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Abstract. The stable solution of ill-posed non-linear operator
equations in Banach space requires regularization. One important
approach is based on Tikhonov regularization, in which case a one-
parameter family of regularized solutions is obtained. It is crucial
to choose the parameter appropriately. Here, a sequential variant
of the discrepancy principle is analyzed. In many cases such pa-
rameter choice exhibits the feature, called regularization property
below, that the chosen parameter tends to zero as the noise tends
to zero, but slower than the noise level. Here we shall show such
regularization property under two natural assumptions. First, ex-
act penalization must be excluded, and secondly, the discrepancy
principle must stop after a finite number of iterations. We conclude
this study with a discussion of some consequences for convergence
rates obtained by the discrepancy principle under the validity of
some kind of variational inequality, a recent tool for the analysis
of inverse problems.

1. Introduction

In this study, we are concerned with asymptotic properties of regu-
larization parameters for Tikhonov-regularized solutions obtained by a
variant of Morozov’s discrepancy principle which we will call sequential
discrepancy principle (SDP). Precisely, we focus on some, in general
non-linear, ill-posed operator equation

(1.1) F
(
x
)

= y†,

which acts as a mathematical model for an inverse problem. The for-
ward operator F : dom(F ) ⊆ X → Y , with domain dom(F ), acts
between the Banach spaces X and Y . We shall assume that problem
(1.1) is solvable for the right-hand side y† ∈ Y . However, data yδ are
given only up to some known noise level δ > 0 as

(1.2)
∥∥yδ − y†∥∥

Y
≤ δ.
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To compensate for the ill-posedness of the problem we use, for given
α > 0, as approximate solution the minimizers xδα of the Tikhonov-type
functional

(1.3) Jα,yδ
(
x
)

=
∥∥F(x)− yδ∥∥p

Y
+ αR(x),

for a non-negative penalty functional R. Throughout this paper, let
the exponent p be fixed with 1 ≤ p <∞.

In recent years there has been a strong interest in a posteriori rules
α = α(δ, yδ) for choosing the regularization parameter when minimiz-
ing Jα,yδ and, in particular, in variants of the discrepancy principle.
It is a natural question to ask, whether for a given parameter choice
rule α(δ, yδ), the corresponding regularized solutions xδα converge to a
solution of (1.1). A first positive answer can be given in case the limit
conditions

(1.4) α(δ, yδ)→ 0 and
δp

α(δ, yδ)
→ 0 as δ → 0,

hold, which highlights the importance of such asymptotic relations.
Indeed, it is well-known that then a subsequence of the regularized
solutions xδα converges to exact solutions of (1.1) as δ → 0. This con-
vergence does not necessarily occur in norm, but possibly with respect
to a coarser topology in X such as the weak or weak* topology, for
example. However, stronger results may consequently be obtained for
suitable penalty terms or using additional knowledge about the solu-
tion.

Now, a priori parameter choices α = α(δ) may be easily constructed
such that they fulfill the conditions (1.4) in order to take advantage of
the convergence properties that go along with these asymptotics. The
situation becomes more subtle for a posteriori rules. Using a continuous
formulation of the discrepancy principle, where α = α(δ, yδ) is chosen
such that

(1.5) τ1δ ≤ ‖F (xδα)− yδ‖ ≤ τ2δ

holds for prescribed 1 ≤ τ1 ≤ τ2, convergence results were obtained in
[4, 2] for linear and non-linear forward operators, respectively, and we
refer to [1] for further details. Interestingly, the rather strong require-
ment (1.5) allows for proving convergence without knowing about the
limit conditions (1.4). Even so, it has first been shown in [2] that (1.4)
holds under mild assumptions which we generalize and extend for our
purposes here. A main drawback of the formulation (1.5) is that such a
discrepancy principle with upper and lower bounds may not always be
feasible, especially for certain non-linear operators where duality gaps
occur, see e.g. [1, 2, 13] and [26, p. 87].

The main result of the current study asserts that the parameter
α = α(δ, yδ) chosen according to a sequential discrepancy principle
(SDP), considered below, obeys (1.4) under two natural assumptions.
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Namely, we assume that exact penalization is excluded and that the
data are compatible. This means that the SDP stops after a finite
number of steps. If the parameter choice SDP obeys (1.4) then the
regularized solutions converge as δ → 0. If, in addition, a kind of vari-
ational inequality is valid then SDP also yields convergence rates. Such
rates have been obtained for the continuous discrepancy principle (1.5)
in [1, 3, 13], for example, and for the sequential discrepancy principle
in [20].

The paper is organized as follows: In Section 2 we recall, for the con-
venience of the reader, the common assumptions for Tikhonov-type reg-
ularization in Banach space (cf., e.g. [19, 25, 26]), and summarize some
mathematical consequences of those standard assumptions. We also
introduce and discuss the two additional assumptions, the exact penal-
ization veto, and the data compatibility. The major part is Section 3, in
which the sequential discrepancy principle (SDP) is introduced and the
main result, Theorem 1, is stated and proven. Variational inequalities
ensuring convergence rates of regularized solutions are the subject of
Section 4. Such inequalities combining solution smoothness and struc-
tural conditions concerning the nonlinearity of F allow us to bound
the maximum decay rate of the regularization parameters α(δ, yδ)→ 0
obtained from SDP as δ → 0. Several technical proofs are collected in
the final Section 5.

2. Assumptions and auxiliary results

In the following we formulate and discuss our standing assumptions.
The proofs of Propositions 1–6 are postponed to Section 5.

Assumption 1 (basic assumptions). Let (X, ‖.‖X) and (Y, ‖.‖Y ) be
arbitrary Banach spaces with duals X∗, Y ∗, and let τX , τY be topolo-
gies on X, Y , respectively, that are weaker than the norm topologies.
Moreover we assume that

A1 The operator F : dom(F ) ⊆ X → Y is τX-τY continuous, its
domain dom(F ) is convex and τX-sequentially closed.

A2 The penalty functional R : X → [0,∞] with domain

dom(R) = {x ∈ X
∣∣ R(x) <∞}

is proper, i.e. dom(R) 6= ∅, τX-sequentially lower semicontin-
uous, and stabilizing in the sense that the sublevel sets

MR(c) =
{
x ∈ X

∣∣ R(x) ≤ c
}

are τX-sequentially precompact.
A3 The intersection D := dom(R)∩ dom(F ) is non-empty and we

have

y† ∈ F (D) := {y ∈ Y
∣∣ y = F (x), x ∈ D}.

A4 The norm ‖.‖Y is τY -sequentially lower semicontinuous.
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Remark 1. Originally, Tikhonov regularization was studied for Hilbert
spaces X, Y with τX , τY the respective weak (or even strong) topolo-
gies and R(x) = ‖x‖2X . This classical setting can be extended under
Assumption 1 to the case of Banach spaces X, Y , where frequently

(2.1) R(x) = ‖x‖qX
is used (cf., e.g., [26, Chap. 5]) as penalty functional, which is convex
for 1 ≤ q <∞. If the space X is reflexive then the unit ball is weakly
sequentially precompact. Hence we can use the weak topology in X
as τX , in which case R from (2.1) is stabilizing, thus A2 holds. If,
alternatively, X is a non-reflexive Banach space, then this is not the
case and the weak*-topology connected with a separable predual Ba-
nach space Z ( X = Z∗) has to be exploited as τX in order to ensure
the stabilizing property of R from (2.1). The latter is for example the
case for `1-regularization (cf., e.g., [7, 5]) and total variation regular-
ization in BV (cf., e.g., [8, 10]). Note that then A1 requires F to be
weak-to-weak continuous, or weak*-to-weak continuous, respectively.

Assumption 1 also covers sparsity promoting regularization, where
the focus is on convex penalties

(2.2) R(x) =
∑
n∈N

|〈x, ϕn〉|q

with exponents 1 ≤ q <∞ and for some basis {ϕn}n∈N from the Hilbert
space X, see e.g., [1, 8, 18, 25] for details. Even the extension to non-
convex sublinear penalties (2.2) with 0 < q < 1 is admissible, where
A2 is satisfied as well (cf., e.g., [14, 22, 24, 28]).

For A4 to hold the topology τY should be no coarser than the weak
topology on Y .

We collect without proofs some properties of solutions and regular-
ized solutions as well as some auxiliary results needed below which all
are valid under Assumption 1. In the sequel we will write ‖ · ‖ instead
of ‖ · ‖X and ‖ · ‖Y if the space is clear from the context.

We introduce, for any y ∈ Y and parameter α > 0 the set

(2.3) Mα,y :=
{
x ∈ D

∣∣ Jα,y(x) ≤ Jα,y(z) for all z ∈ D
}
.

Evidently, all regularized solutions xδα belong toMα,yδ . For the deriva-
tion of the following assertions we refer the interested reader, e.g., to
[19, Section 3], [26, Section 4.1.1], and [12, 13, 25].

Facts 1.

(a) The sets dom(R) and D are τX-sequentially closed subsets of X.
(b) For all α > 0 and yδ ∈ Y we have that Mα,yδ 6= ∅. Thus, the

regularized solutions xδα minimizing Jα,yδ
(
x
)

over x ∈ D exist,

and they are stable with respect to perturbations of the data yδ.
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(c) The value

(2.4) Rmin := min
x∈D
R(x) ≥ 0

exists, and the set

(2.5) Xmin := {x ∈ D
∣∣ R(x) = Rmin} 6= ∅

is τX-sequentially closed and precompact. If moreover R is a
convex functional, then Xmin is a convex subset of X.

(d) Solutions x† ∈ D of equation (1.1) satisfying

R(x†) = min {R(x)
∣∣ F(x) = y†, x ∈ D},

which are called R-minimizing solutions, always exist and we
denote by L the set of all R-minimizing solutions.

(e) For all y ∈ Y the functional ζ(x) :=
∥∥F(x)− y∥∥ is τX-sequen-

tially lower semicontinuous on dom(F ).
(f) Let Ymin := F (Xmin). For all y ∈ Y there exists xmin ∈ Xmin,

such that

d(y, Ymin) := inf
x∈Xmin

∥∥F(x)− y∥∥ =
∥∥F(xmin

)
− y
∥∥ .

For the subsequent analysis it will be important that the set L of
R-minimizing solutions, the set Xmin of minimizers of the penalty R
over D, and the setMα,y† of regularized solutions in the noise-free case
are apart (see the definition of Mα,y from (2.3)). In this context, it is
helpful to avoid exact penalization (cf. [9]), and therefore we make the
following assumption.

Assumption 2 (EP veto). Let at the right-hand side y† in (1.1) the
exact penalization veto (EP veto) be satisfied, which means that for all
α > 0 the implication

x† ∈ L ∧ x† ∈Mα,y† =⇒ x† ∈ Xmin

is true. In other words, we assume that L ∩
⋃
α>0

Mα,y† ⊆ Xmin.

With the following three propositions we provide, for the case p > 1,
and under different requirements on F and R, handy sufficient con-
ditions for Assumption 2 to hold. Under these conditions the main
result, Theorem 1, to be formulated in Section 3, ensures the asymp-
totics (1.4). We also refer to [2, Lemma 4.8 and 4.9], where conditions
of similar nature are exploited to obtain the asymptotics (1.4) for a
stronger formulation of the discrepancy principle. Note that the case
p = 1 is always suspicious for violating the EP veto, and we refer for
illustration to Proposition 11 at the end of Section 4.
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Proposition 1. Let p > 1 and suppose that for all x ∈ D there exists
a bounded linear operator F ′(x) : X → Y such that

(2.6) lim
t→+0

F
(
x+ th

)
− F

(
x
)

t
= F ′(x)h

holds for all h ∈ X satisfying x + th ∈ D for sufficiently small t > 0.
Then the EP veto is satisfied for arbitrary y† ∈ F

(
D
)

whenever R is a
convex functional.

Remark 2. The condition (2.6) is weaker than Gâteaux differentiability
of F at x for all x ∈ D, because not all directions h ∈ X are concerned;
and hence x is not necessarily an interior point of D. It is enough that
D is a convex set in X. We thus include the practically important case
of ‘half-spaces’ in X := Lr(Ω), 1 ≤ r <∞, of the form

dom(F ) := {x ∈ X
∣∣ x(s) ≥ 0 for almost all s ∈ Ω}

as domain of F , which do not possess interior points at all.

Proposition 1 needs the convexity ofR in order to ensure the EP veto.
In contrast, the subsequent Propositions 2 and 3 assume alternative
properties of R and partly Gâteaux differentiability of F .

Proposition 2. Let p > 1, 0 ∈ D with R(0) = 0, and suppose that for
all x ∈ D there exists a bounded linear operator F ′(x) : X → Y such
that

(2.7) lim
t→+0

F
(
x+ th

)
− F

(
x
)

t
= F ′(x)h

holds for all h ∈ X satisfying x + th ∈ D for sufficiently small t > 0.
Moreover let there exist a function θ : (0, 1)→ [0, 1) such that

(2.8) lim inf
t→+0

t

1− θ(1− t)
= Cθ <∞

and

(2.9) R(µx) ≤ θ(µ)R(x) for all x ∈ D and 0 < µ < 1.

Then the EP veto holds for arbitrary y† ∈ F
(
D
)
.

Remark 3. Proposition 2 allows us to show the validity of Assumption 2
also for frequently used q-homogeneous, non-convex penalties R such
as (2.1) and (2.2) with 0 < q < 1. In this case we let θ(µ) = µq and
hence Cθ = lim

t→+0

t
1−(1−t)q = 1

q
. In this context, we mention the family

of penalty functionals

(2.10) R(x) =
∑
n∈N

wnψ( |〈x, ϕn〉|), 0 < w ≤ wn for all n ∈ N,

occurring in sparsity promoting regularization as a generalization of
(2.2) and discussed in [6, 15]. If the function ψ : [0,∞) → [0,∞) is
lower semicontinuous with ψ(0) = 0, lim

t→∞
ψ(t) = ∞, and if there is
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some C > 0 for which ψ(t) ≥ Ct2/(1+ t2), then R is a τX-weakly semi-
continuous and stabilizing functional in the sense of A2 from Assump-
tion 1, for the weak topology τX in the Hilbert space X. Proposition 2
applies to members of this family of penalties whenever there exists a
function θ : (0, 1)→ [0, 1) such that (2.8) and

ψ(µt) ≤ θ(µ)ψ(t) for all t > 0 and 0 ≤ µ < 1.

Then as a consequence of Theorem 1 below, also non-convex penalties
(2.10) generated by such ψ yield the limit relations (1.4) when using
the sequential discrepancy principle. These relations are required for
example in [6, Thm. 2.3] and [15, Prop. 4.3] in order to obtain conver-
gence of regularized solutions.

The stochastically motivated Cauchy functional is another example
of a non-convex penalty that is of the form (2.10) with

(2.11) ψ(t) = log(1 + ωt2), ω > 0,

and the validity of A2 from Assumption 1 is shown in [23, Chap. 7].
However, Proposition 2 does not apply to ψ from (2.11) as there is no
function θ satisfying the conditions (2.8) and (2.9). But, in contrast
to (2.1) and (2.2) with 0 < q ≤ 1, the penalty R based on (2.11)
is Gâteaux differentiable and we have ∇R(x) 6= 0 for x 6= 0. Thus,
the following Proposition 3 ensures that Assumption 2 holds for the
Cauchy functional.

Proposition 3. Let p > 1 and let R be Gâteaux differentiable with
Gâteaux derivative ∇R(x) 6= 0 for all x ∈ D\Xmin. Moreover, suppose
that y† ∈ F

(
D
)

is such that F is Gâteaux differentiable with Gâteaux
derivative F ′(x) for all x ∈ L \Xmin. Then the EP veto is satisfied for
such y† ∈ F

(
D
)
.

When using the discrepancy principle, we are, conceptually speaking,
interested in finding the largest value α > 0 such that for prescribed
τ > 1

(2.12)
∥∥F(xδα)− yδ∥∥ ≤ τδ

(or the largest such α ∈ ∆q in the discrete formulation, below). In
this context we mention the following properties of the discrepancy
functional.

Proposition 4. Let yδ ∈ Y and, for each α > 0, xδα ∈ Mα,yδ be
arbitrary but fixed. Then, the functional

g(α) =
∥∥F(xδα)− yδ∥∥ , α > 0,

is non-decreasing. Moreover, it holds that

lim
α→+0

g(α) = inf
x∈D

∥∥F(x)− yδ∥∥ and lim
α→∞

g(α) ≥ d(yδ, Ymin).
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In order to make sure that a largest finite 0 < α < ∞ with∥∥F(xδα)− yδ∥∥ ≤ τδ exists, we impose the following assumption. Recall

that we have
∥∥y† − yδ∥∥ ≤ δ from (1.2).

Assumption 3 (data compatibility). For prescribed τ > 1 there is
some δ̄ > 0 such that the data yδ ∈ Y satisfy

(2.13) τδ < d(yδ, Ymin) for all 0 < δ ≤ δ.

There are intuitive and handy conditions which ensure the validity
of both the Assumptions 2 and 3.

Proposition 5. Suppose that

(2.14) L ∩

(
Xmin ∪

⋃
α>0

Mα,y†

)
= ∅,

then Assumptions 2 and 3 hold. If L ∩ Xmin 6= ∅ then Assumption 3
cannot hold.

It is seen from Proposition 5 that (2.13) excludes x† ∈ Xmin. Related
to this the following observation is interesting.

Proposition 6. If τ > 1 is prescribed such that
∥∥F(xmin

)
− yδ

∥∥ ≤ τδ,

for some xmin ∈ Xmin, then
∥∥F(xδα)− yδ∥∥ ≤ τδ for all α > 0.

Thus, in the absence of (2.13) there is no chance to stop the sequen-
tial discrepancy principle. Actually, in the case considered in Proposi-
tion 6, we would have no choice but to pick α = +∞, and

xδα ∈ arg min
xmin∈Xmin

∥∥F(xmin

)
− yδ

∥∥
as the corresponding regularized solution. To avoid this degenerate
case, we restrict our attention to data satisfying Assumption 3.

We close this preliminary section with the following important result,
proven in [27] in a more general framework, and we also refer to [26,
Section 4.1.2].

Lemma 1. Assume that the sequence of positive noise levels {δn} tends
to zero as n→∞. If a corresponding sequence {xn} ⊆ D satisfies the
limit conditions

(2.15) lim
n→∞

∥∥F(xn)− yδn∥∥ = 0 and lim sup
n→∞

R(xn) ≤ R(x†).

for x† ∈ L, then {xn} is in the sense of subsequences τX-convergent to
elements of L and we have lim

n→∞
R(xn) = R(x†).

This result, together with the standard pair of inequalities,

(2.16) ‖F (xδα)− yδ‖p ≤ δp + αR(x†), α > 0,
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and

(2.17) R(xδα) ≤ δp

α
+R(x†), α > 0,

valid for Tikhonov regularization, yields τX-convergence of the regular-
ized solutions to elements of the set L of R-minimizing solutions when-
ever the regularization parameters α(δ, yδ) obey the asymptotics (1.4).

3. The sequential discrepancy principle and the main
result

We start by defining the sequential discrepancy principle for choosing
the regularization parameter α. For prescribed 0 < q < 1 and α0 > 0,
we let

∆q := {αj
∣∣ αj = qjα0, j ∈ Z}.

Given any δ > 0 and data yδ, the sublevel sets Mα,yδ are non-empty.
From now on we fix some selection xδα ∈Mα,yδ , α ∈ ∆q.

Definition 1 (sequential discrepancy principle). We say that an ele-
ment α ∈ ∆q is chosen according to the sequential discrepancy principle
(SDP), if

(3.1)
∥∥F(xδα)− yδ∥∥ ≤ τδ <

∥∥F(xδα/q)− yδ∥∥ .
It must be shown that the SDP from Definition 1 can be satisfied

under data compatibility introduced by Assumption 3.

Lemma 2. Under Assumption 3 the SDP is feasible, i.e., for all
0 < δ ≤ δ there exists a unique j = j(δ, yδ) ∈ Z such that (3.1)
holds for α = αj ∈ ∆q.

Proof. This is a consequence of Proposition 4. Indeed, from (2.13) and
the asymptotic relations in Proposition 4 we know that

lim
α→+0

∥∥F(xδα)− yδ∥∥ = inf
x∈D

∥∥F(x)− yδ∥∥ ≤ δ < τδ < d(yδ, Ymin)

≤ lim
α→∞

∥∥F(xδα)− yδ∥∥ .
This ensures that there always exists j ∈ Z such that (3.1) holds. �

Now we are ready to formulate the main result concerning the as-
ymptotic behavior of regularization parameters α = α(δ, yδ), chosen by
the sequential discrepancy principle, when δ tends to zero.

Theorem 1. Under the Assumptions 1, 2, and 3 there is some δ > 0
such that regularization parameters α = α(δ, yδ) chosen according to
the sequential discrepancy principle (SDP) exist for all 0 < δ ≤ δ.
These parameters satisfy the limit conditions

(3.2) α(δ, yδ)→ 0 and
δp

α(δ, yδ)
→ 0 as δ → 0.
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Then the associated regularized solutions xδ
α(δ,yδ)

are in the sense of

subsequences τX-convergent to elements of L as δ → 0, and we have
lim
δ→0
R(xδ

α(δ,yδ)
) = R(x†).

The existence of the regularization parameter according to the SDP,
under the assumptions of Theorem 1, was shown in Lemma 2. Now,
we still have to establish the limit behavior from (3.2). Both limit con-
ditions are immediate consequences of the two propositions formulated
and proven, next. Then, the τX-convergence of the regularized solu-
tions immediately follows from (3.2) together with (2.16) and (2.17).

Proposition 7. Under the assumptions of Theorem 1 the parame-
ters α(δ, yδ), chosen according to the SDP, obey

α(δ, yδ)→ 0 as δ → 0.

Proof. Let δ ≥ δn → 0 and αn = α(δn, y
δn) be chosen according to

the SDP. As a shorthand we write xn = xδnαn for the corresponding
regularized solutions satisfying (3.1).

Assume to the contrary that there is a subsequence of {αnk} of {αn},
and a constant α > 0 such that αnk ≥ α, k ∈ N. If we denote by

x̄nk = arg min
x∈D

{∥∥F(x)− yδnk∥∥p + αR(x)
}

the minimizers of Jα,yδnk and use the Proposition 4 and (3.1), then we

have that ∥∥F(x̄nk)− yδnk∥∥ ≤ ∥∥F(xnk)− yδnk∥∥ ≤ τ2 δnk → 0,

and

lim sup
k→∞

αR(x̄nk) ≤ lim sup
k→∞

{
∥∥F(x̄nk)− yδnk∥∥p + αR(x̄nk)} ≤ αR(x†).

Therefore, {x̄nk} satisfies the assumptions of Lemma 1 and we can ex-
tract a subsubsequence {x̄nkl} which is τX-convergent for l → ∞ to
some element, say z ∈ L. Because of the τX-sequential lower semicon-
tinuity of the functionals R and ζ (cf. Fact 1(e)) it holds for any x ∈ D
that∥∥F(z)− y†∥∥p + αR(z) ≤ lim inf

l→∞

( ∥∥∥F(x̄nkl)− yδnkl∥∥∥p + αR(x̄nkl )
)

≤ lim inf
l→∞

( ∥∥∥F(x)− yδnkl∥∥∥p + αR(x)
)

=
∥∥F(x)− y†∥∥p + αR(x),

which shows that z ∈ Mα,y† . Assumption 2 implies z ∈ L ∩ Xmin

which, according to Proposition 5, violates Assumption 3 and we have
reached a contradiction. �
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Proposition 8. Under the assumptions of Theorem 1 the parame-
ters α(δ, yδ), chosen according to the SDP, satisfy the limit condition

δp

α(δ, yδ)
→ 0 as δ → 0.

Proof. Let δ ≥ δn → 0 and αn = α(δn, y
δn) ∈ ∆

(n)
q be chosen according

to the SDP. Now, let xn ∈Mαn,yδn and x
(q)
n ∈Mαn/q,yδn be such that∥∥F(xn)− yδn∥∥ ≤ τδn <
∥∥F(x(q)n )− yδn∥∥

holds. Due to the minimizing property of x
(q)
n we thus obtain for any

x† ∈ L

(τδn)p +
αn
q
R(x(q)n ) ≤

∥∥F(x(q)n )− yδn∥∥p +
αn
q
R(x(q)n )

≤
∥∥F(x†)− yδn∥∥p +

αn
q
R(x†)

≤ δpn +
αn
q
R(x†),

where we have used
∥∥F(x†)− yδn∥∥ = ‖y − yδn‖ ≤ δn. Hence we get

the estimate

(3.3) 0 ≤ q(τ p − 1)
δpn
αn
≤ R(x†)−R(x(q)n ).

In particular we infer that lim sup
n→∞

R(x
(q)
n ) ≤ R(x†).

Also, from the minimizing properties we see that∥∥F(x(q)n )− yδn∥∥p +
αn
q
R(x(q)n ) ≤

∥∥F(x†)− yδn∥∥p +
αn
q
R(x†),

which implies that∥∥F(x(q)n )− yδn∥∥p ≤ δp +
αn
q
R(x†).

From Proposition 7 we obtain that
∥∥∥F(x(q)n )− yδn∥∥∥p → 0 as n → ∞

and thus Lemma 1 yields lim
n→∞

R(x
(q)
n ) = R(x†), which in turn by virtue

of (3.3) allows to complete the proof. �

Remark 4. Here we have used that, under our assumptions, α obtained
from the SDP tends to zero in order to obtain δp/α → 0 as δ → 0.
However, the latter also remains true if α is bounded from below by
some constant ᾱ > 0. When combining

∥∥F(xδα)− yδ∥∥ ≤ τδ from
(3.1) and (2.17) we easily see that Lemma 1 is applicable under such
lower bound, too. Thus, the regularized solutions xδα converge with
respect to the τX-topology to elements of L whenever α(δ, yδ) → 0 or
α(δ, yδ) ≥ ᾱ > 0 can be ensured for the problem at hand.
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At the end of this section we provide two simple examples illustrat-
ing that the regularization parameters α > 0 chosen according to the
SDP need not tend to zero as δ > 0 tends to zero if the assumptions
of Theorem 1 are not completely fulfilled. Precisely, the EP veto of
Assumption 2 is not satisfied in both examples. In particular, for dif-
ferentiable F , Example 1 refers to the exponent p = 1 in the misfit
term ‖F (x)− yδ‖p of the Tikhonov functional Jα,yδ(x), which violates
one main assumption of Proposition 1. Another variety of violating
the EP veto is presented in Example 2 (cf. [1, 2]), working with the
exponent p = 2, but F does not meet the differentiability requirement
(2.6) of Proposition 1.

Example 1. For X = Y = R with norms ‖ · ‖ := | · | we consider here
R(x) = |x|, F (x) := x, x ∈ D = R, x† = y† = 1, and yδ = 1 ± δ
for 0 < δ ≤ 1/3. When setting the exponent p := 1 in the Tikhonov
functional

Jα,yδ(x) = |x− (1± δ)|+ α|x|,
for 0 < α < 1 the uniquely determined regularized solution is
xδα = 1±δ, and moreover for any τ > 1 we have ‖F (xδα)−yδ‖ = 0 < τδ.
For α = 1 the closed intervalMα,yδ = [0, 1± δ] characterizes the regu-
larized solutions and the corresponding values ‖F (xδα)−yδ‖ run through
the same interval. On the other hand, for α > 1 we have xδα = 0 with
‖F (xδα) − yδ‖ = 1 ± δ which dominates the value τδ if δ < 1/(τ + 1).
For α0 > 1 and 0 < q < 1 we always find some j ∈ N such that
αj = α0q

j < 1 satisfies the SDP and hence that the regularization pa-
rameter remains constant and positive for all sufficiently small δ > 0.
Note that we have here L = {1}, Xmin = {0}, L ∩Xmin = ∅,

Mα,y† =


L if 0 < α < 1,

[0, 1] if α = 1,

Xmin if α > 1,

and hence L ∩
⋃
α>0

Mα,y† = {1} 6⊆ Xmin which violates the EP veto.

Example 2. For obtaining this example we only amend Example 1 in a
few details, namely we set p := 2 and use the function

F
(
x
)

:= 1 +
√
|1− x|, x ∈ R,

which is non-differentiable at the solution point x = 1. Moreover we
consider data yδ = 1 + δ, 0 < δ < 1/3, such that the Tikhonov func-
tional attains the form

Jα,yδ(x) = (
√
|1− x| − δ)2 + α|x|,

and we have for 0 < α < 1 − δ the uniquely determined regularized
solution xδα = 1− δ2

(1−α)2 with
∥∥F(xδα)− yδ∥∥ = αδ

1−α (see also [1]).
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For τ ∈ (1, 2) and any q < 1, the SDP will always select α ∈ ∆q such
that

0 < q
τ

τ + 1
< α ≤ τ

τ + 1
,

and α does not tend to zero as δ → 0. Since the sets L, Xmin and
Mα,y† are the same as in Example 1, the same conclusions concerning
the violation of the EP veto can be drawn, although the reason in
Example 2 is now the non-differentiability of F .

4. Impact on rates for the parameter choice under
variational inequalities

In Proposition 7 we have shown that under the Assumptions 1–3
there is some δ > 0 such that regularization parameters α = α(δ, yδ)
satisfying the sequential discrepancy principle (SDP) exist for all
0 < δ ≤ δ and tend to zero as δ → 0. Moreover, δp/α(δ, yδ)→ 0. The
latter has an important consequence. Let δ > 0 and α > 0 be fixed.
Then, for the true solution x†, we have that Jα,yδ

(
xδα
)
≤ Jα,yδ

(
x†
)
,

which in particular implies that R(xδα) − R(x†) ≤ δp/α. This yields
that the minimizers xδα belong to certain sublevel sets, specifically

xδα ∈MR
(
R(x†) +

δp

α

)
.

From Theorem 1 we deduce that for every c > R(x†) there is δ̄ > 0 such
that for 0 < δ ≤ δ̄ the minimizer xδα with parameter α(δ, yδ) chosen
according to the sequential discrepancy principle, obeys xδα ∈ MR(c).
That assertion holds without using any additional condition on the R-
minimizing solutions x† ∈ L to which the corresponding regularized
solutions xδα converge (in the sense of subsequences) with respect to
the τX-toplogy in the Banach space X.

This has implications for the results which were established in [20].
In that study the authors discuss, among others, the sequential dis-
crepancy principle under the validity of some kind of variational in-
equalities, and we briefly recall this concept. The goal is to establish
results beyond convergence, and to turn to convergence rates results.
If one requires convergence rates measured by a non-negative error
measure E(x, x†) then smoothness conditions have to be imposed on
the solutions x† which fit to the (non-linearity) structure of the for-
ward operator F . An appropriate way of combining such conditions on
smoothness and non-linearity is provided by the variational inequality
approach, where the solution x† fulfills the inequality
(4.1)
βE(x, x†) ≤ R(x)−R(x†) + ϕ(‖F (x)− F (x†)‖) for all x ∈M,
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with a constant β > 0, some concave index functions ϕ (strictly in-
creasing continuous function ϕ : (0,∞) → (0,∞) satisfying the limit
condition lim

t→+0
ϕ(t) = 0), and for some set M containing x†.

Remark 5. The considerations in [20] refer to convex functionals R,
but inequalities of the form (4.1) also occur for non-convex penalties
(cf., e.g., [6, 16]). The most prominent choice for the error measure E
is, however, the Bregman distance for convex R, which was introduced
to regularization theory in [9]. For x† ∈ L and ξ ∈ ∂R(x†) it is defined
as

(4.2) DRξ (x, x†) := R(x)−R(x†)− 〈ξ, x− x†〉X∗×X .
It is well-known that, for E(x, x†) = DRξ (x, x†), variational inequali-
ties (4.1) only make sense with concave index functions ϕ and
0 < β ≤ 1 provided that the operator F is Gâteaux differentiable
at x† (cf. [13, 21, 25]). Therefore we restrict our considerations to
such ϕ and β. However, recent results from [17] show that non-concave
ϕ, for example ϕ(t) = C t2, in (4.1) are possible if the operator F is
non-differentiable.

Under the variational inequality (4.1) and for p > 1 it was proven
in [20, Thm. 2] that for every non-negative error measure E we have a
convergence rate

(4.3) E(xδα, x
†) = O(ϕ(δ)) as δ → 0

whenever the sequential discrepancy principle is used for choosing the
regularization parameter α = α(δ, yδ). However, those results could be
formulated only under the restrictive requirement that xδα ∈M for all
0 < δ ≤ δ̄, see Theorem 2, ibid.

Now in the light of Theorem 1 and under Assumptions 1–3 we can
extend this as follows.

Proposition 9. Suppose that a variational inequality (4.1) holds true
on a set M. If there is some c > R(x†) such that M ⊇MR(c), then
there is a δ̄ > 0 such that for every 0 < δ ≤ δ̄ we have that xδα ∈ M,
where α = α(δ, yδ) is chosen according to the SDP. Consequently, for
p > 1 the rate result (4.3) is valid.

From [20, Cor. 2] we obtain for p > 1 the following δ-dependent lower
bound for the associated regularization parameters α > 0. To this end,
we assign to the function ϕ from (4.1) the related function

(4.4) Φ(t) :=
tp

ϕ(t)
, t > 0.

We note that for p > 1, and because ϕ is concave, the function Φ is an
index function. This function controls the decay rate of the regular-
ization parameter α chosen according to the SDP, when a variational
inequality holds true.
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Proposition 10 (cf. [20, Cor. 2]). If for p > 1 and under the Assump-
tions 1–3 the R-minimizing solution x† satisfies a variational inequality
(4.1) and α = α(δ, yδ) is chosen by the sequential discrepancy principle
such that xδα ∈M for all 0 < δ ≤ δ, then we have the lower bound

(4.5) α(δ, yδ) ≥ q

2p−1
τ p − 1

τ p + 1
Φ((τ − 1)δ), 0 < δ ≤ δ̄.

An inspection of the proof of Corollary 2 in [20] shows that the
convergence rate result (4.3) remains true for p = 1, whenever the
function Φ from (4.4) is an index function.

In the alternative situation when p = 1 and when the function ϕ
is of the form ϕ(t) = Ct, t > 0, with some C > 0, then the related
function Φ attains the constant value 1/C > 0, for all t > 0. Thus, Φ
does not constitute an index function. Also, the sequential discrepancy
principle yields regularization parameters α(δ, yδ), which are bounded
below by a positive constant, i.e.,

α(δ, yδ) ≥ q(τ − 1)

C(τ + 1)
, 0 < δ ≤ δ̄.

Nevertheless, the results from [20] extend to the case p = 1, even
if the regularization properties of the parameter choice do not hold.
Indeed, these results were only based on bounding the excess penalty
R(x)−R(x†), and the data misfit ‖F (x)− F (x†)‖, separately. In the
present context, the SDP bounds the data misfit by τδ, and in case
that the chosen parameter does not tend to zero the excess penalty is
bounded as R(x) −R(x†) ≤ Cδ, such that overall a rate of the order
O(δ) can be established in this case.

The lack of the regularization properties for the SDP parameter
choice, specifically the violation of the exact penalization veto, can
be established in the following situation. Recall, that L denotes the
set of all R-minimizing solutions of F

(
x
)

= y† and the definition of
Mα,y in (2.3).

Proposition 11. Let p = 1 and let Assumption 3 hold. If x† ∈ L
satisfies a variational inequality
(4.6)
βE(x, x†) ≤ R(x)−R(x†) + C ‖F (x)− F (x†)‖ for all x ∈M,

where 0 < β ≤ 1, C > 0, E is a non-negative error measure, and
Mα,y† ⊆ M for 0 < α ≤ α, then the EP veto (Assumption 2) is
violated at y† = F (x†).

Proof. In this proof we extend some ideas presented in [9] regarding
exact penalization to the situation of variational inequalities. For all
α > 0 and xα ∈ Mα,y† we have 1

α
‖F (xα) − y†‖ +R(xα) −R(x†) ≤ 0.

Adding C ‖F (xα)− y†‖ on both sides of the inequality and using (4.6)
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we arrive at the estimate
1

α
‖F (xα)− y†‖ ≤ 1

α
‖F (xα)− y†‖+ (R(xα)−R(x†) + C ‖F (xα)− y†‖)

≤ C ‖F (xα)− y†‖.

For 0 < α < min(1/C, α) this gives 0 ≤
(
1
α
− C

)
‖F (xα) − y†‖ ≤

0, and consequently, that F (xα) = y† for such α. Therefore we see
that xα ∈ L ∩

⋃
α>0Mα,yδ 6= ∅. However, according to Proposition 5

we have that xα /∈ Xmin whenever Assumption 3 holds. This contradicts
Assumption 2 and the proof is complete. �

Note that the variational inequality (4.6) for the Bregman distance
(4.2) with respect to a convex penalty R as error measure and un-
der Gâteaux differentiability of F is equivalent to a benchmark source
condition written in Banach spaces as

ξ = F ′(x†)∗w, ξ ∈ ∂R(x†), w ∈ Y ∗

(cf. [25, 26]). The flavor of exact penalization expressed by Proposi-
tion 11 was presented in [19]. Another example of such situation is
discussed in [11].

5. Proofs of the auxiliary propositions 1–6

Proof of Proposition 1. Let x† ∈ D and y† = F (x†) be such that
x† ∈ Mα,y† for some α > 0. Due to the convexity of D we then have
for every xmin ∈ Xmin and 0 < t < 1 that (1− t)x† + txmin ∈ D and

αR(x†) = Jα,y†
(
x†
)
≤ Jα,y†

(
(1− t)x† + txmin

)
≤
∥∥F((1− t)x† + txmin

)
− y†

∥∥p + αR((1− t)x† + txmin).

The convexity of R yields that

R((1− t)x†+ txmin) ≤ (1− t)R(x†)+ t R(xmin) = (1− t)R(x†)+ tRmin.

Therefore, since x† ∈Mα,y† , we get

α tR(x†) ≤
∥∥F(x† + t(xmin − x†)

)
− F

(
x†
)∥∥p + αtRmin

and, after dividing by αt and letting t→ +0,

R(x†) ≤ 1

α
lim inf
t→+0

{
1

t

∥∥F(x† + t(xmin − x†)
)
− F

(
x†
)∥∥p}+Rmin.

Thus x† ∈ Xmin follows since

(5.1) lim
t→+0

{
1

t

∥∥F(x† + t(xmin − x†)
)
− F

(
x†
)∥∥p}

=

(
lim
t→+0

tp−1
) ∥∥F ′(x†)(xmin − x†)

∥∥p = 0

and the proof is complete. �
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Proof of Proposition 2. Again let x† ∈ D and y† = F (x†) be such
that x† ∈ Mα,y† for some α > 0. By 0 ∈ D and R(0) = 0 we obtain
here that 0 ∈ Xmin and owing to (2.9) we have that tx† ∈ D for all
0 < t < 1. Then we derive from condition (2.9) that

αR(x†) = Jα,y†
(
x†
)
≤ Jα,y†

(
(1− t)x†

)
=
∥∥F((1− t)x†)− y†∥∥p + αR((1− t)x†)

≤
∥∥F((1− t)x†)− y†∥∥p + α θ(1− t)R(x†).

Using similar arguments as in the proof of Proposition 1 and also (2.8),
we obtain

αR(x†) ≤ lim inf
t→+0

{
1

1− θ(1− t)
∥∥F((1− t)x†)− F(x†)∥∥p}

≤ Cθ · lim
t→+0

{
1

t

∥∥F((1− t)x†))− F(x†)∥∥p} = 0,

where the last equality follows from (5.1) with the choice xmin = 0.
Thus x† ∈ Xmin which completes the proof. �

Proof of Proposition 3. Let, for the element y† ∈ F (D) under con-
sideration, x† ∈ L \ Xmin be a minimizer of Jα,y† for some α > 0.
Because of the Gâteaux differentiability of F and R on L \ Xmin we
have x† ∈ int(D) and the Tikhonov functional is also differentiable with

∇Jα,y†
(
x†
)

= ∇{‖F (·)− y†‖p}(x†) + α∇R(x†) = 0.

Using for t→ +0 limit considerations as in the proof of Proposition 1
we obtain here

∇{‖F (·)− y†‖p}(x) = 0 for all x ∈ L \Xmin.

Indeed, the directional derivative of ‖F (·) − y†‖p at x ∈ L \ Xmin in
any given direction h ∈ X vanishes as

lim
t→0

‖F (x+ th)− y†‖p − ‖F (x)− y†‖p

t

= lim
t→0
‖F (x+ th)− y†‖p−1

∥∥∥∥F (x+ th)− F (x)

t

∥∥∥∥
= lim

t→0
‖F (x+ th)− y†‖p−1‖F ′(x)(h)‖ = 0.

Consequently ∇R(x†) = 0 which, however, violates the premise that
∇R(x) 6= 0 is valid for all x ∈ D \ Xmin and proves the proposition.

�
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Proof of Proposition 4. In order to prove this proposition, we pro-
vide a more detailed picture of monotonicity and asymptotics beyond
Proposition 4. The proofs of the asymptotics also rely on the mono-
tonicity of these functionals.

Lemma 3 (see e.g., [1, Lemma 4.7]). If yδ ∈ Y is fixed and 0 < α < β,
then ∥∥F(xδα)− yδ∥∥ ≤ ∥∥F(xδβ)− yδ∥∥ ,

R(xδα) ≥ R(xδβ),

Jα,yδ
(
xδα
)
≤ Jβ,yδ

(
xδβ
)
,

holds for all xδα ∈Mα,yδ and xδβ ∈Mβ,yδ .

The following lemma extends the assertions of Proposition 4

Lemma 4. Let yδ ∈ Y be fixed and for α > 0 let xδα ∈Mα,yδ . Then,

lim
α→+0

αR(xδα) = 0,

lim
α→∞

R(xδα) = Rmin,

lim
α→+0

Jα,yδ
(
xδα
)

= inf
x∈D

∥∥F(x)− yδ∥∥q
lim
α→∞

Jα,yδ
(
xδα
)

=
{
d(yδ, Ymin)q if Rmin = 0
+∞ otherwise,

lim
α→+0

∥∥F(xδα)− yδ∥∥ = inf
x∈Xmin

∥∥F(x)− yδ∥∥ ,
lim
α→∞

∥∥F(xδα)− yδ∥∥ ≥ d(yδ, Ymin)

and, if Rmin = 0, then equality also holds in the last line.

Proof. For α → +0 the asymptotic relations as are well known, see
e.g. [1, Lemma 4.15]. For α→∞ we argue as follows. Since

Jα,yδ
(
xδα
)
≤
∥∥F(xmin

)
− yδ

∥∥q + αRmin = d(yδ, Ymin)q + αRmin,

we obtain that

Rmin ≤ lim inf
α→∞

R(xδα) ≤ lim sup
α→∞

R(xδα)

≤ lim
α→∞

{
1

α
Jα,yδ

(
xδα
)}
≤ lim

α→∞

{
1

α
d(yδ, Ymin)q +Rmin

}
= Rmin,

and we have that R(xδα) → Rmin as α → ∞. This also shows that
xδα ∈MR(c) for some c large enough, and we may thus find a sequence
αk → ∞ and corresponding minimizers xk ∈ Mαk,yδ such that xk →
x̄ ∈ D with respect to τX . Then, the lower semicontinuity of R yields
R(x̄) ≤ lim infk→∞R(xk) = Rmin, such that x̄ ∈ Xmin. Therefore,

d(yδ, Ymin) ≤
∥∥F(x̄)− yδ∥∥ ≤ lim inf

k→∞

∥∥F(xk)− yδ∥∥
= lim

α→∞

∥∥F(xδα)− yδ∥∥ ,(5.2)
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where the last identity holds due to the monotonicity asserted in the
preceding Lemma.

Finally, if Rmin = 0, then for all xmin ∈ Xmin

0 ≤ Jα,yδ
(
xδα
)
≤
∥∥F(xmin

)
− yδ

∥∥q ,
which together with (5.2) yields

d(yδ, Ymin)q ≤ lim
α→∞

∥∥F(xδα)− yδ∥∥q ≤ lim
α→∞

Jα,yδ
(
xδα
)
≤ d(yδ, Ymin)q.

If, on the other hand, Rmin > 0, then Jα,yδ
(
xδα
)
→∞ follows from

Jα,yδ
(
xδα
)
≥ αR(xδα) ≥ αRmin →∞ as α→∞,

which completes the proof. �

Proof of Proposition 5. The statement regarding Assumption 2 is
trivially true, and we shall show the validity of Assumption 3 un-
der (2.14). By virtue of Fact 1 (c), we have that

κ := d
(
y†, Ymin

)
= min

x∈Xmin

∥∥F (x)− y†
∥∥ > 0.

Thus, for any τ > 1 we can choose

0 < δ̄ <
κ

τ + 1
.

Then, for all 0 < δ ≤ δ̄, data yδ satisfying
∥∥y† − yδ∥∥ ≤ δ, and

xmin ∈ Xmin, we obtain∥∥F(xmin

)
− yδ

∥∥ ≥ ∥∥F(xmin

)
− y†

∥∥− ∥∥y† − yδ∥∥ ≥ κ− δ > τδ,

which is (2.13).
For the last assertion we notice that, if y† ∈ Ymin, then

d(yδ, Ymin) ≤
∥∥y† − yδ∥∥ ≤ δ,

and (2.13) cannot hold no matter how τ > 1 is chosen. �

Proof of Proposition 6. This assertion is a consequence of∥∥F(xδα)− yδ∥∥p + αR(xδα) ≤
∥∥F(xmin

)
− yδ

∥∥p + αRmin

≤ (τδ)p + αRmin,

which implies∥∥F(xδα)− yδ∥∥p ≤ ∥∥F(xmin

)
− yδ

∥∥p + α(Rmin −R(xδα)) ≤ (τδ)p.

�
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Conclusion

We have investigated the regularization property (1.4) for a widely
applicable sequential version of the discrepancy principle for Tikhonov’s
regularization method applied to nonlinear ill-posed problems in Ba-
nach spaces, including partly the case of certain non-convex penalties.
Ensuring the regularization property is of great importance due to its
inherent consequences for the convergence of regularized solutions. We
have even shown its impact on the variational inequality approach for
obtaining convergence rates, where it allows us to restrict all consider-
ations to sublevel sets of the penalty term.

In the course of showing (1.4), we were able to demonstrate the
prominent role of the exact penalization veto formulated as Assump-
tion 2. This veto is, in combination with the required data compat-
ibility, the crucial link for obtaining (1.4) when using the sequential
discrepancy principle. In Propositions 1–3 we could verify for three
different situations that the exact penalization veto is satisfied, but we
have also formulated counterexamples, e.g. in Proposition 11, where
the veto is violated.
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[5] Boţ R I and Hofmann B 2013 The impact of a curious type of smoothness
conditions on convergence rates in `1-regularization Eurasian Journal of Math-
ematical and Computer Applications 1(1) 29–40

[6] Bredies K and Lorenz D A 2009 Regularization with non-convex separable
constraints Inverse Problems 25(8) 085011

[7] Burger M, Flemming J and Hofmann B 2013 Convergence rates in `1-
regularization if the sparsity assumption fails Inverse Problems 29(2) 025013

[8] Burger M and Osher S 2012 A Guide to the TV Zoo (Münster: University of
Münster)

[9] Burger M and Osher S 2004 Convergence rates of convex variational regular-
ization Inverse Problems 20(5) 1411–21



REGULARIZATION PROPERTIES OF THE DISCREPANCY PRINCIPLE 21

[10] Burger M, Resmerita E and He L 2007 Error estimation for Bregman iterations
and inverse scale space methods in image restoration Computing 81(2-3) 109–
135

[11] Clason C 2012 L∞ fitting for inverse problems with uniform noise Inverse
Problems 28(10) 104007

[12] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems
vol. 375 of Mathematics and its Application (Dordrecht: Kluwer Academic
Publishers)

[13] Flemming J 2012 Generalized Tikhonov Regularization and Modern Conver-
gence Rate Theory in Banach Spaces (Aachen: Shaker Verlag)

[14] Grasmair M 2009 Well-posedness and convergence rates for sparse regulariza-
tion with sublinear lq penalty term Inverse Probl. Imaging, 3(3) 383–387

[15] Grasmair M 2010 Non-convex sparse regularisation J. Math. Anal. Appl. 365(1)
19–28

[16] Grasmair M 2010 Generalized Bregman distances and convergence rates for
non-convex regularization methods Inverse Problems 26(11) 115014

[17] Grasmair M 2012 An application of source inequalities for convergence rates
of Tikhonov regularization with a non-differentiable operator Submitted - pre-
liminary version under arXiv:1209.2246v1

[18] Grasmair M, Haltmeier M and Scherzer O 2008 Sparse regularization with `q

penalty term Inverse Problems 24(5) 1–13
[19] Hofmann B, Kaltenbacher B, Poeschl C and Scherzer O 2007 A convergence

rates result for Tikhonov regularization in Banach spaces with non-smooth
operators Inverse Problems 23(3) 987–1010

[20] Hofmann B and Mathé P 2012 Parameter choice under variational inequalities
Inverse Problems 28(10) 104006

[21] Hofmann B and Yamamoto M 2010 On the interplay of source conditions and
variational inequalities for nonlinear ill-posed problems Applicable Analysis
89(11) 1705–1727

[22] Lorenz D A 2008 Convergence rates and source conditions for Tikhonov regu-
larization with sparsity constraints J. Inverse Ill-Posed Probl. 16(5) 463–478

[23] Offtermatt J 2012 A Projection and Variational Regularization Method for
Sparse Inverse Problems (PhD thesis) (Stuttgart: University of Stuttgart,
Dept. Math.)

[24] Ramlau R and and Zarzer C A 2012 On the minimization of a Tikhonov
functional with a non-convex sparsity constraint Electron. Trans. Numer. Anal.
39 476–507

[25] Scherzer O, Grasmair M, Grossauer H, Haltmeier M and Lenzen F 2009 Vari-
ational Methods in Imaging (New York: Springer-Verlag)

[26] Schuster T, Kaltenbacher B, Hofmann B and Kazimierski K S 2012 Regular-
ization Methods in Banach Spaces (Berlin/Boston: Walter de Gruyter)

[27] Tikhonov A N, Leonov A S and Yagola A G 1998 Nonlinear Ill-posed Problems
(London: Chapman & Hall)

[28] Zarzer C A 2009 On Tikhonov regularization with non-convex sparsity con-
straints Inverse Problems 25(2) 025006



22 STEPHAN W. ANZENGRUBER, BERND HOFMANN∗, AND PETER MATHÉ
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