Blending Data And Models: Kalman Based Approaches

Andrew Stuart

Computing and Mathematical Sciences California Institute of Technology

AFOSR, DARPA, EPSRC, NSF, ONR Allen Philanthropies, Mission Control for Earth, Schmidt Futures

DMV Jahrestagung 2020

September 14th 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview

Historical Context: Celestial Mechanics

Kalman Methodology & Applications

Weather Forecasting

Ensemble Kalman Inversion

Gradient Flow

Closing

Historical Context: Celestial Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Brahe

Purely observational data – initially by eye. Big data c. 1600s.

Kepler

Mathematical formulae which interpolated Brahe's data. Data-driven model: Kepler's Law.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Newton

Kepler's Law rationalized through Newtonian mechanics. Led to theory of conservation laws: extrapolation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Einstein

Discrepancy between data and predictions of Newtonian mechanics. Mercury perehilion; resolved by special and then general relativity. The scientific method.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kalman Methodology & Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Kalman Filter (Navigation)

State Space Model

Dynamics Model: $v_{n+1} = Mv_n + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Rudolph Kalman.
- J. Basic Engineering 82(1960); [19].
- ▶ \approx 35,000 citations (Google Scholar 9/20).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Apollo 11.
- $\triangleright \quad Y_n = \{y_\ell\}_{\ell=1}^n.$
- $\triangleright v_n | Y_n \sim N(m_n, C_n).$
- $\blacktriangleright (m_n, C_n) \mapsto (m_{n+1}, C_{n+1}).$

Kalman Filter

Sequential Optimization Perspective

Predict:
$$\widehat{m}_{n+1} = Mm_n$$
, $n \in \mathbb{Z}^+$
Model/Data Compromise: $J_n(m) = \frac{1}{2}|m - \widehat{m}_{n+1}|^2_{\widehat{C}_{n+1}} + \frac{1}{2}|y_{n+1} - Hm|^2_{\Gamma}$
Optimize: $m_{n+1} = \operatorname{argmin}_m J_n(m)$.

•
$$|\cdot|_A = |A^{-\frac{1}{2}} \cdot |$$
 for $A > 0$.

- *d* the state space dimension $(m_n, v_n \in \mathbb{R}^d)$.
- Updating \widehat{C}_{n+1} is expensive: $\mathcal{O}(d^2)$ storage.

3DVAR Filter (Weather Forecasting)

State Space Model

Dynamics Model: $v_{n+1} = \Psi(v_n) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Andrew Lorenc.
- Introduced in UK Met Office.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- See [25]
- $\blacktriangleright \{v_n\} \mapsto \{v_{n+1}\}.$

3DVAR

Sequential Optimization Perspective

$$\begin{array}{ll} {\sf Predict:} & \widehat{v}_{n+1} = \Psi(v_n), & n \in \mathbb{Z}^+\\ {\sf Model/Data \ Compromise:} & J_n(v) = \frac{1}{2}|v - \widehat{v}_{n+1}|_{\widehat{C}}^2 + \frac{1}{2}|y_{n+1} - Hv|_{\Gamma}^2\\ {\sf Optimize:} & v_{n+1} = {\rm argmin}_v \ J_n(v). \end{array}$$

- \widehat{C} is a fixed model covariance (not updated sequentially).
- $d = \mathcal{O}(10^9)$; $\mathcal{O}(d^2)$ entries of \widehat{C} prohibitive in general.
- \widehat{C} based on climatology + simple, computable, structure.

Ensemble Kalman Filter (Oceanography)

State Space Model

Dynamics Model: $v_{n+1} = \Psi(v_n) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Geir Evensen.
- ▶ See [11].
- Motivated by extended Kalman filter; see [17, 14].
- Original paper in oceanography.
- Now used in weather forecasting centres worldwide.

•
$$\{v_n^{(j)}\}_{j=1}^J \mapsto \{v_{n+1}^{(j)}\}_{j=1}^J$$

Ensemble Kalman Filter

Sequential Optimization Perspective

$$\begin{array}{ll} {\sf Predict:} & \widehat{v}_{n+1}^{(j)} = \Psi(v_n^{(j)}) + \xi_n^{(j)}, & n \in \mathbb{Z}^+ \\ {\sf Model/Data \ Compromise:} & J_n^{(j)}(v) = \frac{1}{2} |v - \widehat{v}_{n+1}^{(j)}|_{\widehat{\mathcal{C}}_{n+1}}^2 + \frac{1}{2} |y_{n+1} - Hv|_{\Gamma}^2 \\ {\sf Optimize:} & v_{n+1}^{(j)} = \operatorname{argmin}_v \ J_n^{(j)}(v). \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ $j \in \{1, ..., J\}$, J number of ensemble members.
- \widehat{C}_{n+1} is empirical covariance of the $\{\widehat{v}_{n+1}^{(k)}\}$.
- Updating \widehat{C}_n requires only $\mathcal{O}(Jd)$ storage.

Ensemble Kalman Filter (Mathematical Structure)

State Space Model

Dynamics Model: $v_{n+1} = \Psi(v_n) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Sebastian Reich (Potsdam)
- Continuous Time Limits:
- ▶ [4, 5, 27, 6].
- Optimal Transport Connections:
- ▶ [27, 29, 28].
- SFB 1294 (Potsdam)

Weather Forecasting

3DVAR Overcomes Butterfly Effect KJH Law and S [24].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

3DVAR Overcomes Butterfly Effect KJH Law and S [24].

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Impact of EnKF over 3DVAR

Courtesy of Roland Potthast (Head of Data Assimilation, DWD)

Ensemble Kalman Inversion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Chen & Oliver [8]
- Emerick and Reynolds [9]
- Iglesias, Law and S [16]
- Ernst, Sprungk and Starkloff [10]

Inverse Problem

Problem Statement

Find \boldsymbol{u} from \boldsymbol{y} where $\mathsf{G}:\mathcal{U}\mapsto\mathcal{Y},\,\eta$ is noise and

 $y = \mathsf{G}(\mathbf{u}) + \eta.$

Main Approaches

$$\begin{array}{ll} \textit{Optimization} \quad \Phi(u) = \frac{1}{2}|y - G(u)|_{\Gamma}^2 + \frac{1}{2}|u|_{\Sigma}^2;\\ \textit{Probability} \quad \mathbb{P}(u|y) \propto \exp(-\Phi(u)). \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Inverse Problem

Dynamical Formulation

- Evensen moved to Statoil.
- Dean Oliver & Al Reynolds; see [8, 9].
- $y_{n+1} = y$, $\eta_{n+1} \sim N(0, M\Gamma)$.
- Methodology now widely used in oil industry.
- Methodology now widely used by hydrologists.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Discrete Time Kalman Inversion Algorithm

Covariances

$$\begin{split} C_n^{ww} &= \frac{1}{J} \sum_{j=1}^J \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right) \otimes \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right), \quad \overline{w}_n = \frac{1}{J} \sum_{j=1}^J \mathsf{G}(u_n^{(j)}), \\ C_n^{uw} &= \frac{1}{J} \sum_{j=1}^J \left(u_n^{(j)} - \overline{u}_n \right) \otimes \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right), \quad \overline{u}_n = \frac{1}{J} \sum_{j=1}^J u_n^{(j)}. \end{split}$$

Iteration $n \mapsto n+1$

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uw} (C_n^{ww} + M\Gamma)^{-1} (y - G(u_n^{(j)}))$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Discrete Time Kalman Inversion Algorithm

Covariances

$$\begin{split} C_n^{ww} &= \frac{1}{J} \sum_{j=1}^J \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right) \otimes \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right), \quad \overline{w}_n = \frac{1}{J} \sum_{j=1}^J \mathsf{G}(u_n^{(j)}), \\ C_n^{uw} &= \frac{1}{J} \sum_{j=1}^J \left(u_n^{(j)} - \overline{u}_n \right) \otimes \left(\mathsf{G}(u_n^{(j)}) - \overline{w}_n \right), \quad \overline{u}_n = \frac{1}{J} \sum_{j=1}^J u_n^{(j)}. \end{split}$$

Iteration $n \mapsto n+1$

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uw} (C_n^{ww} + M\Gamma)^{-1} (y - \mathsf{G}(u_n^{(j)}))$$

Continuous Time Limit

$$u_n^{(j)} \approx u^{(j)}(t)|_{t=n/M} : \dot{\boldsymbol{u}}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle \mathsf{G}(\boldsymbol{u}^{(k)}) - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}^{(j)}) - \boldsymbol{y} \right\rangle_{\Gamma} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right)$$

Gradient Flow In Parameter Space

- Ensemble Filtering Continuous Time: Bergemann & Reich (2010a, 2010b, 2012) [4, 5, 6]
- Ensemble Filtering Continuous Time: Reich (2011) [27]
- Connection to Foais/Prodi: Titi and coworkers [15, 2]
- 3DVAR Filtering Continuous Time: Blömker, Law, S & Zygalakis (2013) [7]
- Ensemble Filtering Continuous Time: Kelly, Law & S (2015) [20]
- Ensemble Inversion Continuous Time: Schillings & S (2017) [30]
- Text: Reich & Cotter (2015) [28]
- Text: Law, S & Zygalakis (2015) [23]
- Ensemble Filtering Continuous Time: Lange & Stannat [22]
- Ensemble Square Root Filtering Continuous Time: Lange & Stannat [21]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Gradient Flow In Space Of Probability Measures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Jordan, Kinderlehrer & Otto 1998 [18]
- Otto 2001 [26]
- Benamou & Brenier 2000 [3]
- Ambrosio, Gigli & Savare 2008 [1]
- Villani 2008 [31]
- Reich & Cotter 2013 [29]
- Garbuno-Inigo, Hoffmann, Li & Stuart 2020 [12]
- Garbuno-Inigo, Nüsken & Reich [13]

Ensemble Kalman Inversion (EKI) – Linear G see [27], [30]

EKI Is Self-Preconditioned Gradient Descent

$$\begin{split} \dot{\boldsymbol{\mu}}^{(j)} &= -C(\boldsymbol{u}) \nabla \Phi_0(\boldsymbol{u}^{(j)}), \quad \Phi_0(\boldsymbol{u}) = rac{1}{2} \big| \boldsymbol{y} - G(\boldsymbol{u}) \big|_{\Gamma}^2, \ &ar{\boldsymbol{u}} = rac{1}{J} \sum_{k=1}^J \boldsymbol{u}^{(k)}, \quad C(\boldsymbol{u}) = rac{1}{J} \sum_{k=1}^J \Big(\boldsymbol{u}^{(k)} - ar{\boldsymbol{u}} \Big) \otimes \Big(\boldsymbol{u}^{(k)} - ar{\boldsymbol{u}} \Big). \end{split}$$

Theorem [30]

EKI minimizes Φ_0 over a finite dimensional subspace determined by the initial conditions $\{ \boldsymbol{u}^{(j)}(0) \}_{j=1}^{j}$. The rate of convergence is $\mathcal{O}(1/t)$.

Ensemble Kalman Sampling – Linear G see [12]

EKS Is Self-Preconditioned Langevin Equation

$$\begin{split} \dot{u}^{(j)} &= -C(u) \nabla \Phi(u^{(j)}) + \sqrt{2C(u)} \dot{W}^{(j)}, \quad \Phi(u) = \frac{1}{2} |y - G(u)|_{\Gamma}^{2} + \frac{1}{2} |u|_{\Sigma}^{2}, \\ \bar{u} &= \frac{1}{J} \sum_{k=1}^{J} u^{(k)}, \quad C(u) = \frac{1}{J} \sum_{k=1}^{J} \left(u^{(k)} - \bar{u} \right) \otimes \left(u^{(k)} - \bar{u} \right). \end{split}$$

Mean Field Limit: Nonlinear Nonlocal Fokker-Planck Eq.

$$\begin{split} \dot{\boldsymbol{u}} &= -\mathcal{C}(\rho)\nabla\Phi(\boldsymbol{u}) + \sqrt{2C(\rho)}\dot{\boldsymbol{W}},\\ \mathcal{C}(\rho) &= \int \left(\boldsymbol{u} - \bar{\boldsymbol{u}}\right)\otimes\left(\boldsymbol{u} - \bar{\boldsymbol{u}}\right)\rho(\boldsymbol{u},t)d\boldsymbol{u}, \quad \bar{\boldsymbol{u}} = \int \boldsymbol{u}\rho(\boldsymbol{u},t)d\boldsymbol{u},\\ \partial_t\rho &= \nabla\cdot\left(\rho\,\mathcal{C}(\rho)\,\nabla\Phi\right) + \mathcal{C}(\rho):D^2\rho, \quad \rho(0) = \rho_0. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Nonlinear Nonlocal Fokker-Planck Equation See [18], [12]

Theorem [12]

The nonlinear Fokker-Planck equation may be written as

$$\partial_t \rho = \nabla \cdot \left(\rho \, \mathcal{C}(\rho) \nabla \frac{\delta \mathcal{E}}{\delta \rho} \right) \ , \ \mathcal{E}(\rho) = \int \left(\Phi + \ln \rho \right) \rho \, \mathrm{d} u.$$

- Gradient flow in P₊ (probability measures) w.r.t. the (next slide) Kalman-Wasserstein metric;
- in linear setting convergence to equilibrium ∝ exp(-Φ) occurs at exponential rate exp(-t), indepedently of the linear inverse problem being solved.

Nonlinear Nonlocal Fokker-Planck Equation (Metric) [29].[12]

Kalman-Wasserstein Metric Tensor (Otto [18, 26]) Define $g_{\rho, \mathcal{C}}$: $T_{\rho}\mathcal{P}_{+} \times T_{\rho}\mathcal{P}_{+} \to \mathbb{R}$ by $g_{\rho, \mathcal{C}}(\sigma_{1}, \sigma_{2}) := \int_{\Omega} \langle \nabla \psi_{1}, \mathcal{C}(\rho) \nabla \psi_{2} \rangle \rho \, \mathrm{d}x,$ where $\sigma_{i} = -\nabla \cdot (\rho \mathcal{C}(\rho) \nabla \psi_{i}) \in T_{\rho}\mathcal{P}_{+}$ for i = 1, 2. Kalman-Wasserstein Metric (Benamou-Brenier [3])

For ρ^0 , $\rho^1 \in \mathcal{P}_+$, $\mathcal{W}_{\mathcal{C}} \colon \mathcal{P}_+ \times \mathcal{P}_+ \to \mathbb{R}$

$$\mathcal{W}_{\mathcal{C}}(\rho^{0},\rho^{1})^{2} := \inf_{(\rho_{t},\psi_{t})} \int_{0}^{1} \int_{\Omega} \langle \nabla \psi_{t} , \mathcal{C}(\rho_{t}) \nabla \psi_{t} \rangle \rho_{t} \, \mathrm{d}x$$

subject to $\partial_{t} \rho_{t} + \nabla \cdot (\rho_{t} \mathcal{C}(\rho_{t}) \nabla \psi_{t}) = 0, \ \rho_{0} = \rho^{0}, \ \rho_{1} = \rho^{1},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Closing

Conclusions: Kalman Methodologies

- Introduced in 1960 by Rudolh Kalman.
- Basic algorithm generalized in many directions.
- Applications in numerous fields:
 - Navigation;
 - Weather forecasting;
 - Oceanography;
 - Hydrology, Subsurface flow;
 - Medical imaging, Machine learning · · · .
- Developing as a general methodology for state estimation.
- Developing as a general methodology for inverse problems:
 - Gradient flow structure: parameter space;
 - Gradient flow structure: probability space.
- Connections to Wasserstein gradient flows, optimal transport.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Many open mathematical questions.

References I

- L. Ambrosio, N. Gigli, and G. Savaré.
 Gradient flows: in metric spaces and in the space of probability measures.
 Springer Science & Business Media, 2008.
- [2] A. Azouani, E. Olson, and E. S. Titi.
 Continuous data assimilation using general interpolant observables. *Journal of Nonlinear Science*, 24(2):277–304, 2014.
- [3] J.-D. Benamou and Y. Brenier.

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Numerische Mathematik, 84(3):375-393, 2000.

[4] K. Bergemann and S. Reich.

A localization technique for ensemble Kalman filters.

Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 136(648):701–707, 2010.

References II

[5] K. Bergemann and S. Reich.

A mollified ensemble Kalman filter.

Quarterly Journal of the Royal Meteorological Society, 136(651):1636–1643, 2010.

[6] K. Bergemann and S. Reich.

An ensemble Kalman-Bucy filter for continuous data assimilation. *Meteorologische Zeitschrift*, 21(3):213–219, 2012.

[7] D. Blömker, K. Law, A. M. Stuart, and K. C. Zygalakis.

Accuracy and stability of the continuous-time 3DVAR filter for the navier-stokes equation.

Nonlinearity, 26(8):2193, 2013.

[8] Y. Chen and D. S. Oliver.

Ensemble randomized maximum likelihood method as an iterative ensemble smoother.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mathematical Geosciences, 44(1):1-26, 2012.

References III

[9] A. A. Emerick and A. C. Reynolds.

Ensemble smoother with multiple data assimilation.

Computers & Geosciences, 55:3–15, 2013.

[10] O. G. Ernst, B. Sprungk, and H.-J. Starkloff.

Analysis of the ensemble and polynomial chaos kalman filters in bayesian inverse problems.

SIAM/ASA Journal on Uncertainty Quantification, 3(1):823-851, 2015.

[11] G. Evensen.

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.

Journal of Geophysical Research: Oceans, 99(C5):10143–10162, 1994.

[12] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart.

Interacting Langevin diffusions: Gradient structure and ensemble Kalman sampler.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SIAM Journal on Applied Dynamical Systems, 19(1):412-441, 2020.

References IV

- [13] A. Garbuno-Inigo, N. Nüsken, and S. Reich.
 Affine invariant interacting Langevin dynamics for bayesian inference.
 SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.
- M. Ghil, S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson.
 Application of estimation theory to numerical weather prediction.
 Dynamic Meteorology: Data Assimilation Methods, pages 139–224, 1981.
- [15] K. Hayden, E. Olson, and E. S. Titi.
 Discrete data assimilation in the lorenz and 2d navier-stokes equations. *Physica D: Nonlinear Phenomena*, 240(18):1416-1425, 2011.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

[16] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems. *Inverse Problems*, 29(4):045001, 2013.

[17] A. Jazwinski.

Stochastic Processes and Filtering Theory. Academic Press, 1970.

References V

 [18] R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the fokker-planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.

[19] R. Kalman.

A new approach to linear filtering and prediction problems. *Journal of Basic Engineering*, 82:35–45, 1960.

[20] D. T. Kelly, K. J. Law, and A. M. Stuart.

Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Nonlinearity, 27(10):2579, 2014.

[21] T. Lange and W. Stannat.

On the continuous time limit of ensemble square root filters.

arXiv preprint arXiv:1910.12493, 2019.

[22] T. Lange and W. Stannat.

On the continuous time limit of the ensemble Kalman filter. arXiv preprint arXiv:1901.05204, 2019.

References VI

[23] K. Law, A. Stuart, and K. Zygalakis. Data assimilation.

Cham, Switzerland: Springer, 2015.

[24] K. J. Law and A. M. Stuart.

Evaluating data assimilation algorithms. Monthly Weather Review, 140(11):3757–3782, 2012.

[25] A. C. Lorenc.

Analysis methods for numerical weather prediction.

Quarterly Journal of the Royal Meteorological Society, 112(474):1177–1194, 1986.

[26] F. Otto.

The geometry of dissipative evolution equations: the porous medium equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2001.

References VII

[27] S. Reich.

A dynamical systems framework for intermittent data assimilation. BIT Numerical Mathematics, 51(1):235–249, 2011.

[28] S. Reich and C. Cotter.

Probabilistic forecasting and Bayesian data assimilation. Cambridge University Press, 2015.

[29] S. Reich and C. J. Cotter.

Ensemble filter techniques for intermittent data assimilation.

Large Scale Inverse Problems. Computational Methods and Applications in the Earth Sciences, 13:91–134, 2013.

[30] C. Schillings and A. M. Stuart.

Analysis of the ensemble Kalman filter for inverse problems.

SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

[31] C. Villani.

Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

Ensemble Kalman Inversion (EKI)

Continuous Time Formulation $\dot{\boldsymbol{u}}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle \mathsf{G}(\boldsymbol{u}^{(k)}) - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}^{(j)}) - \boldsymbol{y} \right\rangle_{\Gamma} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right)$ $\bar{\boldsymbol{u}} = \frac{1}{J} \sum_{k=1}^{J} \boldsymbol{u}^{(k)}, \quad \bar{\mathsf{G}} = \frac{1}{J} \sum_{k=1}^{J} \boldsymbol{G}(\boldsymbol{u}^{(k)}),$ $\boldsymbol{C}(\boldsymbol{u}) = \frac{1}{J} \sum_{k=1}^{J} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right) \otimes \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right).$

Linear Approximation

$$(\mathsf{G}(\boldsymbol{u}^{(k)})-\bar{\mathsf{G}})\approx D\mathsf{G}(\boldsymbol{u}^{(j)})(\boldsymbol{u}^{(k)}-\bar{\boldsymbol{u}}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Ensemble Kalman Sampling (EKS)

Continuous Time Formulation: Put EKI in a heat bath

$$\begin{split} \dot{\boldsymbol{u}}^{(j)} &= -\frac{1}{J} \sum_{k=1}^{J} \left\langle \mathsf{G}(\boldsymbol{u}^{(k)}) - \bar{\mathsf{G}}, \mathsf{G}(\boldsymbol{u}^{(j)}) - \boldsymbol{y} \right\rangle_{\Gamma} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right) \\ &- C(\boldsymbol{u}) \boldsymbol{\Sigma}^{-1} \boldsymbol{u}^{(j)} + \sqrt{2C(\boldsymbol{u})} \dot{\boldsymbol{W}}^{(j)}, \\ C(\boldsymbol{u}) &= \frac{1}{J} \sum_{k=1}^{J} \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right) \otimes \left(\boldsymbol{u}^{(k)} - \bar{\boldsymbol{u}} \right). \end{split}$$

Gradient Structure Of NNLFP in MFL

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}(\rho) &= -\int \rho \left| \mathcal{C}(\rho)^{\frac{1}{2}} \nabla (\Phi + \ln \rho) \right|^2 \mathrm{d}\boldsymbol{u} \\ &= -\boldsymbol{g}_{\rho,\mathcal{C}}(\partial_t \rho, \partial_t \rho). \end{aligned}$$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@