Übungsaufgaben zur Algebra

- 1. (3 Punkte) Es seien R_1, R_2 Ringe und $R_1 \times R_2$ ihr direktes Produkt (siehe Blatt 5, Aufgabe 4). Zeigen Sie, dass $R_1 \times R_2$ die folgende universelle Eigenschaft besitzt: Wenn man einen Ring R und zwei Homomorphismen $f_i \colon R \to R_i, \ i = 1, 2$ gegeben hat, dann existiert genau ein Homomorphismus $g \colon R \to R_1 \times R_2$ mit der Eigenschaft, dass $f_i = p_i \circ g$ ist, wobei $p_i \colon R_1 \times R_2 \to R_i, \ i = 1, 2$ die Projektion auf die i-te Komponente ist.
- 2. (3 Punkte) Sei K ein Körper. Geben Sie alle Ideale und Nullteiler von $K \times K$ an.
- 3. (4 Punkte) Die Menge $R := \text{Mat}(2 \times 2, \mathbb{Q})$ der 2×2 -Matrizen mit Einträgen in \mathbb{Q} ist ein nichtkommutativer Ring und ein \mathbb{Q} -Vektorraum der Dimension 4.
 - (a) Zeigen Sie: Ist $I \subset R$ ein Linksideal oder ein Rechtsideal und ist $I \cap GL(2,\mathbb{Q}) \neq \emptyset$, so ist I = R.
 - (b) Geben Sie Q-Untervektorräume V_1, V_2 und V_3 von R mit den folgenden Eigenschaften an: $\dim V_1 = \dim V_2 = \dim V_3 = 2$.

 V_1 ist ein Unterring, aber weder Linksideal noch Rechtsideal.

 V_2 ist ein Linksideal, aber kein Rechtsideal.

 V_3 ist ein Rechtsideal, aber kein Linksideal.

- 4. (6 points) Let R be a commutative unital ring.
 - (a) An element of $r \in R$ is called *nilpotent* if there is $n \in \mathbb{N}$ with $r^n = 0$. Show that if $R \setminus \{0\}$ contains a nilpotent element, then R^* is a *proper* subgroup of $(R[x])^*$ (i.e., $R^* < (R[x])^*$ and $R^* \subseteq (R[x])^*$).
 - (b) Let $f = \sum_{i=0}^{\infty} a_i \cdot x^i \in R[[x]]$ a formal power series with coefficients in R. Prove that $f \in (R[[x]])^*$ iff (if and only if) $a_0 \in R^*$.
- 5. (4 points) Let R be a ring. Consider the set

$$N := \left\{ \sum_{i=0}^{n} a_i x^i \mid n \in \mathbb{N}, a_1 = 0 \right\} \subset R[x].$$

Show that N is a subring of R[x], and that it is isomorphic as a ring to the quotient ring $R[a,b]/(a^2-b^3)$.