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Abstract

Numerical differentiation of a function over the unit interval of the real axis,
which is contaminated with noise, by inverting the simple integration operator J
mapping in L2 is discussed extensively in the literature. The complete singular
system of the compact operator J is explicitly given with singular values σn(J)
asymptotically proportional to 1/n. This indicates a degree one of ill-posedness
for the associated inverse problem of differentiation. We recall the concept of the
degree of ill-posedness for linear operator equations with compact forward operators
in Hilbert spaces. In contrast to the one-dimensional case, there is little specific
material available about the inverse problem of mixed differentiation, where the d-
dimensional analog Jd to J , defined over unit d-cube, is to be inverted. In this
note, we show for that problem that the degree of ill-posedness stays at one for all
dimensions d ∈ N. Some more discussion refers to the two-dimensional case in oder
to characterize the range of the operator J2.
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1 Introduction and main results

For measuring the strength of ill-posedness of an operator equation

Ax = y (x ∈ X, y ∈ Y ) , (1)

with an injective and compact linear operator A ∈ L(X, Y ) mapping between the infinite
dimensional and separable real Hilbert spaces X and Y , the concept the degree of ill-
posedness µ = µ(A) ∈ (0,∞] has been developed. Since G. Wahba in 1980 distinguished
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in her paper [32] between mildly, moderately and severely linear ill-posed equation (1),
this degree was used as one ingredient for characterizing the ill-posedness of linear inverse
problems. For example, in [8, p. 31] µ ≤ 1 designates mildly, 1 < µ < ∞ moderately, and
µ = ∞ severely ill-posed problems. With growing µ, the instability of the approximate
solutions with respect to noisy data increases, because the condition numbers of n × n-
matrices arising from A in (1) by discretization are in the best case of order O(nµ) (cf.,
e.g., [34]). In combination with the smoothness of the solution x to (1), the value µ is
a factor influencing error estimates and convergence rates in regularization (cf., e.g., [19,
21]). For more details in this context, example situations and alternative concepts, we
also refer to [2, 4, 5, 9, 11, 14, 16, 22, 31].

In this note, we use a definition of the degree of ill-posedness along the lines of [10]:

Definition 1.1 Let {σn(A)}∞n=1 the non-increasing sequence of singular values of the in-
jective and compact linear operator A ∈ L(X, Y ), tending to zero as n → ∞. Based on
the well-defined interval of ill-posedness introduced as

[µ(A), µ(A)] =

[
lim inf
n→∞

− log σn(A)

log n
, lim sup

n→∞

− log σn(A)

log n

]
⊂ [0,∞],

we say that the operator A, and respectively the associated operator equation (1), is ill-
posed of degree µ = µ(A) ∈ (0,∞) if µ = µ(A) = µ(A), i.e., if the interval of ill-posedness
degenerates into a single point.

Evidently, if the singular value asymptotics of A is of the form σn(A) ≍ n−µ 1, then
this operator is ill-posed of degree µ > 0. An important example of this type is the simple
integration operator over the unit interval J : X → Y with X = Y = L2([0, 1]), frequently
discussed in the literature, defined as

[Jx](s) :=

s∫
0

x(t) dt (0 ≤ s ≤ 1) , (2)

with range R(J) = {y ∈ H1([0, 1]) : y(0) = 0}, where solving the operator equation
Jx = y for y ∈ R(J) corresponds with the differentiation in the weak sense x(t) = y′(t)
a.e. for t ∈ (0, 1). For this operator J with adjoint J∗, one explicitly knows the singular
system {σn(J);un(J); vn(J)}∞n=1 with complete orthonormal systems {un(J)}∞n=1 in X
and {vn(J)}∞n=1 in Y , satisfying Jun(J) = σn(J)vn(J) and J∗vn(J) = σn(J)un(J) for all
n ∈ N, as{

2

(2n− 1)π
,
√
2 cos

(
n− 1

2

)
πt (0 ≤ t ≤ 1);

√
2 sin

(
n− 1

2

)
πt (0 ≤ t ≤ 1)

}∞

n=1

. (3)

Thus we have a strictly decreasing sequence of singular values of J with σn(J) ∼ 1
nπ

,
hence with σn(J) ≍ n−1, and the ill-posedness degree of J is one.

1We use the notation an ≍ bn for sequences of positive numbers an and bn satisfying inequalities
c bn ≤ an ≤ c bn for constants 0 < c ≤ c < ∞ for sufficiently large n ∈ N. If moreover lim

n→∞
an/bn = 1,

we write an ∼ bn. If the quotients an/bn are only bounded from above by a constant, then we write
an = O(bn).

2



The injective and compact operator Jd : X → Y mapping in the infinite dimensional
real Hilbert space X = Y = L2([0, 1]d) and restricted to functions defined over the d-
dimensional unit cube as

[Jd x](s1, . . . , sd) :=

s1∫
0

s2∫
0

. . .

sd∫
0

x(t1, t2, . . . , td) dtd . . . dt2dt1 (4)

is a d-dimensional analog to J , where solving the operator equation Jd x = y for y ∈ R(Jd)
corresponds with the mixed differentiation in the weak sense as

x(s1, . . . , sd) =
∂d

∂s1 . . . ∂sd
y(s1, . . . , sd) a.e. for (s1, . . . , sd) ∈ [0, 1]d.

Solving an operator equation (1) with A := Jd mapping in L2([0, 1]d) occurs in statis-
tics when y represents a d-dimensional copula, from which an associated d-dimensional
copula density x is to be reconstructed, and we refer for details to [20] and [23, Chap. 2.4],
but with respect to numerical challenges for growing dimensions d in the context of this
inverse problem to the report [29].

The following theorem represents the main result of this note.

Theorem 1.2 For all d ∈ N, the operator Jd : L2([0, 1]d) → L2([0, 1]d) defined by formula
(4) is ill-posed of degree one.

The proof of Theorem 1.2 will be given in Section 3, based on a proposition that
characterizes with some more discussion the shape (logn)d−1

n
for the asymptotics of the non-

increasingly ordered singular values σn(Jd) of the compact operator Jd from (4) mapping
in L2([0, 1]d). Required auxiliary results for that reason are presented in Section 2 and
proven in the final Section 5. The particular case of dimension d = 2 will be outlined
with respect to range properties in Section 4.

2 Preliminaries

In this section, we present in form of Proposition 2.1 and of the three Lemmas 2.2, 2.3
and 2.4 auxiliary results, which are substantial for the proof of Theorem 1.2 in Section 3.
The proofs of those auxiliary results are given in Section 5.

Proposition 2.1 Based on the strictly decreasing sequence {σn(J)}∞n=1 taken from (3)
of singular values of the operator J defined in (2), we can fully characterize the set of
singular values of the operator Jd defined in (4) as

{σ̃i1i2...id(Jd)}∞i1,i2,...,id=1 = {σi1(J)σi2(J) . . . σid(J)}∞i1,i2,...,id=1 . (5)

Note that in the proof of Proposition 2.1 in Section 5 also the singular functions of Jd
are explicitly given.
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In coincidence with the reasons stated in the introduction, our focus is on the degree of
ill-posedness of the operator Jd, which requires determining the decay rate of its singular
values. For this purpose, the singular values in (5) must be arranged in decreasing order
as ∥Jd∥L(L2([0,1]d)) = σ1(Jd) ≥ σ2(Jd) ≥ . . . ≥ σn(Jd) ≥ σn+1(Jd) ≥ . . . → 0 as n → ∞. To
verify the singular value asymptotics expressed by Proposition 3.1 as basis for the main
result of this note, the following three lemmas are of importance.

Lemma 2.2 For d ∈ N := {1, 2, . . .} and sufficiently large x we have the formulas∑
i≤x

1

i
(log i)d−1 =

1

d
(log x)d +O (1) (6)

and ∑
i≤x

1

i

(
log

(x
i

))d−1

=
1

d
(log x)d +O

(
(log x)d−1

)
, (7)

where the running index i can take values in N.

Lemma 2.3 Let {σi}∞i=1 be a non-increasing sequence of positive numbers tending to zero
with the asymptotics σi ≍ i−1 and let us define the function

nd(x) := #{(i1, . . . , id) : x σi1 . . . σid ≥ 1}. (8)

Then we have for all d ∈ N the asymptotic property

nd(x) ≍ x (log x)d−1 as x → ∞ . (9)

Note that for the model case σi =
1
i
, the function nd(x) counts the integer d-tuples

(i1, . . . , id) satisfying i1i2 · · · id ≤ x. In the two-dimensional case d = 2, the value of nd(x)
then coincides with the sum of numbers of divisors of all positive integers ≤ x. The study
of the asymptotical expansion of such divisor sums as x → ∞ has a long history and is
known as Dirichlet’s division approximation, see, e.g. [7, Theorem 318].

Lemma 2.4 If, for d ∈ N,

n = n(x) ≍ x (log x)d as x → ∞, (10)

then we have
x ≍ n

(log n)d
as x → ∞. (11)

3 Proof of the theorem and some discussion

We start with a proposition, which acts a basic ingredient for the proof of the theorem.

Proposition 3.1 For d ∈ N and the operator Jd : L2([0, 1]d) → L2([0, 1]d) defined by
formula (4), we have the singular value asymptotics

σn(Jd) ≍
(log n)d−1

n
as n → ∞ . (12)
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Proof: For d = 1 all is clear. Therefore, we let d ≥ 2 and set σi := σi(J) for all i ∈ N in
the sense of Lemma 2.3. Then we can use, due to the formula (5) from Proposition 2.1,
the number function nd(x) from formula (8) of Lemma 2.3 with the asymptotic property
nd(x) ≍ x (log x)d−1 as x → ∞ of formula (9). Now nd(x) counts, for the non-increasingly
ordered singular values σn(Jd) of the operator Jd, the number of singular values obeying
the condition 1/σn(Jd) ≤ x. Thus, we have the obvious inequality

nd(1/σn(Jd)) = max{m ∈ N : σm(Jd) = σn(Jd)} ≥ n. (13)

Since, for sufficiently large x > 0,

nd(x) ≤ c x (log x)d−1

for some positive constant c, we see by Lemma 2.4 that

1/σn(Jd) ≤ c1
n

(log n)d−1
,

with some positive constant c1 and for sufficiently large n ∈ N. If we approach the possible
jump at 1/σn(Jd) from the other side, we see that

lim
x→1/σn(Jd)−

nd(x) < n. (14)

Consequently, since
nd(x) ≥ c x (log x)d−1,

with some c > 0 and for sufficiently large x > 0, this provides us with

1/σn(Jd) ≥ c2
n

(log n)d−1

for some constant c2 > 0 in the same way. Together, we then have σn(Jd) ≍ (logn)d−1

n
as

n → ∞, which yields the singular value asymptotics (12) of the operator Jd and completes
the proof of Proposition 3.1.

Proof of Theorem 1.2: From formula (12) of Proposition 3.1 we simply derive the limit
condition

lim
n→∞

− log
(

(logn)d−1

n

)
log n

 = 1 .

This, however, indicates in the sense of Definition 1.1 the degree of ill-posedness one for
Jd and confirms the assertion of the theorem.

Remark 3.2 We note that the above given rather simple proof our asymptotics formula
(12) is based on the fact that for J and Jd the singular systems are explicitly available
using the multipliability of singular values in the sense of Proposition 2.1. Indeed, this
asymptotics result is not new and can be found, but without fully comprehensible proof,
as a special case of Proposition 5.4 in [17] for αi = 1 (i = 1, 2, ..., d) when consider-
ing Riemann-Liouville operators of fractional integration. An asymptotics of the shape
(logn)d−1

n
as n → ∞ also occurs for related s-numbers of compact operators in similar

contexts. So we have this asymptotics (cf. [27, p. 197]) for the n-the entropy number en of
an embedding operator from the Hilbert-type Sobolev space S1

2 W ([0, 1]d) of dominating
mixed smoothness up to derivatives of order one into L2([0, 1]d) as well as (cf. [30, p. 192])
for the Kolmogorov n-width dn for periodic functions over the d-dimensional torus Td.
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Remark 3.3 In many multivariate inverse problems, the degree of ill-posedness strongly
depends on the spatial dimension d. For example, this applies for the compact embedding
operator A = Ed : Hp([0, 1]d) → L2([0, 1]d) (d = 1, 2, . . .) with the singular value asymp-
totics σn(Ed) ≍ n−p/d (cf. [15, § 3c]). In contrast, Theorem 1.2 shows that the dimension
d does not influence the ill-posedness degree of Jd. One reason for this effect may be that
in the d-dimensional case the element y ∈ R(Jd) is (weakly) d-times differentiable and
consequently the smoothness of y grows in coincidence with d. However, if we try to find
a constant K(d) such that

σn(Jd) ∼ K(d)
(log n)d−1

n
holds, then we could verify K(d) = (d− 1)! under the stronger assumption σn(J) ∼ n−1.
This is a consequence of equation (21) in the proof of Lemma 2.3 below. Hence, for
moderate size of n but large dimension d the constant K(d) dominates the reconstruction
error, and the expected asymptotics cannot be seen. Therefore, the problem of mixed
differentiation can be intractable (cf., e.g., [24, § 4.4]), even if the degree of ill-posedness
is small.

4 The special case of mixed differentiation in the two-
dimensional case

For the two-dimensional case of mixed differentiation, we have to solve the operator
equation (1) with the injective and compact forward operator J2 : X → Y defined as

[J2 x](s1, s2) :=

s1∫
0

s2∫
0

x(t1, t2) dt2dt1 , (15)

mapping in the real Hilbert space X = Y = L2([0, 1]2), where solving (1) with A := J2
requires to verify from y ∈ R(J2) the mixed second derivative x(s1, s2) =

∂2

∂s1∂s2
y(s1, s2)

a.e. for (s1, s2) ∈ [0, 1]2. Some essential properties of the range R(J2) are given by the
following proposition.

Proposition 4.1 The range R(J2) of the operator J2 : L2([0, 1]2) → L2([0, 1]2) defined in
(15) is a subset S of both the Sobolev space H1([0, 1]2) and the Hölder space C0,β([0, 1]2)
with Hölder exponent β = 0.5, additionally satisfying boundary conditions in the sense of

S = {y ∈ H1([0, 1]2)∩C0,0.5([0, 1]2) : y(s1, 0) = 0 (0 ≤ s1 ≤ 1), y(0, s2) = 0 (0 ≤ s2 ≤ 1).}
(16)

Proof: The partial derivatives of y(s1, s2) = [J2(x)](s1, s2) with respect to s1 and s2
belong to L2([0, 1]2), because ∥x∥2L2([0,1]2) < ∞ is a majorant of the L2-norm squares
of ∂

∂s1
y and ∂

∂s2
y. Moreover, the boundary conditions are evident. Then it remains

to show the Hölder continuity of y with Hölder exponent 1/2. Now we can estimate
|y(s1, s2)− y(s̃1, s̃2)| from above, for all 0 ≤ s1, s2, s̃1, s̃2 ≤ 1, by the sum∣∣∣∣∣∣

s1∫
0

 s2∫
0

x(t1, t2)dt2 −
s̃2∫
0

x(t1, t2)dt2

 dt1

∣∣∣∣∣∣+
∣∣∣∣∣∣

s̃2∫
0

 s1∫
0

x(t1, t2)dt1 −
s̃1∫
0

x(t1, t2)dt1

 dt2

∣∣∣∣∣∣ .
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This yields the inequalities

|y(s1, s2)− y(s̃1, s̃2)| ≤
s1∫
0

max(s2,s̃2)∫
min(s2,s̃2)

|x(t1, t2)| dt2dt1 +
s̃2∫
0

max(s1,s̃1)∫
min(s1,s̃1)

|x(t1, t2)| dt1dt2

and

|y(s1, s2)− y(s̃1, s̃2)| ≤
1∫

0

max(s2,s̃2)∫
min(s2,s̃2)

|x(t1, t2)| dt2dt1 +
1∫

0

max(s1,s̃1)∫
min(s1,s̃1)

|x(t1, t2)| dt1dt2 , (17)

which allows us to use the Cauchy–Schwarz inequality in the form

|y(s1, s2)− y(s̃1, s̃2)| ≤
(
|s1 − s̃1|1/2 + |s2 − s̃2|1/2

)
∥x∥L2([0,1]2)

≤
√
2∥x∥L2([0,1]2)

∥∥∥∥(s1s2
)
−
(
s̃1
s̃2

)∥∥∥∥1/2

1

.

This completes the proof.

Remark 4.2 In the context of Proposition 4.1 let us mention that R(J2) is a sub-
space of the Sobolev space S1

2 W ([0, 1]2) of dominating mixed smoothness up to deriva-
tives of order one, but not a subspace of H2([0, 1]2), because for factored functions
x(t1, t2) = x1(t1)x2(t2) with xi /∈ H1([0, 1]), the second derivatives ∂2

∂si2
J2(x) do not be-

long to L2([0, 1]2). On the other hand, the set S from (16), including a specific Hölder
continuity property, does not coincide with R(J2), as the even Lipschitz continuous func-
tion y(s1, s2) =

√
s1s2 shows, for which the mixed derivative ∂2

∂s1∂s2
y(s1, s2) = 1

4
√
s1s2

is
not in L2([0, 1]2). This contrasts the situation of an extension of J2 to the larger do-
main L1([0, 1]2), where one can conclude from [3, Theorem 4] that its range can be fully
characterized by the subspace

S̃ = {y ∈ AC([0, 1]2) : y(s1, 0) = 0 (0 ≤ s1 ≤ 1), y(0, s2) = 0 (0 ≤ s2 ≤ 1)}

of the space AC([0, 1]2) of absolutely continuous functions over [0, 1]2.

On the other hand, a restriction of the domain of J2 may lead to higher smoothness of
the range elements J2 x, since stronger assumptions are imposed there on the function x.
From formula (17) above it becomes evident that J2 x is a Lipschitz continuous function
if x ∈ L∞([0, 1]2). Also if x is a copula density, we have J2 x ∈ Lip([0, 1]2), even with the
uniform Lipschitz constant one, see [20, Lemma 1.2].

From Proposition 3.1, we immediately obtain the singular value asymptotics

σn(J2) ≍
log n

n
as n → ∞ , (18)

implying a degree of ill-posedness one for the inverse problem of mixed differentiation in
the two-dimensional case. Even if the degree of ill-posedness is only one, some kind of
regularization is required in order to find stable approximate solutions to the ill-posed
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linear operator equation (1) with A := J2 mapping in X = Y = L2([0, 1]2). For the one-
dimensional case with A := J in X = Y = L2([0, 1]), the forward operator is monotone
and Lavrentiev’s regularization method (cf., e.g., [18]) applies, because we have for the
inner product ⟨Jx, x⟩L2([0,1]) ≥ 0 for all x ∈ L2([0, 1]). This, however, is not the case for
A = J2. Indeed, there exist functions x ∈ L2([0, 1]2) with negative values ⟨J2x, x⟩L2([0,1]2)

and variational or iterative regularization methods are the means of choice (cf., e.g., [1,
5, 6, 12, 13, 26, 28]).

5 Proofs of auxiliary results

Proof of Proposition 2.1: We start by recalling the notation σn = σn(J), un = un(J)
and vn = vn(J), n = 1, 2, . . ., considered in Section 1. From those two complete orthonor-
mal systems (un) and (vn) of L2([0, 1]), we construct two orthonormal bases (Ui1,...,id) and
(Vi1,...,id) of L2([0, 1]d) by considering tensor products:

Ui1,...,id(t1, . . . , td) = ui1(t1)ui2(t2) · · ·uid(td),

Vi1,...,id(t1, . . . , td) = vi1(t1)vi2(t2) · · · vid(td), t1, . . . , td ∈ [0, 1],

for i1, i2, . . . , id = 1, 2, . . . . It may be concluded, e.g., from [25, example following Propo-
sition 2, Section II.4] or [33, Theorem 3.8], in combination with induction over d, that
this in fact yields complete orthonormal systems of L2([0, 1]d), respectively. Now, the
statement of the proposition follows from the following computations:

[Jd Ui1,...,id ](s1, . . . , sd) =

s1∫
0

s2∫
0

. . .

sd∫
0

Ui1,...,id(t1, t2, . . . , td)dtd . . . dt2dt1

=

s1∫
0

ui1(t1)dt1

s2∫
0

ui2(t2)dt2 · · ·
sd∫
0

uid(td)dtd = [Jui1 ](s1)[Jui2 ](s2) · · · [Juid ](sd)

= σi1σi2 · · ·σidVi1,...,id(s1, . . . , sd), s1, . . . , sd ∈ [0, 1].

This shows that {σi1σi2 · · ·σid ;Ui1,...,id ;Vi1,...,id}∞i1,...,id=1 defines a singular value decompo-
sition of the tensor product Jd, with unsorted singular values in fact.

Proof of Lemma 2.2: We first note that

(log i)d − (log(i− 1))d =
d

i
(log i)d−1 +O

(
1

i2
(log i)d−1

)
holds, which follows by Taylor expansion. Since the series

∑∞
i=1

1
i2
(log i)d−1 is convergent,

by summing up, we get

(log n)d =
n∑

i=1

d

i
(log i)d−1 +O(1).

For not necessarily integer x = n, (6) is still valid, because of

(log x)d − (log⌊x⌋)d = O(1) as x → ∞.
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To prove the formula (7), we consider the equation

log
(x
i

)d−1

= (log x− log i)d−1 =
d−1∑
j=0

(
d− 1

j

)
(−1)j (log x)d−1−j (log i)j,

stating that the leading term will be due to (6) as

(log x)d
d−1∑
j=0

(
d− 1

j

)
(−1)j

j + 1
=

1

d
(log x)d,

by taking into account that

d−1∑
j=0

(
d− 1

j

)
(−1)j

j + 1
=

1∫
0

(1− u)d−1 du =
1

d
.

This completes the proof of the lemma.

Proof of Lemma 2.3: First we note that nd(x) introduced in (8) is an increasing function
for x > 0, and we have nd(x) = 0 for x < 1/σ d

1 and all d ∈ N. From the definition of nd,
we immediately get the recursion

nd+1(x) =
∑
i∈N

nd(xσi) (d = 1, 2, . . .). (19)

The sum in (19) is a finite one, because nd(x) vanishes for x > 0 small enough. By
definition we have n1(x) = n for each n, x satisfying σn+1 < 1/x ≤ σn. Thus σn ≍ n−1

implies n1(x) ≍ x as x → ∞. Consequently, the maximal index in the sum of (19)
possesses also the asymptotics ≍ x.

Now for d = 1, equation (19) attains the form

n2(x) ≍
∑
i≤x

x

i
≍ x log x as x → ∞ .

For general dimensions d ≥ 2 we obtain

nd(x) ≍ x (log x)d−1 as x → ∞ , (20)

and we can prove this by induction noting that we already have that this asymptotics is
valid for d = 1 and d = 2. Then assuming that the formula (20) is valid for level d, we
make the jump to level d+ 1 as

nd+1(x) ≍
∑
i≤x

x

i

(
log

(x
i

))d−1

≍ x (log x)d as x → ∞ ,

by using the recursion formula (19) in combination with formula (7) from Lemma 2.2.
We remark here that under the stronger assumption σi ∼ i−1 we even obtain

nd(x) ∼
1

(d− 1)!
x (log x)d−1 (21)
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with the leading constant 1
(d−1)!

, since the induction step from nd to nd+1 introduces a
factor 1

d
log x due to (7).

Proof of Lemma 2.4: The asymptotic property

n = n(x) ≍ x (log x)d as x → ∞

means
log n = log x+ d log log x+O(1),

i.e.
log n ∼ log x.

This implies
x ≍ n

(log x)d
∼ n

(log n)d
as n → ∞ .
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