sim = 10000
x = rnorm(sim)
z = rnorm(sim)
y = (x>=0)*abs(z)-(x<0)*abs(z)
s = x+y
plot(x,y)
hist(s, freq = FALSE,main="X+Y")
hist(y)
library(ggplot2)
do.graphics.pdf = function(sp,title="", bins = 30){
sp.mean=mean(sp)
sp.sd = sd(sp)
sp.median = median(sp)
if (sp.mean <= sp.median) {
d.mean = -0.2
d.median = 0.1
} else {
d.mean = 0.1
d.median = -0.2
}
e = ecdf(sp)
x = knots(e)
y.ecdf = e(x)
y.norm = pnorm(x,mean = sp.mean, sp.sd)
kernel.est = density(sp)
y.dens = kernel.est["y"]$y
x.dens = kernel.est["x"]$x
y.pdf = dnorm(x.dens,mean = sp.mean, sd=sp.sd)
#h = hist(sp,probability = TRUE)
#y.hist = h$density
df1 = data.frame(x,y.ecdf,y.norm)
df2= data.frame(x.dens,y.dens,y.pdf)
df.sp = data.frame(sp)
p2 = ggplot(df.sp, aes(x=sp)) +
geom_histogram(aes(y=..density..),color="gray",alpha=0.1, bins = bins) +
geom_density(aes(color="empirical")) +
#stat_function(aes(colour = "Normal"),fun = dnorm, args = list(mean = sp.mean, sd = sp.sd)) +
#scale_colour_manual("density", values = c("blue", "red"))+
scale_colour_manual("density", values = c("darkgray"))+
theme(legend.position="none") +
geom_rug(data=df.sp, mapping=aes(x=sp), color="grey") +
geom_vline(aes(xintercept=sp.mean),linetype="dashed", size=1, colour="green") +
annotate("text", label = "Mean", x = sp.mean +d.mean, y = 0.3, colour = "green", angle = 90) +
geom_vline(aes(xintercept=sp.median), linetype="dashed", size=1, colour="blue") +
annotate("text", label = "Median", x = sp.median +d.median, y = 0.3, colour = "blue", angle = 90)
p2 = p2 + ggtitle(title)
return(p2)
}
do.graphics.pdf(s)