 s+1+s—{—1

(7)

The fractional agreement 7 required (in terms of the rate) is

t> 1 +k: s 1 +(sR) 5
T=— — = s
N~ s+1 N(s+1) s+1 s+1

(8)

since N =n/s and R = k/n.

Our goal was to decode from an agreement fraction 7 ~ R, but the factor s multiplying R implies
that we require 7 =~ sR which is much worse for large s. In particular we do not get anything
meaningful for R > 1/s |

Remark 6 By allowing higher degree terms in the Y;’s in the interpolated polynomial and using
multiplicities in the interpolation (as in the improved Reed-Solomon list-decoding algorithm, ex-
tended to the multivariate case in the obvious manner), one can improve the above guarantee and
decode from agreement fraction

T~ (sR)¥/ s+ (9)
Note that this quantity is the geometric mean of 1, R, R,--- , R, whereas the agreement required
—_———

s times
in (8) was the arithmetic mean of these values (which is in general larger). Recall that for Reed-

Solomon codes (s = 1) this was also exactly the case: we reduced the agreement required from #
to VR to get an algorithm to list decode up to the Johnson radius.



Remark 7 (Parvaresh-Vardy) The decoding guarantee (9) was obtained by Parvaresh and Vardy [2].
Their construction was somewhat different. Instead of the folding operation, they encoded a degree

k message polynomial f € F[X]| by the evaluation of f and (s—1) other polynomials f1, fa,. .., fs—1
which are chosen to be algebraically related to f(X) in the following way:

£(X) = f(X)" mod E(X)

fori=1,2,...,s — 1, where E(X) is an arbitrary irreducible polynomial of degree k + 1. Note
that the rate of such a code is Ry/s where Ry is the rate of the original RS code (in particular this
construction can never have rate exceed 1/s). We used f(v~'X) in place of fi(X) in the above
description in preparation for the optimal result which we discuss next.

2 Improving the decoding radius and correcting 1 — R — ¢ errors

The idea to improve the agreement fraction required is to use folded codes with folding parameter
m for m > s, but still only do s+ 1-variate interpolation. The key gain will be that each agreement
location will now lead to many zeroes for the polynomial Q(X, f(X), f(vX),..., f(7*~'X)) which
ultimately ensures that this polynomial must equal zero even for a much smaller value of the
agreement parameter t.

Specifically, let us consider the code FRS]%m) [k], where as before [F| = ¢, n = g—1, m|n, and the block
length of the code equals N = nm. We will still interpolate a polynomial @ € F[X,Y7,...,Y,]in s+1
variables, but now instead of n/s tuples, we will interpolate through (n/m)(m—s+1) = N(m—s+1)
tuples given by

(71m+]7yim+j+la s 7yim+j+s) 0 < 1< n/ma 0 < ] <m-—Ss.

That is, for each column of m symbols, we interpolate through the (m — s + 1) windows of s
consecutive symbols. The rationale behind this is that if we have an agreement in location i, i.e.,

Womt1s Y2 5 Ui m) = (PO, S, fy )

then we get m — s + 1 zeroes

QU™ f(Y™H), L () =0 j e {0,1,2,...,m— s} .

Thus ¢ agreements leads to t(m — s + 1) zeroes for R(X) = Q(X, f(X),..., f(7*7'X)). In place of
(7), we get the new condition for successful decoding
N(m—s+1) s
_l’_
s+1 s+1

ttm—s+1) >

or equivalently

t 1 s m
= — > R 10
T N s—|—1+s—|—1m—s—|—1 (10)

(recalling that k = Rn = RN'm).



We now have our desired optimal trade-off between 7 and R: picking s > 1/¢ and m > s2, the
above condition (10) for successful decoding is met if

T>R+e.

Let us look at the parameters of the code. The alphabet size in ¢"* ~ n™ = (Nm)™ which
is (N/e2)0(/) for the choice m ~ 1/€2. The bound on list size we obtain is at most ¢°~ ~
(Nm)O®) = (N/e2)9(/9) for the choice s ~ 1/e. The running time of the decoding algorithm
is also dominated by the root-finding step, which takes ¢®®) time as it has to find roots of a
polynomial of degree at most ¢° over an extension field of size at most ¢.

We can thus state our main theorem as follows.

Theorem 8 (Explicit codes achieving list decoding capacity) Foreverye >0 and0 < R <
1, there is a family of folded Reed-Solomon codes which have rate at least R and which can be list
decoded up to a fraction 1 — R — € of errors in time (N/ez)o(e_l) where N s the block length of the
code. The alphabet size of the code as a function of the block length N is (N/ez)o(l/GQ).

Remark 9 (Improvement using higher degree and multiplicities in interpolation) Similar
to Remark 6, by allowing higher degree terms in the Y;’s in the interpolated polynomial and using
multiplicities in the interpolation, one can improve the above guarantee and decode from agreement

fraction
mR s/(s+1)
~|—— . 11

’ (m—s—i—l) (11)

1 + s mR
s+1 s+1m—s+1"°

instead of the arithmetic mean For details see the original paper [1].
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