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1.1 Application: The Marriage Problem (Bipartite
Matching)

Find a maximum number of pairs!

men ↔ women, worker ↔ mashines, students ↔ positions, . . . (also
weighted versions)

4: 4∈[4,6]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

1.1 Application: The Marriage Problem (Bipartite
Matching)

Find a maximum number of pairs!
Maximal (cannot be increased), but not of maximum cardinality

men ↔ women, worker ↔ mashines, students ↔ positions, . . . (also
weighted versions)

4: 5∈[4,6]
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1.1 Application: The Marriage Problem (Bipartite
Matching)

Find a maximum number of pairs!
Maximum Cardinality Matching (even perfect)

men ↔ women, worker ↔ mashines, students ↔ positions, . . . (also
weighted versions)

4: 6∈[4,6]
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Bipartite Matching
• An (undirected) graph G = (V ,E ) is a pair consisting of

a node/vertex set V and an edge set E ⊆ {{u, v} : u, v ∈ V , u 6= v}.
• Two nodes u, v ∈ V are adjacent/neighbors, if {u, v} ∈ E .

• A node v ∈ V and an edge e ∈ E are incident, if v ∈ e.

• Two edges e, f ∈ V are incident, if e ∩ f 6= ∅.

5: 7∈[7,9]
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Bipartite Matching
• An (undirected) graph G = (V ,E ) is a pair consisting of

a node/vertex set V and an edge set E ⊆ {{u, v} : u, v ∈ V , u 6= v}.
• Two nodes u, v ∈ V are adjacent/neighbors, if {u, v} ∈ E .

• A node v ∈ V and an edge e ∈ E are incident, if v ∈ e.

• Two edges e, f ∈ V are incident, if e ∩ f 6= ∅.
• An edge set M ⊆ E is a matching/1-factor, if for e, f ∈ M with
e 6= f there holds e ∩ f = ∅. The matching is perfect, if |V | = 2|M|.

5: 8∈[7,9]
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Bipartite Matching
• An (undirected) graph G = (V ,E ) is a pair consisting of

a node/vertex set V and an edge set E ⊆ {{u, v} : u, v ∈ V , u 6= v}.
• Two nodes u, v ∈ V are adjacent/neighbors, if {u, v} ∈ E .

• A node v ∈ V and an edge e ∈ E are incident, if v ∈ e.

• Two edges e, f ∈ V are incident, if e ∩ f 6= ∅.
• An edge set M ⊆ E is a matching/1-factor, if for e, f ∈ M with
e 6= f there holds e ∩ f = ∅. The matching is perfect, if |V | = 2|M|.
• G = (V ,E ) is bipartite, if V = V1 ∪ V2 with V1 ∩ V2 = ∅ and
E ⊆ {{u, v} : u ∈ V1, v ∈ V2}.

5: 9∈[7,9]
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Model: Maximum Cardinatliy Bipartite Matching
given: G = (V1∪̇V2,E ) bipartite
find: matching M ⊆ E with |M| maximal

variables: x ∈ {0, 1}E with xe =

{
1 if e ∈ M
0 otherwise.

(e ∈ E )

(it represents the incidence/characteristic vector of M w.r.t. E )
constraints: Ax ≤ 1,

where A ∈ {0, 1}V×E Node-Edge-Incidencematrix of G :

Av ,e =

{
1 if v ∈ e
0 otherwise.

(v ∈ V , e ∈ E )

6: 10∈[10,12]
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Model: Maximum Cardinatliy Bipartite Matching
given: G = (V1∪̇V2,E ) bipartite
find: matching M ⊆ E with |M| maximal

variables: x ∈ {0, 1}E with xe =

{
1 if e ∈ M
0 otherwise.

(e ∈ E )

(it represents the incidence/characteristic vector of M w.r.t. E )
constraints: Ax ≤ 1,

where A ∈ {0, 1}V×E Node-Edge-Incidencematrix of G :

Av ,e =

{
1 if v ∈ e
0 otherwise.

(v ∈ V , e ∈ E )

A

D

E

C

B

a

b

d

c
A =


(a) (b) (c) (d)

(A) 1 1 0 0
(B) 0 0 1 0
(C ) 0 0 0 1
(D) 1 0 0 0
(E ) 0 1 1 1


6: 11∈[10,12]
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Model: Maximum Cardinatliy Bipartite Matching
given: G = (V1∪̇V2,E ) bipartite
find: matching M ⊆ E with |M| maximal

variables: x ∈ {0, 1}E with xe =

{
1 if e ∈ M
0 otherwise.

(e ∈ E )

(it represents the incidence/characteristic vector of M w.r.t. E )
constraints: Ax ≤ 1,

where A ∈ {0, 1}V×E Node-Edge-Incidencematrix of G :

Av ,e =

{
1 if v ∈ e
0 otherwise.

(v ∈ V , e ∈ E )

optimization problem:
max 1T x
s.t. Ax ≤ 1

x ∈ {0, 1}E

This is no LP! Enlarge x ∈ {0, 1}E to x ∈ [0, 1]E → LP

For G bipartite, Simplex always delivers an optimal solution x∗ ∈ {0, 1}E !
(this does not hold i.g. for general graphs G !)

6: 12∈[10,12]
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1.2 Integeral Polyhedra
Simplex automatically yields an integral solution, if all vertices of
the feasible set are integral.

min cT x s.t. x ∈ X := {x ≥ 0 : Ax = b}
Are all vertices of X integral?

Almost never!
But there is an important class of matrices A ∈ Zm×n, for which X
has only integral vertices for any (!) b ∈ Zm:

A vertex is integral ⇔ basic solution xB = A−1
B b ∈ Zm.

If | det(AB)| = 1, Cramer’s rule implies xB ∈ Zm.
A matrix A ∈ Zm×n of full row rank is unimodular, if
| det(AB)| = 1 holds for each basis B.

Theorem
A ∈ Zm×n is unimodular if and only if for each b ∈ Zm all vertices
of the polyhedron X := {x ≥ 0 : Ax = b} are integral.

Does this also hold for X := {x ≥ 0 : Ax ≥ b}?

8: 14∈[14,16]
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1.2 Integeral Polyhedra
Simplex automatically yields an integral solution, if all vertices of
the feasible set are integral.

min cT x s.t. x ∈ X := {x ≥ 0 : Ax = b}
Are all vertices of X integral? Almost never!
But there is an important class of matrices A ∈ Zm×n, for which X
has only integral vertices for any (!) b ∈ Zm:

A vertex is integral ⇔ basic solution xB = A−1
B b ∈ Zm.

If | det(AB)| = 1, Cramer’s rule implies xB ∈ Zm.

A matrix A ∈ Zm×n of full row rank is unimodular, if
| det(AB)| = 1 holds for each basis B.

Theorem
A ∈ Zm×n is unimodular if and only if for each b ∈ Zm all vertices
of the polyhedron X := {x ≥ 0 : Ax = b} are integral.

Does this also hold for X := {x ≥ 0 : Ax ≥ b}?

8: 15∈[14,16]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

1.2 Integeral Polyhedra
Simplex automatically yields an integral solution, if all vertices of
the feasible set are integral.

min cT x s.t. x ∈ X := {x ≥ 0 : Ax = b}
Are all vertices of X integral? Almost never!
But there is an important class of matrices A ∈ Zm×n, for which X
has only integral vertices for any (!) b ∈ Zm:

A vertex is integral ⇔ basic solution xB = A−1
B b ∈ Zm.

If | det(AB)| = 1, Cramer’s rule implies xB ∈ Zm.
A matrix A ∈ Zm×n of full row rank is unimodular, if
| det(AB)| = 1 holds for each basis B.

Theorem
A ∈ Zm×n is unimodular if and only if for each b ∈ Zm all vertices
of the polyhedron X := {x ≥ 0 : Ax = b} are integral.

Does this also hold for X := {x ≥ 0 : Ax ≥ b}?
8: 16∈[14,16]
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Totally Unimodular Matrices

{x ≥ 0 : Ax ≥ b} →
{[

x
s

]
≥ 0 : [A, I ]

[
x
s

]
= b

}
Certainly integral, if Ā = [A, I ] is unimodular.
Laplace development of the determinant for each basis B →
A matrix A is totally unimodular if for each square submatrix of A
the determinant has value 0, 1 or −1. (requires A ∈ {0, 1,−1}m×n)

Theorem (Hoffmann und Kruskal)

A ∈ Zm×n is totally unimodular if and only if for each b ∈ Zm all
vertices of the polyhedron X := {x ≥ 0 : Ax ≥ b} are integral.

Note: A tot. unimod. ⇔ AT resp. [A,−A, I ,−I ] tot. unimod.
consequence: dual LP, variants with equality constraints, etc. are
integral

9: 17∈[17,17]
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Recognizing Totally Unimodular Matrices

Theorem (Heller and Tompkins)
Let A ∈ {0, 1,−1}m×n have at most two nonzero entries per column.
A is totally unimodular ⇔ the rows A can be partitioned int two classes
so that
(i) rows with one +1 and one −1 entry in the same column belong to the
same class,
(ii) rows with two nonzeros of equal sign in the same column belong to
distinct classes.

Example 1: the node-edge-incidencematrix of a bipartite graph

A

D

E

C

B

a

b

d

c
A =


(a) (b) (c) (d)

(A) 1 1 0 0
(B) 0 0 1 0
(C ) 0 0 0 1
(D) 1 0 0 0
(E ) 0 1 1 1


10: 18∈[18,18]
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Example 1: Bipartite Graphs
A . . . node-edge incidence matrix of G = (V1∪̇V2,E ) bipartite

Bipartite Matching of Maximum Cardinality:

max 1T x s.t. Ax ≤ 1, x ≥ 0

Because A tot. unimod. the veritces of the feasilbe set are all integral
⇒ Simplex delivers optimal solution x∗ ∈ {0, 1}E .

The dual is also integral, because AT tot. unimod.:

min 1T y s.t. AT y ≥ 1, y ≥ 0

Interpretation: y∗ ∈ {0, 1}V is the incidence vector of a smallest node set
V ′ ⊆ V , so that ∀e ∈ E : e ∩ V ′ 6= ∅ (Minimum Vertex Cover)

The Assignment Problem: |V1| = |V2| = n, complete bipartite:
E = {{u, v} : u ∈ V1, v ∈ V2}; edge weights c ∈ RE

Find a perfect matching of minimum total weight:

min cT x s.t. Ax = 1, x ≥ 0

is integral, too, because [A;−A] tot. unimod.

11: 19∈[19,21]
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Example 1: Bipartite Graphs
A . . . node-edge incidence matrix of G = (V1∪̇V2,E ) bipartite

Bipartite Matching of Maximum Cardinality:

max 1T x s.t. Ax ≤ 1, x ≥ 0

Because A tot. unimod. the veritces of the feasilbe set are all integral
⇒ Simplex delivers optimal solution x∗ ∈ {0, 1}E .

The dual is also integral, because AT tot. unimod.:

min 1T y s.t. AT y ≥ 1, y ≥ 0

Interpretation: y∗ ∈ {0, 1}V is the incidence vector of a smallest node set
V ′ ⊆ V , so that ∀e ∈ E : e ∩ V ′ 6= ∅ (Minimum Vertex Cover)

The Assignment Problem: |V1| = |V2| = n, complete bipartite:
E = {{u, v} : u ∈ V1, v ∈ V2}; edge weights c ∈ RE

Find a perfect matching of minimum total weight:

min cT x s.t. Ax = 1, x ≥ 0

is integral, too, because [A;−A] tot. unimod.

11: 20∈[19,21]
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Example 1: Bipartite Graphs
A . . . node-edge incidence matrix of G = (V1∪̇V2,E ) bipartite

Bipartite Matching of Maximum Cardinality:

max 1T x s.t. Ax ≤ 1, x ≥ 0

Because A tot. unimod. the veritces of the feasilbe set are all integral
⇒ Simplex delivers optimal solution x∗ ∈ {0, 1}E .

The dual is also integral, because AT tot. unimod.:

min 1T y s.t. AT y ≥ 1, y ≥ 0

Interpretation: y∗ ∈ {0, 1}V is the incidence vector of a smallest node set
V ′ ⊆ V , so that ∀e ∈ E : e ∩ V ′ 6= ∅ (Minimum Vertex Cover)

The Assignment Problem: |V1| = |V2| = n, complete bipartite:
E = {{u, v} : u ∈ V1, v ∈ V2}; edge weights c ∈ RE

Find a perfect matching of minimum total weight:

min cT x s.t. Ax = 1, x ≥ 0

is integral, too, because [A;−A] tot. unimod.
11: 21∈[19,21]
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Example 2: Node-Arc Incidence Matrix of Digraphs
• A digraph/directed graph D = (V ,E ) is a pair consisting of

a node set V and a (multi-)set of directed edges/arcs
E ⊆ {(u, v) : u, v ∈ V , u 6= v}. [multiple arcs are allowed!]
• For e = (u, v) ∈ E , u is the tail and v the head of e.

• The node-arc incidence matrix A ∈ {0, 1,−1}V×E of D has entries

Av ,e =

 −1 v is the tail of e
1 v is the head of e
0 otherwise

(v ∈ V , e ∈ E ).

the node-arc incidence matrix of a digraph is totally unimodular.

A

B

C

Dc

f

b

a d

e

A =


(a) (b) (c) (d) (e) (f )

(A) −1 −1 0 0 0 1
(B) 1 0 1 −1 0 0
(C ) 0 1 −1 0 −1 0
(D) 0 0 0 1 1 −1



12: 22∈[22,23]
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Example 2: Node-Arc Incidence Matrix of Digraphs
• A digraph/directed graph D = (V ,E ) is a pair consisting of

a node set V and a (multi-)set of directed edges/arcs
E ⊆ {(u, v) : u, v ∈ V , u 6= v}. [multiple arcs are allowed!]
• For e = (u, v) ∈ E , u is the tail and v the head of e.
• The node-arc incidence matrix A ∈ {0, 1,−1}V×E of D has entries

Av ,e =

 −1 v is the tail of e
1 v is the head of e
0 otherwise

(v ∈ V , e ∈ E ).

the node-arc incidence matrix of a digraph is totally unimodular.

A

B

C

Dc

f

b

a d

e A =


(a) (b) (c) (d) (e) (f )

(A) −1 −1 0 0 0 1
(B) 1 0 1 −1 0 0
(C ) 0 1 −1 0 −1 0
(D) 0 0 0 1 1 −1


12: 23∈[22,23]
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1.3 Application: Networkflow
Modelling tool: transport problems, evacuation planning, scheduling,
(internet) traffic planning, . . .

• A network (D,w) consists of a digraph D = (V ,E )
and (arc-)capacities w ∈ RE

+.
• A vector x ∈ RE is a flow on (D,w), if it satisfies the

flow conservation constraints
∑

e=(u,v)∈E

xe =
∑

e=(v ,u)∈E

xe (v ∈ V )

[⇔ Ax = 0 for node-arc incidence matrix A]
• A flow x ∈ RE on (D,w) is feasible, if 0 ≤ x ≤ w

[lower bounds would also be possible]

5

2

9
8

1
2

6

1

3

4
5

7

flow

5

2

9

1

4

1

0

1

4
4

7

5

feasible flow

14: 25∈[25,25]
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Maximal s-t-Flows, Minimal s-t-Cuts
Given a source s ∈ V and a sink t ∈ V with (t, s) ∈ E , find a feasible
flow x ∈ RE on (D,w) with maximum flow value x(t,s).

5

2

9

1

4
7

ts

max

a

b

c

d

f

B

C

e A =


(a) (b) (c) (d) (e) (f )

(s) −1 −1 0 0 0 1
(B) 1 0 1 −1 0 0
(C ) 0 1 −1 0 −1 0
(t) 0 0 0 1 1 −1


LP: max x(t,s) s.t. Ax = 0, 0 ≤ x ≤ w ,

If w ∈ ZE , the OS of Simplex is x∗ ∈ ZE , because [A;−A; I ] tot. unimod.

Each S ⊆ V with s ∈ S and t /∈ S defines an s-t-cut
δ+(S) := {(u, v) ∈ E : u ∈ S , v /∈ S},

the out-flow is at most w(δ+(S)) :=
∑

e∈δ+(S) we , the value of the cut.

Theorem (Max-Flow Min-Cut Theorem of Ford and Fulkerson)
The maximum s-t-flow value equals the minimum s-t cut value.

[both computable by Simplex]

15: 26∈[26,29]
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Maximal s-t-Flows, Minimal s-t-Cuts
Given a source s ∈ V and a sink t ∈ V with (t, s) ∈ E , find a feasible
flow x ∈ RE on (D,w) with maximum flow value x(t,s).

2

9

1

7

ts

max

B

C

4

5

S = {s},
δ+(S) = {(s,B), (s,C )},
w(δ+(S)) = 4 + 5 = 9.

LP: max x(t,s) s.t. Ax = 0, 0 ≤ x ≤ w ,

If w ∈ ZE , the OS of Simplex is x∗ ∈ ZE , because [A;−A; I ] tot. unimod.

Each S ⊆ V with s ∈ S and t /∈ S defines an s-t-cut
δ+(S) := {(u, v) ∈ E : u ∈ S , v /∈ S},

the out-flow is at most w(δ+(S)) :=
∑

e∈δ+(S) we , the value of the cut.

Theorem (Max-Flow Min-Cut Theorem of Ford and Fulkerson)
The maximum s-t-flow value equals the minimum s-t cut value.

[both computable by Simplex]

15: 27∈[26,29]
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Maximal s-t-Flows, Minimal s-t-Cuts
Given a source s ∈ V and a sink t ∈ V with (t, s) ∈ E , find a feasible
flow x ∈ RE on (D,w) with maximum flow value x(t,s).

2

9

ts

max

B

C

1

7

5

4 S = {s,B,C},
δ+(S) = {(B, t), (C , t)},
w(δ+(S)) = 7 + 1 = 8.

LP: max x(t,s) s.t. Ax = 0, 0 ≤ x ≤ w ,

If w ∈ ZE , the OS of Simplex is x∗ ∈ ZE , because [A;−A; I ] tot. unimod.

Each S ⊆ V with s ∈ S and t /∈ S defines an s-t-cut
δ+(S) := {(u, v) ∈ E : u ∈ S , v /∈ S},

the out-flow is at most w(δ+(S)) :=
∑

e∈δ+(S) we , the value of the cut.

Theorem (Max-Flow Min-Cut Theorem of Ford and Fulkerson)
The maximum s-t-flow value equals the minimum s-t cut value.

[both computable by Simplex]

15: 28∈[26,29]
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Maximal s-t-Flows, Minimal s-t-Cuts
Given a source s ∈ V and a sink t ∈ V with (t, s) ∈ E , find a feasible
flow x ∈ RE on (D,w) with maximum flow value x(t,s).

9

ts

max

B

C

5

2

4
7

1

7

1

6
4

2

3

S = {s,C},
δ+(S) = {(s,B), (C ,B), (C , t)},
w(δ+(S)) = 4 + 2 + 1 = 7= x∗(t,s)

LP: max x(t,s) s.t. Ax = 0, 0 ≤ x ≤ w ,

If w ∈ ZE , the OS of Simplex is x∗ ∈ ZE , because [A;−A; I ] tot. unimod.

Each S ⊆ V with s ∈ S and t /∈ S defines an s-t-cut
δ+(S) := {(u, v) ∈ E : u ∈ S , v /∈ S},

the out-flow is at most w(δ+(S)) :=
∑

e∈δ+(S) we , the value of the cut.

Theorem (Max-Flow Min-Cut Theorem of Ford and Fulkerson)
The maximum s-t-flow value equals the minimum s-t cut value.

[both computable by Simplex]

15: 29∈[26,29]
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Minimum Cost Flow (Min-Cost-Flow)
The flow value is now prescribed by balances b ∈ RV (1Tb = 0) on the
nodes; each unit of flow induces arc costs c ∈ RE .
Find the cheapest flow.

9

4
7

0

5

5
2

2

1
4

3

0
0

0

4

2

1

2

3
1

5−5

min [ 5 2 1 3 4 0 ] x

s.t.


−1−1 0 0 0 1
1 0 1 −1 0 0
0 1 −1 0 −1 0
0 0 0 1 1 −1

 x =


5
0
0
−5


0 ≤ x ≤ w

LP: min cT x s.t. Ax = b, 0 ≤ x ≤ w ,

For b, c and w integr., Simplex gives OS x∗ ∈ ZE , as [A;−A; I ] tot. unimod.
[also works for lower bounds on arcs: u ≤ x ≤ w !]

For LPs min cT x s.t. Ax = b, u ≤ x ≤ w , A node-arc inc.
there is a particularly efficient simplex variant, the network simplex,
it only needs addtions, subtractions and comparisons!

Extremly broad scope of applications, popular modelling tool

16: 30∈[30,30]
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Example: Transportation Problem
A company with several production sites has to serve several customers.
How is this best done in view of transportation costs?

−12

−7

−5

2

6

9

7

1
4

2
4

3

2

3

2

5

1

0

0

2

3

3

9
0

0

2

5

Note: only one product!

17: 31∈[31,31]
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.

18: 32∈[32,39]
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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Arcs with capacities and crossing times
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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geometry is not important, simplify
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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2/1 1/1
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2/2

2/21/1
1/2
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2/2
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t=1

t=2

t=0

discretize time, one level per time step

18: 35∈[32,39]
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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crossing times connect levels, capacity stays

18: 36∈[32,39]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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crossing times connects levels, capacity stays
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.
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rising costs on the exit arcs to encourage fast exits
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Example: Evacuation Planning

Determine for each room a flight path, so that the building is
cleared as fast as possible. Per aisle capacity and crossing times are
known.

4

20

4
6

40
4

3

4

t=1

t=2

t=0

1

2

2
2

2

3

3
1

2

2

1

1

rising costs on the exit arcs to encourage fast exits

Approach only ok if persons do not need to be discerned!

18: 39∈[32,39]
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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1 1

1
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1 1
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1 1

t  1t  1

s −1s −1

20: 41∈[41,48]
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.

1

1

1 1

1

1

11

11

1 1

11

1 1
s −1 s −1

t  1t  1

mixing is forbidden!

20: 42∈[41,48]
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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s −1 s −1

t  1t  1

1

integr. is impossible

20: 43∈[41,48]
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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fractional works
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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copy 1
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copy 2

min c(1)T x (1) + c(2)T x (2)

s.t. Ax (1) = b(1)

Ax (2) = b(2)

Ix (1) + Ix (2) ≤ w
x (1) ≥ 0, x (2) ≥ 0.

20: 46∈[41,48]
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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copy 2 A 0
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I I


i.g. not tot.unimod.!

min c(1)T x (1) + c(2)T x (2)

s.t. Ax (1) = b(1)

Ax (2) = b(2)

Ix (1) + Ix (2) ≤ w
x (1) ≥ 0, x (2) ≥ 0.
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1.4 Multi-Commodity Flow Problems
Given a network (D,w) and several different commodities
K = {1, . . . , k} with sources/sinks (si , ti ) and flow values fi , i ∈ K find
feasible flows x (i) ∈ RE , so that in sum capacities are observed.
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implementation
−→

1

1

1 1

1

1

11

11

1 1

11

1 1
s −1

t  1

copy 1

1

1 1

1 1

1

1

11

1

11

11

1

1

s −1

t  1

copy 2

fractionally solvable,
integral VERY difficult!

min c(1)T x (1) + c(2)T x (2)

s.t. Ax (1) = b(1)

Ax (2) = b(2)

Ix (1) + Ix (2) ≤ w
x (1) ≥ 0, x (2) ≥ 0.

20: 48∈[41,48]
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Example: Logistics
cover demand by shifting pallets by trucks between warehouses

A
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C

t=3.5

t=2.5

t=1.5

t=0.5

A B CCBA

t=3

t=2

t=1

t=0

pro Artikel ein Palettengraph

21: 49∈[49,49]
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Further Application Areas

• fractional: capacity planning
• integral: time discretized routing and scheduling

}
for

◦ street traffic
◦ trains
◦ internet
◦ logistics (bottleneck analysis/steering)
◦ production (mashine loads/-assignment)

network-design:
installed capacities should satisfy as many demands as possible also
in case of failures [“robust” variants are extremly difficult!]

Multi-commodity flow is often used as basic model that is
combined with further constraints.

22: 50∈[50,51]
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Further Application Areas

• fractional: capacity planning
• integral: time discretized routing and scheduling

}
for

◦ street traffic
◦ trains
◦ internet
◦ logistics (bottleneck analysis/steering)
◦ production (mashine loads/-assignment)

network-design:
installed capacities should satisfy as many demands as possible also
in case of failures [“robust” variants are extremly difficult!]

Multi-commodity flow is often used as basic model that is
combined with further constraints.

22: 51∈[50,51]
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1.5 Integer Optimization (Integer Programming)

mainly: linear programs with exclusively integer variables
(otherw. mixed integer programming)

max cT x
s.t. Ax ≤ b

x ∈ Zn

Typically contains many binary variables ({0,1}) for yes/no decisions

Difficulty: i.g. not solvable “efficiently”, complexity class NP
⇒ exact solutions rely heavily on enumeration (systematic exploration)

Exact solutions by combining the following techniques:
• (upper) bounds by linear/convex relaxation

improved by cutting plane approaches
• feasible solutions (lower bounds) by rounding- and

local search heuristics
• enumerate by branch&bound, branch&cut

24: 53∈[53,53]
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Combinatorial Optimization
Mathematically: Given a finite ground set Ω, a set of feasible subsets
F ⊆ 2Ω[power set, set of all subsets] and a goal function c : F → Q,
determine

max{c(F ) : F ∈ F} or F ∈ Argmax{c(F ) : F ∈ F}

Mostly only linear c : c(F ) :=
∑

e∈F ce with c ∈ QΩ.

Ex1: maximum cardinality matching for G = (V ,E ):
Ω = E , F = {M ⊆ E : M matching in G}, c = 1

Ex2: minimum vertex cover for G = (V ,E ):
Ω = V , F = {V ′ ⊆ V : e ∩ V ′ 6= ∅ für e ∈ E}, c = −1

formulation as a binary program:
Notation: incidence-/characteristic vector χΩ(F ) ∈ {0, 1}Ω for F ⊆ Ω

[in short χ(F ), satisfies [χ(F )]e = 1⇔ e ∈ F ]
A linear program max{cT x : Ax ≤ b, x ∈ [0, 1]Ω} is a formulation of the
combinatorial optimization problem, if

{x ∈ {0, 1}Ω : Ax ≤ b} = {χ(F ) : F ∈ F}.

25: 54∈[54,57]
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(Algorithmic) Complexity of Problems

An instance I of a problem is a concrete assignment of values to the
problem data; its size |I | is the encoding length, i.e. the number of
symbols in a description string according to a reasonalbe encoding scheme.

The runtime of an algorithm for one instance is the number of
elementary operations executed (read/write a symbol,
add/multiply/compare bytes, etc.)

An algorithm solves a problem in polynomial time or efficiently, if it
computes the correct answer within a runtime that is bounded by a
polynomial in the encoding length.

A problem is polynomially/efficiently solvable, if there is an algorithm
that solves it efficiently. The class P comprises all problems, that are
solvable efficiently.

Ex1: lineare optimization is in P, BUT Simplex is not polynomial.
Ex2: maximum cardinality matching in general graphs is in P.
Ex3: minimum vertex cover in bipartite graphs is in P.

26: 58∈[58,62]
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(Algorithmic) Complexity of Problems

An instance I of a problem is a concrete assignment of values to the
problem data; its size |I | is the encoding length, i.e. the number of
symbols in a description string according to a reasonalbe encoding scheme.

The runtime of an algorithm for one instance is the number of
elementary operations executed (read/write a symbol,
add/multiply/compare bytes, etc.)

An algorithm solves a problem in polynomial time or efficiently, if it
computes the correct answer within a runtime that is bounded by a
polynomial in the encoding length.

A problem is polynomially/efficiently solvable, if there is an algorithm
that solves it efficiently. The class P comprises all problems, that are
solvable efficiently.

Ex1: lineare optimization is in P, BUT Simplex is not polynomial.
Ex2: maximum cardinality matching in general graphs is in P.
Ex3: minimum vertex cover in bipartite graphs is in P.
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(Algorithmic) Complexity of Problems

An instance I of a problem is a concrete assignment of values to the
problem data; its size |I | is the encoding length, i.e. the number of
symbols in a description string according to a reasonalbe encoding scheme.

The runtime of an algorithm for one instance is the number of
elementary operations executed (read/write a symbol,
add/multiply/compare bytes, etc.)

An algorithm solves a problem in polynomial time or efficiently, if it
computes the correct answer within a runtime that is bounded by a
polynomial in the encoding length.

A problem is polynomially/efficiently solvable, if there is an algorithm
that solves it efficiently. The class P comprises all problems, that are
solvable efficiently.

Ex1: lineare optimization is in P, BUT Simplex is not polynomial.
Ex2: maximum cardinality matching in general graphs is in P.
Ex3: minimum vertex cover in bipartite graphs is in P.
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(Algorithmic) Complexity of Problems

An instance I of a problem is a concrete assignment of values to the
problem data; its size |I | is the encoding length, i.e. the number of
symbols in a description string according to a reasonalbe encoding scheme.

The runtime of an algorithm for one instance is the number of
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add/multiply/compare bytes, etc.)

An algorithm solves a problem in polynomial time or efficiently, if it
computes the correct answer within a runtime that is bounded by a
polynomial in the encoding length.
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that solves it efficiently. The class P comprises all problems, that are
solvable efficiently.

Ex1: lineare optimization is in P, BUT Simplex is not polynomial.
Ex2: maximum cardinality matching in general graphs is in P.
Ex3: minimum vertex cover in bipartite graphs is in P.
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An instance I of a problem is a concrete assignment of values to the
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add/multiply/compare bytes, etc.)
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Ex2: maximum cardinality matching in general graphs is in P.
Ex3: minimum vertex cover in bipartite graphs is in P.
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP

Ex: Hamiltonian Cycle: in a graphen G = (V ,E ) an edge set
C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.
decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 63∈[63,68]
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP

Ex: Hamiltonian Cycle: in a graphen G = (V ,E ) an edge set
C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.
decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 64∈[63,68]
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP

Ex: Hamiltonian Cycle: in a graphen G = (V ,E ) an edge set
C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.

decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 65∈[63,68]
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP

Ex: Hamiltonian Cycle: in a graphen G = (V ,E ) an edge set
C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.
decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 66∈[63,68]
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP
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C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.
decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 67∈[63,68]
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Decision Problems and the Class NP
In a decision problem each instance is a question, that must be answered
by either “yes” or “no”.

A decision problem is solvable in nondeterministic polynomial time, if for
each “yes”-instance I a solution string (the certificate) exists, that allows
to check correctnes of the “yes”-answer in time polynomially bounded in
|I |. [only “yes” is relevant!]

The cass NP comprises all decision problems that are solvable in
nondeterministic polynomial time. There holds: P ⊆ NP

Ex: Hamiltonian Cycle: in a graphen G = (V ,E ) an edge set
C = {{v1, v2}, {v2, v3}, . . . , {vk−1, vk}, {vk , v1}} ⊆ E is a cycle (of length
k) if vi 6= vj for i 6= j .
A cycle C is hamiltonian if |C | = |V |.
decision problem:
Does G contain a Hamiltonian cycle?

Yes-answer can be checked efficiently,
the problem is in NP.

27: 68∈[63,68]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

28: 69∈[69,74]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

28: 70∈[69,74]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

28: 71∈[69,74]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

28: 72∈[69,74]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

There are voluminous collections of NP-complete problems; examples:
• integer optimization (in its decision version)
• integer multi-commodity flow
• Hamiltonian Cycle
• Minimum Vertex Cover on general graphs
• Knapsack (for big numbers)

28: 73∈[69,74]
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NP-complete Problems
A decision problem P1 can be polynomially transformed to a decision
problem P2 if there is an algorithm that transforms each instance I1 of P1

in running time polynomial in |I1| into an instance I2 of P2 so that I2 is a
yes-instance of P2 if and only if I1 is a yes-instance of P1.

If P1 can be polynomially transformed to P2 then an efficient algorithm
for P2 also solves P1 efficiently; P2 is at least as difficult as P1.

If P̄ ∈ NP and each P̂ ∈ NP is polynomially transformable to P̄ then P̄ is
NP-complete.

If an NP-complete problem P̄ can be polynomially transformed to a
problem P̂ ∈ NP then P̂ is NP-complete, too; so they are equally difficult.

If there is an efficient algorithm for one NP-complete problem, all are
solvable efficiently. For years the assumption is: P 6= NP.

If one wants to solve all instances of a problem, partial enumeration seems
to be unavoidable.

A problem is NP-hard, if it would allow to solve an NP-complete problem.

28: 74∈[69,74]
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1.6 Branch-and-Bound
In enumerating all solutions, as many as possible should be eliminated
early on by upper and lower bounds.

Ex: {0, 1}-knapsack: weights a ∈ Nn, capacity b ∈ N, profit c ∈ Nn,

max cT x s.t. aT x ≤ b, x ∈ {0, 1}n

upper bound: max cT x s.t. aT x ≤ b, x ∈ [0, 1]n [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

algorithmic scheme (for maximization problems):
M . . . set of open problems, initially M = {orig. problem}
f . . . value of best known solution, initially f = −∞
1. if M = ∅ STOP, else choose P ∈ M, M ← M \ {P}
2. compute upper bound f̄ (P).
3. if f̄ (P) < f (P contains no OS), goto 1.
4. compute feasible solutions f̂ (P) for P (lower bound).
5. if f̂ (P) > f (new best solution), put f ← f̂ (P)
6. if f̄ (P) = f̂ (P) (no better solution in P), goto 1.
7. split P into “smaller” subproblem Pi , M ← M ∪ {P1, . . . ,Pk}
8. goto 1.

30: 76∈[76,78]
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1.6 Branch-and-Bound
In enumerating all solutions, as many as possible should be eliminated
early on by upper and lower bounds.

Ex: {0, 1}-knapsack: weights a ∈ Nn, capacity b ∈ N, profit c ∈ Nn,

max cT x s.t. aT x ≤ b, x ∈ {0, 1}n

upper bound: max cT x s.t. aT x ≤ b, x ∈ [0, 1]n [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

algorithmic scheme (for maximization problems):
M . . . set of open problems, initially M = {orig. problem}
f . . . value of best known solution, initially f = −∞
1. if M = ∅ STOP, else choose P ∈ M, M ← M \ {P}
2. compute upper bound f̄ (P).
3. if f̄ (P) < f (P contains no OS), goto 1.
4. compute feasible solutions f̂ (P) for P (lower bound).
5. if f̂ (P) > f (new best solution), put f ← f̂ (P)
6. if f̄ (P) = f̂ (P) (no better solution in P), goto 1.
7. split P into “smaller” subproblem Pi , M ← M ∪ {P1, . . . ,Pk}
8. goto 1.
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1.6 Branch-and-Bound
In enumerating all solutions, as many as possible should be eliminated
early on by upper and lower bounds.

Ex: {0, 1}-knapsack: weights a ∈ Nn, capacity b ∈ N, profit c ∈ Nn,

max cT x s.t. aT x ≤ b, x ∈ {0, 1}n

upper bound: max cT x s.t. aT x ≤ b, x ∈ [0, 1]n [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

algorithmic scheme (for maximization problems):
M . . . set of open problems, initially M = {orig. problem}
f . . . value of best known solution, initially f = −∞
1. if M = ∅ STOP, else choose P ∈ M, M ← M \ {P}
2. compute upper bound f̄ (P).
3. if f̄ (P) < f (P contains no OS), goto 1.
4. compute feasible solutions f̂ (P) for P (lower bound).
5. if f̂ (P) > f (new best solution), put f ← f̂ (P)
6. if f̄ (P) = f̂ (P) (no better solution in P), goto 1.
7. split P into “smaller” subproblem Pi , M ← M ∪ {P1, . . . ,Pk}
8. goto 1.
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
upper bound: max cT x s.t. aT x ≤ 14, x ∈ [0, 1]6 [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

P1: original problem
UB: C+ 8

9A=34
LB: C+D+F =30

1 ← xA → 0

P2: xA =1 ⇒ xB =xC =0
UB: A + D + 1

3F = 26 2
3

UB<30⇒ no OS �

P3: xA =0
UB: C+D+F + 1

4E =31 1
2

LB: C+D+F =30

1 ← xE → 0

P4: xA =0, xE =1
UB: E+C+D =31
LB: E+C+D =31 �

P5: xA =xE =0
UB: C+ D+F + 1

7B =30 6
7

LB<31⇒ no OS �

31: 79∈[79,86]
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
upper bound: max cT x s.t. aT x ≤ 14, x ∈ [0, 1]6 [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

P1: original problem
UB: C+ 8

9A=34
LB: C+D+F =30

1 ← xA → 0

P2: xA =1 ⇒ xB =xC =0
UB: A + D + 1

3F = 26 2
3

UB<30⇒ no OS �

P3: xA =0
UB: C+D+F + 1

4E =31 1
2

LB: C+D+F =30

1 ← xE → 0

P4: xA =0, xE =1
UB: E+C+D =31
LB: E+C+D =31 �

P5: xA =xE =0
UB: C+ D+F + 1

7B =30 6
7

LB<31⇒ no OS �

31: 80∈[79,86]
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
upper bound: max cT x s.t. aT x ≤ 14, x ∈ [0, 1]6 [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

P1: original problem
UB: C+ 8

9A=34
LB: C+D+F =30

1 ← xA → 0

P2: xA =1 ⇒ xB =xC =0
UB: A + D + 1

3F = 26 2
3

UB<30⇒ no OS �

P3: xA =0
UB: C+D+F + 1

4E =31 1
2

LB: C+D+F =30

1 ← xE → 0

P4: xA =0, xE =1
UB: E+C+D =31
LB: E+C+D =31 �

P5: xA =xE =0
UB: C+ D+F + 1

7B =30 6
7

LB<31⇒ no OS �

31: 81∈[79,86]
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
upper bound: max cT x s.t. aT x ≤ 14, x ∈ [0, 1]6 [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

P1: original problem
UB: C+ 8

9A=34
LB: C+D+F =30
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P2: xA =1 ⇒ xB =xC =0
UB: A + D + 1

3F = 26 2
3

UB<30⇒ no OS �

P3: xA =0
UB: C+D+F + 1

4E =31 1
2

LB: C+D+F =30

1 ← xE → 0

P4: xA =0, xE =1
UB: E+C+D =31
LB: E+C+D =31 �

P5: xA =xE =0
UB: C+ D+F + 1

7B =30 6
7

LB<31⇒ no OS �

31: 82∈[79,86]
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
upper bound: max cT x s.t. aT x ≤ 14, x ∈ [0, 1]6 [LP-relaxation]
lower bound: sort by profit/weight and fill in this sequence

P1: original problem
UB: C+ 8

9A=34
LB: C+D+F =30

1 ← xA → 0

P2: xA =1 ⇒ xB =xC =0
UB: A + D + 1

3F = 26 2
3

UB<30⇒ no OS �

P3: xA =0
UB: C+D+F + 1

4E =31 1
2

LB: C+D+F =30

1 ← xE → 0

P4: xA =0, xE =1
UB: E+C+D =31
LB: E+C+D =31 �

P5: xA =xE =0
UB: C+ D+F + 1

7B =30 6
7

LB<31⇒ no OS �

31: 83∈[79,86]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
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Example: {0, 1}-Knapsack problem
Item A B C D E F capacity
weight (a) 9 7 6 4 4 3 14
profit (c) 18 6 18 7 6 5

sorted profit/weight: C > A > D > F > E > B.
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The branch&bound tree will get huge whenever many solutions are
almost optimal.

For successful branch&bound we need to answer

How can we obtain good upper and lower bounds?

32: 87∈[87,87]
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1.7 Convex Sets and Convex Hull
A set C ⊆ Rn is convex, if for all x , y ∈ C the straight line segment
[x , y ] := {αx + (1− α)y : α ∈ [0, 1]} lies in C .

Examples: ∅, Rn, halfspaces, the intersection of convex sets is convex,
polyhedra, the k-dim. unit simplex ∆k := {α ∈ Rk

+ :
∑k

i=1 αi = 1}
For S ⊆ Rn the convex hull is the intersection of all convex sets that
contain S , conv S :=

⋂
{C convex : S ⊆ C}.

For given points x (i) ∈ Rn, i ∈ {1, . . . , k} and α ∈ ∆k , the point
x =

∑
αix

(i) is a convex combination of the x (i).

conv S is the set of all convex combinations of finitely many points in S ,
conv S = {

∑k
i=1 αix

(i) : x (i) ∈ S , i = 1, . . . , k ∈ N, α ∈ ∆k}.

34: 89∈[89,93]
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Examples: ∅, Rn, halfspaces, the intersection of convex sets is convex,
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⋂
{C convex : S ⊆ C}.

For given points x (i) ∈ Rn, i ∈ {1, . . . , k} and α ∈ ∆k , the point
x =

∑
αix

(i) is a convex combination of the x (i).

conv S is the set of all convex combinations of finitely many points in S ,
conv S = {

∑k
i=1 αix

(i) : x (i) ∈ S , i = 1, . . . , k ∈ N, α ∈ ∆k}.

1

1

1

∆ 3SchnittHalbraum
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1.7 Convex Sets and Convex Hull
A set C ⊆ Rn is convex, if for all x , y ∈ C the straight line segment
[x , y ] := {αx + (1− α)y : α ∈ [0, 1]} lies in C .

Examples: ∅, Rn, halfspaces, the intersection of convex sets is convex,
polyhedra, the k-dim. unit simplex ∆k := {α ∈ Rk

+ :
∑k

i=1 αi = 1}
For S ⊆ Rn the convex hull is the intersection of all convex sets that
contain S , conv S :=

⋂
{C convex : S ⊆ C}.

For given points x (i) ∈ Rn, i ∈ {1, . . . , k} and α ∈ ∆k , the point
x =

∑
αix

(i) is a convex combination of the x (i).

conv S is the set of all convex combinations of finitely many points in S ,
conv S = {

∑k
i=1 αix

(i) : x (i) ∈ S , i = 1, . . . , k ∈ N, α ∈ ∆k}.

−→

34: 91∈[89,93]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP
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A set C ⊆ Rn is convex, if for all x , y ∈ C the straight line segment
[x , y ] := {αx + (1− α)y : α ∈ [0, 1]} lies in C .

Examples: ∅, Rn, halfspaces, the intersection of convex sets is convex,
polyhedra, the k-dim. unit simplex ∆k := {α ∈ Rk

+ :
∑k

i=1 αi = 1}
For S ⊆ Rn the convex hull is the intersection of all convex sets that
contain S , conv S :=

⋂
{C convex : S ⊆ C}.

For given points x (i) ∈ Rn, i ∈ {1, . . . , k} and α ∈ ∆k , the point
x =

∑
αix

(i) is a convex combination of the x (i).

conv S is the set of all convex combinations of finitely many points in S ,
conv S = {

∑k
i=1 αix

(i) : x (i) ∈ S , i = 1, . . . , k ∈ N, α ∈ ∆k}.

0.

0.4

0.4

0.2
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Examples: ∅, Rn, halfspaces, the intersection of convex sets is convex,
polyhedra, the k-dim. unit simplex ∆k := {α ∈ Rk

+ :
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i=1 αi = 1}
For S ⊆ Rn the convex hull is the intersection of all convex sets that
contain S , conv S :=

⋂
{C convex : S ⊆ C}.

For given points x (i) ∈ Rn, i ∈ {1, . . . , k} and α ∈ ∆k , the point
x =

∑
αix

(i) is a convex combination of the x (i).
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(i) : x (i) ∈ S , i = 1, . . . , k ∈ N, α ∈ ∆k}.
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Convex Hull and Integer Programming
Theorem
The convex hull of finitely many points is a (bounded) polyhedron.

The integer hull of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the
convex hull of the integer points in P, PI := conv(P ∩ Zn).

Theorem
If A ∈ Qm×n and b ∈ Qm, the integer hull PI of polyhedron
P = {x ∈ Rn : Ax ≤ b} is itself a polyhedron.

difficulty: the description of PI is mostly unknown or excessive!

35: 94∈[94,97]
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Convex Hull and Integer Programming
Theorem
The convex hull of finitely many points is a (bounded) polyhedron.

The integer hull of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the
convex hull of the integer points in P, PI := conv(P ∩ Zn).

Theorem
If A ∈ Qm×n and b ∈ Qm, the integer hull PI of polyhedron
P = {x ∈ Rn : Ax ≤ b} is itself a polyhedron.

difficulty: the description of PI is mostly unknown or excessive!

35: 95∈[94,97]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

Convex Hull and Integer Programming
Theorem
The convex hull of finitely many points is a (bounded) polyhedron.

The integer hull of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the
convex hull of the integer points in P, PI := conv(P ∩ Zn).

Theorem
If A ∈ Qm×n and b ∈ Qm, the integer hull PI of polyhedron
P = {x ∈ Rn : Ax ≤ b} is itself a polyhedron.

difficulty: the description of PI is mostly unknown or excessive!

P P
I

[exception e.g. for A tot. unimod., b ∈ Zn, then P = PI ]

35: 96∈[94,97]
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Convex Hull and Integer Programming
Theorem
The convex hull of finitely many points is a (bounded) polyhedron.

The integer hull of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the
convex hull of the integer points in P, PI := conv(P ∩ Zn).

Theorem
If A ∈ Qm×n and b ∈ Qm, the integer hull PI of polyhedron
P = {x ∈ Rn : Ax ≤ b} is itself a polyhedron.

difficulty: the description of PI is mostly unknown or excessive!

If the integer hull can be given explicitly, the integer optimization problem
can be solved by the simplex method:

Theorem
Suppose the integer hull of P = {x ∈ Rn : Ax ≤ b} is given by
PI = {x ∈ Rn : AI x ≤ bI}, then:

sup{cT x : AI x ≤ bI , x ∈ Rn} = sup{cT x : Ax ≤ b, x ∈ Zn},
Argmin{cT x : AI x ≤ bI , x ∈ Rn} = conv Argmin{cT x : Ax ≤ b, x ∈ Zn}.

35: 97∈[94,97]
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

x y

f(x)

f(y)

x y

f(x)

f(y)

36: 98∈[98,103]
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

epi f epi f

36: 99∈[98,103]
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

epi f epi f
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

f1

f2

f3

fk

epi f
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

Theorem
Each local minimum of a convex function is also a global minimum, and
for strictly convex functions it is unique (if it exists).

For convex functions there exist rather good optimization methods.

36: 102∈[98,103]
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Convex Functions
A function f : Rn → R̄ := R ∪ {∞} is convex if
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) for x , y ∈ Rn and α ∈ [0, 1].

f is strictly convex, if f (αx + (1− α)y) < αf (x) + (1− α)f (y) for
x , y ∈ Rn, x 6= y and α ∈ (0, 1).

The epigraph of a function f : Rn → R̄ is the set

epi f :=

{(
x
r

)
: x ∈ Rn, r ≥ f (x)

}
[the points “above” f (x)]

Theorem
A function is convex if and only if its epigraph is a convex set.

Ex.: for convex fi : Rn → R̄ also f (x) := supi fi (x), x ∈ Rn is convex.

Theorem
Each local minimum of a convex function is also a global minimum, and
for strictly convex functions it is unique (if it exists).

For convex functions there exist rather good optimization methods.

A function f is concave, if −f is convex.
(Each local maximum of a concave function is a global one.)

36: 103∈[98,103]
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1.8 Relaxation
Concept applicable to arbitrary optimization problems (here maximize):

Definition
Given two optimization problems with X ,W ⊆ Rn and f , f ′ : Rn → R

(OP) max f (x) s.t. x ∈ X and (RP) max f ′(x) s.t. x ∈ W,

(RP) is a relaxation of (OP) if
1. X ⊆ W,
2. f (x) ≤ f ′(x) for all x ∈ X .

Let (RP) be a relaxation of (OP).

Observation
1. v(RP) ≥ v(OP). [(RP) yields an upper bound]
2. If (RP) is infeasible, then so is (OP),
3. If x∗ is OS of (RP) and x∗ ∈ X with f ′(x∗) = f (x∗),

then x∗ is OS of (OP).

Search for a suitable “small” W ⊇ X and f ′ ≥ f so that (RP) is
efficiently solvable.

A relaxation (RP) of (OP) is called exact if v(OP) = v(RP).

38: 105∈[105,107]
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1.8 Relaxation
Concept applicable to arbitrary optimization problems (here maximize):

Definition
Given two optimization problems with X ,W ⊆ Rn and f , f ′ : Rn → R

(OP) max f (x) s.t. x ∈ X and (RP) max f ′(x) s.t. x ∈ W,

(RP) is a relaxation of (OP) if
1. X ⊆ W,
2. f (x) ≤ f ′(x) for all x ∈ X .

Let (RP) be a relaxation of (OP).

Observation
1. v(RP) ≥ v(OP). [(RP) yields an upper bound]
2. If (RP) is infeasible, then so is (OP),
3. If x∗ is OS of (RP) and x∗ ∈ X with f ′(x∗) = f (x∗),

then x∗ is OS of (OP).

Search for a suitable “small” W ⊇ X and f ′ ≥ f so that (RP) is
efficiently solvable.

A relaxation (RP) of (OP) is called exact if v(OP) = v(RP).

38: 106∈[105,107]
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1.8 Relaxation
Concept applicable to arbitrary optimization problems (here maximize):

Definition
Given two optimization problems with X ,W ⊆ Rn and f , f ′ : Rn → R

(OP) max f (x) s.t. x ∈ X and (RP) max f ′(x) s.t. x ∈ W,

(RP) is a relaxation of (OP) if
1. X ⊆ W,
2. f (x) ≤ f ′(x) for all x ∈ X .

Let (RP) be a relaxation of (OP).

Observation
1. v(RP) ≥ v(OP). [(RP) yields an upper bound]
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Convex Relaxation
If convexity is required for W and (for max) concavity for f ′, this yields a
convex relaxation. Mostly (but not always!) convexity ensures reasonable
algorithmic solvability of the relaxation.

Ex.: for a combinatorial max problem with finite ground set Ω, feasible
solutions F ⊆ 2Ω and linear cost function c ∈ RΩ

max cT x s.t. x ∈ conv{χΩ(F ) : F ∈ F}

is an exact convex (even linear) relaxation, but it is useful only if the
polyhedron conv{χ(F ) : F ∈ F} can be described by a reasonable
inequality system Ax ≤ b.

In global optimization, nonlinear functions are approximated from below
by convex functions on domain subdivisions.

Ex.: Consider (OP) min f (x) := 1
2x

TQx + qT x s.t. x ∈ [0, 1]n

with f not convex, i.e., λmin(Q) < 0. [λmin. . . minimal eigenvalue]
Q − λmin(Q)I is positive semidefinite and by x2

i ≤ xi on [0, 1]n there holds
f ′(x) := 1

2x
T (Q−λmin(Q)I )x +(q+λmin(Q)1)T x ≤ f (x) ∀x ∈ [0, 1]n.

Thus, (RP) min f ′(x) s.t. x ∈ [0, 1]n is a convex relaxation of (OP).

39: 108∈[108,110]
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Convex Relaxation
If convexity is required for W and (for max) concavity for f ′, this yields a
convex relaxation. Mostly (but not always!) convexity ensures reasonable
algorithmic solvability of the relaxation.

Ex.: for a combinatorial max problem with finite ground set Ω, feasible
solutions F ⊆ 2Ω and linear cost function c ∈ RΩ

max cT x s.t. x ∈ conv{χΩ(F ) : F ∈ F}

is an exact convex (even linear) relaxation, but it is useful only if the
polyhedron conv{χ(F ) : F ∈ F} can be described by a reasonable
inequality system Ax ≤ b.

In global optimization, nonlinear functions are approximated from below
by convex functions on domain subdivisions.

Ex.: Consider (OP) min f (x) := 1
2x

TQx + qT x s.t. x ∈ [0, 1]n

with f not convex, i.e., λmin(Q) < 0. [λmin. . . minimal eigenvalue]
Q − λmin(Q)I is positive semidefinite and by x2

i ≤ xi on [0, 1]n there holds
f ′(x) := 1

2x
T (Q−λmin(Q)I )x +(q+λmin(Q)1)T x ≤ f (x) ∀x ∈ [0, 1]n.

Thus, (RP) min f ′(x) s.t. x ∈ [0, 1]n is a convex relaxation of (OP).

39: 109∈[108,110]
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Convex Relaxation
If convexity is required for W and (for max) concavity for f ′, this yields a
convex relaxation. Mostly (but not always!) convexity ensures reasonable
algorithmic solvability of the relaxation.

Ex.: for a combinatorial max problem with finite ground set Ω, feasible
solutions F ⊆ 2Ω and linear cost function c ∈ RΩ

max cT x s.t. x ∈ conv{χΩ(F ) : F ∈ F}

is an exact convex (even linear) relaxation, but it is useful only if the
polyhedron conv{χ(F ) : F ∈ F} can be described by a reasonable
inequality system Ax ≤ b.

In global optimization, nonlinear functions are approximated from below
by convex functions on domain subdivisions.

Ex.: Consider (OP) min f (x) := 1
2x

TQx + qT x s.t. x ∈ [0, 1]n

with f not convex, i.e., λmin(Q) < 0. [λmin. . . minimal eigenvalue]
Q − λmin(Q)I is positive semidefinite and by x2

i ≤ xi on [0, 1]n there holds
f ′(x) := 1

2x
T (Q−λmin(Q)I )x +(q+λmin(Q)1)T x ≤ f (x) ∀x ∈ [0, 1]n.

Thus, (RP) min f ′(x) s.t. x ∈ [0, 1]n is a convex relaxation of (OP).

39: 110∈[108,110]
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LP-Relaxation for Integer Programs
For an integer program max cT x s.t. Ax ≤ b, x ∈ Zn dropping the
integrality constraints yields the LP-relaxation

max cT x s.t. Ax ≤ b, x ∈ Rn.

It is a relaxation, because
X := {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} =:W.

[basis of all standard solvers for mixed integer programs]

40: 111∈[111,115]
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LP-Relaxation for Integer Programs
For an integer program max cT x s.t. Ax ≤ b, x ∈ Zn dropping the
integrality constraints yields the LP-relaxation

max cT x s.t. Ax ≤ b, x ∈ Rn.

It is a relaxation, because
X := {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} =:W.

[basis of all standard solvers for mixed integer programs]

Ex.: knapsack problem: n = 2, weights a = (6, 8)T , capacity b = 10,
max cT x s.t. aT x ≤ b, x ∈ Zn

+ → max cT x s.t. aT x ≤ b, x ≥ 0,

a

1

1

1x

x 2

feasible integer points: ©
LP-relaxation: green

best relaxation: the convex hull

40: 112∈[111,115]
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LP-Relaxation for Integer Programs
For an integer program max cT x s.t. Ax ≤ b, x ∈ Zn dropping the
integrality constraints yields the LP-relaxation

max cT x s.t. Ax ≤ b, x ∈ Rn.

It is a relaxation, because
X := {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} =:W.

[basis of all standard solvers for mixed integer programs]

Ex.: knapsack problem: n = 2, weights a = (6, 8)T , capacity b = 10,
max cT x s.t. aT x ≤ b, x ∈ Zn

+ → max cT x s.t. aT x ≤ b, x ≥ 0,

a

1

1

1x

x 2

feasible integer points: ©
LP-relaxation: green

best relaxation: the convex hull
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LP-Relaxation for Integer Programs
For an integer program max cT x s.t. Ax ≤ b, x ∈ Zn dropping the
integrality constraints yields the LP-relaxation

max cT x s.t. Ax ≤ b, x ∈ Rn.

It is a relaxation, because
X := {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} =:W.

[basis of all standard solvers for mixed integer programs]

Ex.: knapsack problem: n = 2, weights a = (6, 8)T , capacity b = 10,
max cT x s.t. aT x ≤ b, x ∈ Zn

+ → max cT x s.t. aT x ≤ b, x ≥ 0,

a

1

1

1x

x 2

feasible integer points: ©
LP-relaxation: green

best relaxation: the convex hull

40: 114∈[111,115]
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LP-Relaxation for Integer Programs
For an integer program max cT x s.t. Ax ≤ b, x ∈ Zn dropping the
integrality constraints yields the LP-relaxation

max cT x s.t. Ax ≤ b, x ∈ Rn.

It is a relaxation, because
X := {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} =:W.

[basis of all standard solvers for mixed integer programs]

Ex: integer multi-commodity flow → fractional multi-commodity flow
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Lagrangian Relaxation

[Appl. to constrained optim. in general, here only for ineq.-constraints]

Inconvenient constraints are lifted into the cost function via a Lagrange
multiplier that penalizes violations (g : Rn → Rk):

(OP)
max f (x)
s.t. g(x) ≤ 0 | · λ ≥ 0

x ∈ Ω
→ (RPλ)

max cT x − λTg(x)
s.t. x ∈ Ω

is a relaxation: X := {x ∈ Ω : g(x) ≤ 0} ⊆ {x ∈ Ω} =:W and for
x ∈ X , λ ≥ 0 there holds f (x) ≤ f (x)− λTg(x) =: f ′(x) by g(x) ≤ 0.

Define the dual function ϕ(λ) := supx∈Ω

[
f (x)− g(x)Tλ

]
= v(RPλ)

[for each fixed x linear in λ]

• for each λ ≥ 0 there holds ϕ(λ) ≥ v(OP) [upper bound]
• ϕ(λ) easy to compute if (RPλ) is “easy” to compute
• ϕ is convex, because sup of linear functions in λ
• best bound is inf{ϕ(λ) : λ ≥ 0} [convex problem!]
well suited for convex optimization methods!

41: 116∈[116,117]
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Example: Integer Multi-Commodity Flow
Let A be the node-arc incidence matrix to D = (V ,E ), 2 goods,
relax the coupling capacity constraints by λ ≥ 0:

min c(1)Tx (1) + c(2)Tx (2)

s.t. Ax (1) = b(1)

Ax (2) = b(2)

λ · | x (1) + x (2) ≤ w
x (1)≤w , x (2)≤w
x (1) ∈ ZE

+, x (2) ∈ ZE
+.

→

min (c(1) +λ)Tx (1)+(c(2) +λ)Tx (2)−λTw
s.t. Ax (1) =b(1)

Ax (2) =b(2)

x (1) ≤ w , x (2) ≤ w ,
x (1) ∈ ZE

+, x (2) ∈ ZE
+.

The relaxation consists of two independent min-cost-flow problems

(RP
(i)
λ ) min (c(i)+λ)Tx (i) s.t. Ax (i) = b(i), w ≥ x (i) ∈ ZE

+ i ∈ {1, 2}

These can be solved integrally and efficiently!

If Lagrangian relaxation splits the problem into independent subproblems,
this is sometimes called Lagrangian decomposition. Frequently this allows
to solve much bigger problems efficiently.

Does this also yield better bounds?

42: 118∈[118,119]
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relax the coupling capacity constraints by λ ≥ 0:
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(i)
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Comparison of Lagrange- and LP-Relaxation
Given finite Ω ⊂ Zn and D ∈ Qk×n, d ∈ Qk ,

(OP)
max cT x
s.t. Dx ≤ d | · λ ≥ 0

x ∈ Ω
→ (RPλ)

max cT x + λT (d − Dx)
s.t. x ∈ Ω

In the ex.: Ω = Ω(1)×Ω(2) with Ω(i) = {x ∈ ZE
+ : Ax = b(i), x ≤ w} , i ∈ {1, 2}.

Theorem
inf
λ≥0

v(RPλ) = sup{cT x : Dx ≤ d , x ∈ conv Ω}.

If conv Ω is identical to the feasible set of the LP-relaxation of Ω, the
values of the best Lagrange relaxation and the LP-relaxation match!

In the ex. A is totally unimodular, thus for i ∈ {1, 2} and w ∈ ZE

conv{x ∈ ZE
+ : Ax = b(i), x ≤ w} = {x ≥ 0 : Ax = b(i), x ≤ w}.

The best λ yields the value of the fractional multi-comm.-flow problem!

In general: Let {x ∈ Zn : Ax ≤ b} = Ω be a formulation of Ω. Only if
{x ∈ Rn : Ax ≤ b} 6= conv Ω, Lagrange relaxation may yield a better
value Wert than the LP-relaxation.

43: 120∈[120,122]
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{x ∈ Rn : Ax ≤ b} 6= conv Ω, Lagrange relaxation may yield a better
value Wert than the LP-relaxation.

43: 121∈[120,122]
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1.9 Application: Traveling Salesman Problem (TSP)

TSP: Given n cities with all pairwise distances, find a shortest round trip
that visits each city exactly once.

Comb. opt.: D = (V ,E = {(u, v) : u, v ∈ V , u 6= v}) complete digraph,
costs c ∈ RE , feasible set F = {R ⊂ E : R (dir.) cycle in D, |R| = n}.
Find R ∈ Argmin{c(R) =

∑
e∈R ce : R ∈ F}

NP-complete problem
Number of tours? (n − 1)!

→combinatorial explosion

Typical problem for:
• delivery services (parcels, pharmacy-transports)
• taxi services, breakdown services
• scheduling with setup costs [e.g. coloring cars]
• steering robots (mostly nonlinear)
[frequently with several “vehicles” and time windows]

n = 3: 2
n = 4: 3 · 2 = 6
n = 5: 4 · 3 · 2 = 24

n = 10: 362880
n = 11: 3628800
n = 12: 39916800
n = 13: 479001600
n = 14: 6227020800

n =100: 10158

45: 124∈[124,127]
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Drilling holes into main boards

[http://www.math.princeton.edu/tsp]

46: 128∈[128,128]
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With online aspects: breakdown services

Find an assignment of cars and a sequence for each repair man, so that
promised waiting periods are not exceeded.

47: 129∈[129,129]
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Scheduling for long setup times

Anfangszustand M1

Endzustand M1

Anfangszustand M2 

Endzustand M2 

Two rotational printing machines
for printing wrapping papier

25
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2
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10
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5+3x#

Passer

Farbanpassung neue Farben: 20

48: 130∈[130,130]
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Integer Programming Model
Abstract formulation uses convex hull of incidence vectors:

6
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9

1

4

11

12

2 53

7

8

R1 = {1, 4, 8, 11}
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R2 = {4, 5, 7, 9}

6

10

9

1

3 4

11

12

2 5

7

8

R3 = {1, 6, 9, 12}

χ(R1) =



1
0
0
1
0
0
0
1
0
0
1
0


χ(R2) =



0
0
0
1
1
0
1
0
1
0
0
0


χ(R3) =



1
0
0
0
0
1
0
0
1
0
0
1


For arc lengths c ∈ RE the length of a tour R is

∑
e∈R

ce = cTχ(R).

(TSP) min cT x s.t. x ∈ conv{χ(R) : R tour in D = (V ,E )} =: PTSP

Would be exact, but no linear description AI x ≤ bI of PTSP is known!
49: 131∈[131,131]
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Integer Formulation of (TSP)
Goal: wrap PTSP by a bigger polytope P = {x ∈ Rn : Ax ≤ b} ⊇ PTSP

as tightly as possible so that at least P ∩ ZE = {χ(R) : R tour}.

An equation/inequality is feasible for PTSP ,
if it holds for all x ∈{χ(R) : R tour}.
Suggestions?

Is this a formulation? P ∩ ZE = {χ(R) : R tour}?
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Subtour elimination constraints:
At least one arc must exit each proper subset of nodes,

for S ⊂ V , 2 ≤ |S | ≤ n − 2 :
∑

e∈δ+(S) xe ≥ 1

This is now a formulation, but it needs roughly 2n inequalities!

50: 132∈[132,134]
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Integer Formulation of (TSP)
Goal: wrap PTSP by a bigger polytope P = {x ∈ Rn : Ax ≤ b} ⊇ PTSP

as tightly as possible so that at least P ∩ ZE = {χ(R) : R tour}.

An equation/inequality is feasible for PTSP ,
if it holds for all x ∈{χ(R) : R tour}.
0-1 cube: 0 ≤ x ≤ 1 is feasible

degree constraints:
exactly one arc exits and enters each node,

for v ∈ V :
∑

(v ,u)∈E

x(v ,u) = 1,
∑

(u,v)∈E

x(u,v) = 1

(exactly one 1 per row/column ↔ assignment problem)

Is this a formulation? P ∩ ZE = {χ(R) : R tour}?
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Solving the TSP LP-Relaxation
Requires a cutting plane approach:
The first relaxation is the assignment problem (box+degree constr.)
Its solutions is integral and consists of distinct cycles in general.

From now on the bound is improved iteratively by subtour elim. constr.
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Separation problem: find S ⊂ V , 2 ≤ |S | ≤ n − 2 :
∑

e∈δ+(S) xe 6≥ 1.

⇔ Find, in network D = (V ,E ) with capacities x , a cut x(δ+(S)) < 1.
→ Maximum s-t-flow/minimum s-t-cut for s, t ∈ V , solvable exactly!

degree+subtour yield high quality bounds, but are still far from PTSP !
Bound can be improved by further ineqs (comb-, etc.),
but the solution of the relaxation almost never becomes integral!

51: 135∈[135,137]
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Requires a cutting plane approach:
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⇔ Find, in network D = (V ,E ) with capacities x , a cut x(δ+(S)) < 1.
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Solving the TSP LP-Relaxation
Requires a cutting plane approach:
The first relaxation is the assignment problem (box+degree constr.)
Its solutions is integral and consists of distinct cycles in general.

From now on the bound is improved iteratively by subtour elim. constr.
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Separation problem: find S ⊂ V , 2 ≤ |S | ≤ n − 2 :
∑

e∈δ+(S) xe 6≥ 1.

⇔ Find, in network D = (V ,E ) with capacities x , a cut x(δ+(S)) < 1.
→ Maximum s-t-flow/minimum s-t-cut for s, t ∈ V , solvable exactly!

degree+subtour yield high quality bounds, but are still far from PTSP !
Bound can be improved by further ineqs (comb-, etc.),
but the solution of the relaxation almost never becomes integral!

51: 137∈[135,137]
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General Cutting Planes
There exist several problem independent general cutting planes,
that are used in state-of-the-art solvers for integer programming:
• Gomory-cuts [rounding down coefficients by b·c]

if aT x ≤ β is feasible for x ∈ P ∩ Zn
+

then by bacT x ≤ aT x
also bacT x ≤ bβc feasible.

For non integral OS violated inequs.
of this type can be constructed.

P
c

• lift-and-project cuts,
• clique inequalities,
etc.

LP-relaxation with cutting planes gives rise to good bounds
(upper for maximization, lower for minimization problems),
the solutions of the relaxation are (almost) never integral,
but are often close to integer solutions of good quality.

52: 138∈[138,141]
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General Cutting Planes
There exist several problem independent general cutting planes,
that are used in state-of-the-art solvers for integer programming:
• Gomory-cuts [rounding down coefficients by b·c]

if aT x ≤ β is feasible for x ∈ P ∩ Zn
+

then by bacT x ≤ aT x
also bacT x ≤ bβc feasible.

For non integral OS violated inequs.
of this type can be constructed.

P
c

• lift-and-project cuts,
• clique inequalities,
etc.

LP-relaxation with cutting planes gives rise to good bounds
(upper for maximization, lower for minimization problems),
the solutions of the relaxation are (almost) never integral,
but are often close to integer solutions of good quality.
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General Cutting Planes
There exist several problem independent general cutting planes,
that are used in state-of-the-art solvers for integer programming:
• Gomory-cuts [rounding down coefficients by b·c]

if aT x ≤ β is feasible for x ∈ P ∩ Zn
+

then by bacT x ≤ aT x
also bacT x ≤ bβc feasible.

For non integral OS violated inequs.
of this type can be constructed.

P
c

• lift-and-project cuts,
• clique inequalities,
etc.

LP-relaxation with cutting planes gives rise to good bounds
(upper for maximization, lower for minimization problems),
the solutions of the relaxation are (almost) never integral,
but are often close to integer solutions of good quality.

52: 140∈[138,141]
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General Cutting Planes
There exist several problem independent general cutting planes,
that are used in state-of-the-art solvers for integer programming:
• Gomory-cuts [rounding down coefficients by b·c]

if aT x ≤ β is feasible for x ∈ P ∩ Zn
+

then by bacT x ≤ aT x
also bacT x ≤ bβc feasible.

For non integral OS violated inequs.
of this type can be constructed.

P
c

• lift-and-project cuts,
• clique inequalities,
etc.

LP-relaxation with cutting planes gives rise to good bounds
(upper for maximization, lower for minimization problems),
the solutions of the relaxation are (almost) never integral,
but are often close to integer solutions of good quality.

52: 141∈[138,141]
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1.10 Finding “Good” Solutions, Heuristics
[Heuristic has greek origin find/invent]

For “small” x ∈ Zn standard rounding of LP
solutions typically yields infeasible or bad so-
lutions (even if the bound is good).

It may happen that no feasible point is in the
neighborhood of the LP solution!

State-of-the-art solvers employ sophisticated
general purpose rounding heuristics (e.g., fea-
sibility pump).

P c

In general: Integer problems are NP-hard, have many “local optima” (no
close better solutions) and likely finding the optimum requires (partial)
enumeration. It may even be difficult to find any feasible solution!

→ In applications one exploits problem specific knowledge!

Rough algorithmic scheme:
• generate a (feasible?) starting solution (often based on LP-sol.)
• iteratively improve the solution by some local search method (locally

exact, simulated annealing, tabu search, genetic algorithms, etc.)

54: 143∈[143,145]
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1.10 Finding “Good” Solutions, Heuristics
[Heuristic has greek origin find/invent]

For “small” x ∈ Zn standard rounding of LP
solutions typically yields infeasible or bad so-
lutions (even if the bound is good).

It may happen that no feasible point is in the
neighborhood of the LP solution!

State-of-the-art solvers employ sophisticated
general purpose rounding heuristics (e.g., fea-
sibility pump).

P c

In general: Integer problems are NP-hard, have many “local optima” (no
close better solutions) and likely finding the optimum requires (partial)
enumeration. It may even be difficult to find any feasible solution!

→ In applications one exploits problem specific knowledge!

Rough algorithmic scheme:
• generate a (feasible?) starting solution (often based on LP-sol.)
• iteratively improve the solution by some local search method (locally

exact, simulated annealing, tabu search, genetic algorithms, etc.)
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1.10 Finding “Good” Solutions, Heuristics
[Heuristic has greek origin find/invent]

For “small” x ∈ Zn standard rounding of LP
solutions typically yields infeasible or bad so-
lutions (even if the bound is good).

It may happen that no feasible point is in the
neighborhood of the LP solution!

State-of-the-art solvers employ sophisticated
general purpose rounding heuristics (e.g., fea-
sibility pump).

P c

In general: Integer problems are NP-hard, have many “local optima” (no
close better solutions) and likely finding the optimum requires (partial)
enumeration. It may even be difficult to find any feasible solution!

→ In applications one exploits problem specific knowledge!

Rough algorithmic scheme:
• generate a (feasible?) starting solution (often based on LP-sol.)
• iteratively improve the solution by some local search method (locally

exact, simulated annealing, tabu search, genetic algorithms, etc.)
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Starting Solution based on LP-Relaxation

Typical approaches:
• Often exactly one of several {0, 1}-variables has to be selected:

LP-relaxation:
∑

i∈N xi = 1, xi ∈ [0, 1]
Interpret value of xi as the probability that xi has to be set to 1
and generate several such solutions randomly, select the best.

• Deviations from constraints with large dual variables result in
strong losses in objective value
⇒ try to satisfy those in rounding.

• Successive fixing: Set one or several variables whose value is “al-
most” intregral to the rounded value and resolve the LP for the
remaining variables (may require back tracking if infeasible).

For some basic problems there exist rounding methods that
generate feasible solutions with quality guarantee from LP
solutions (approximation algorithms), these are a valuable source
of good ideas for designing new rounding methods.

55: 146∈[146,149]
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Starting Solution based on LP-Relaxation

Typical approaches:
• Often exactly one of several {0, 1}-variables has to be selected:

LP-relaxation:
∑

i∈N xi = 1, xi ∈ [0, 1]
Interpret value of xi as the probability that xi has to be set to 1
and generate several such solutions randomly, select the best.

• Deviations from constraints with large dual variables result in
strong losses in objective value
⇒ try to satisfy those in rounding.

• Successive fixing: Set one or several variables whose value is “al-
most” intregral to the rounded value and resolve the LP for the
remaining variables (may require back tracking if infeasible).

For some basic problems there exist rounding methods that
generate feasible solutions with quality guarantee from LP
solutions (approximation algorithms), these are a valuable source
of good ideas for designing new rounding methods.

55: 147∈[146,149]
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Starting Solution based on LP-Relaxation

Typical approaches:
• Often exactly one of several {0, 1}-variables has to be selected:

LP-relaxation:
∑

i∈N xi = 1, xi ∈ [0, 1]
Interpret value of xi as the probability that xi has to be set to 1
and generate several such solutions randomly, select the best.

• Deviations from constraints with large dual variables result in
strong losses in objective value
⇒ try to satisfy those in rounding.

• Successive fixing: Set one or several variables whose value is “al-
most” intregral to the rounded value and resolve the LP for the
remaining variables (may require back tracking if infeasible).

For some basic problems there exist rounding methods that
generate feasible solutions with quality guarantee from LP
solutions (approximation algorithms), these are a valuable source
of good ideas for designing new rounding methods.
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Starting Solution based on LP-Relaxation

Typical approaches:
• Often exactly one of several {0, 1}-variables has to be selected:

LP-relaxation:
∑

i∈N xi = 1, xi ∈ [0, 1]
Interpret value of xi as the probability that xi has to be set to 1
and generate several such solutions randomly, select the best.

• Deviations from constraints with large dual variables result in
strong losses in objective value
⇒ try to satisfy those in rounding.

• Successive fixing: Set one or several variables whose value is “al-
most” intregral to the rounded value and resolve the LP for the
remaining variables (may require back tracking if infeasible).

For some basic problems there exist rounding methods that
generate feasible solutions with quality guarantee from LP
solutions (approximation algorithms), these are a valuable source
of good ideas for designing new rounding methods.

55: 149∈[146,149]
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Improvement Methods: Principles

common basic elements:
• declare a search neighborhood: with respect to the current so-

lution it describes which solutions “close by” will or may be inves-
tigated (e.g. all obtainable by certain exchange operations or by
freeing certain variables with local post optimization etc.)
mathematically: each solution x̂ is a assigned a (neighborhood-)
set N (x̂) of neighboring solutions.

• define a progress measure: a merit function f (x) for newly ge-
nerated solutions that combines cost function and penalties for
infeasibilities
[cmp. merit- and filter-approach in nonlin. opt.]

• fix an acceptance-scheme: serves to decide which of the new
solutions will be used to continue the search; worse solutions may
be accepted sometimes in order to allow leaving local optima.

56: 150∈[150,152]
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Improvement Methods: Principles

common basic elements:
• declare a search neighborhood: with respect to the current so-

lution it describes which solutions “close by” will or may be inves-
tigated (e.g. all obtainable by certain exchange operations or by
freeing certain variables with local post optimization etc.)
mathematically: each solution x̂ is a assigned a (neighborhood-)
set N (x̂) of neighboring solutions.

• define a progress measure: a merit function f (x) for newly ge-
nerated solutions that combines cost function and penalties for
infeasibilities
[cmp. merit- and filter-approach in nonlin. opt.]

• fix an acceptance-scheme: serves to decide which of the new
solutions will be used to continue the search; worse solutions may
be accepted sometimes in order to allow leaving local optima.
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Improvement Methods: Principles

common basic elements:
• declare a search neighborhood: with respect to the current so-

lution it describes which solutions “close by” will or may be inves-
tigated (e.g. all obtainable by certain exchange operations or by
freeing certain variables with local post optimization etc.)
mathematically: each solution x̂ is a assigned a (neighborhood-)
set N (x̂) of neighboring solutions.

• define a progress measure: a merit function f (x) for newly ge-
nerated solutions that combines cost function and penalties for
infeasibilities
[cmp. merit- and filter-approach in nonlin. opt.]

• fix an acceptance-scheme: serves to decide which of the new
solutions will be used to continue the search; worse solutions may
be accepted sometimes in order to allow leaving local optima.

56: 152∈[150,152]
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Locally Exact Methods/Local Enumerartion
Define N (·) so that (Px̂) min f (x) s.t. x ∈ N (x̂)
is solvable exactly by a polynomial time algorithm or by complete
enumeration for each x̂ .

0. determine a starting solution x̂
1. solve (Px̂) → x̄
2. if f (x̄) is better than f (x̂), put x̂ ← x̄ and goto 1., else STOP.

Ex.: 3-opt for TSP: remove 3 edges and concat parts optimally

→ →

the art: find a powerful and large neighborhood for which (Px̂) is
still polynomially solvable.

The number of iterations may be exponential none the less!

57: 153∈[153,155]
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Locally Exact Methods/Local Enumerartion
Define N (·) so that (Px̂) min f (x) s.t. x ∈ N (x̂)
is solvable exactly by a polynomial time algorithm or by complete
enumeration for each x̂ .

0. determine a starting solution x̂
1. solve (Px̂) → x̄
2. if f (x̄) is better than f (x̂), put x̂ ← x̄ and goto 1., else STOP.

Ex.: 3-opt for TSP: remove 3 edges and concat parts optimally

→ →

the art: find a powerful and large neighborhood for which (Px̂) is
still polynomially solvable.

The number of iterations may be exponential none the less!

57: 154∈[153,155]
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Locally Exact Methods/Local Enumerartion
Define N (·) so that (Px̂) min f (x) s.t. x ∈ N (x̂)
is solvable exactly by a polynomial time algorithm or by complete
enumeration for each x̂ .

0. determine a starting solution x̂
1. solve (Px̂) → x̄
2. if f (x̄) is better than f (x̂), put x̂ ← x̄ and goto 1., else STOP.

Ex.: 3-opt for TSP: remove 3 edges and concat parts optimally

→ →

the art: find a powerful and large neighborhood for which (Px̂) is
still polynomially solvable.

The number of iterations may be exponential none the less!
57: 155∈[153,155]
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Simulated Annealing (simulates a slow cooling process)
Select, in step k , randomly some x̄ from N (x̂). Accept it if f (x̄) is
better than f (x̂), otherwise accept it only with probability

exp

(
−|f (x̂)− f (x̄)|

Tk

)
(0 < Tk → 0 für k →∞).

0. given a starting x̂ , fix sequence {Tk > 0}k∈N ↘ 0, put k = 0.
1. choose randomly (uniformly) x̄ ∈ N (x̂), put k ← k + 1
2. if f (x̄) is better than f (x̂), put x̂ ← x̄ and goto 1
3. draw a uniform random number ζ ∈ [0, 1];

if ζ < exp(−|f (x̂)−f (x̄)|
ck

), put x̂ ← x̄ and goto 1
4. goto 1 (without changing x̂).

Choose N (·) so that each x is reachable via intermediate steps.

If the (temperature-/cooling-)sequence Tk goes to zero slowly
enough, each x is visited with positive probability over time
(complete enumeration), therefore also the optimum (but after
how long?)

58: 156∈[156,157]
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Simulated Annealing (simulates a slow cooling process)
Select, in step k , randomly some x̄ from N (x̂). Accept it if f (x̄) is
better than f (x̂), otherwise accept it only with probability

exp

(
−|f (x̂)− f (x̄)|

Tk

)
(0 < Tk → 0 für k →∞).

0. given a starting x̂ , fix sequence {Tk > 0}k∈N ↘ 0, put k = 0.
1. choose randomly (uniformly) x̄ ∈ N (x̂), put k ← k + 1
2. if f (x̄) is better than f (x̂), put x̂ ← x̄ and goto 1
3. draw a uniform random number ζ ∈ [0, 1];

if ζ < exp(−|f (x̂)−f (x̄)|
ck

), put x̂ ← x̄ and goto 1
4. goto 1 (without changing x̂).

Choose N (·) so that each x is reachable via intermediate steps.

If the (temperature-/cooling-)sequence Tk goes to zero slowly
enough, each x is visited with positive probability over time
(complete enumeration), therefore also the optimum (but after
how long?)

58: 157∈[156,157]
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Tabu-Search

Idea: try to generate highly diverse solutions

Describe N (·) by exchange rules r ∈ R and save used rules in a
tabu list L. For any new x̄ at least one rule r ∈ R \ L should be
used or its value must improve.

0. determine a starting x̂ , put L = ∅.
1. generate several x ∈ N (x̂) by repeatedly applying randomly

selected rules of R, collect those in set S .
2. choose next x̄ from S according to tabu list L and f (·).
3. update the tabu list L, put x̂ ← x̄ , goto 1.

Ex. TSP: R = {rij := switch positions of towns i and j}.
L = {rij : rij was used in the last n/10 steps}

By using rules R each solution should be reachable.
No general theoretical insights or quality guarantees seem to exist.

59: 158∈[158,160]
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Tabu-Search

Idea: try to generate highly diverse solutions

Describe N (·) by exchange rules r ∈ R and save used rules in a
tabu list L. For any new x̄ at least one rule r ∈ R \ L should be
used or its value must improve.

0. determine a starting x̂ , put L = ∅.
1. generate several x ∈ N (x̂) by repeatedly applying randomly

selected rules of R, collect those in set S .
2. choose next x̄ from S according to tabu list L and f (·).
3. update the tabu list L, put x̂ ← x̄ , goto 1.

Ex. TSP: R = {rij := switch positions of towns i and j}.
L = {rij : rij was used in the last n/10 steps}

By using rules R each solution should be reachable.
No general theoretical insights or quality guarantees seem to exist.
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Tabu-Search

Idea: try to generate highly diverse solutions

Describe N (·) by exchange rules r ∈ R and save used rules in a
tabu list L. For any new x̄ at least one rule r ∈ R \ L should be
used or its value must improve.

0. determine a starting x̂ , put L = ∅.
1. generate several x ∈ N (x̂) by repeatedly applying randomly

selected rules of R, collect those in set S .
2. choose next x̄ from S according to tabu list L and f (·).
3. update the tabu list L, put x̂ ← x̄ , goto 1.

Ex. TSP: R = {rij := switch positions of towns i and j}.
L = {rij : rij was used in the last n/10 steps}

By using rules R each solution should be reachable.
No general theoretical insights or quality guarantees seem to exist.

59: 160∈[158,160]
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Genetic Algorithms

Idea: Let evolution work for you (and wait in the meantime).

From some population generate the next population by selection
(choose next parents), recombination (exchange parts of solutions)
and mutation (modify some elements randomly).

0. Choose k ∈ N and determine a starting population P, |P| ≥ 2k .
1. determine the average fitness f̄ =

∑
x∈P f (x)/|P|

2. delete x from P with probability prop. to f (x)

f̄
, until |P| = 2k.

3. form k random pairs out of P, generate for each pair several
offsprings by recombination and mutation → P̄

4. Put P ← P̄, goto 1.

• many experiments use populations of size 1 (!!!)
• theory indicates that simulated annealing is better in locating

optima

60: 161∈[161,162]
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Genetic Algorithms

Idea: Let evolution work for you (and wait in the meantime).

From some population generate the next population by selection
(choose next parents), recombination (exchange parts of solutions)
and mutation (modify some elements randomly).

0. Choose k ∈ N and determine a starting population P, |P| ≥ 2k .
1. determine the average fitness f̄ =

∑
x∈P f (x)/|P|

2. delete x from P with probability prop. to f (x)

f̄
, until |P| = 2k.

3. form k random pairs out of P, generate for each pair several
offsprings by recombination and mutation → P̄

4. Put P ← P̄, goto 1.

• many experiments use populations of size 1 (!!!)
• theory indicates that simulated annealing is better in locating

optima
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Remarks
• SA, TS, GA are meta-heuristics (problem-independent schemes).

• meta-heuristics-industry considers arbitrary combinations yielding
zillions of

”
new“ methods (ant-colony-, particle-swarm-, etc.)

• Almost all hope to find optima by (slightly influencing) chance
(fits to NP!).

Advantages:
• Even without understanding the problem it is easy to implement

something quickly, first solutions are obtained in short time, rules
are adapted easily.

• There are many parameters to play with.

Disadvantages:
• There are many parameters to adjust without any guidance!

• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).

61: 163∈[163,169]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

Remarks
• SA, TS, GA are meta-heuristics (problem-independent schemes).

• meta-heuristics-industry considers arbitrary combinations yielding
zillions of

”
new“ methods (ant-colony-, particle-swarm-, etc.)

• Almost all hope to find optima by (slightly influencing) chance
(fits to NP!).

Advantages:
• Even without understanding the problem it is easy to implement

something quickly, first solutions are obtained in short time, rules
are adapted easily.

• There are many parameters to play with.

Disadvantages:
• There are many parameters to adjust without any guidance!

• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).
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Remarks
• SA, TS, GA are meta-heuristics (problem-independent schemes).

• meta-heuristics-industry considers arbitrary combinations yielding
zillions of

”
new“ methods (ant-colony-, particle-swarm-, etc.)

• Almost all hope to find optima by (slightly influencing) chance
(fits to NP!).

Advantages:
• Even without understanding the problem it is easy to implement

something quickly, first solutions are obtained in short time, rules
are adapted easily.

• There are many parameters to play with.

Disadvantages:
• There are many parameters to adjust without any guidance!

• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).

61: 165∈[163,169]
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Remarks
• SA, TS, GA are meta-heuristics (problem-independent schemes).

• meta-heuristics-industry considers arbitrary combinations yielding
zillions of

”
new“ methods (ant-colony-, particle-swarm-, etc.)

• Almost all hope to find optima by (slightly influencing) chance
(fits to NP!).

Advantages:
• Even without understanding the problem it is easy to implement

something quickly, first solutions are obtained in short time, rules
are adapted easily.

• There are many parameters to play with.

Disadvantages:
• There are many parameters to adjust without any guidance!

• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).
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Remarks
• SA, TS, GA are meta-heuristics (problem-independent schemes).

• meta-heuristics-industry considers arbitrary combinations yielding
zillions of

”
new“ methods (ant-colony-, particle-swarm-, etc.)

• Almost all hope to find optima by (slightly influencing) chance
(fits to NP!).

Advantages:
• Even without understanding the problem it is easy to implement

something quickly, first solutions are obtained in short time, rules
are adapted easily.

• There are many parameters to play with.

Disadvantages:
• There are many parameters to adjust without any guidance!

• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).

61: 167∈[163,169]
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are adapted easily.

• There are many parameters to play with.
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• “Convergence” of a method does not imply any quality guaran-
tee. Without some related relaxation the distance to an optimal
solution is entirely open (sometimes rather extreme).
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1.11 Mixed-Integer Optimization (MIP)
x needs to be integral on some subset of indices G ⊆ {1, . . . , n}.

max cT x s.t. Ax ≥ b, x ∈ Rn, xG ∈ ZG

Contains integer optimization as special case but comprises much more.

Example application: facility location with fixed costs
Given a set K of customers with demands bk and a set M of potential
locations for ware houses, each with opening cost cm, capacity bm and
transportation costs ckm per unit for k ∈ K ,m ∈ M. Which locations
should be opened?

variables:
xm ∈ {0, 1}, m ∈ M . . . ware house m is opened
xkm ∈ R+, k ∈ K ,m ∈ M . . . amount deliverd by m to customer k

constraints:∑
m∈M xkm = bk , k ∈ K . . . demand of customer k is satisfied∑
k∈K xkm ≤ bmxm, m ∈ M . . . ware house m distributes at most bm.

cost function:
min

∑
k∈K ,m∈M ckmxkm +

∑
m∈M cmxm = cT x

63: 171∈[171,175]
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Modelling techniques in MIP
Conditional Inequalities: inequalities that need to hold only in
dependence on certain decisions. If they need not hold, they are satisfied
by adding a big M-term.

Example: If train A departs at time tA before train B departs at tB , a
“headway time” tAB > 0 has to be observed, i.e. tB ≥ tA + tAB .
If, on the other hand, train B departs before A, this requires
tA ≥ tB + tBA. Of course, the later train may depart much later as well.

variables: (M � 0, greater than latest departure of tA and tB):
xAB ∈ {0, 1} . . . 1 if A before B, 0 otherwise
tA, tB ∈ [0,M]. . . departure time

constraints:
tA + tAB ≤ tB + M(1− xAB) . . . only of importance if xAB = 1
tB + tBA ≤ tA + MxAB . . . only of importnace if xAB = 0.

• M too big → ineq. in LP-relaxation too weak → bad bound
• reasonable, if violation gap of ineq. is well controlled

(see the example on facility location)
• useful in branch&bound if the decision is used for branching

64: 176∈[176,179]
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Modelling techniques in MIP
Conditional Inequalities: inequalities that need to hold only in
dependence on certain decisions. If they need not hold, they are satisfied
by adding a big M-term.

Example: If train A departs at time tA before train B departs at tB , a
“headway time” tAB > 0 has to be observed, i.e. tB ≥ tA + tAB .
If, on the other hand, train B departs before A, this requires
tA ≥ tB + tBA. Of course, the later train may depart much later as well.

variables:

(M � 0, greater than latest departure of tA and tB):
xAB ∈ {0, 1} . . . 1 if A before B, 0 otherwise
tA, tB ∈ [0,M]. . . departure time

constraints:
tA + tAB ≤ tB + M(1− xAB) . . . only of importance if xAB = 1
tB + tBA ≤ tA + MxAB . . . only of importnace if xAB = 0.

• M too big → ineq. in LP-relaxation too weak → bad bound
• reasonable, if violation gap of ineq. is well controlled

(see the example on facility location)
• useful in branch&bound if the decision is used for branching
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Modelling techniques in MIP
Conditional Inequalities: inequalities that need to hold only in
dependence on certain decisions. If they need not hold, they are satisfied
by adding a big M-term.

Example: If train A departs at time tA before train B departs at tB , a
“headway time” tAB > 0 has to be observed, i.e. tB ≥ tA + tAB .
If, on the other hand, train B departs before A, this requires
tA ≥ tB + tBA. Of course, the later train may depart much later as well.

variables: (M � 0, greater than latest departure of tA and tB):
xAB ∈ {0, 1} . . . 1 if A before B, 0 otherwise
tA, tB ∈ [0,M]. . . departure time

constraints:

tA + tAB ≤ tB + M(1− xAB) . . . only of importance if xAB = 1
tB + tBA ≤ tA + MxAB . . . only of importnace if xAB = 0.

• M too big → ineq. in LP-relaxation too weak → bad bound
• reasonable, if violation gap of ineq. is well controlled

(see the example on facility location)
• useful in branch&bound if the decision is used for branching
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Modelling techniques in MIP
Conditional Inequalities: inequalities that need to hold only in
dependence on certain decisions. If they need not hold, they are satisfied
by adding a big M-term.

Example: If train A departs at time tA before train B departs at tB , a
“headway time” tAB > 0 has to be observed, i.e. tB ≥ tA + tAB .
If, on the other hand, train B departs before A, this requires
tA ≥ tB + tBA. Of course, the later train may depart much later as well.
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• reasonable, if violation gap of ineq. is well controlled

(see the example on facility location)
• useful in branch&bound if the decision is used for branching
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Modelling techniques in MIP
Conditional Inequalities: inequalities that need to hold only in
dependence on certain decisions. If they need not hold, they are satisfied
by adding a big M-term.

Example: If train A departs at time tA before train B departs at tB , a
“headway time” tAB > 0 has to be observed, i.e. tB ≥ tA + tAB .
If, on the other hand, train B departs before A, this requires
tA ≥ tB + tBA. Of course, the later train may depart much later as well.

variables: (M � 0, greater than latest departure of tA and tB):
xAB ∈ {0, 1} . . . 1 if A before B, 0 otherwise
tA, tB ∈ [0,M]. . . departure time

constraints:
tA + tAB ≤ tB + M(1− xAB) . . . only of importance if xAB = 1
tB + tBA ≤ tA + MxAB . . . only of importnace if xAB = 0.
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(see the example on facility location)
• useful in branch&bound if the decision is used for branching

64: 180∈[180,184]



Matching Integral Polyhedra Networkflow Multicomm. Integer Opt. B& B Convex Sets Relaxation TSP Heuristics MIP

Modelling Logical Constraints
For xi ∈ {0, 1}, xi = 1 often represents “expression i is true”.
Logical expressions can then be generated as follows:

log. expression formulation
x2 = (not x1)

x2 = 1− x1

x3 = (x1 or x2) x3 ≥ x1, x3 ≥ x2, x3 ≤ x1 + x2

x3 = (x1 and x2) x3 ≤ x1, x3 ≤ x2, x3 ≥ x1 + x2 − 1
x1 ⇒ x2 x1 ≤ x2

x1 ⇔ x2 x1 = x2

Remark: Together with 0 ≤ xi ≤ 1 these constraints describe

conv


 x1

x2

x3

 ∈ {0, 1}3 : die xi satisfy the logical expression

 .

Using this technique models of further expressions can be derived.
Exercise: x3 = (x1 xor x2)

65: 181∈[180,184]
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Modelling Logical Constraints
For xi ∈ {0, 1}, xi = 1 often represents “expression i is true”.
Logical expressions can then be generated as follows:

log. expression formulation
x2 = (not x1) x2 = 1− x1
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Modelling Logical Constraints
For xi ∈ {0, 1}, xi = 1 often represents “expression i is true”.
Logical expressions can then be generated as follows:

log. expression formulation
x2 = (not x1) x2 = 1− x1
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Modelling Logical Constraints
For xi ∈ {0, 1}, xi = 1 often represents “expression i is true”.
Logical expressions can then be generated as follows:

log. expression formulation
x2 = (not x1) x2 = 1− x1

x3 = (x1 or x2) x3 ≥ x1, x3 ≥ x2, x3 ≤ x1 + x2

x3 = (x1 and x2) x3 ≤ x1, x3 ≤ x2, x3 ≥ x1 + x2 − 1
x1 ⇒ x2 x1 ≤ x2

x1 ⇔ x2 x1 = x2

Remark: Together with 0 ≤ xi ≤ 1 these constraints describe

conv


 x1

x2

x3

 ∈ {0, 1}3 : die xi satisfy the logical expression

 .

Using this technique models of further expressions can be derived.
Exercise: x3 = (x1 xor x2)
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General Cutting Planes for MIP
Like in integer programming, “conv” is the best linear relaxation,

PG := conv{x ∈ Rn : Ax ≤ b, xG ∈ ZG}.

Ax ≤ b is the LP-relaxation, PG is approximated by cutting planes.

Ex.: Mixed Integer Rounding inequality (MIR)
simplest form: X = {(x1, x2) ∈ Z× R+ : x1 + x2 ≥ β}, β ∈ R

P

x2

x1

X

δ

Put δ := β − bβc,
then the inequ.

x1 +
1

δ
x2 ≥ dβe

is valid for X .

In state-of-the-art packages many further types are included
(flow cover, cliques, etc.)

66: 186∈[185,187]
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General Cutting Planes for MIP
Like in integer programming, “conv” is the best linear relaxation,

PG := conv{x ∈ Rn : Ax ≤ b, xG ∈ ZG}.

Ax ≤ b is the LP-relaxation, PG is approximated by cutting planes.

Ex.: Mixed Integer Rounding inequality (MIR)
simplest form: X = {(x1, x2) ∈ Z× R+ : x1 + x2 ≥ β}, β ∈ R
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Put δ := β − bβc,
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Branch-and-Cut Frameworks

When in a branch&bound-method the LP-relaxation of each
subproblem is improved by cutting planes, this is called a
Branch&Cut-Method. Currently these are the best methods for
general mixed integer optimization.

An efficient branch&cut implementation is subtle and difficult:
• choosing the next subproblem
• choosing the branching variable, fixing of variables
• storing subproblems efficiently in an incremental manner
• using cutting planes for several subproblems
• efficient heuristics for finding good feasible solutions
etc.

There exist packages that provide the entire framework and allow
to add further problem specific cutting planes and heuristics.

e.g. SCIP, Cplex, Gurobi, Abacus . . .

67: 189∈[188,190]
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Branch-and-Cut Frameworks

When in a branch&bound-method the LP-relaxation of each
subproblem is improved by cutting planes, this is called a
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general mixed integer optimization.

An efficient branch&cut implementation is subtle and difficult:
• choosing the next subproblem
• choosing the branching variable, fixing of variables
• storing subproblems efficiently in an incremental manner
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Branch-and-Cut Frameworks

When in a branch&bound-method the LP-relaxation of each
subproblem is improved by cutting planes, this is called a
Branch&Cut-Method. Currently these are the best methods for
general mixed integer optimization.

An efficient branch&cut implementation is subtle and difficult:
• choosing the next subproblem
• choosing the branching variable, fixing of variables
• storing subproblems efficiently in an incremental manner
• using cutting planes for several subproblems
• efficient heuristics for finding good feasible solutions
etc.

There exist packages that provide the entire framework and allow
to add further problem specific cutting planes and heuristics.

e.g. SCIP, Cplex, Gurobi, Abacus . . .
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