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COMPARING THE ILL-POSEDNESS FOR LINEAR OPERATORS

IN HILBERT SPACES

PETER MATHÉ AND BERND HOFMANN

Abstract. The difficulty for solving ill-posed linear operator equations in
Hilbert space is reflected by the strength of ill-posedness of the governing
operator, and the inherent solution smoothness. In this study we focus on the
ill-posedness of the operator, and we propose a partial ordering for the class
of all bounded linear operators which lead to ill-posed operator equations. For
compact linear operators, there is a simple characterization in terms of the
decay rates of the singular values. In the context of the validity of the spectral
theorem the partial ordering can also be understood. We highlight that range
inclusions yield partial ordering, and we discuss cases when compositions of
compact and non-compact operators occur. Several examples complement the
theoretical results.

1. Introduction

The goal of this study is to compare the strength (degree) of ill-posedness between
two linear operator equations

(1.1) Ax = y (x ∈ X, y ∈ Y )

and

(1.2) A′x′ = y′ (x′ ∈ X ′, y′ ∈ Y ′).

Both equations represent mathematical models for inverse problems, and they are
characterized by the injective and bounded linear forward operators A : X → Y and
A′ : X ′ → Y ′ mapping between the infinite dimensional and separable real Hilbert
spaces X,Y as well as X ′, Y ′. It is supposed that the operators A and A′ possess
non-closed ranges R(A) and R(A′). This has the consequence that both operator
equations (1.1) and (1.2) are ill-posed. To avoid additional technical notation we
shall assume that the operators have dense ranges in Y and Y ′, respectively. To
simplify the formulation, we speak in the following of comparing the strength of
the ill-posedness of the operators A and A′, but actually mean the comparison of
the strength of ill-posedness of the operator equations (1.1) and (1.2).

The comparison of the ill-posedness of linear operator equations was raised ear-
lier, especially when comparing equations with compact and non-compact opera-
tors. In [20, p.55], M. Z. Nashed states that “. . . an equation involving a bounded
non-compact operator with non-closed range is ‘less’ ill-posed than an equation
with a compact operator with infinite dimensional range”. Often the comparison
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of compact operators is based on the degree of ill-posedness or the interval of ill-
posedness, and we refer to [13] for formal definitions. Such comparison seems rough,
as there are very different operators, sharing the same degree of ill-posedness. It
may even happen that the degree of ill-posedness equals zero, although the oper-
ator equation is ill-posed. Other authors consider the growth rate of distribution
functions, as in [23], or the decay rate of the decreasing rearrangements, see [19] to
measure the ill-posedness.

Here we introduce a direct comparison by means of a partial ordering. Such
partial ordering must take into account that the governing operators A and A′

may have different domain and target spaces. The formal definition is given in
Section 2. Then we show in Section 3 that for compact operators the present
definition coincides with comparing the decay rates of the singular values. In a side
step, we touch the cases when the compact operator A′ is a composition of another
compact operator A with a non-compact one possessing a non-closed range, see
Section 4. Comparison of two operators may also be viewed as comparison of the
ranges, both dense in their target spaces. We highlight in Section 5 that this is
indeed covered by the present approach. Section 6 indicates how range inclusions
have impact on regularization theory; and this was actually the starting point for
our investigations. The comparison of non-compact operators may be reduced to
comparing the self-adjoint non-negative companions via the polar decomposition.
In Section 7 we use the spectral theorem to indicate when and how such non-
compact operators can be compared. Throughout the study, we present examples
that explain our attitude, and the final Section 8 complements the analysis with
two further examples.

2. Partial ordering of operators: Definition and general results

For the bounded linear operators A and A′ with non-closed ranges, we introduce
a partial ordering as follows:

Definition 1 (partial ordering). The operator A′ : X ′ → Y ′ is said to be more ill-
posed than A : X → Y whenever there exist a bounded linear operator S : X ′ → X
and an orthogonal operator R : Y → Y ′ such that A′ = RAS. In this case we shall
write A′ ≺R,S A.

Remark 1. Not every pair of operators may be comparable in the sense of the par-
tial ordering introduced by Definition 1. If a pair S and R of operators with A′ ≺R,S

A does not exist, we shall write A′ 6≺ A. If we have that A′ ≺R,S A but A 6≺ A′,
then the operator A′ is said to be strictly more ill-posed than A. If, however, A′ 6≺ A
as well as A 6≺ A′, then A and A′ are said to be incomparable. Finally we shall
write A′ ≍ A if both A′ ≺ A and A ≺ A′. With respect to Definition 1, the relation
‘≍’ represents the specific kind of ‘equality’ of two operators such that the partial
ordering is not only reflexive and transitive, but also antisymmetric.

Factorization as shown in Figure 1 can hold true in many ways. There are two
notable situations, namely the one-sided compositions, i.e., when either A′ = TA,
or A′ = AS. These are called factorization from the left or factorization from the
right, respectively. Let us mention that factorization from the left with T = R being
orthogonal is not interesting, because then we have that also A = R∗A′, and hence
that A′ ≍ A. However, the situation for A′ = TA, and non-orthogonal operator T
is less trivial, and we refer to examples in Section 4.
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Figure 1. Comparison of operators A and A′ via factorization,
where using the orthogonal mapping R.

A natural example for factorization from the right A′ = AS, and hence ordering,
occurs when X ′ ⊂ X , i.e., when X ′ is continuously embedding into X via the
mapping S = JX

X′ , and the mapping A′ is the restriction of A : X → Y . In this case
we can write A′ = AJX

X′ , thus A′ ≺IY ,JX
X′

A.

Finally we mention that the partial ordering is compatible with the absolute
value. Indeed, given a bounded operator A : X → Y we assign the absolute value

operator |A| := (A∗A)
1/2

: X → X . By virtue of the polar decomposition, see [2,
Chapt. 1, 3.9] the following result holds true.

Proposition 1. Let A be a bounded operator and |A| its absolute value. Then we
have that A ≍ |A|.

Proof. By assumption we have that A = U |A| for an orthogonal operator U : X →
Y , as well as |A| = U∗A. Therefore A ≺U,IX |A|, and |A| ≺U∗,IX A, which yields
the conclusion. �

3. Partial ordering of compact operators

This definition, depicted in the Figure 1, is well-motivated for compact operators
A and A′. As the following two propositions show, Definition 1 compares in that
case the behavior of the decay rates of singular values sn to zero as n → ∞ of the
operators A and A′.

Proposition 2. Suppose that the compact operator A′ : X ′ → Y ′ is more ill-posed
than A : X → Y , i.e. A′ ≺R,S A. Then the decay rate to zero of the singular values
of A′ is not slower than the corresponding decay rate of A, which means that

(3.1) sn(A
′) = O(sn(A)) as n → ∞.

Proof. Indeed, A′ ≺R,S A means that there are a bounded linear operator S : X ′ →
X and an orthogonal operator R : Y → Y ′ such that A′ = RAS. Then, by the
definition of singular values, we find that

sn(A
′) ≤ ‖R‖Y→Y ′ sn(A) ‖S‖X′→X (n = 1, 2, . . . ),

which implies that (3.1) is valid. �

The converse assertion holds also true.

Proposition 3. Suppose that the compact operators A : X → Y and A′ : X ′ → Y ′

are such that sn(A
′) = O(sn(A)) as n → ∞. Then there exist a bounded linear

operator S : X ′ → X and an orthogonal operator R : Y → Y ′ such that A′ ≺R,S A.
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Proof. By the Schmidt Representation Theorem (SVD) we have orthonormal sys-
tems uj, vj (j ∈ N) and u′

j , v
′
j (j ∈ N) such that A =

∑∞

i=1 si(A)ui ⊗ vi, and A′ =
∑∞

i=1 si(A
′)u′

i ⊗ v′i. By assumption the sequence σi :=
si(A

′)
si(A) , (i ∈ N), is bounded.

Now we can set Sσ :=
∑∞

i=1 σiu
′
i ⊗ ui and R :=

∑∞

i=1 vi ⊗ v′i. By construction, the
operator Sσ is bounded, and R constitutes an orthogonal mapping. It is straight-
forward to see that A′ = RASσ. �

Both the above propositions yield

Corollary 1. Let A and A′ be compact operators. The following assertions are
equivalent.

(1) We have that A′ ≍ A.
(2) It holds true that sn(A

′) ≍ sn(A) as n → ∞.

Remark 2. By Definition 1 the operator A′ is strictly more ill-posed than A,
if A′ ≺R,S A, but there are no corresponding operators S′ (bounded linear) and R′

(orthogonal) such that A ≺R′,S′ A′. For compact operators, this is the case under
the stronger assumption

(3.2) sn(A
′) = O (sn(A)) as n → ∞.

4. Composition with non-compact operators

We extend the previous discussion with the following observation. Suppose that
we have a factorization from the left in the form A′ = TA or from the right in
the form A′ = AT for a compact operator A and a compact or a bounded non-
compact linear operator T . Then we find that A′ is also compact and obeys the
condition sn(A

′) = O (sn(A)) as n → ∞ for the singular values of A and A′. Now,
Proposition 3 implies that A′ ≺ A, and there will thus be a factorization A′ = RAS
with an orthogonal operator R and a bounded operator S.

A typical situation for the factorization from the left is met when the operators
are connected by some bounded but non-compact multiplication operator T as
discussed in the following example.

Example 1. Let X = X ′ = Y = Y ′ = L2(0, 1) and consider compositions A′ = TA
with non-compact multiplication operators T := M defined as

(Mx)(t) := f(t)x(t) (0 ≤ t ≤ 1)

and mapping in L2(0, 1). The occurring non-negative multiplier functions f ∈
L∞(0, 1) are supposed to possess essential zeros. Such compositions with focus on
the simple integration operator A := J defined as

(Jx)(s) :=

∫ s

0

x(t)dt (0 ≤ s ≤ 1)

were considered in [9, 14, 15]. It was shown there that for wide classes of functions
f , including the monomials f(t) = tκ for all κ > 0, the decay rates of the singular
values of J and MJ coincide, which implies that J ≍ MJ for such multiplier
functions f .

Another aspect for factorizations from the left is highlighted by the following
general assertions, Proposition 4, and its Corollary 2, here with with focus on ill-
posed situations. The subsequent Example 2 below illustrates the situation of the
corollary.
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First the following result, privately communicated by A. Pietsch, seems interest-
ing.

Proposition 4. The following assertions are equivalent for an arbitrary bounded
linear operator T : Y → Z.

((a)) There is a constant c > 0 such that sn(A) ≤ csn(TA) for all compact linear
operators A : X → Y , and all n = 1, 2, . . . .

((b)) The operator T admits a bounded left inverse B : Z → Y , i.e., B T = IY .

Proof. Clearly, item (b) yields (a), because then

sn(A) = sn(B TA) ≤ ‖B‖Z→Y sn(TA), n = 1, 2, . . . .

Next, if item (a) holds true, then this must hold for arbitrary rank one opera-
tors A = x0 ⊗ y0, mapping x 7→ 〈x, x0〉y0, x ∈ X , and for n = 1. In this case the
assumption with n = 1 translates to

‖x0‖X ‖y0‖Y = s1(x0 ⊗ y0) ≤ cs1(x0 ⊗ Ty0) = c ‖Ty0‖Z ‖x0‖X

Since x0 6= 0 and y0 6= 0 may be chosen arbitrary we find that the operator
T : Y → R(T ) is continuously invertible, and the inverse T−1 can be continuously

extended to R(T ). Denoting P : Z → R(T ) the projection, the mapping B :=
T−1P constitutes the left inverse to T . The proof is complete. �

Within the present context of ill-posed operator equations this yields the follow-
ing.

Corollary 2. Let T : Y → Z be an injective bounded linear operator with non-
closed and dense range. Then for every (arbitrarily large) constant C < ∞ there
are a compact operator A : X → Y and an index n such that sn(A)/sn(TA) ≥ C.

Proof. Since we assume that R(T ) = Z, the existence of a bounded left inverse
B : Z → Y to T actually requires the existence of a bounded inverse T−1. This
contradicts the ill-posedness of T coming from the non-closedness of the range
R(T ). Hence, item (a) of Proposition 4 is violated. The assertion of the corollary
is a reformulation of the violation of item (a). �

Example 2. Here we consider the non-compact ill-posed Hausdorff moment oper-
ator T := B(H). This operator B(H) : Y = L2(0, 1) → Z = ℓ2 is given as

(4.1) [B(H)z]j :=

∫ 1

0

tj−1z(t)dt (j = 1, 2, . . . ).

In the composition A′ := BH ◦J with the simple integration operator A := J acting
in X = Y = L2(0, 1) the situation of Corollary 2 is met. Indeed, it was shown in
[12] that we actually have that sn(A

′) = O (sn(J)) as n → ∞, and hence BH ◦ J is
strictly more ill-posed than J .

Also for the composition of the Hausdorff moment operator T := B(H) with
the compact embedding operator A := Ek : Hk(0, 1) → L2(0, 1), mapping from
the Hilbertian Sobolev spaces X = Hk(0, 1) (k = 1, 2, ...) to Y = L2(0, 1), the
situation of Corollary 2 occurs. In both cases, B(H)J and B(H)Ek, it is still an
open problem whether the composition operator has power type or exponential
decay of the singular values.

Subsequently, a series of studies turned to such questions, see e.g. [3], and refer-
ences therein.
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As we have seen, Definition 1 also applies in combination with non-compact
bounded linear operators. A direct comparison is in the focus of the following
proposition, which highlights that bounded non-compact linear operators with non-
closed ranges can never be more ill-posed in the sense of Definition 1 than compact
linear operators.

Proposition 5. Suppose that A is a non-compact bounded linear operator with
non-closed range, and that A′ a compact linear operator with infinite dimensional
range. Then we have that A 6≺ A′. If, however, A′ ≺ A holds, then A′ is even
strictly more ill-posed than A.

Proof. Suppose to the contrary that A ≺ A′ holds true, and hence a factoriza-
tion A = R′A′S′ exists. The family of compact operators constitutes an operator
ideal, and hence the composition R′A′S′ will be a compact operator, which con-
tradicts the assumption. The second assertion holds true because under the made
assumptions we cannot have that A ≍ A′. �

The partial ordering of Definition 1 with respect to the strength of ill-posedness
of compact and ill-posed non-compact operators has various facets and was dis-
cussed contradictorily in the literature, see also Remark 3, below. As mentioned
in the introduction, Nashed’s opposite claim in [20, p.55] is rather problematic
due to occurring incomparability phenomena. We refer in this context also to the
study [11], where it has been shown that compact and non-compact operators are
fundamentally different with respect to projections into finite dimensional spaces.
The reason for this seems to be that sequences of compact operators can never
converge in norm to a non-compact operator.

5. Range inclusions yield ordering

A further strong motivation for Definition 1 is due to range inclusions as a tool
for comparing the ill-posedness of two operators A and A′. It can be expected
that smaller ranges of operators A′ compared to A indicate a higher degree of ill-
posedness. A stringent justification of this comes from Douglas’ Range Inclusion
Theorem, and we refer to the original study in [4]. In light of this theorem, and
using the recent formulation in [18], we can formulate the following result.

Theorem 1. The following assertions are equivalent:

((a)) There exists an orthogonal mapping R : Y → Y ′, for which the range inclu-
sion

R∗ R(A′) = R(R∗A′) ⊂ R(A)

is satisfied.
((b)) There is a constant 0 ≤ C < ∞ such that, for all y ∈ Y ,

‖ (A′)
∗
Ry‖ ≤ C‖A∗y‖.

((c)) There exist a bounded linear operator S : X ′ → X and an orthogonal op-
erator R : Y → Y ′ such that A′ obeys the factorization A′ = RAS, which
means A′ ≺R,S A in the sense of Definition 1.

Proof. We apply the original theorem to the operators R∗A′, and A, respectively.
Since R was orthogonal, the adjoint mapping is (A′)

∗
R, which shows the equiva-

lence of item (a) and (b). Again, from the original formulation we find a factor,
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say S, such that R∗A′ = AS. Using the orthogonality once more this yields A′ =
RAS, which is the assertion from item (c), and the proof is completed. �

The following corollary characterizes the special case, when the image spaces of
A and A′ coincide, i.e. when Y = Y ′.

Corollary 3. Let A : X → Y and A′ : X ′ → Y be both bounded linear operators
with non-closed ranges. The following assertions are equivalent.

((i)) There is a range inclusion R(A′) ⊂ R(A).
((ii)) There is a bounded linear operator S : X → X ′ such that the factorization

A′ = AS holds true.

In either case we have that A′ ≺IY ,S A.

In particular we see that factorizations from the right always yield comparison.

Remark 3. Proposition 5 yields that the range inclusion R(A′) ⊂ R(A) cannot
hold when A′ is non-compact, but A is compact. The interplay of compact and
non-compact operators possessing R(A′) ⊂ R(A) has been discussed in [1, Exam-
ple 10.2], where also a concrete example of a compact operator A′ is presented
that is strictly more ill-posed than a concrete non-compact operator A. Situations
of comparable compact and non-compact operators are typical for factorizations
from the right when the compact operator A′ is factorized as A′ = A ◦ T with an
ill-posed non-compact bounded operator A. Here, T is mostly a compact operator
(e.g. A′ = B(H) ◦ J in Example 2), but T can also be a non-compact operator as
comprehensively discussed in [16].

If the ranges coincide, i.e. R(A′) = R(A), then by virtue of Theorem 1 we have
that A′ ≍ A, and hence sn(A

′) ≍ sn(A) for n → ∞, by Corollary 1. Note that the
pre-image spaces X and X ′ in this context can be very different.

Unfortunately, if R(A′) is a proper subset of R(A), then one cannot conclude
that A′ is strictly more ill-posed than A, and we refer to Lemma 1 below for
counterexamples.

Lemma 1. Let for the compact operators with infinite dimensional range A : X →
Y and A′ : X ′ → Y hold that the range R(A′) is a m-codimensional subspace of
R(A) with m ∈ N. Moreover assume that the singular values of A satisfy the
condition

(5.1) s2n(A)/sn(A) ≥ C for all n ∈ N and some constant C > 0.

Then the decay rates to zero of the singular values of A and A′ coincide, i.e. sn(A
′) ≍

sn(A) as n → ∞, and hence A′ ≍ A.

Proof. Let Q denote the orthogonal projection from R(A) onto the m-codim-
ensional subspace R(A′). We see that A = (I − Q)A + QA, and the calculus
with singular values provides us with the estimate

sm+n(A) ≤ sn(QA) + sm+1((I −Q)A) = sn(QA),

because rk(I −Q) = m < m+ 1. Thus, we have

s2n(A) ≤ sn(QA) ≤ Ĉ sn(A
′)

for some constant 0 < Ĉ < ∞ and n ≥ m. The right inequality is a consequence
of the construction R(QA) = R(A′), which implies R(QA) ⊂ R(A′) and yields
with Corollary 3 in combination with Proposition 2 the existence of the constant
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Ĉ satisfying the inequality sn(QA) ≤ Ĉ sn(A
′). Moreover, there is a constant

0 < C < ∞ from R(A′) ⊂ R(A) such that we have sn(A
′) ≤ C sn(A). Together we

find, by recalling the condition (5.1) with the constant C > 0, the estimate

C sn(A) ≤ s2n(A) ≤ Ĉ sn(A
′) ≤ Ĉ C sn(A) (n ≥ m),

which proves the lemma. �

This lemma will be applied in Section 8 for comparing the ill-posedness of pairs
of compact operators, where the range of one is a proper subset of the range of
the other. We note that the required assumption (5.1) of the lemma is satisfied if
the decay rate of the singular values of A is polynomial, i.e. if there are constants
0 < c1, c2 < ∞ and exponents 0 < θ1 ≤ θ2 < ∞ such that c1 n

θ1 ≤ sn(A) ≤
c2 n

θ2 (n ∈ N).

6. Impact on regularization

The comparison of the smoothing properties of the operators A and A′, say A′ ≺
A, my loosely be understood in the sense that the application of the inverse of the
injective mapping A may be compensated by the application of the operator A′.
This reasoning would assume that the range R(A′) ⊂ D(A), because then A−1 ◦A′

could be defined. Therefore, the orthogonal mapping R∗ may be used to put the
range of A′ into the target space Y of A. Then it makes sense to consider the
potentially unbounded mapping A−1R∗A′.

The solution theory of ill-posed operator equations deals with replacing the un-
bounded mapping A−1 by bounded mappings

gα(A
∗A)A∗ : Y → X (α > 0),

which are constructed by a family of generator functions gα for regularization. We
will not dwell into details here, rather we refer to the monograph [5]. In this focus
we can formulate the following result.

Proposition 6. Let gα be a family of generator functions for regularization. We
have the following dichotomy.

((i)) Either R (R∗A′) ⊂ R(A), and then

‖gα(A
∗A)A∗ R∗ A′‖X′→X is uniformly bounded as α → 0,

((ii)) or R (R∗A′) 6⊂ R(A), and then the family

‖gα(A
∗A)A∗ R∗ A′‖X′→X , α > 0

is unbounded.

Proof. This is a consequence of the well-known dichotomy, see e.g. [22, Chapt. 2,
Thm. 5.2]. In ibid., this is formulated for iterative regularization schemes. However,
such philosophy is also valid for arbitrary types of regularization. For an operator A
with dense range, it says the following: Either y ∈ R(A) and then gα(A

∗A)A∗y
converges to A−1y, or y 6∈ R(A) in which case ‖gα(A

∗A)A∗y‖X is unbounded
as α ց 0. The assertion of the proposition is a direct consequence of this. �
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7. Application of spectral theorem to partial ordering

Definition 1 is also applicable for comparing two non-compact operators via
Halmos’ version (cf. [8]) of the spectral theorem, applicable to self-adjoint linear
operators. Proposition 2, for example, which has been formulated for compact
operators via decay rates of singular values, can be extended by exploiting a measure
space (Ω, µ) to multiplication operators Mf : L2(Ω, µ) → L2(Ω, µ) defined as

[Mfξ](ω) := f(ω) ξ(ω) (µ− a.e. on Ω),

with multiplier functions f ∈ L∞(ω, µ).
We know from Proposition 1 that it is enough to consider non-negative self-

adjoint operators. Hence we consider a pair H : X → X and H ′ : X ′ → X ′ of non-
negative self-adjoint semi-definite operators. In this case the occuring multiplier
functions f and f ′ are real-valued and non-negative.

Proposition 7. Suppose that the two self-adjoint positive semi-definite bounded
linear operators H : X → X and H ′ : X ′ → X ′, both with non-closed ranges R(H)
and R(H ′), admit a spectral representation with respect to a common semi-finite
measure space (Ω, µ). Thus we have representations

H = UMfU
∗ and H ′ = U ′Mf ′U ′∗

with orthogonal operators U : L2(Ω, µ) → X, U ′ : L2(Ω, µ) → X ′, and with the two
multiplication operators

Mf : L2(Ω, µ) → L2(Ω, µ) and Mf ′ : L2(Ω, µ) → L2(Ω, µ),

respectively, characterized by the multiplier functions f and f ′, which are both non-

negative a.e. on Ω and belong to L∞(Ω, µ). If also the quotient function f ′

f belongs

to L∞(Ω, µ), and hence the multiplication operator M f′

f

is bounded, then H ′ is more

ill-posed than H, i.e. H ′ ≺R,S H, with the orthogonal mapping R := U ′U∗ : X →
X ′ and the bounded linear operator S := UMf ′/fU

′∗ : X ′ → X.

Proof. It suffices to draw the following diagram, given in Figure 2. �

X ′ H′

−−−−→ X ′

U ′∗





y

x



U ′

L2(Ω, µ)
Mf′

−−−−→ L2(Ω, µ)

M f′

f





y

x





IL2(Ω,µ)

L2(Ω, µ)
Mf

−−−−→ L2(Ω, µ)

U∗

x









y
U

X
H

−−−−→ X

Figure 2. Comparison of self-adjoint operators H and H ′



10 PETER MATHÉ AND BERND HOFMANN

Remark 4. For the factorization H = UMfU
∗ : X → X of the self-adjoint posi-

tive semi-definite operator H with non-closed range R(H) we have that the spec-
trum of H and the essential range of the multiplier function f coincide (cf. [7,
Theorem 2.1(g)]). They represent the same closed subset of the bounded interval
[0, ‖H‖X→X] ⊂ R, and zero belongs to that subset, because of the ill-posedness. It
is important to distinguish the case of a finite measure space (Ω, µ) with µ(Ω) < ∞,
where increasing rearrangements (see, e.g., [6]) of the multiplier function f charac-
terize the situation, and the case of an infinite measure µ(Ω) = ∞, where decreasing
rearrangements of f play this role. We refer for detailed studies in this context to
the recent papers [19] and [23].

Example 3. As a typical example for comparing non-compact operators in the
case Ω = [0, 1] with Lebesgue measure µ on R and µ(Ω) < ∞ serves the family of
pure multiplication operators in X = X ′ = L2(0, 1) with U = U ′ = I : X → X .
We compare the two bounded, non-compact, self-adjoint and positive semi-definite
operators Hx = Mfx and H ′x = Mf ′x mapping on L2(0, 1) with continuous and
strictly increasing multiplier functions f(t) and f ′(t) for 0 < t ≤ 1 satisfying the
conditions limt→+0 f(t) = limt→+0 f

′(t) = 0. If there is a finite constant C > 0 such

that f ′(t)
f(t) ≤ C for all 0 < t ≤ 1, then H ′ is more ill-posed than H , where precisely

H ′ ≺I,Mf′/f
H . This case occurs when f(t) = c1t and f ′(t) = c2t (0 < t ≤ 1) with

positive constants c1 and c2. But then also H ≺I,Mf/f′
H ′ takes place. If, however,

the decay rate f ′(t) ց 0 is higher than the rate of f(t) ց 0 as t → +0, we have
H ′ ≺I,Mf′/f

H but H 6≺ H ′ and H ′ is even strictly more ill-posed than H like in

the example f(t) = tκ1 and f ′(t) = exp
(

− 1
tκ2

)

(0 < t ≤ 1) with positive constants
κ1 and κ2.

Example 4. An example for non-compact operators analog to Example 3, but in
the infinite measure case Ω = [0,∞) with Lebesgue measure µ on R and pure mul-
tiplication operators in X = X ′ = L2(0,∞) can be found by comparing continuous
multiplier functions f(t) and f ′(t), which are strictly decreasing on [0,∞) and tend
to zero as t → ∞. Here, the decay rate of the multiplier functions at infinity deter-
mines the partial ordering. If the decay rate of f ′ at infinity is higher than those of
f , then H ′ is strictly more ill-posed than H , i.e. H ′ ≺I,Mf′/f

H but H 6≺ H ′. This

if for example the case for f(t) = (1 + t)−1 and f ′(t) = (1 + t)−2 (0 ≤ t < ∞).

8. Further examples

In this section, we are going to study by means of examples the partial ordering
of compact operators with common image spaces Y = Y ′. This case has already
been discussed in Corollary 3. The goal is to check whether the previous results
allow us to draw conclusions about the comparability for specific operators.

Example 5. First let us compare

((i)) the Riemann–Liouville fractional integration operators Jm : L2(0, 1) →
L2(0, 1) of order m = 1, 2, ..., defined as

[Jmx](s) :=

∫ s

0

(s− t)m−1

Γ(m)
x(t) dt (0 ≤ s ≤ 1),

for which solving the associated operator equation (1.1) requires to find the
m-th derivative of the function y, and
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((ii)) the embedding operatorsEk : Hk(0, 1) → L2(0, 1) mapping from the Hilber-
tian Sobolev spaces Hk to L2 for k = 1, 2, ....

Of course, the decay of the singular values of the embeddings are known, specifically
we have that

(8.1) sn(E
k) ≍ n−k as n → ∞

(see, e.g., [17]).
Also, the ranges R(Jm) of the mapping Jm can be characterized. These are

known to be subsets of Hm(0, 1), with a finite set of linear constraints, thus the
range is a finite-codimensional subspace of Hm(0, 1). From this we conclude by
virtue of Corollary 3 that Jm ≺ Em. Moreover, since the decay rate given in (8.1)
is polynomial, Lemma 1 applies and actually yields that Jm ≍ Em. Consequently,
by Corollary 1 we find that sn(J

m) ≍ n−m as n → ∞. Of course, this is known, and
we refer to [21], for instance. Next, having these decay rates for both operators Em

and Jm we can apply Proposition 3, see Remark 2, to immediately conclude that
for k > m the operator Ek is strictly more ill-posed than Jm, whereas for m > k
the opposite assertion holds true.

The following example deals with functions of two real variables defined on the
unit square [0, 1]2.

Example 6. Here we compare for m = 1, 2, ...

((i)) the compact embedding operators Em
2 : Hm([0, 1]2) → L2([0, 1]

2), with
((ii)) the compact mixed integration operator J2 : L2([0, 1]

2) → L2([0, 1]
2) de-

fined as

[J2 x(t1, t2)](s1, s2) :=

∫ s1

0

∫ s2

0

x(t1, t2) dt1 dt2 ((s1, s2) ∈ [0, 1]2).

The associated operator equation (1.1) aims at finding the second mixed
derivative ∂

∂s1∂s2
y(s1, s2) of the right-hand side function y of (1.1).

We first discuss smoothness m = 1. In this case we know that R(J2) ⊂ H1(0, 1)2 =
R(E1

2), and hence J2 ≺ Em
2 .

However, for m = 2 we have that the range R(E1
2) = H2([0, 1]2), but we have

R(E2
2) 6⊂ R(J2) as outlined in [10, §4] by a counterexample. Thus range inclusions

do not apply here. However, see e.g., [17, §3c], we know that

(8.2) sn(E
2
2) ≍ n−1 as n → ∞.

Thus

sn(E
2
2) = O

(

log(n)

n

)

as n → ∞,

where the right hand side rate corresponds to the decay rate of the singular values,

i.e., sn(J2) ≍
log(n)

n , see, e.g., [10, Prop. 3.1]. By virtue of Proposition 3 there must

hold true that E2
2 ≺R,S J2, for some orthogonal mapping R and bounded S. This

factorization is not known to us.
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