Publications
Journal Publications
- Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. Cartoon Approximation with α-Curvelets.
J. Fourier Anal. Appl., 22(6):1235-1293, 2016. | Link - Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. α-Molecules.
Appl. Comput. Harmon. Anal., 41(1):297-336, 2016. | Link - Flinth, A., Schäfer, M. Multivariate α-Molecules.
J. Approx. Theory, 202:64-108, 2016. | Link - Kempka, H., Schäfer, M., Ullrich, T. General Coorbit Space Theory for Quasi-Banach Spaces and Inhomogeneous Function Spaces with Variable Smoothness and Integrability.
J. Fourier Anal. Appl., 23(6):1348-1407, 2017. | Link - Lessig, C., Petersen, P., Schäfer, M. Bendlets: A Second-order Shearlet Transform with Bent Elements.
Appl. Comput. Harmon. Anal., 46(2):384-399, 2019. | Link - Schäfer, M., Ullrich, T., Vedel, B. Hyperbolic wavelet analysis of classical isotropic and anisotropic Besov-Sobolev spaces. J. Fourier Anal. Appl., 27:51, 2021. | Link
- Nagel, N., Schäfer, M., Ullrich, T. A new upper bound for sampling numbers.
Found. Comput. Math., 22:445–468, 2022. | Link - Bartel, F., Schäfer, M., Ullrich, T. Constructive subsampling of finite frames with applications in optimal function recovery.
Appl. Comput. Harmon. Anal., 65:209-248, 2023. | Link
Preprints
- Schäfer, M. The Role of α-Scaling for Cartoon Approximation.
arXiv:1612.01036 [math.FA], 2016. | Link
Refereed Conference Proceedings
- Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. α-Molecules: Curvelets, Shearlets, Ridgelets, and Beyond.
Wavelets and Sparsity XV (San Diego, CA, 2013), SPIE Proc. 8858, 885804-1-885804-12, SPIE, Bellingham, WA, 2013. | Link - Grohs, P., Keiper, S., Kutyniok, G., Schäfer, M. Parabolic Molecules: Curvelets, Shearlets, and Beyond.
Approximation Theory XIV (San Antonio, TX, 2013), Springer Proc. Math. Stat., 83:141-172, Springer, Cham, Switzerland, 2014. | Link
Monographs
- Schäfer, M. The Framework of α-Molecules: Theory and Applications.
Dissertation, Technische Universität Berlin, 2018. - Schäfer, M. Generalized Coorbit Space Theory for Quasi-Banach Spaces.
Diploma Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.
Dr. Martin Schäfer 2024-10-08 18:21:37
https://www.tu-chemnitz.de/mathematik/ang_analysis/schaefm
  E-mail an martin.schaefer@… |